EP2344427A1 - Poudre d'oxyde de zirconium - Google Patents

Poudre d'oxyde de zirconium

Info

Publication number
EP2344427A1
EP2344427A1 EP09787335A EP09787335A EP2344427A1 EP 2344427 A1 EP2344427 A1 EP 2344427A1 EP 09787335 A EP09787335 A EP 09787335A EP 09787335 A EP09787335 A EP 09787335A EP 2344427 A1 EP2344427 A1 EP 2344427A1
Authority
EP
European Patent Office
Prior art keywords
particles
powder
zirconium
doped
hafnium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09787335A
Other languages
German (de)
English (en)
Inventor
Nabil Nahas
Nicole Rives
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Original Assignee
Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Centre de Recherche et dEtudes Europeen SAS filed Critical Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Publication of EP2344427A1 publication Critical patent/EP2344427A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G27/00Compounds of hafnium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G27/00Compounds of hafnium
    • C01G27/02Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/481Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing silicon, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • C04B35/4885Composites with aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/605Products containing multiple oriented crystallites, e.g. columnar crystallites
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/10Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3289Noble metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3289Noble metal oxides
    • C04B2235/3291Silver oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5292Flakes, platelets or plates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/724Halogenide content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/726Sulfur content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a method of manufacturing a powder intended in particular to catalyze a chemical reaction or filtration.
  • the invention also relates to a powder manufactured or capable of being manufactured by such a method. More generally, the invention relates to a zirconium and / or hafnium derivative powder, a zirconium and / or hafnium hydrate powder and a zirconium and / or hafnium oxide powder.
  • the invention finally relates to the use of a powder according to the invention in certain applications, in particular catalysis and filtration.
  • Catalysis involves many reactions, in various technical fields, in particular environmental applications, petrochemistry, or fine chemistry. It consists in modifying the speed of a chemical reaction by bringing the reactants of this reaction into contact with a catalyst, for example platinum, which does not appear in the reaction balance.
  • a catalyst for example platinum
  • the catalyst is previously deposited on a support, for example in the form of a powder or a body made from such a powder. The powder may also sometimes serve itself as a catalyst. Filtration of fluids also concerns many applications, and in particular the filtration of liquids or gases at high temperatures.
  • the fluids pass through a powder or body made from a powder so that the materials to be filtered are retained by the interstices between the particles, related to their morphology, or in the pores of these particles.
  • the particles In a catalysis application, the particles must have a maximum specific surface in order to increase the contact area between the catalyst and the reactants, whether the particles are used as a catalyst support or as a catalyst themselves. In an application to filtration, a minimal pressure drop is sought during the passage of the fluid to be filtered.
  • the particles can also be subjected to high temperatures or severe thermomechanical stresses.
  • Particles and processes for their manufacture are disclosed in particular in the following documents:
  • FR 2 662 434 relates to the manufacture of monoclinic zirconia whiskers by hydrothermal synthesis. These whiskers are of micrometric dimensions (approximately 5 ⁇ m for the examples cited) and are dense due to a hydrothermal treatment temperature of between 300 ° C. and 700 ° C.
  • EP 0 207 469 relates to the production of crystals of zirconia, sulphate-doped zirconia or zirconium hydrate, optionally doped with sulphate, these crystals being in lamellar form with a thickness of less than 50 nm.
  • the process for producing these crystals comprises heating between 110 ° C. and 350 ° C. an acidic aqueous solution (pH ⁇ 2) of a soluble zirconium salt and sulphates, resulting in the production of an oxysulphate of hydrated zirconium (of formula followed by a calcination at a temperature greater than 600 ° C. or a desulphatation treatment at a temperature of between 70 and 110 ° C.
  • EP 0 194 191 relates to the manufacture of a stabilized zirconia fine powder.
  • the manufacturing process uses a zirconia hydrate sol consisting of crystallites elemental ZrO 2 acicular cells of sizes between 1 and 50nm.
  • a calcination treatment at a temperature of between 700 ° C. and 130 ° C. followed by sintering at 130 ° C. leads to stabilized zirconia particles which, according to the present inventors, are isotropic.
  • the process for producing this powder comprises a step of precipitation by heating an aqueous acidic solution at 100 ° C. for 48 hours, According to the inventors, such heating conditions lead to an isotropic morphology of the particles of the precipitate.
  • the precipitate obtained is then calcined at 500 ° C. for 5 hours
  • There is also a need for particles capable of withstanding high thermal stresses for example the stresses encountered during the combustion of gases at high temperatures.
  • An object of the present invention is to meet, at least partially, one or more of these needs.
  • the invention proposes a method of manufacturing a powder of particles, comprising the following successive stages: a) preparation of an acidic mother liquor by mixing at least, or even by a mixture of only :
  • a first reagent preferably acid-soluble in said solvent, providing Zr 4+ and / or Hf 4+ ions;
  • a second reagent providing anionic groups;
  • an additive selected from the group consisting of anionic surfactants; amphoteric surfactants; cationic surfactants, carboxylic acids and their salts; surfactants nonionic compounds chosen from the group of compounds of formula RCO 2 R 'and R-CONHR' and mixtures thereof, R and R 'being aliphatic, aromatic and / or alkylaromatic carbon chains; and their mixtures; [5] optionally, another nonionic surfactant;
  • the inventors have discovered that the addition of the additive leads, in a simple and effective manner, to obtain particles having a morphology or advantageous properties.
  • the optional steps make it possible to transform these particles into other equally useful particles.
  • Steps a) and b), or even c), make it possible to produce anisotropic and porous or dense particles of a material chosen from zirconium and / or hafnium derivatives, doped or not, preferably chosen from sulphated derivatives of zirconium and / or hafnium doped or not, phosphated derivatives of zirconium and / or hafhium doped or not, carbonates derivatives of zirconium and / or hafnium doped or not, preferably selected from basic zirconium sulfate and / or doped hafnium or not, the basic phosphate of zirconium and / or hafnium doped or not, the basic carbonate of zirconium and / or hafnium doped or not, and mixtures of such particles.
  • Step d) makes it possible to manufacture anisotropic and porous particles made of a material chosen from zirconium and / or hafnium hydrates, doped or otherwise. Such anisotropic and porous particles are not known to the inventors.
  • the method comprises at least steps a) to e), for producing a powder of hydrates of zirconium and / or hafnium.
  • the method comprises at least steps a) to d), to manufacture a powder of zirconium derivative and / or hafnium, the process comprises at most steps a) to c).
  • the method does not include a gelling step.
  • the method may still have one or more of the following features.
  • the polar solvent is water.
  • the first reagent is chosen from solvent-soluble zirconium and / or hafnium salts, zirconium and / or hafnium alkoxides, acid-soluble zirconium and / or hafnium derivatives in the solvent, preferably chosen from zirconium and / or hafnium oxychlorides, oxides of zirconium and / or hafhium, preferably chosen from zirconium and / or hafnium oxychlorides, and mixtures thereof.
  • the concentration of Zr 4+ ions and / or Hf 4+ provided by the first reagent in the mother liquor is between 0.01 and 3 mol / liter. This concentration may be greater than 0.1 mol / liter and / or be less than 1.2 mol / liter.
  • the second reagent chosen so as to provide SO 4 2 " and / or PO 4 3" .
  • the concentration of the additive in the mother liquor is between 10 mol / liter and / or be less than 10 "" 5 mol / liter and 1 mol / liter concentration of the additive may be greater than 10. " mol / liter.
  • the acidity is between 0.6 and 2 mol / l
  • the concentration of Zr 4+ and / or Hf 4+ in the mother liquor is between 0.1 and 1.2 mol / l; and the molar ratio of anionic groups / (Zr 4+ and / or Hf 4+ ) is between 0.3 and 1, in particular between 0.6 and 1; and the concentration of additive in the mother liquor is between 10 -3 and 1 (T 1 mol / l, and in step b),
  • the heating ramp is between 10 -2 and 1 ° C / minute
  • the heating temperature ie the temperature at the bearing, is between 55 ° C. and 80 ° C., in particular between 55 ° C. and 70 ° C .;
  • the duration of maintenance at the landing is between 15 minutes and 2 hours.
  • the mother liquor is adapted so as to lead to a powder comprising more than 20%, more than 50%, more than 80%, more than 90%, or even more than 95% by number of particles of zirconium derivatives. and / or hafnium, optionally doped, at the end of step b) or of step c), into zirconium and / or hafnium hydrates, optionally doped, at the end of the step d), or optionally zirconium and / or hafnium oxides, at the end of step e).
  • the mother liquor is such that: the acidity is between 1.6 and 3 mol / l;
  • the concentration of Zr 4+ and / or Hf 4+ in the mother liquor is between 0.1 and 1.2 mol / l; and the molar ratio of anionic groups / (Zr 4+ and / or Hf 4+ ) is between 0.5 and 1, in particular between 0.5 and 0.8; and
  • the concentration of additive in the mother liquor is between 10 -5 and 10 -2 mol / l; and in step b),
  • the heating ramp is between 10 "° C / minute, and - the heating temperature is between 60 and 80 ° C;
  • the duration of maintenance at the stage is between 1 hour and 10 hours.
  • the mother liquor is such that: the acidity is between 1.2 and 3 mol / l; and the concentration of Zr 4+ and / or Hf 4+ in the mother liquor is between 0.1 and 1.2 mol / l; and the molar ratio of anionic groups / (Zr 4+ and / or Hf 4+ ) is between 0.8 and 2.0; and - the additive concentration in the mother liquor is between 10 "3 and Io '1 mol / 1, and in step b), the heating ramp is between 10" ° C / minute; and the heating temperature is between 60 ° C. and 80 ° C .; and the duration of maintenance at the stage is between 30 minutes and 2 hours.
  • the acidity is between 1.2 and 3 mol / l; and the concentration of Zr 4+ and / or Hf 4+ in the mother liquor is between 0.1 and 1.2 mol / l; and the molar ratio of anionic groups / (Zr 4+ and / or Hf 4+ ) is between 0.3 and 1; and
  • the concentration of additive in the mother liquor is between 10 -5 and 10 -2 mol / l; and, in step b),
  • the heating ramp is between 10 -2 and 1 ° C / minute, and the heating temperature is between 55 ° C. and 80 ° C., and
  • the duration of maintenance at the landing is between 30 minutes and 2 hours.
  • the acidity is between 1.2 and 3 mol / l; and the concentration of Zr 4+ and / or Hf 4+ in the mother liquor is between 0.1 and 1.2 mol / l; and the molar ratio of anionic groups / (Zr 4+ and / or Hf 4+ ) is between 0.3 and 1; and the additive concentration in the mother liquor is between 10 "etlO" 1 mol / 1; and in step b), the heating ramp is between 10 -2 and 1 ° C / minute, and
  • the temperature of the bearing and between 60 ° C. and 80 ° C. and the duration of maintenance at the stage is between 1 hour and 5 hours
  • the mother liquor is such that: the acidity is between 0.6 to 3 mol / l; and the concentration of Zr 4+ and / or Hf 4+ in the mother liquor is between
  • step b) the heating ramp is between 10 -2 and 10 ° C./minute, and the heating temperature is between 60 ° C. and 100 ° C., and the duration of maintenance at the landing is between 30 minutes and 5 hours - All dimensions of at least 80%, at least 90%, at least 95%, or substantially 100% of the particles obtained at the end of step b ), c), d) or e) are greater than 50 nm.
  • step b The mother liquors described above make it possible, after step b), to obtain a primary derivative of zirconium and / or hafnium having a solubility in water at a temperature below 20 ° C. at 10 ⁇ 3 mol / l.
  • the parameters of steps a) and b) are determined in order to obtain, at the end of step b), anisotropic primary derivative particles.
  • zirconium oxide and / or hafnium oxide particles having determined dimensions in particular for producing base particles whose all dimensions are greater than 50 nm, greater than 200 nm, and even greater than 250 nm.
  • zirconium and / or hafnium derivatives of hydrates or derivatives having said dimensions are used as starting particles.
  • the invention relates to a process for producing a powder of particles of zirconium hydrates and / or hafnium doped or not and mixtures thereof, comprising a step of basic hydrolysis of a powder of starting particles of a zirconium derivative and / or hafnium doped or not, preferably selected from sulfated derivatives of zirconium and / or hafnium doped or not, phosphatic derivatives of zirconium and / or doped or non-doped hafnium, carbonates derivatives of zirconium and / or hafnium doped or not, preferably selected from basic zirconium sulphate and / or hafnium doped or not, basic phosphate of zirconium and / or hafnium doped or not, the basic carbonate of zirconium and / or hafnium doped or not, and mixtures thereof, or a starting powder in a mixture of such particles, said starting particles being
  • this process therefore comprises a step of hydrolyzing, in a basic medium, starting particles of zirconium derivative and / or hafnium, to transform them into zirconium hydrate and / or hafnium particles. .
  • the hydrolysis step may in particular be a step d) and, in particular, comprise one or more of the optional characteristics relating to step d).
  • the starting particle powder may in particular be a powder manufactured according to a manufacturing method according to the first main embodiment described above, and in particular be a powder obtained at the end of step b) or from step c).
  • the invention relates to a process for producing a doped or non-doped powder of zirconium oxide and / or hafnium oxide particles, preferably ZrO 2 , doped ZrO 2 , HfO 2 , Doped HfO 2 , comprising a step of calcining a powder of starting particles of a material chosen from doped or non-doped zirconium and / or hafnium derivatives, zirconium hydrates and / or hafnium doped or non-doped, and mixtures thereof, preferably chosen from doped and non-doped sulphated zirconium and / or hafnium derivatives, phosphated zirconium and / or hafnium derivatives which are doped or not, and doped zirconium and / or hafnium carbonate derivatives.
  • the doped or non-doped hafnium and zirconium hydrates, and mixtures thereof preferably chosen from zirconium and / or doped hafnium basic sulfate, zirconium basic phosphate and / or hafnium doped or not, the basic carbonate of zirconium and / or hafnium whether or not the doped or non-doped hafnium and zirconium hydrates, and mixtures thereof, or of a powder comprising a mixture of such starting particles, said starting particles comprising or even consisting of anisotropic base particles; , aggregated or not, and when they are in a hydrate, the starting particles being further porous.
  • the calcination step may be a step e t ) of the first main embodiment and include one or more of the optional features of this step.
  • the anisotropic starting particles may in particular be particles manufactured according to a process according to the first main embodiment, and in particular be derived from steps b), c) or d).
  • the invention also relates to a process for manufacturing a powder of doped or non-doped zirconium oxide and / or hafnium oxide particles and mixtures thereof, comprising a step of hydrothermal treatment of a starting particle powder of a material chosen from doped or non-doped zirconium and / or hafnium derivatives, doped or non-doped hafnium and zirconium hydrates and mixtures thereof, preferably chosen from sulphated zirconium derivatives and / or hafnium doped or not, phosphated derivatives of zirconium and / or hafnium doped or not, doped or unphased doped zirconium and / or hafnium carbonate derivatives, hydrates of zirconium and / or hafnium doped or not and mixtures thereof, preferably chosen from basic sulfate of zirconium and / or hafnium doped or not, the basic phosphate
  • the hydrothermal treatment step may, in particular, be a step e 2 ) like that of a method according to the first main embodiment and comprising one or more optional characteristic (s) in step e 2 ) of the first main embodiment.
  • the starting particles may be manufactured according to a method according to the first main embodiment, and in particular be derived from steps b), c) or d).
  • the starting particle powder comprises only particles of a material selected from
  • the doped or non-doped zirconium and / or hafnium derivatives preferably chosen from doped or non-doped sulphated zirconium and / or hafnium derivatives, phosphated derivatives of zirconium and / or hafnium doped or non-doped, carbonates derivatives of zirconium and / or hafnium doped or not, preferably selected from basic sulfate zirconium and / or hafnium doped or not, basic zirconium phosphate and or doped hafnium or not, the basic carbonate of zirconium and / or hafnium doped or not,
  • starting particles (for the third and fourth main embodiments) doped or non-doped zirconium and / or hafnium hydrates, or a mixture of such particles, said starting particles being composed of anisotropic basic particles, aggregated or not, and, when they are in a hydrate, the starting particles being moreover porous.
  • said starting particle powder does not comprise zirconium salt and / or hafnium, such as the particles used in the process described in "Products of thermal hydrolysis in Zr (SCUh-Zr ( OH) 4 -H 2 O System "- Journal of the Ceramic society of Japan, vol 102, No. 9, p 843-846..
  • Steps a), b) and c) have led to the discovery of anisotropic base particles in a material chosen from doped or non-doped zirconium and / or hafnium derivatives, preferably chosen from sulphated zirconium derivatives and / or or doped hafnium or not, phosphated derivatives of zirconium and / or hafnium doped or not, doped or non-doped hafnium and zirconium carbonate derivatives and mixtures thereof, preferably chosen from basic zirconium sulphate and / or doped hafnium or not, the basic phosphate of zirconium and / or hafnium doped or not, the basic carbonate of zirconium and / or hafnium doped or not and mixtures thereof.
  • the invention thus also relates to a powder comprising more than 20%, more than 50%, more than 80%, more than 90%, or even more than 95% by number of anisotropic base particles, aggregated or not, in a chosen material.
  • doped or non-doped zirconium and / or hafnium derivatives preferably chosen from doped or non-doped sulphated zirconium and / or hafnium derivatives, phosphated derivatives of zirconium and / or hafnium doped or non-doped, doped or non-doped dicarbonated zirconium and / or hafnium carbonate derivatives and mixtures thereof, preferably chosen from the basic sulphate of zirconium and / or hafnium doped or non-doped, the basic phosphate of zirconium and / or doped or non-doped hafnium , the basic carbonate of zirconium and / or hafnium doped or not and mixture
  • these particles are porous.
  • These base particles are insoluble in water and, preferably, hydrolyzable.
  • the material of these base particles is amorphous when not doped. When this material is doped, however, it may present crystals formed from the dopant. In other words, on an X-ray diffraction diagram, the peaks corresponding to the detection of crystals substantially all correspond to crystals containing a dopant.
  • Steps a), b), optionally c), and d have led to the discovery of anisotropic and porous base particles, aggregated or not, in a material chosen from zirconium hydrates and / or hafnium, doped or not, and their mixtures.
  • the invention therefore also relates to a powder comprising, for more than 20%, more than 50%, more than 80%, more than 90%, or even more than 95% by number, anisotropic and porous base particles, aggregated or not , into a zirconium hydrate and / or hafnium, doped or not, or a mixture of such hydrates.
  • the base particles may have identical or different chemical compositions.
  • the material of these particles is amorphous when it is not doped.
  • this material when this material is doped, however, it may present crystals formed from the dopant.
  • Steps a), b), optionally c), d) and el) (calcination) and steps a), b), optionally c), d) and e2) (hydrothermal treatment) have led to the discovery of particles of base, anisotropic and porous, aggregated or not, in a material chosen from doped or non-doped zirconium and / or hafnium oxides and their mixtures, preferably ZrO 2 , doped ZrO 2, doped HfO 2 , HfO 2 .
  • the invention thus also relates to a powder comprising more than 20%, more than 50%, more than 80%, more than 90%, or even more than 95% by number of base particles, anisotropic and porous, aggregated or not, in a material selected from oxides of zirconium and / or hafnium doped or not and mixtures thereof, or a mixture of these particles.
  • the material of these particles is crystallized.
  • the invention also relates to a powder comprising more than 20%, more than 50%, more than 80%, more than 90% or even more than 95% by number of basic particles, anisotropic and dense, aggregated or not, in a material chosen from zirconium and / or hafnium oxides, doped zirconium and / or hafnium oxides and mixtures thereof, the dopant being:
  • the product according to the invention may in particular be a zirconia doped with yttrium oxide or a zirconia doped with cerium oxide; an aluminum oxide A1, preferably dispersed in zirconium and / or hafnium oxide, preferably in a molar amount of less than or equal to 20%, more preferably less than or equal to 3%;
  • the base particles of said powder are in the form of platelets and / or needles and / or are aggregated in the form of stars and / or lamellae and / or sea urchins and / or hollow spheres. More preferably, the base particles are in the form of platelets and / or are aggregated in the form of lamellae and / or stars, sea urchins and / or hollow spheres. Preferably, the material of these particles is crystallized.
  • the invention relates to a particle powder having a maximum size of less than 200 ⁇ m, and comprising more than 20%, more than 50%, more than 80%, more than 90%, or even more than 95%.
  • porous base particles of a zirconium and / or hafnium derivative doped or undoped, insoluble in water and hydrolysable, amorphous or containing as crystals only crystals including a dopant and for porous base particles of zirconium hydrates and / or hafnium, doped or undoped, amorphous or containing, for single crystals, only crystals including a dopant and
  • said powder has a porosity index I p greater than 2, preferably greater than 5, preferably greater than 10, or even greater than 20, or even greater than 50.
  • said powder preferably has a porosity index Ip greater than 80, or even greater than 100.
  • Obtaining a high porosity, and in particular a porosity index Ip greater than 2, requires, for said porous base particles, a zirconium and / or hafnium derivative and with a process according to the invention. the addition in the mother liquor of a pore-forming agent.
  • said powder may have a specific surface area greater than 10 mVg, or even greater than 20 m 2 / g, greater than 40 m 2 / g, greater than 50 m 2 / g, greater than 70 m * / g, greater than 100 mVg and the sum of the mesoporous and microporous volumes of the powder is greater than 0.05 cm 3 / g, or even greater than 0.08 cm 3 / g, or even greater than 0.10 cm 3 / g.
  • said powder When the porous base particles are in a zirconium hydrate and / or hafnium, doped or not, said powder may have a specific surface area greater than 100 m 2 / g, greater than 200 m 2 / g, greater than 250 m 2 / g, greater than 300 m 2 / g and / or less than 380 m7g and the sum of the mesoporous and microporous volumes of the powder may be greater than 0.10 cm 3 / g, greater than 0.15 cm 3 / g, greater than 0.20 cm 3 / g and / or less than 0, 30 cm 3 / g.
  • said powder may have a specific surface area greater than 20 mVg, greater than 50 m 2 / g, greater than 70 m 2 / g, greater than 100 m 2 / g and / or less than 200 m 2 / g and the sum of the mesoporous and microporous volumes of the powder may be greater than 0.08 cm 3 / g, greater than 0.10 cm 3 / g, greater than 0.20 cm 3 / g and / or less than 0.30 cm 3 / g.
  • the inventors consider that the characteristic "Having a specific surface area greater than 10 m 2 / g and a sum of mesoporous and microporous volumes greater than 0.05 cm 3 / g" is substantially equivalent to the characteristic "having a porosity index I p greater than or equal to 2".
  • the invention thus relates to a powder of particles such as those described above in which the characteristic "Ip greater than or equal to 2" or the “porous” character would be replaced, when all the dimensions of the basic particles are greater than 50 nm. , by the characteristic "having a specific surface area greater than 10 mVg and a sum of mesoporous and microporous volumes greater than 0.05 cm / g".
  • the invention relates to a powder of particles such as those described above in which the characteristic "Ip less than 2" or the “dense” character would be replaced, when all the dimensions of the base particles are greater than 50 nm, by the characteristic "having a specific surface area of less than 10 m 2 / g and a sum of mesoporous and microporous volumes of less than 0.05 cm 3 / g".
  • the dense basic particles of a powder according to the invention are a zirconium derivative and / or hafnium doped or not, and in particular a basic sulfate of zirconium and / or hafnium doped or not, a basic phosphate of zirconium and / or hafnium doped or not, a basic carbonate of zirconium and / or hafnium doped or not, or a mixture of these derivatives
  • said powder may have a specific surface area of less than 7 m 2 / g and the sum of the mesoporous and microporous volumes of the powder may be less than 0.05 cm 3 / g.
  • the dense base particles of a powder according to the invention are ZrO 2 zirconia and / or HfO 2 hafnium oxide
  • said powder may have a specific surface area of less than 7 m 2 / g, or even less than 5 m 2 / g and the sum of the mesoporous and microporous volumes of the powder may be less than 0.02 cm 3 / g,
  • the invention relates to a powder obtained or obtainable according to a process according to the invention, in particular by a process comprising a step e1) of calcination at a temperature below 1200 ° C.
  • the maximum size (Dc s) of the particles of the powder (basic or aggregated) is less than 150 microns, less than 100 microns, less than 80 microns, or less than 50 microns.
  • the particles are insoluble in water. - More than 20%, more than 50%, more than 80%, more than 90%, or even more than 95%, or even substantially 100% by number of the basic particles, independent or constituting an aggregated particle, have a form chosen from a wafer, in particular a wafer with a thickness greater than 50 nm and / or a needle, in particular a needle with a length greater than 200 nm.
  • At least 80%, preferably at least 90%, or even substantially 100% by number of said particles are ordered aggregated particles, in particular in a lamellar form, in particular consisting of 2 to 50 platelets, star, including branches tapered and / or rectilinear, or even having only such branches, in particular having 3 to 15 branches, preferably having more than 3, 4 or 5 branches, and in sphere, in particular hollow sphere, preferably having a sphericity index greater than 0.7, and / or are aggregated disordered particles, in particular in the form of sea urchins.
  • the aggregated particles may in particular result from a combination of basic particles into a needle or wafer. These basic particles can themselves be assembled as intermediate aggregated particles: For example, aggregated particles may consist of an assembly of stars or an assembly of stars and needles.
  • the aggregated particles consist of base particles whose dimensions are greater than 250 nm.
  • All sizes of the base or aggregate particles are greater than 50 nm, greater than 100 nm, greater than 200 nm, greater than 250 nm, greater than 500 nm, and even greater than 600 nm.
  • a size greater than 50 nm is particularly advantageous for creating pores allowing a good diffusion of gases, and therefore to achieve good catalytic performance or filtration.
  • the particles may be anisotropic, in particular having a wafer shape or having a needle shape, in particular of a length greater than 200 nm. At least 95% in number or even substantially 100% by number of the base particles have a shape such that all its dimensions are greater than 50 nm.
  • the base particles have a shape different from that of a wafer, needle or lamella, in particular when they have at least one dimension less than 50 nm.
  • the particles are doped and the dopant of the particles is chosen from compounds of an element chosen from yttrium Y, scandium Sc, cerium Ce, silicon Si, sulfur S, aluminum Al, calcium Ca, magnesium Mg and their mixtures.
  • the doping compound may in particular be an oxide of an element selected from Y, La, Ce, Sc, Ca, Mg and mixtures thereof, solid solution with zirconium oxide and / or hafnium oxide, preferably in a molar amount of less than or equal to 20%, in particular a zirconia powder doped with yttrium oxide or a ceria doped zirconia, an oxide of an element selected from Si, Al, S and mixtures thereof dispersed in zirconium oxide and / or hafnium oxide.
  • aluminum oxide preferably its molar amount is lower or equal to 20%, more preferably less than or equal to 3%;
  • the doping compound may in particular be a hydrate of an element chosen from Y, La, Ce, Sc, Ca, Mg and mixtures thereof. in intimate molecular admixture with zirconium and / or hafnium hydrate, preferably in a molar amount of less than or equal to 20%.
  • the invention relates in particular to a powder of a mixed hydrate of zirconium and yttrium, and / or a mixed hydrate of zirconium and cerium; an aluminum hydrate dispersed in zirconium hydrate and / or hafnium, preferably in a molar amount of less than or equal to 20%, more preferably less than or equal to 3%; an oxide of an element selected from Si, S and mixtures thereof, dispersed in zirconium hydrate and / or hafnium.
  • the doping compound may in particular be a derivative of an element chosen from Y, La, Ce, Sc, in an intimate molecular mixture with the zirconium and / or hafnium derivative, preferably in a molar amount of less than or equal to 20%.
  • the invention particularly relates to a powder of a mixed derivative of zirconium and yttrium or a mixed derivative of zirconium and cerium; a salt of an element selected from Ca, Mg and mixtures thereof, in an intimate molecular mixture with the zirconium and / or hafnium derivative, preferably in a molar amount of less than or equal to 20%; an aluminum hydrate, in an intimate molecular mixture with the zirconium and / or hafnium derivative or located on the surface of the zirconium and / or hafnium derivative, preferably in one molar amount less than or equal to 20%, more preferably less than or equal to 3%; an oxide of an element selected from Si, S and mixtures thereof, in an intimate molecular mixture with the zirconium and / or hafnium derivative or located on the surface of the zirconium and / or hafnium derivative,
  • the molar amount of dopant is determined to be less than 40% or even less than 20% or even less than 10% or even less than 5% or even less than 3% of the mass of the particulate material.
  • the particle powder has a specific surface area preferably greater than 10 m 2 / g, or even greater than 20 m 2 / g, or even greater than 50 m 2 / g, or even greater than 100 m 2 / g.
  • the sum of the mesoporous and microporous volumes of the powder is preferably greater than 0.05 cm 3 / g, or even greater than 0.1 cm 3 / g, or even greater than 0.15 cm 2 / g.
  • the impurity content of a powder according to the invention is less than 0.7%, preferably less than 0.5%, preferably less than 0.3%, more preferably less than 0.1%, in percentages by mass of dry matter.
  • the invention also relates to a powder having a maximum particle size (D 99: j) of less than 200 ⁇ m and having a porosity index Ip of less than 2, the porosity index being equal to the ratio A sr / A sg where
  • a sg is the theoretical geometric specific area calculated from the shape and particle size determination of the powder; - A sr is the measurement of the actual specific area by BET; said powder comprising more than 20% by number of base particles having a sphericity index of less than 0.6, aggregated in the form of stars comprising from 3 to 15 branches, in particular fused and / or rectilinear, or lamellae consisting of 2 to 50 platelets, and - consisting of a zirconium and / or hafnium oxide of formula MO x , M being Zr 4+ , Hf 4+ , or a mixture of Zr 4+ and Hf 4+ , and x being a nonzero positive number. Insofar as they are not incompatible with this embodiment, the characteristics of a powder according to the embodiment described above are applicable to this powder.
  • the invention also relates to a powder having a maximum particle size (D 99> 5 ) of less than 200 ⁇ m and having a porosity index Ip of less than 2, the porosity index being equal to the ratio A sr / A sg where
  • a sg is the theoretical geometric specific area calculated from the shape and particle size determination of the powder;
  • a sr is the measurement of the actual specific area by BET; said powder having more than 20% by number of base particles having a sphericity index of less than 0.6, and consisting of a zirconium oxide and / or hafnium of formula MO x , M being Zr 4+ , Hf 4 + , or a mixture of Zr 4+ and Hl 4+ , and x being a nonzero positive number, said oxide, called "first oxide”, being doped by means of a dopant chosen from:
  • said base particles have a wafer shape and / or are aggregated in the form of stars and / or lamellae and / or sea urchins and / or hollow spheres.
  • the invention also relates to a structural body, in particular manufactured by extrusion techniques, granulation (for example by atomization), injection molding, pressing (unidirectional pressing, hot pressing, CIP, HIP ...), casting (slip casting, strip casting, ...), coating (by centrifugation or "spin coating", by dipping or dip coating, chosen from a body having a density greater than 98% of the theoretical density of the material constituting it, a body having a porosity index Ip> 2, a layer with a thickness of less than 1 mm having a porosity index Ip> 2 or a density greater than 98% of the theoretical density of the component material, including a catalytic coating or "washcoat” in English, for example, obtained by dip coating or by spin coating or by strip casting, said body or said layer being obtained from a powder according to the invention.
  • the invention also relates to the use of a powder according to the invention or a body according to the invention as a catalyst, as a support for a catalyst, as a filtering element, in particular for the treatment of gases or liquids, as an element.
  • a fuel cell in particular an anode or an electrolyte, in particular a SOFC type fuel cell, as a piezoelectric material, as an optical connector, as a dental ceramic or, more generally, as a structural ceramic, that is to say in any application where good mechanical properties and / or good resistance to wear are sought.
  • the invention also relates to a catalyst, a support for a catalyst, a filter element, in particular for the treatment of gases or liquids, an element of a fuel cell, in particular an anode or an electrolyte, in particular a fuel cell of the SOFC type, a piezoelectric material, an optical connector, a dental ceramic or, more generally, a structural ceramic, that is to say a part exhibiting good mechanical properties and / or good resistance to wear, remarkable in that it comprises or is obtained (e) from a powder according to the invention.
  • FIG. 1 represents a diagram describing the main steps of a method according to the invention.
  • Figures 2a to 2e show needle, wafer, lamella, star and hollow sphere particle patterns, respectively;
  • Figures 3a to 3h show photographs of particle powders.
  • the percentiles or "percentiles" 0.5 (D 0.5 ), 50 (D 50 ), and 99.5 (D 9 ⁇ s) are the particle sizes of a powder corresponding to the percentages by weight, of 0, 5% of 50% and 99.5%, respectively, on the cumulative size distribution curve of the particle sizes of the powder, the particle sizes being ranked in ascending order. For example, 99.5% by mass of the powder particles have a size of less than 099.5 and 0.5% of particles by weight have a size greater than 0 9 9.5. 0.5% by weight of the particles of the powder have a size less than C 1 S. Percentiles can be determined using a particle size distribution using a sedigraph.
  • the sedigraph used here is a Sedigraph 5100 from Micromeritics®.
  • D 50 corresponds to the "median size" of a set of particles, that is to say to the size dividing the particles of this set into first and second populations equal in mass, these first and second populations comprising only particles having a size greater or smaller respectively than the median size.
  • the "maximum particle size of a powder” is the 99.5 percentile (099.5) of said powder.
  • a “powder” is a set of particles. These particles can be “basic”, that is to say, not associated with other basic particles, “agglomerated” or “aggregated”. Unlike a simple agglomerate of basic particles, an aggregated particle, also called “aggregate”, does not dissociate easily and resists, for example, in the case of ultrasound application. Conventionally, the bonds between base particles in an aggregated particle are chemical bonds while in an agglomerate, they result from effects of charge or polarity.
  • the term “particles” is defined as the base particles and the aggregates.
  • impurities is meant the inevitable constituents, necessarily introduced with the raw materials or resulting from reactions with these constituents.
  • impurities is meant any element different from the zirconium compound and / or hafnium (derivative, hydrate or oxide), and optional dopant (s).
  • Content Impurities of a "hydrate” or a “derivative” is measured after calcination at 1000 ° C.
  • the element (s) of the anionic group (s) of said derivative are not considered as impurities. For example, after calcination at 1000 ° C.
  • the residual sulfur is not considered as an impurity.
  • dopant or "doping compound” of a product is a minor constituent, that is to say one which does not constitute the constituent having the highest molar content in the material under consideration.
  • an alumina doped zirconia contains a molar amount of alumina less than or equal to that of zirconia.
  • cerium oxide of the compound of formula Ce 0.5 Zr 5 ⁇ 2 described in the article "Preparation of Mesoporous This 0 ⁇ 015 Zr O 2 mixed oxide by Hydrothermal Method Templating" Journal of Rare Earths 25, 2007, 710-714, is not a dopant.
  • the term "dopant” is also used to refer to the species introduced during the process for manufacturing the doped product.
  • the latter dopant may be identical to the dopant present in the doped product, or be different, that is to say constitute a precursor of the dopant present in the doped product.
  • the dopant present in the doped product can then also be described as a "successor" of the dopant introduced during the manufacture of the doped product.
  • the addition of YCl 3 can lead to a basic zirconium sulfate doped with yttrium basic sulfate.
  • a compound defined e.g. Zr0S04, ZrCeO 4
  • a dispersion for example dispersion of alumina in a zirconia particle
  • a compound of the form M (OH) x (N ') y (OH 2 ) Z 5 M, which is a metal cation or a mixture of metal cations and N' is an anion or a mixture of anions, is generally referred to as "derivative".
  • indices x and y being strictly positive numbers, the index z being a positive or zero number and having a solubility in water at a temperature below 20 ° C.
  • the anions can be both inorganic (Cl " ) and organic (CH 3 -COO ' acetate), monoatomic (F ' ) or polyatomic (SO 4 2" ).
  • Steps b) and c) in particular make it possible to manufacture zirconium and / or hafnium derivatives.
  • a “derivative” is a derivative capable of being manufactured by a process according to the invention.
  • a “salt” is a compound of the form M (OH) x (N ') y (OH 2) z , where M is a metal cation or a mixture of metal cations and N' is an anion or a mixture of anions.
  • x, y and z being positive or zero numbers, x + y> O 5 and having a solubility in water at a temperature below 20 0 C greater than 10 "3 mol / 1.
  • the anions may be as well inorganic (Cl ") and organic (acetate CH 3 -COO") monoatomic (F ”) as well as polyhydric (SO4 2").
  • zirconium oxychloride Zr (OH) 2 Cl 2 (OH 2 ) 4 zirconium chloride ZrCl 4 and zirconium sulfate Zr (SO 4 ) 2
  • Zrconium oxychloride or ZOC is the crystallized zirconium salt of formula Zr (OH) 2 Cl 2 (OH 2 ) 4 .
  • a compound of the form MO x (OH) y (OH 2) z is conventionally called "hydrate", M being a metal cation or a mixture of metal cations, the indices x and z being positive or zero numbers, the index y being a positive number, and 2x + y being equal to the valency of the cation or equal to the average valence of the cation mixture.
  • the hydrate will be a "zirconium hydrate", “hafnium hydrate” or “zirconium hydrate and hafnium ", respectively. If x and z are zero, the hydrate will have the formula Zr (OH) 4 and will also be called “zirconium hydroxide”.
  • a hydrated zirconia of general formula of the Zr ⁇ 2.n (H 2 O) type, is not a hydrate within the meaning of the invention.
  • a hydrate has a solubility in water at a temperature below 20 ° C. of less than 10 3 mol / l.
  • a “hydrate” is a hydrate capable of being manufactured by a process according to the invention.
  • a compound of formula MO x is conventionally called "oxide", M being a metal cation or a mixture of metal cations, and x a non-zero positive number.
  • zirconia ZrO 2 is a zirconium oxide.
  • the compounds in the oxide form also include all oxidized compounds of sulfur and phosphorus respectively.
  • an oxidized sulfur compound is for example SO4 2 *
  • an oxidized phosphorus compound is for example PO 4 3 '
  • an "oxide” is an oxide capable of being manufactured by a process according to the invention.
  • the term "oxoanion” is conventionally referred to as an oxide-containing anion, of the form QOx 11 ' , Q being a metal (for example silicon) or a non-metal (for example carbon, phosphorus or sulfur), n being a an integer greater than or equal to 1 and x being equal to (n + w) / 2, with w the valence of the metal or non-metal considered.
  • calcination is a heat treatment that makes it possible to transform a product into an oxide form. Typically the calcination is carried out at a temperature of 500 ° C. and higher.
  • Drying is a heat treatment, generally carried out at a temperature below 400 ° C., which makes it possible to eliminate all the solvent, or even only the solvent that does not participate in the constitution of the dried product. For example, in the case where the solvent is water, the drying of a zirconium hydrate will eliminate water not being the water of constitution of said hydrate. Unlike calcination, drying does not lead to transformation of the treated product into an oxide form.
  • Open porosity is defined as the porosity attributable to all accessible pores of a material in the form of a powder or a shaped solid. According to the classification of the International Union of Pure and Applied Chemistry, 1994, vol.66, n ° 8, pp.1739-1758, the accessible pores are divided into 3 categories according to their equivalent diameter:
  • macropores are accessible pores having an equivalent diameter greater than 50 nm; mesopores are accessible pores having an equivalent diameter of between 2 and 50 nm;
  • the micropores are accessible pores having an equivalent diameter of less than 2 nm; the equivalent diameter of a pore being defined by the smaller dimension of said pore, as indicated in the IUPAC document. For example, if the pore is cylindrical, the equivalent diameter will be the diameter of the cylinder.
  • Open porosity is the sum of macroporosity, mesoporosity and microporosity.
  • pore volume is conventionally referred to as the volume occupied by the accessible pores of the particles relative to the mass of the powder or of the body in question.
  • the "macroporous volume”, “the mesoporous volume” and “the microporous volume” are the volumes relative to the mass of powder or solid corresponding to macropores, mesopores and micropores, respectively.
  • the macroporous volume is conventionally measured by mercury porosimetry; the mesoporous volume and the microporous volume are conventionally measured by adsorption and desorption of nitrogen at -196 ° C.
  • a “porogenic” agent is an agent which, introduced in step a) in the mother liquor, leads to the creation of pores, mostly open, in the particles.
  • a sg is the theoretical geometric specific area calculated from the shape and particle size determination of the powder or body
  • a sr is the measurement of the actual specific area by BET.
  • the porosity index characterizes the open porosity of the particles of the powder or the body (microporosity, mesoporosity and macroporosity).
  • porous aggregate means an aggregate, agglomerate or solid body, respectively, having a porosity index I p > 2.
  • zirconium compounds and hafnium compounds include, for example, a solid solution of zirconium and hafnium (Zr 5 Hf) O 2 and a mixture of ZrO 2 grains and HfO 2 grains.
  • the acidity of a solution or suspension is equal to the concentration of H + ion, [H + ], of said solution or suspension.
  • the acidity of a solution or suspension is also equal to 10 ° C.
  • the acidity is expressed in mol / l, and the term "textural properties" is taken to mean all the physical surface properties characterizing a powder or a body. solid shaped, namely the area specific, mesoporous volume, microporous volume, macroporous volume, pore size distribution, and average pore size.
  • base particles refers to the “elementary” particles, and in particular the particles in the form of a needle or a wafer:
  • Needle is an anisotropic particle of generally elongate shape, that is to say extending mainly along a straight line, rectilinear or not.
  • the length L, measured along this guideline is less than 50 times the width "1", the width "1" being the largest dimension that can be measured in the set of transverse planes (perpendicular to the guideline) along the guideline.
  • the thickness "e” i.e., the smallest dimension measured in the transverse plane in which the width "1" is measured, is greater than 0.5 times the width "1".
  • FIG. 2a A needle is shown schematically in Figure 2a.
  • Figures 3b and 3c are photographs of needle powder.
  • the cross sections of a needle that is to say perpendicular to the direction of the guideline defining its length, may be arbitrary, and in particular be polygonal or have the shape of an ellipse or a circle.
  • a "platelet” is a particle having a generally broad and shallow shape, in the manner of a straw. In other words, a plate has two large faces, generally substantially parallel to one another, spaced apart from each other by a small distance from the dimensions of said faces.
  • a wafer is shown schematically in Figure 2b.
  • Figure 3f is a photograph showing platelets (mixed with "bunch" particles).
  • a particle is a wafer if the length "L", corresponding to the largest dimension measurable on one of the two large faces of the particle, is less than 1.5 times the width "1", the width "1" being the largest dimension that can be measured in the set of transverse planes (perpendicular to the length) along the direction of the length, and if the thickness "e” is i.e., the smallest dimension measured in the transverse plane in which the width "1" is measured, is less than 0.5 times the width "1".
  • e, L, and 1 respectively denote the thickness, the length, and the width of a wafer, preferably e ⁇ 0.25. 1, preferably e ⁇ 0.22. 1 and / or L ⁇ 1.2.
  • the sections perpendicular to the direction of the thickness are substantially constant over the entire thickness of the wafer.
  • the sections perpendicular to the direction of the thickness have more than 7 sides, or have the general shape of an ellipse or a circle.
  • the aggregates one distinguishes the "ordered” forms and the “disordered” forms, according to whether the basic particles are arranged so as to constitute an aggregate of definite general shape or not, respectively.
  • ordered forms lamellas, stars and spheres, in particular hollow spheres, are particularly distinguished.
  • the term "lamella” is used to refer to a particle consisting of a flat stack of at least two platelets of close dimensions, preferably with a high recovery rate. In other words, the plates are similar, in contact with their large faces and, preferably, well superimposed on each other.
  • a coverslip is shown schematically in Figure 2c.
  • a lamella in the sense of the present description and claims is such that WI VW1 ⁇ 1.5 and W27W2 ⁇ 1.5, - W1 and W2 designating the major axis and the minor axis, respectively, of the smallest ellipse across which each of the platelets constituting the lamella can pass, in the direction of its thickness (that is to say flat), and - Wl 'and W2' designating the major axis and the minor axis, respectively, of the smallest ellipse through which the lamella can pass, following the stacking direction.
  • the lamellae comprise less than 50, preferably less than 20 platelets.
  • WI VWL ⁇ 1, 2 and W27W2 ⁇ 1.2, more preferably W17W1 ⁇ 1.1 and W27W2 ⁇ 1.1, 5 Wl W2, Wl 'and W2' are as defined above.
  • a “star” is a particle consisting of an assembly of at least two needles according to the invention, possibly of different dimensions, the needles crossing each other. substantially in the center of the star.
  • a star is shown schematically in Figure 2d. The aggregation of the needles to form stars is visible in the photograph of Figure 3d.
  • a star may result from a fixation of several needles substantially in the middle of their lengths and / or a growth of several needles from the same core (forming the heart of the star).
  • the length "L” of a star is called the length of the major axis of the smallest ellipse in which the star can be inscribed (see Figure 2d).
  • the number of needles constituting a star is less than 15, preferably less than 8.
  • a "sea urchin” is a particle consisting of a disordered form of base particles, and especially needles and or platelets according to the invention. Sea urchins are therefore patatoids of indeterminate shape, in the sense that the general shape of a sea urchin can be very different from that of another sea urchin. The aggregation of needles and stars to form sea urchins is visible in the photograph of Figure 3e.
  • a hollow sphere is an isotropic particle having a central cavity such that if D denotes the largest outer diameter of the particle (its largest outside dimension) and D 'is the largest inside diameter of the cavity (its largest internal dimension), D / D ' ⁇ 2.
  • a hollow sphere is schematically shown in section in FIG. 2e. An aggregation of needles to form hollow spheres is visible in one of the photographs of Figure 3g.
  • a hollow sphere according to the invention is preferably made of needles.
  • the sphericity index of a hollow sphere is greater than
  • centicity index is the ratio between the smallest dimension and the largest dimension of a particle, the dimensions being measured “overall” along axes passing through the barycenter of the particle.
  • a particle is called “isotropic” if its sphericity index is greater than 0.6.
  • a particle is said to be “anisotropic” if its sphericity index is between 0.02 and 0.6.
  • 0.02 is the sphericity index of a needle whose length L is 50 times greater than the thickness e.
  • the sphericity index may be greater than 0.05 (length-to-thickness ratio equal to 20), or even greater than 0.1 (L / e ratio of 10).
  • the index of sphericity may be less than 0.5, or even less than 0.4, or even less than 0.35, or even less than 0.3.
  • Starting particle means particles used to implement a method according to the invention. The nature of the starting particles is therefore variable according to the method under consideration.
  • the indices are conventionally molar indices.
  • images comprising between 10 and 50 hollow spheres are made using a scanning electron microscope, the initial magnification (xlOOO ) used being adapted to achieve the number of hollow spheres to be observed. A large number of shots is necessary, generally more than 50.
  • the orientation of each hollow sphere being random and on the other hand the polishing allowing a random section of each hollow sphere, it is then possible to determine the internal structure (cavity). From these images, it is also possible to evaluate, on average on a set of particles, the largest outside diameter of the cavity D and the largest inside diameter of the cavity D '.
  • the content of the element is greater than 0.1% by mass, it is determined by X-ray fluorescence spectroscopy; if the content of an element is less than 0.1% by weight, it is determined by ICP (Induction Coupled Plasma) on a Vista AX model (marketed by Varian).
  • Loss on ignition The loss on ignition is determined by measuring the loss of mass of the product after calcination of the product at 1000 ° C. for 1 h.
  • the textural properties are determined by physical adsorption / desorption of N 2 at -196 ° C on a Nova 2000 model marketed by Quantachrome.
  • the samples are desorbed beforehand at 250 ° C. for 2 hours for the calcined powders or calcined solid bodies and at 100 ° C. for 2 hours for the non-calcined powders.
  • the specific surface area is calculated by the BET method (Brunauer Emmet Teller) as described in Journal of the American Chemical Society 60 (1938) pages 309 to 316.
  • the mesoporous and microporous volumes as well as the size distribution of the mesopores and micropores are determined by the BJH method [described by EP Barrett, LG Joyner, PH Halenda, J. Am. Chem. Soc. 73 (1951) 373] applied to the desorption branch of the isotherm.
  • geometric specific area A sg The geometric specific area of the particles of a powder or body is determined from observations made by SEM scanning electron microscopy.
  • the geometric specific area A sg is given by formula (1):
  • n the number of particles that have been measured, with n> 200.
  • n refers to the number of aggregated particles, and not to the number of basic particles constituting them.
  • the macroporous volume as well as the size distribution of the macropores are determined by Hg porosimetry on a Porosizer 9320 model marketed by Micromeritics.
  • the samples are introduced in the form of powder or shaped solid.
  • the maximum applied pressure of 6000 psi makes it possible to measure the porosity for pore diameters greater than 50 nm.
  • the X-ray powder diffraction patterns were obtained on a BRUKER ' D5005 diffractometer, using copper Ka radiation (1.54060 ⁇ ). The intensity data are recorded over a 2 ⁇ interval of 3-80 ° with a step of 0.02 ° and a counting time of Is per step. The crystalline phases are identified by comparison with the standard JCPDS files.
  • the crystalline structure can be confirmed by other well known methods such as Raman spectroscopy or, locally at the level of a base particle, by transmission electron microscopy.
  • the particle size distribution of the particles is determined by sedigraphy on a sedigraph model Sedigraph 5100 marketed by Micromeritics.
  • the sample to be characterized is suspended in a solution containing sodium metaphosphate and then dispersed twice for 3 minutes under ultrasound (power of 70 W). The suspension is then introduced with stirring into the equipment for analysis.
  • the polar solvent [1] may be selected from water, alcohols, organic solvents and mixtures thereof.
  • the polar solvent is water.
  • the first reagent [2] is selected to provide Zr 4+ and / or Hf 4+ ions. Preferably, it is soluble in the solvent of the mother liquor. More preferably, it can be chosen from:
  • zirconium and / or hafnium salts soluble in said solvent such as, for example, chlorides, oxychlorides, sulphates, oxynitrates, acetates, formates, citrates; alkoxides of zirconium and / or hafnium, such as, for example, butoxides and propoxides;
  • acid-soluble zirconium and / or hafnium derivatives in said solvent such as, for example, basic carbonates, hydroxides; and their mixtures.
  • the first reagent is chosen from the solvent-soluble zirconium and / or hafnium salts and their mixtures, preferably from oxychlorides, oxynitrates and their mixtures, more preferably from oxychlorides.
  • the second reagent is chosen so as to provide anionic groups so as to form in step b), by precipitation with the Zr 4+ and / or Hf 4+ ions provided by the first reagent, a zirconium derivative and / or hydrolyzable hafnium, preferably anisotropic.
  • the second reagent [3] is preferably chosen so as to provide the anionic groups SO 4 2 " or PO 4 3" and mixtures thereof.
  • the second reagent may be a mixture of Na 2 SO 4 and H 2 SO 3.
  • the second reagent is chosen so as to provide anionic groups SO 4 2 " .
  • ZBS Zirconium basic sulphate
  • basic zirconium phosphate respectively, at the end of step b). the absence of step c), they can lead to ZHO (zirconium hydrate) or ZHO particles doped at the end of step d) of basic hydrolysis of ZBS, or basic zirconium phosphate.
  • the first reagent makes it possible to provide both Zr 4+ and / or Hf 4+ ions and anionic groups.
  • the first reagent may be zirconium sulphate, Zr (SO 4 ) 2 , which makes it possible to provide both Zr 4+ and SO 4 " anionic groups.
  • the ratio of the concentration of anionic groups to the concentration of Zr 4+ and / or Hf 4+ ions is preferably between 0.2 and 5. Preferably, this ratio is greater than 0.3, preferably greater than 0. , 4, more preferably greater than 0.5 and / or less than 2, preferably less than 1.5, more preferably less than 1.2.
  • the ratio of the concentration of anionic groups SO 4 2 ' to the concentration of Zr 4+ ions can be between 0.3 and 2, preferably between 0.4 and 1.5, more preferably between 0 and , 5 and 1,2.
  • the mother liquor must have a pH less than or equal to 7, preferably less than or equal to 6, preferably less than or equal to 4, preferably less than or equal to 2.
  • the pH adjustment of the mother liquor can be carried out in particular by additions of acids and / or organic or inorganic bases.
  • the additive [4] makes it possible to modify the morphology and is chosen from the group of: - anionic surfactants and their mixtures, in particular: o carboxylates (of formula R-CO 2 ' -G + with R an aliphatic carbon chain , aromatic or alkylaromatic and G + a monoatomic or polyatomic cation and / or a mixture of such cations), preferably chosen from ethoxylated carboxylates, ethoxylated or propoxylated fatty acids, sarcosinates of formula RC (O) N (CH 3 ) CH 2 COO ' and mixtures thereof; sulphates (of formula R-SO 3 --G + with R an aliphatic, aromatic or alkylaromatic carbon chain and G + a monoatomic or polyatomic cation and / or a mixture of such cations), preferably chosen from alkyl sulphates, alkyl ether sulphates or sulphates of ethoxylated fatty alcohol
  • amphoteric surfactants and mixtures thereof in particular: betaines of formula RR 1 NH-CH 3 COO " with R and R ', aliphatic, aromatic and / or alkylaromatic carbon chains, sulfobetaines, salts of imidazolium;
  • non-quaternary ammonium compounds (of formula R'-R n NH ( 4 n ) + -X " with R and R 'aliphatic, aromatic and or alkylaromatic, X " a monoatomic or polyatomic anion and / or a mixture of such anions and n an integer less than 4); quaternary ammonium salts (of formula R 1 R 4 N + -X " with R and R 'of the aliphatic, aromatic and / or alkylaromatic carbon chains and X * a monoatomic or polyatomic anion and / or a mixture of such anions ), preferably alkyltrimethylammonium, alkylbenzyldimethylammonium, and mixtures thereof; amine salts; o ammonium salts of ethoxylated fatty amines; dialkyldimethylammonium; imidazolinium salts;
  • carboxylic acids, their salts, and their mixtures in particular the mono- or dicarboxylic aliphatic acids, in particular the saturated acids; fatty acids, and especially saturated fatty acids; formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, hydroxystearic acid, 2-ethylhexanoic acid, behenic acid, nonyl acid, linolenic acid, abietic acid, oleic acid, recinoleic acid, naphthenic acid, phenylacetic acid; dicarboxylic acids including oxalic, maleic, succinic, glutaric, adipic, pimelic, suberic, azelaic and sebacic acids.
  • the salts of these acids can be used.
  • nonionic surfactants chosen from the group of compounds of formula RCO 2 R 'and R-CONHR' and their mixtures, R and R 'being aliphatic, aromatic and / or alkylaromatic carbon chains, and in particular: mono- and di-ethanolamides of polyethoxylated and polypropoxylated fatty acids; polyethoxylated and polypropoxylated fatty amines; o copolymers polyethoxylated and polypropoxylated blocks, such as family copolymers Pluronic ® marketed by BASF; polyethoxylated and polypropoxylated fatty alcohols and alkylphenols chosen from ethoxylates of carboxymethylated fatty alcohols, this family including all of the ethoxylated or propoxylated fatty alcohols including at the end of the chain the group -CH 2 -COOH, of general formula: R1- O- (CR2R3- CR4R5-O) n -CH 2 -COOH, R
  • the additive making it possible to modify the morphology is preferably chosen from the group: anionic surfactants and their mixtures, in particular: o carboxylates (of formula R-CO 2 --G + with R an aliphatic, aromatic carbon chain or alkylaromatic and G + a monoatomic or polyatomic cation and / or a mixture of such cations), preferably chosen from ethoxylated carboxylates, ethoxylated or propoxylated fatty acids, sarcosinates of formula RC (O) N (CH 3 ) CH 2 COO "and mixtures thereof; o sulfates (of formula R-SO 3 with R + --g an aliphatic hydrocarbon chain, aromatic or alkylaromatic and G + a monatomic or polyatomic cation and / or a mixture of such cations), preferably selected among the alkyl sulphates, the alkyl ethersulfates or sulphates of ethoxylated fatty alcohols, the non
  • non-quaternary ammonium compounds (of formula R'-R n NH ( 4-n ) -X " with R and R 'of the aliphatic, aromatic and / or carbon chains or aromatic alkyl, X ' a monoatomic or polyatomic anion and / or a mixture of such anions and n an integer less than 4); quaternary ammonium salts (of formula R ⁇ R 4 N + -X " with R and R 'aliphatic, aromatic and / or alkylaromatic carbon chains and X " a monoatomic or polyatomic anion and / or a mixture of such anions), preferably alkyltrimethylammonium, alkylbenzyldimethylammonium, and mixtures thereof; o amine salts; ammonium salts of ethoxylated fatty amines, dialkyldimethylammonium, imidazolinium salts.
  • the additive making it possible to modify the morphology is chosen from the group:
  • anionic surfactants and their mixtures in particular: sulphates (of formula R-SO 3 -G + with R an aliphatic, aromatic or alkylaromatic carbon chain and G + a monoatomic or polyatomic cation and / or a mixture of such cations), preferably selected from alkyl sulphates, alkyl ether sulphates or sulphates of ethoxylated fatty alcohols, nonylphenyl ether sulphates, and mixtures thereof; o phosphates (of formula R '- (RO) n PO 4 n (3') ' - (3-n) G + with R and R' of the aliphatic, aromatic and / or alkylaromatic carbon chains, and G + a monoatomic or polyatomic cation and / or a mixture of such cations, preferably chosen from H + , Na + and K + , and n an integer less than or equal to 3), preferably chosen from mono- and di-esters of phosphoric
  • the additive making it possible to modify the morphology is chosen from the group: alkyl sulphates, such as sodium dodecyl sulphate or SDS;
  • non-quaternary ammonium compounds (of formula R'-R n NH ( 4-n ) -X " with R and R 'of the aliphatic, aromatic and / or alkylaromatic carbon chains, X " a monoatomic or polyatomic anion and / or a mixture of such anions and n an integer less than 4), such as cetyltrimethylammonium bromide or CTAB.
  • a nonionic surfactant [5] may be added.
  • This surfactant is distinguished from the additive [4] in that it does not allow, without additive, to modify the morphology of the particles obtained. Associated with an additive, it can however modify the impact of said additive. Simple tests make it possible to check whether a nonionic surfactant modifies the morphology of the particles manufactured or not.
  • the optional surfactant may in particular be chosen from all the compounds of formula R-OR ', R-OH, R- (CH 2 -CH 2 -O) n -R', the family of polyols R and R ' being aliphatic, aromatic and / or alkylaromatic carbon chains and n is an integer.
  • the optional nonionic surfactant is preferably selected from - nonylphenol polyethoxylated and polypropoxylated (eg Triton ® family marketed by Dow Chemicals);
  • polyethoxylated and polypropoxylated octylphenols polyethoxylated and polypropoxylated fatty acid esters
  • polyethoxylated and polypropoxylated fatty alcohols and alkylphenols in particular ethylene glycol, propylene glycol, glycerol, polyglyceryl esters and their polyethoxylated and polypropoxylated derivatives and polyethylene glycols;
  • anhydrosorbitol esters including polyethoxylated and polypropoxylated sorbitan esters and sorbitan or sorbate esters; alkylpolyglucosides; ethoxylated and propoxylated oils; and their mixtures.
  • the optional nonionic surfactant may for example be an anti-foaming agent or a surface tensioning agent, for example the CONTRASPUM K1012 sold by the company Zschimmer and Schwartz.
  • An anti-foaming agent advantageously facilitates the implementation of the process and / or increases its yield.
  • a surface tension agent may increase the effect of the additive.
  • the blowing agent [6] may especially be chosen from:
  • latices in particular from styrene acrylates and / or polymethyl acrylates, and from propionates and / or polyvinyl acetates; oxides and salts of polyethylene and / or polypropylene; and their mixtures.
  • a porogenic agent advantageously leads to creating porosity in the particles obtained at the end of steps b), c), d) or e).
  • a step of heating these particles may be necessary in order to eliminate the pore-forming agent so that it leaves room for pores.
  • the amount of pore-forming agent is greater than 0.5%, preferably greater than 2% and / or less than 25%, preferably less than 10%, the percentages being percentages by weight relative to the first reagent. mother liquor.
  • the additive is preferably introduced into the mother liquor before the second reagent supplying the anionic groups, and immediately before or after the first reagent supplying Zr 4+ and / or Ht 4+ ions.
  • the mother liquor contains an "other" nonionic surfactant (i.e., a component [5]), and / or a blowing agent, these are preferably introduced into the mother liquor immediately before the introducing the second reagent, and therefore, preferably, after the introduction of the first reagent and the additive.
  • the temperature at which the mother liquor is prepared is preferably between the solidification temperature of the solvent of the mother liquor at atmospheric pressure and 50 ° C., preferably between room temperature, typically 20 ° C. and 50 ° C., preferably between 40 ° C. and 50 ° C., in order to promote the dissolution of the various components introduced into the solvent of the mother liquor, without starting any precipitation reactions of particles.
  • the heating temperature is preferably greater than 50 ° C. and / or less than the boiling point, preferably less than 100 ° C., preferably less than 95 ° C., preferably less than 100 ° C. 90 ° C., preferably less than 80 ° C., or even less than 70 ° C.
  • the temperature holding time ⁇ t may be greater than 30 minutes, or even greater than 1 hour and / or preferably less than 10 hours, or even less than at 5 o'clock.
  • the inventors have found that beyond 10 hours of maintenance at 100 ° C., the morphology of the particles obtained is isotropic.
  • the heating is preferably carried out at atmospheric pressure.
  • the rate of rise in temperature v should not be too fast to promote anisotropic growth. It is preferably less than 50 ° C / min, preferably less than 10 ° C / min.
  • the beginning of the heating phase is defined as the moment when the mother liquor is heated, once all the constituents have been introduced.
  • a final operation chosen from filtration, washing, acid-base neutralization, drying and combinations of these techniques may optionally be applied. All techniques known to those skilled in the art can be used. If drying is performed, an optional disagglomeration step may be performed by any technique known to those skilled in the art.
  • the solubility of the compound obtained at the end of step b) is a function of several parameters. In particular, in order to obtain a primary derivative having a solubility in water measured at 20 ° C. of less than 10 -3 mol / l, it is preferable to put under the following conditions: the concentration of H + ions in the mother liquor is preferably between
  • the molar ratio of the concentration of anionic groups to the concentration of Zr 4+ and / or Hf 4+ ions in the mother liquor is preferably between 0.3 and 2;
  • the heating temperature of the mother liquor is preferably between 55 and 100 ° C.
  • step b) it is thus possible to obtain a suspension of particles or a powder of particles which, after drying, are insoluble in the polar solvent [1] and hydrolyzable. These particles are amorphous except possibly in case of addition of a dopant, as described below.
  • Anisotropic particles can also be obtained. If necessary, as explained above, routine tests make it possible to search for such particles.
  • Step c) is optional or necessary depending on whether it is desired to manufacture a poorly soluble or acid-soluble secondary derivative in the polar solvent [1], respectively.
  • a derivative is considered to be slightly soluble if its solubility in water at a pH of 2 is less than 10 -3 mol / l, otherwise the derivative is considered soluble,
  • step c) the primary derivative obtained at the end of step b) may be subjected to a treatment that makes it possible to substitute partially or totally, preferably completely, the anionic groups brought by the second reagent by other anionic groups, called "Anionic substitution groups" having a high complexing power with zirconium and / or hafnium and preferably selected from oxoanions, anions of column 17 (halides), organic molecules comprising a carboxylate group (R-COO ' ), and their mixtures.
  • Anionic substitution groups having a high complexing power with zirconium and / or hafnium and preferably selected from oxoanions, anions of column 17 (halides), organic molecules comprising a carboxylate group (R-COO ' ), and their mixtures.
  • the oxoanions are selected from phosphates, sulphates and carbonates; the halides are selected from chlorides and fluorides; the organic molecules comprising a carboxylate group are selected from formates, acetates, oxalates and tartrates.
  • the primary derivative particles are brought into contact with a compound capable of providing the substitution anionic groups.
  • the treatment of the primary derivative can for example be a carbonation, phosphatation, fluoridation or chlorination treatment in order to associate with zirconium and / or with hafnium an anionic group carbonate, phosphate, fluoride. or chloride, respectively.
  • an anisotropic ZBS after obtaining an anisotropic ZBS at the end of step b), it can optionally be converted into anisotropic basic zirconium carbonate (ZBC) by a carbonation treatment, or converted into anisotropic basic zirconium phosphate by a treatment of phosphating. It is possible to hold the same reasoning with a basic zirconium phosphate initially.
  • a step c) thus makes it possible to obtain compounds that are impossible to obtain in step b), for example because they are soluble in the polar solvent [1] in an acidic medium.
  • the treatment does not modify the optionally anisotropic nature of the particles obtained in step b).
  • step c a final operation chosen from filtration, washing, acid-base neutralization, drying and combinations of these techniques may optionally be applied. All techniques known to those skilled in the art can be used. If drying is performed, an optional disagglomeration step may be performed by any technique known to those skilled in the art.
  • Stage d) of basic hydrolysis makes it possible to react the primary derivative obtained at the end of stage b) or the secondary derivative obtained at the end of stage c) and to transform it into zirconium hydrate and / or hafnium. This reaction makes it possible in particular to create porosity within the particles.
  • the basic hydrolysis is carried out by contacting said primary or secondary derivative with at least one source of hydroxide anions OH " , preferably a strong base, in particular NaOH, KOH, or with at least one amine, for the purpose of substituting the anion of said derivative by OH " .
  • OH " hydroxide anions
  • the primary or secondary derivative can in particular be presented in the form:
  • step b) or c a suspension, directly obtained in step b) or c), or obtained after resuspension in a polar solvent, preferably in water, especially after filtration, washing and / or drying carried out in end of step b) or c).
  • Said contacting may for example result from:
  • a base in gaseous form for example ammonia
  • a liquid suspension of primary or secondary derivative bringing a base in gaseous form, for example ammonia, into contact with a powder solid primary or secondary derivative.
  • concentration of Zr 4+ and / or Hf 4+ in said solution preferably less than 10 mol / l and greater than 0, 01 mol / l; pH: preferably greater than 11; reaction temperature: greater than the solidification temperature of the solvent, preferably greater than room temperature, more preferably greater than 50 ° C and less than the boiling point of the solvent, preferably less than 90 ° C.,
  • the introduction of the hydroxide anion source (s) OH ' is preferably carried out at a temperature below 90 ° C.
  • a final operation selected from filtration, washing, acid-base neutralization, drying and combinations of these techniques may optionally be applied. All techniques known to those skilled in the art can be used. If drying is performed, an optional disagglomeration step may be performed by any technique known to those skilled in the art.
  • the calcination conditions modify the porosity index I n and the specific surface area of the powder.
  • the calcination temperature may in particular be greater than 400 ° C. and / or less than 1200 ° C., preferably less than 1100 ° C., more preferably less than 1000 ° C.
  • the particles obtained have a low porosity index, that is to say they are dense.
  • the particles obtained are porous if the dwell time is limited.
  • the maintenance time is generally between 1 hour and 5 hours, preferably about 2 hours.
  • the invention also relates to dense or porous particles obtained at the end of step e1).
  • the hydrothermal treatment modifies the porosity index I p and the specific surface area of the powder.
  • the hydrothermal treatment temperature is higher than the boiling point of the polar solvent, preferably water, to the pressure in question, preferably greater than 130 0 C 5 and / or less than 25O 0 C, preferably less than 200 ° C.
  • the particles obtained At temperatures above 25O 0 C, the particles obtained have a low porosity index, that is to say they are dense. At temperatures below 25O 0 C, the particles obtained are porous.
  • the hydrothermal treatment may be carried out by heating, in the presence of water vapor, a powder of a primary or secondary derivative, a hydrate or an oxide, said derivative, hydrate or oxide being optionally doped.
  • This treatment can in particular be carried out with:
  • concentration of Zr 4+ and / or Hf 4+ in the total suspension preferably less than 10 mol / l and greater than 0.01 mol / l; pH: preferably between 6 and 8;
  • - Reaction temperature preferably greater than 130 ° C, and / or less than 250 ° C, preferably less than 200 0 C;
  • - Hold time temperature preferably greater than 1 hour and preferably less than 10 hours.
  • a hydrothermal treatment applied to a primary or secondary derivative of the present invention makes it possible to produce an anisotropic, possibly porous, zirconia. If the derivative is doped, the zirconia obtained will also be doped.
  • a hydrothermal treatment is applied to a primary or secondary derivative, it may lead to another primary or secondary derivative, a hydrate or an oxide.
  • a hydrothermal treatment is applied to a hydrate or an oxide, it can lead to a hydrate or an oxide.
  • the invention also relates to dense or porous particles obtained at the end of step e2).
  • Calcination or hydrothermal treatment makes it possible to obtain novel crystallized anisotropic forms, in particular zirconium oxide and / or hafnium oxide particles doped with an oxide of an element chosen from yttrium Y, lanthanum La, cerium Ce, scandium Sc, calcium Ca, magnesium Mg and mixtures thereof, the doping oxide being in solid solution with zirconium oxide and / or hafnium oxide, or particles of oxides of zirconium and / or hafnium doped with an oxide of an element selected from Si, Al, S and mixtures thereof, the doping oxide being dispersed in the particle of zirconium oxide and / or hafnium. These particles are optionally porous if the starting particles are porous.
  • Step e) allows for example the manufacture of a zirconium oxysulfate (crystallized, anisotropic, porous), for example ZrOSO 4 , by calcination or hydrothermal treatment of a ZBS, or a zirconia doped with yttrium oxide in solid solution, by calcination or hydrothermal treatment of a zirconium hydrate doped with yttrium hydrate in an intimate molecular mixture.
  • a zirconium oxysulfate crystalstallized, anisotropic, porous
  • ZrOSO 4 zirconium oxysulfate
  • step e) optionally, carrying out a first conformity test making it possible to check whether the particle powder obtained at the end of the preceding step presents a minimum percentage of particles having a size in a range of acceptable sizes included in the range 50 nm - 200 ⁇ m; and a minimum percentage of anisotropic particles; and, optionally, a porosity index, in particular greater than 2; g) if the conformity test is negative, that is to say if said powder is not in conformity, rerun of the previous steps by modifying the manufacturing conditions.
  • the conformity test in step f) can be, for example, considered as positive if more than 20% or even more than 50% or even more than 80%, or even more than 90%, or even more than 95% by number. particles have an anisotropic morphology and if more than 50% or even more than 80% or even more than 90% by number of the particles have a size in the acceptable size range. These criteria may in particular be used when no step d) has been carried out.
  • the conformity test in step f) can be considered as positive if more than 20%, even more than 50%, even more than 80%, or even more than 90%, or even more than 95% in number of particles have an anisotropic morphology, and - if more than 50% or even more than 80% or even more than 90% by number of particles have a size in the acceptable size range, and if the porosity index Ip is greater than 2.
  • These criteria can in particular be used when a basic hydrolysis step (step d)), or even a calcination step (step e ⁇ ), or even a hydrothermal treatment step (step e 2 )) has been performed.
  • Modifying the conditions of basic hydrolysis and / or calcination and / or hydrothermal treatment also makes it possible to act on the porosity index.
  • An increase in the pH during the basic hydrolysis leads to an increase in the porosity index Ip.
  • the index Ip decreases as the heating temperature increases and / or when the dwell time increases.
  • the lower limit of the range of acceptable sizes may in particular be 100 nm, 150 nm or even 200 nm and / or the upper limit of the size range. acceptable may in particular be 80 microns.
  • step g) if the particles are not in conformity, it is possible in particular to determine the conditions of a new synthesis by modifying: in step a): the nature of the additive; and / or o the concentration of the additive of a concentration increment preferably greater than 5% of the initial concentration and / or less than 15% of the initial concentration, for example 10% of the initial concentration; and / or the order of introduction into the solvent of the various constituents of the mother liquor, in particular by introducing the additive before the second reagent and immediately before or after the first reagent and / or the pH, in particular by fixing it at a value less than 2; and / or the ratio between the amount of anionic groups and the amount of Zr + and Hf 4+ ions of an increment preferably greater than 0.3 and / or less than 0.6, for example 0.4; and / or - in step b): the heating temperature preferably of a temperature increment of at most 15 ° C and / or greater than 5 ° C, for example of 10 ° C; and
  • step a) to increase the acidity of the mother liquor, and / or the ratio between the amount of anionic groups and the amount of Zr 4+ ions. and Hf 4+ , and / or the additive content and / or, in step b), increasing the heating temperature and / or the temperature holding time; to reduce the sphericity index, it is preferable, in step a), to increase the acidity of the mother liquor, and / or the ratio between the amount of anionic groups and the amount of Zr 4+ ions and Hf 4+ , and / or, in step b), decreasing the heating temperature; to promote the aggregation of the base particles, it is preferable, in step a), to reduce the acidity of the mother liquor, and / or to increase the ratio between the quantity of anionic groups and the amount of Zr 4+ and Hf 4+ ions and / or, in step b), to increase the temperature keeping time; to increase the specific surface area of the particles,
  • step a) it is preferable, in step a), to reduce the acidity and / or to choose a ratio between the quantity of anionic groups and the amount of Zr 4+ and Hf 4+ ions between 0.5 and 1.2 and / or to increase the additive content and / or, in step b), to increase the temperature of the heating and / or increase the duration of temperature maintenance.
  • the morphology and the sphericity index of the particles are modified by the values of the various parameters defined above.
  • the inventors have discovered and advocate the following rules:
  • the quantity of needles relative to the quantity of isotropic particles is increased during a subsequent synthesis by modifying the parameters of a synthesis that has generated platelets so as to increase the acidity of the mother liquor and / or the level of maintenance time, the amount of platelets is increased relative to the amount of isotropic particles during a subsequent synthesis;
  • the parameters of a synthesis that has generated stars so as to increase, in the mother liquor, the ratio between the quantity of anionic groups, for example SO 4 2 " , and the amount of Zr 4+ ions and / or Hf 4+ and / or the additive content, the amount of stars is increased relative to the amount of isotropic particles in a subsequent synthesis;
  • the quantity of sea urchins is increased relative to the quantity of isotropic particles during a following synthesis;
  • the ratio between the quantity of anionic groups, for example SO 4 2 " , and the amount of Zr + ions and / or Hf 4+ and / or the acidity of the mother liquor is increased relative to the amount of isotropic particles in a subsequent synthesis;
  • the amount of lamellae is increased relative to the amount of isotropic particles in a subsequent synthesis;
  • the needles are made thinner during a subsequent synthesis;
  • the parameters of a synthesis having generated needles so as to increase, in the mother liquor, the ratio between the quantity of anionic groups, for example SO 4 " , and the amount of Zr + and Hr + ions and / or or the acidity of the mother liquor, the quantity of stars is increased during a subsequent synthesis, the two forms being able to coexist during the transition
  • the parameters of a synthesis which has generated needles so as to increase the acidity and / or decrease the additive content of the mother liquor, the amount of sea urchins is increased during the following synthesis, the two forms being able to coexist during the transition;
  • the parameters of a synthesis having generated needles so as to increase the acidity and / or the duration of temperature maintenance of the mother liquor, the quantity of hollow spheres is increased, the two forms being able to coexist during the transition.
  • the parameters of steps a) and b) are determined in order to obtain, at the end of step b), anisotropic primary derivative particles.
  • the order of introduction of the components into the mother liquor is the preferred order mentioned above.
  • a hydrothermal treatment carried out at a temperature greater than 200 ° C., or even greater than 250 ° C., of a suspension of isotropic particles or of a solution leads to powders of crystallized dense particles, possibly anisotropic.
  • This type of hydrothermal treatment is described for example in the article "Morphology of zirconia synthesized hydrothermally from zirconium oxychloride", Journal of the American Ceramic Society, 1992, vol. 75, No. 9, pp. 2515-2519.
  • a hydrothermal treatment carried out at a temperature below 200 ° C. leads to powders of isotropic particles.
  • This type of treatment is described for example in "Nucleation and growth for nanoscale zirconia particles by forced hydrolysis", Journal of Colloid and Interface Science, 1998, vol. 198, pp 87-99. the combustion of a metal salt, the oxidation of a metal, or the calcination at high temperature of precursors lead to powders of dense particles, possibly anisotropic.
  • steps of the process just described can be modified to dope the particles manufactured.
  • a dopant or several dopants can be introduced in one or more steps, according to techniques known to those skilled in the art:
  • step a) a dopant A chosen from the compounds of elements of column 17
  • Y Sc scandium, lanthanide, alkaline earth (elements of column 2 of the periodic table of elements), titanium Ti, silicon Si 5 sulfur S, phosphorus
  • Said compounds can be for example oxides, hydrates, salts, carbides, nitrides, metals.
  • An yttrium compound may for example be an yttrium salt, for example YCl 3 salt.
  • the dopant A is chosen from oxides, hydrates and salts, more preferably from salts. If the dopant A is a compound of sulfur S and / or phosphorus P and mixtures thereof, preferably this compound is SO 4 2 ' and / or PO 4 3 " , preferably introduced by the second reagent.
  • the dopant A is an Al aluminum compound, it is preferably chosen from aluminum hydrates. If the dopant A is a Si silicon compound, silicon oxide is preferred.
  • the dopant A is soluble in an acid medium.
  • the dopant A is preferably chosen from the compounds of elements of column 17 (halides), the compounds of elements of column 1 (alkaline), the compounds of yttrium Y, of scandium Sc, of lanthanum La, of Ce cerium, praseodymium Pr 5 , neodymium Nd, calcium Ca, magnesium Mg, barium Ba, strontium Sr, titanium Ti, silicon Si, sulfur S, phosphorus P, aluminum Al, tungsten W, chromium Cr, molybdenum Mo, vanadium V, antimony Sb, nickel Ni, copper Cu, zinc Zn, iron Fe, manganese Mn, niobium Nb, galium Ga, tin Sn, lead Pb and mixtures thereof, preferably selected from compounds of the elements of column 17 (halides), compounds of elements of column 1 (alkaline), yttrium compounds Y, scandium Sc, lanthanum Ce, Ce cerium, Ca calcium
  • the dopant A is selected from Cl chlorine compounds, fluorine F, sodium Na, potassium K, yttrium Y 5 scandium Sc, lanthanum La, cerium Ce, calcium Ca, magnesium Mg, silicon Si, sulfur S, phosphorus P, aluminum Al and mixtures thereof. More preferably, the dopant A is chosen from compounds of yttrium Y, scandium Sc, lanthanum La, cerium Ce, calcium Ca, magnesium Mg, silicon Si, sulfur S, aluminum Al and their mixtures.
  • the primary derivative obtained will then be a primary derivative of zirconium and / or doped hafnium.
  • step a) the stock solution contains a zirconium oxychloride, water, an additive that makes it possible to modify the morphology, a second reagent bringing the anionic groups SO 4 2 " , and an yttrium salt YCl 3
  • the primary derivative obtained at the end of step b) will be a basic zirconium sulfate doped with a basic yttrium sulfate.
  • a dopant A is added during step a).
  • a dopant B chosen from the compounds of elements of column 17 ( halides), column 1 (alkaline) compounds, yttrium Y compounds, Sc scandium, lanthanides, alkaline earths (elements of column 2 of the periodic table of the elements), Ti titanium, Si silicon, Al aluminum, W tungsten, Cr chromium, Mo molybdenum, vanadium V, antimony Sb, nickel Ni, copper Cu, zinc Zn, iron Fe, manganese Mn, niobium Nb 5 galium Ga, tin Sn, lead Pb and mixtures thereof may be added optionally to the mother liquor.
  • Said compounds can be for example oxides, hydrates, salts, carbides, nitrides, metals.
  • An yttrium compound may for example be an yttrium salt, for example YCl 3 salt.
  • the dopant B is chosen from oxides, hydrates and salts, more preferably from salts.
  • the dopant B is an Al aluminum compound, it is preferably chosen from aluminum hydrates.
  • the dopant B is a Si silicon compound, it is preferably silicon oxide.
  • the dopant B is preferably chosen from the compounds of elements of column 17 (halides), the compounds of elements of column 1 (alkaline), the yttrium compounds Y, scandium Sc 5 of lanthanum La, cerium Ce, praseodymium Pr, neodymium Nd, calcium Ca, magnesium Mg, barium Ba, strontium Sr, titanium Ti, silicon Si 5 Al aluminum, tungsten W, chromium Cr, molybdenum Mo, vanadium V, antimony Sb, nickel Ni, copper Cu, zinc Zn, iron Fe, manganese Mn, niobium Nb, galium Ga 5 tin Sn, lead Pb and mixtures thereof , preferably chosen from the compounds of the elements of column 17 (halides), the compounds of the elements of column 1 (alkaline), the compounds of yttrium Y, of scandium Sc, of lanthan La, of cerium Ce 5 of calcium
  • the dopant B is chosen from chlorine compounds Cl 5 of fluorine F 5 sodium Na, potassium K, yttrium Y, scandium Sc, lanthanum La 1 cerium Ce, calcium Ca 5 from Mg magnesium, Si silicon, Al aluminum and mixtures thereof. More preferably, the dopant B is chosen from yttrium compounds Y, scandium Sc, lanthanum La 5 cerium Ce, calcium Ca, magnesium Mg 5 Si silicon, aluminum Al and mixtures thereof.
  • the primary derivative obtained will then be a primary derivative of zirconium and / or doped hafnium.
  • the dopant B or a successor of the dopant B may be associated with said primary derivative by any method known to those skilled in the art, for example by an impregnation process or by co-precipitation after resuspension.
  • step a) does not exclude the addition of a dopant B in step b), and vice versa.
  • a Cl dopant selected from the compounds of elements of column 17 (halides), the compounds of elements of column 1 (alkaline), yttrium compounds Y, scandium Sc, lanthanides, alkaline earths (elements of column 2 of the periodic table of the elements), titanium Ti, silicon Si 5 sulfur S, phosphorus P 5 aluminum Al, tungsten W, chromium Cr 5 molybdenum Mo, vanadium V, antimony Sb, nickel Ni, copper Cu 5 zinc Zn, iron Fe, manganese Mn, niobium Nb, galium Ga, tin Sn, Pb lead and their mixtures may be used optionally to dope said primary derivative, Lesd its compounds can be for example oxides, hydrates
  • the dopant C1 is chosen from oxides, hydrates and salts, more preferably from salts.
  • the dopant Cl is a compound of sulfur S and / or phosphorus P and mixtures thereof, preferably this compound is SO 4 2 " and / or PO 4 3" , preferably introduced by the compound capable of providing substitution. anionic groups brought by the second reagent.
  • the dopant Cl is an Al aluminum compound, it is preferably chosen from aluminum hydrates.
  • the Cl dopant is a silicon compound Si 5 it is preferably silicon oxide.
  • the dopant C1 is preferably chosen from the compounds of elements of column 17 (halides), the compounds of elements of column 1 (alkaline), the compounds of yttrium Y, scandium Sc, lanthanum La, cerium This 5 Praseodymium Pr 5 Neodymium Nd, calcium Ca, magnesium Mg, barium barium, strontium Sr, titanium Ti, silicon Si, sulfur S, phosphorus P, aluminum Al, tungsten W, chromium Cr, molybdenum Mo, vanadium V, antimony Sb, nickel Ni, copper Cu, zinc Zn 5 iron Fe, manganese Mn, niobium Nb, galium Ga, tin Sn, lead Pb and mixtures thereof, preferably selected from compounds of the elements of column 17 (halides), compounds of elements of column 1 (alkaline), yttrium compounds Y, scandium Sc, lanthanum Ce, Ce cerium, Ca calcium, Mg magnesium, Si silicon, S sulfur, P phosphorus, Al aluminum and mixtures
  • the dopant C1 is chosen from the compounds of chlorine Cl, fluorine F, sodium Na 5 potassium K, yttrium Y, scandium Sc, lanthanum La, cerium Ce, calcium Ca, magnesium Mg, silicon Si, sulfur S, phosphorus P, aluminum Al and mixtures thereof. More preferably, the dopant C1 is chosen from yttrium compounds Y, scandium sc 5 of lanthanum La 5 cerium Ce, calcium Ca 5 magnesium Mg, silicon Si, sulfur S, aluminum Al and their mixtures. At the end of step c), the secondary derivative obtained will then be a secondary derivative of zirconium and / or doped hafnium.
  • step a) and / or the addition of a dopant B in step b) does not exclude the addition of a dopant C1 in step c), and reciprocally.
  • the secondary derivative obtained, possibly doped can be doped with a dopant C2 chosen from the compounds of elements of column 17
  • C2 dopant is chosen from the compounds of elements of column 17 (halides), the compounds of elements of column 1 (alkaline), the yttrium Y, sc scandium, lanthanide, alkaline earth compounds (elements of column 2 of the periodic table of elements), titanium Ti, silicon Si, sulfur S, phosphorus P, aluminum Al, tungsten W, chromium Cr, molybdenum Mo, vanadium V 5 antimony Sb, nickel Ni, copper Cu, zinc Zn 5 iron Fe, manganese Mn, niobium Nb, galium Ga, tin Sn, lead Pb, cobalt Co, ruthenium Ru, rhodium rh, palladium Pd, silver Ag, Osmium Iridium Ir Os 1 , platinum Pt, Au gold and mixtures thereof; preferably the C2 dopant is chosen from the compounds of elements of column 17 (halides), the compounds of elements of column 1 (alkaline), the yttrium Y compounds,
  • the C2 dopant is chosen from the compounds of the elements of column 17 (halides), the compounds of the elements of column 1 (alkaline), the yttrium compounds Y, scandium Sc, lanthanum La 5 cerium Ce 5 calcium Ca, magnesium Mg, silicon If, sulfur S 5 P phosphorus, aluminum Al and mixtures thereof.
  • the dopant C2 is chosen from chlorine compounds Cl, fluorine F, sodium Na, potassium K, yttrium Y, scandium Sc 5 of lanthanum La, cerium Ce, calcium Ca, magnesium Mg, silicon Si, sulfur S, phosphorus P, aluminum Al and mixtures thereof. More preferably, the dopant C2 is chosen from compounds of yttrium Y, scandium sc 5 of lanthanum La, cerium Ce, calcium Ca, magnesium Mg, silicon Si, sulfur S 5 aluminum Al and their mixtures.
  • the compounds of column 17 (halides), column 1 (alkaline) compounds, yttrium Y, lanthanide scandium Sc 5 , alkaline earth compounds (column elements 2 of the periodic table of elements), titanium Ti, silicon
  • An yttrium compound may for example be an yttrium salt, for example YCl 3 salt.
  • said compounds are chosen from oxides, hydrates and salts, more preferably from salts.
  • the compounds of cobalt Co, ruthenium Ru, Rh rhodium, palladium Pd, silver Ag, Iridium Ir osmium Os 1 , platinum Pt, Au gold and mixtures thereof may be for example oxides , hydrates, salts, metals.
  • a platinum compound may for example be a platinum salt.
  • said compounds of cobalt Co, ruthenium Ru, rhodium Rh, palladium Pd, silver Ag, osmium Os, iride Ir, platinum Pt, Au gold and mixtures thereof are chosen from oxides, hydrates, salts, metals, more preferably from metals.
  • any method known to those skilled in the art for example by an impregnation process, by co-precipitation after resuspension, may be considered.
  • n ' does not exclude the use of a C2 dopant and vice versa.
  • a dopant D1 chosen from yttrium Y compounds, scandium Sc, lanthanides, alkaline earths (elements of column 2 of the periodic table of the elements), Ti titanium, Si silicon, sulfur S 5 phosphorus P, aluminum Al, tungsten W, chromium Cr, molybdenum Mo, vanadium V, antimony Sb, nickel Ni, copper Cu, zinc Zn, iron Fe, manganese Mn, niobium Nb, galium Ga, tin Sn, lead Pb and their mixtures, can optionally be added in the suspension.
  • Said compounds can be for example oxides, hydrates, salts, carbides, nitrides, metals.
  • An yttrium compound may for example be an yttrium salt, for example YCl 3 salt.
  • the dopant D1 is chosen from oxides, hydrates and salts, more preferably from salts. More preferably, the dopant D1 is soluble in the polar solvent in which the primary derivative or the secondary derivative is in suspension.
  • the dopant D1 is preferably chosen from yttrium compounds Y, scandium Sc, lanthanum La, cerium Ce, praseodymium Pr, neodymium Nd, calcium Ca, magnesium Mg, barium Ba, strontium Sr Ti titanium, Si silicon, S sulfur, P phosphorus, Al aluminum, Tungsten W, Cr chromium, Mo molybdenum, Vanadium V, Sb antimony, Ni nickel, Cu copper , Zn zinc, Mn manganese Fe 1 iron, Nb niobium, Galium Ga, Sn tin, Pb lead and mixtures thereof, more preferably Dl dopant is selected from yttrium compounds Y, Sc scandium, lanthanum La, Ce cerium, Ca calcium
  • the hydrate obtained will be a zirconium hydrate doped with an yttrium hydrate.
  • the addition of a dopant A in step a) and / or the addition of a dopant B in step b) and / or the use of a dopant C1 in step c) and / or a C2 dopant at the end of step c) does not exclude the addition of a dopant D1 in step d), and vice versa.
  • a dopant A is added to step a) and a dopant D1 in step d), dopant A being different from dopant D1.
  • the hydrate obtained at the end of step d) is then co-doped, and for example is a co-doped zirconium hydrate.
  • the optionally doped, possibly dried, zirconium and / or hafnium hydrate may be doped with a dopant D2 chosen from the compounds of elements of column 17 (halides), the composed of elements of column 1 (alkaline), yttrium Y, scandium Sc, lanthanide, alkaline earth compounds (elements of column 2 of the periodic table of elements), Ti titanium, silicon Si, sulfur S, phosphorus P, aluminum Al, tungsten W, chromium Cr, molybdenum Mo, vanadium V, antimony Sb, nickel Ni, copper Cu, zinc Zn, iron Fe, manganese Mn, niobium Nb, galium Ga, tin Sn, lead Pb, cobalt Co, ruthenium Ru, rhodium rh, palladium Pd, silver Ag, osmium bone, d Iridium Ir, Pt platinum, Au gold and mixtures thereof; preferably, the dopant D2 is chosen from the compounds of elements of
  • the dopant D2 is chosen from compounds of chlorine Cl, fluorine F, sodium Na, potassium K, yttrium Y, scandium Sc, lanthanum La, cerium Ce, calcium Ca, magnesium Mg, silicon Si, sulfur S, phosphorus P, aluminum Al and mixtures thereof. More preferably, the dopant D2 is chosen from compounds of yttrium Y, scandium Sc, lanthanum La, cerium Ce, calcium Ca, magnesium Mg, silicon Si, sulfur S, aluminum Al and their mixtures.
  • Compounds of column 17 (halides), column 1 (alkaline) compounds, yttrium Y, scandium Sc, lanthanide, alkaline earth compounds (column elements 2 of the periodic table of the elements), titanium Ti, silicon Si, sulfur S, phosphorus P, aluminum Al, tungsten W, chromium Cr, molybdenum Mo, vanadium V, antimony Sb, nickel Ni, copper Cu, zinc Zn, iron Fe, manganese Mn, niobium Nb, galium Ga, tin Sn, lead Pb and mixtures thereof may be for example oxides, hydrates, salts, carbides, nitrides, metals.
  • An yttrium compound may for example be an yttrium salt, for example YCl 3 salt.
  • said compounds are chosen from oxides, hydrates, salts, and more preferably, from hydrates, where appropriate.
  • the compounds of cobalt Co, ruthenium Ru, Rh rhodium, palladium Pd, silver Ag, osmium Os, Ir irium, platinum Pt, Au gold and mixtures thereof can be for example oxides , hydrates, salts, metals.
  • a platinum compound may for example be a platinum salt.
  • said compounds of cobalt Co, ruthenium Ru 5 of rhodium Rh, palladium Pd, silver Ag, osmium Os, Ir irium, platinum Pt, Au gold and mixtures thereof are chosen from oxides, hydrates, salts, metals, more preferably from metals.
  • any method known to those skilled in the art for example by an impregnation process, by co-precipitation after resuspension, may be used.
  • This doping operation can be performed several times.
  • step a) and / or the addition of a dopant B in step b) and / or the use of a dopant C1 in step c) and / or the use of a C2 dopant at the end of step c) and / or the addition of a D1 dopant before basic hydrolysis does not exclude the use of a D2 dopant after basic hydrolysis, and vice versa.
  • a dopant El chosen from the compounds of elements of column 17 (halides), compounds of column 1 (alkaline), yttrium Y, scandium Sc, lanthanide, alkaline earth compounds (elements of column 2 of the periodic table of elements), titanium Ti 5 of silicon Si, sulfur S, phosphorus P, aluminum Al, tungsten W, chromium Cr, molybdenum Mo, vanadium V, antimony Sb, nickel Ni, copper Cu, zinc Zn, iron Fe, manganese Mn, niobium Nb, galium Ga, tin Sn, lead Pb, cobalt Co, ruthenium Ru, rhodium rh, palladium Pd, silver Ag, osmium Os, Ir iridium, Pt platinum, Au gold; and mixtures thereof can optionally be used to
  • the dopant E1 is preferably chosen from the compounds of elements of column 17 (halides), the compounds of elements of column 1 (alkaline), the compounds of yttrium Y, of scandium Sc, of lanthanum La, of cerium Ce, praseodymium Pr, neodymium Nd, calcium Ca, magnesium Mg, barium Ba, strontium Sr, titanium Ti, silicon Si, sulfur S, phosphorus P, aluminum Al, tungsten W, chromium Cr, molybdenum Mo, vanadium V, antimony Sb, nickel Ni, copper Cu, zinc Zn, Fe 3 manganese Mn, niobium Nb, galium Ga, tin Sn, lead Pb, cobalt Co, ruthenium Ru, rhodium Rh, palladium Pd, silver Ag, osmium Os, Ir irium, platinum Pt, Au gold, and mixtures thereof; more preferably, the dopant E1 is chosen from the compounds of elements of column 17
  • the dopant El is selected from Cl chlorine compounds, fluorine F, sodium Na, potassium K, yttrium Y 5 scandium Sc, lanthanum La, cerium Ce, calcium Ca, magnesium Mg, silicon Si, sulfur S, phosphorus P 3 aluminum Al and mixtures thereof. More preferably, the dopant E1 is chosen from compounds of yttrium Y, scandium Sc, lanthanum La, cerium Ce, calcium Ca, magnesium Mg, silicon Si, sulfur S, aluminum Al and their mixtures.
  • Compounds of column 17 (halides), column 1 (alkaline) compounds, yttrium Y, scandium Sc, lanthanide, alkaline earth compounds (column elements 2 of the periodic table of the elements), titanium Ti, silicon Si, sulfur S, phosphorus P, aluminum Al, tungsten W, chromium Cr, molybdenum Mo, vanadium V, antimony Sb, nickel Ni, copper Cu, zinc Zn, iron Fe, manganese Mn, niobium Nb, galium Ga, tin Sn, lead Pb and mixtures thereof may be for example oxides, hydrates, salts, carbides, nitrides, metals.
  • An yttrium compound may for example be an yttrium salt, for example YCl 3 salt.
  • said compounds are chosen from oxides, hydrates, salts, and more preferably, optionally, from oxides.
  • Ag, osmium Os, Ir irium, Pt platinum, Au gold and mixtures thereof can be for example oxides, hydrates, salts, metals.
  • a platinum compound may for example be a platinum salt.
  • said compounds of cobalt Co, ruthenium Ru, rhodium Rh, palladium Pd, silver Ag, osmium Os, iride Ir, platinum Pt, Au gold and mixtures thereof are chosen from oxides, hydrates, salts, metals, more preferably from metals.
  • the oxide obtained after calcination will be a doped oxide.
  • Doping can be carried out by any technique known to those skilled in the art, in particular by adding a powder or impregnation by means of a suspension.
  • step a) and / or the addition of a dopant B in step b) and / or the use of a dopant C1 in step c) and / or the use of a C2 dopant at the end of step c) and / or the addition of a D1 dopant before basic hydrolysis and / or the use of a D2 dopant after basic hydrolysis does not exclude the use of an El dopant before calcination, and vice versa.
  • the possibly doped, optionally dried, zirconium and / or hafnium oxide may be doped with an E2 dopant chosen from the compounds of elements of column 17 (halides ), compounds of column 1 (alkaline), yttrium Y, scandium Sc, lanthanide, alkaline earth (column 2 of the Periodic Table of Elements), Ti titanium , silicon Si, sulfur S, phosphorus P, aluminum Al, tungsten W, chromium Cr, molybdenum Mo 5 vanadium V 5 antimony Sb, nickel Ni, copper Cu, zinc Zn iron Fe 5 5 5 Mn manganese niobium Nb, gallium Ga, Sn tin, lead Pb 5 cobalt Co 5 of ruthenium Ru, rhodium Rh, palladium Pd, Ag silver, osmium Bone, Irium Ir 5 Pt platinum, Au gold and mixtures thereof; preferably, the dopant E2 is chosen from the compounds of elements of column 17 (halides ),
  • the dopant E2 is chosen from the compounds of chlorine Cl, fluorine F, sodium Na, potassium K, yttrium Y, scandium Sc, lanthanum La 5 cerium Ce, calcium Ca 5 of magnesium Mg, silicon Si 1 sulfur S, phosphorus P, aluminum Al and mixtures thereof. More preferably, the dopant E2 is chosen from compounds of yttrium Y, scandium Sc, lanthanum La, cerium Ce, calcium Ca, magnesium Mg 1 of silicon Si, sulfur S, aluminum Al and their mixtures.
  • Compounds of column 17 (halides), column 1 (alkaline) compounds, yttrium Y, scandium Sc, lanthanide, alkaline earth compounds (column elements 2 of the periodic table of the elements), titanium Ti 5 of silicon Si, sulfur S, phosphorus P, aluminum Al, tungsten W, chromium Cr, molybdenum Mo 5 vanadium V, antimony Sb, nickel Ni 5 Cu copper, zinc Zn, iron Fe, manganese Mn, niobium Nb, gallium Ga, Sn tin, lead Pb and mixtures thereof, can be for example oxides, hydrates, salts, carbides, nitrides, metals.
  • An yttrium compound may for example be an yttrium salt, for example YCl 3 salt.
  • said compounds are chosen from oxides, hydrates and salts, more preferably from salts.
  • the compounds of cobalt Co, ruthenium Ru, Rh rhodium, palladium Pd, silver Ag, osmium Os, Ir irium, platinum Pt, Au gold and mixtures thereof can be for example oxides , hydrates, salts, metals.
  • a platinum compound may for example be a platinum salt.
  • said Co cobalt compounds ruthenium Ru, Rh rhodium, palladium Pd and silver Ag 5 osmium Os, iridium Ir, platinum Pt, gold Au and mixtures thereof are selected from oxides, hydrates, salts, metals, more preferably from metals.
  • the doping of said oxide can be carried out by any method known to those skilled in the art, for example by an impregnation process.
  • step a) and / or the addition of a dopant B in step b) and / or the use of a dopant C1 in step c) and / or the use of a C2 dopant at the end of step c) and / or the addition of a D1 dopant before basic hydrolysis and / or the use of a D 2 dopant after basic hydrolysis and / or the use of an El dopant before calcination does not exclude the use of an E2 dopant after calcination, and vice versa.
  • a triple doping of the zirconia is carried out by adding a first, a second and a third dopant.
  • a Y-doped ZBS derivative is made by adding an yttrium salt.
  • a hydrate co-doped Y / Ce by adding a cerium salt.
  • an aluminum salt is added and a Y / Ce / Al doped zirconia is obtained.
  • the use of a dopant can be carried out independently of the use of one or more other dopants.
  • the dopant for the dopant to be located inside the particle in the form of a defined compound, a solid solution, or an intimate molecular mixture, it is preferable that the dopants are of type A and / or or C1 and / or D1 and / or E1. In order for the dopant to be located inside the particle in the form of a dispersion or inclusion, or to be located on the surface of the particle, it is preferable that the dopant is of type B and / or C2 and / or D2 and / or E2.
  • the molar quantity of dopant in the particles may be less than 40%, less than 20%, less than 10%, or even less than 5% or even less than 3%.
  • the procedure generates a suspension consisting of a solid phase and a liquid supernatant.
  • the suspension is then filtered and then washed with 1 l of deionized water on a Buchner type filter.
  • the cake obtained consists of a basic zirconium sulfate, ZBS.
  • the powder thus obtained has a specific surface area of 3 m 2 / g and is amorphous by X-ray diffraction.
  • the ZBS particles are in a characteristic quasi-spherical form known as a "grape bunch".
  • the suspension is then filtered and then washed twice with 1 l of deionized water on a Buchner type filter.
  • the suspension is then filtered and then washed with 1 l of deionized water on a Buchner type filter.
  • the cake thus obtained is then resuspended in 1 l of deionized water and the pH is adjusted to 5 by addition of 0.1 N hydrochloric acid.
  • the suspension is then filtered and then washed with 1 l of deionized water. on a Buchner type filter.
  • the cake obtained is resuspended in 1 l of deionized water and the pH is adjusted to 11 by adding 1 N ammonia (NH 4 OH).
  • the suspension is then filtered and then washed twice with 1 l of water.
  • the cake obtained is constituted by a zirconium hydrate, or ZHO.
  • the powder thus obtained has a specific surface area of 320 m 2 / g.
  • the sum of the mesoporous and microporous volumes of 0.18 cm 3 / g and the powder is amorphous by X-ray diffraction.
  • the ZHO particles are in a quasi-spherical form similar to that of the starting ZBS derivative.
  • the cake obtained is then dried in an oven for at least 12 hours at 0 ° C, and then stirred with agate mortar.
  • the powder obtained is calcined under air for 2 hours (ramp temperature of 2 ° C / min, air flow rate of 100 ml / min f is a hourly volume velocity VVH of 300 h -1 ) at 500 ° C.
  • the powder thus obtained has a specific surface area of 60 m 2 / g; the sum of the mesoporous and microporous volumes is 0.12 cm 3 / g; the powder is crystallized in the form of a mixture of quadratic and monoclinic phases determined by X-ray diffraction.
  • the zirconia particles are in a quasi-spherical form similar to that of the initial particles of the ZBS derivative (shown in FIG. ) and ZHO.
  • Example 2 Powder in the form of needles
  • 210 g of zirconium oxychloride are dissolved in 300 ml of deionized water at 50 ° C. with stirring, then 2.5 g of sodium dodecyl sulphate or SDS, then 52 g of sodium sulphate and is added to 500 ml with deionized water, the temperature is adjusted to 50 ° C. and maintained for 15 minutes after complete dissolution of the reagents.
  • the acidity of the mother liquor is 2, the concentration of (Zr 4+ + Hf 4+ ) is 1 mol / l, the molar ratio between the anionic groups SO 4 2 " and (Zr 4+ + Hf 4+ ) is 0.6, and the concentration of SDS additive is 0.02 mol / 1.
  • the presence of foam on the surface of the solution is observed.
  • the solution is then brought, still stirring, at 70 ° C. with a heating ramp of 1 ° C./min
  • the solution is maintained at 70 ° C. for 15 min and then allowed to cool freely to below 50 ° C.
  • This procedure generates a suspension consisting of a solid phase and a liquid supernatant as well as foam.
  • the suspension is then filtered and then washed with 1 l of deionized water on a Buchner type filter.
  • the cake obtained consists of a basic zirconium sulfate, ZBS.
  • the ZBS powder thus obtained has a specific surface area of 6 m 2 / g and is amorphous by X-ray diffraction.
  • the ZBS particles are in the form of needles with a length L of between 0.5 and 3 ⁇ m. width 1 between 0.3 and 0.8 microns, and thickness e between 0.25 and 0.8 microns.
  • L / l is between 1, 67 and 50, and the thickness e is greater than 0.5 times the width 1.
  • a 1 1 Teflon® PTFE beaker the cake is then suspended in 250 ml of deionized water.
  • a second 1 1 Teflon® PTFE beaker 25 g of NaOH sodium hydroxide are dissolved in 250 ml of deionized water.
  • the basic solution of sodium hydroxide is then gradually added to the suspension of ZBS; the pH of the final suspension is between 12 and 13.
  • the suspension is then heated to 90 ° C. with a heating ramp of 1 ° C./min.
  • the suspension is maintained at 90 ° C. for 2 h and then allowed to cool freely to below 50 ° C.
  • This procedure generates a suspension consisting of a solid phase and a liquid supernatant.
  • the suspension is then filtered and then washed twice with 1 l of deionized water on a Buchner type filter.
  • the suspension is then filtered and then washed with 1 l of deionized water on a Buchner type filter.
  • the cake thus obtained is then resuspended in 1 l of deionized water and the pH is adjusted to 5 by addition of 0.1 N hydrochloric acid.
  • the suspension is then filtered and then washed with 1 l of deionized water. on a Buchner type filter.
  • the cake obtained is resuspended in 1 l of deionized water and the pH is adjusted to 1 1 by adding 1 N ammonia (NH 4 OH). The suspension is then filtered and then washed twice with 1 l of water. permutated water on a Buchner type filter. The cake obtained is constituted by a zirconium hydrate, or ZHO.
  • the powder thus obtained has a specific surface area of 360 m 2 / g and is amorphous by X-ray diffraction.
  • the sum of the mesoporous and microporous volumes is 0.25 cm 3 / g.
  • the ZHO particles are in the form of needles of length L between 0.5 and 3 ⁇ m, width 1 between 0.3 and 0.8 ⁇ m, and thickness e between 0.25 and 0. , 8 ⁇ m, similar to those of the starting ZBS derivative.
  • L / l is between 1.67 and 50
  • the thickness e is greater than 0.5 times the width 1.
  • the cake obtained is then dried in an oven for at least 12 hours at HO 0 C, then swept with agate mortar.
  • the powder obtained is calcined in air for 2 hours (temperature ramp of 2 ° C./min, air flow rate of 100 ml / min, ie a VHV hourly volume velocity of 300 h -1 ) at 500 ° C.
  • the powder thus obtained has a specific surface area of 120 m 2 / g, the sum of the mesoporous and microporous volumes is 0.20 cm 3 / g and the powder is crystallized in the form of a mixture of quadratic and monoclinic phases determined by diffraction X-rays.
  • the zirconia particles are in the form of needles of length L between 1 and 2 ⁇ m, width 1 between 0.3 and 0.8 ⁇ m, and thickness e between 0.25 and 0.8 ⁇ m, similar to the initial particles of the derivative ZBS (shown in Figure 3b) and ZHO.
  • L / l is between 1, 67 and 50, and the thickness e is greater than 0.5 times the width 1.
  • a beaker 1 1 Pyrex are brought into solution at 5O 0 C with stirring 110 g of zirconium oxycholure in 300 ml of deionized water and then 20 g of bromide or CTAB cétyltriméthylarnmonium then added 42 g of sodium sulphate and make up to 500 ml with deionized water. The temperature is adjusted to 50 0 C and maintained for 15 minutes after complete dissolution of the reagents.
  • the acidity of the mother liquor is 1.2, the concentration of (Zr 4+ + Hf 4+ ) is 0.6 mol / l, the molar ratio between the anionic groups SO 4 2 " and (Zr 4+ + Hf 4+ ) is 0.9, and the concentration of CTAB additive is 0.1 mol / l, the presence of foam on the surface of the solution is observed, the solution is then brought, still under stirring, to 60.degree. 0 C with a heating ramp of 1 ° C./min The solution is maintained at 60 ° C. for 30 min and then allowed to cool freely to below 50 ° C.
  • This procedure generates a suspension consisting of a solid phase and a liquid supernatant as well as foam.
  • the suspension is then filtered and then washed with 1 l of deionized water on a Buchner type filter.
  • the cake obtained consists of a basic zirconium sulfate, ZBS.
  • the ZBS powder thus obtained has a specific surface area of 3 m 2 / g and is amorphous by X-ray diffraction.
  • the ZBS particles are in the form of needles with a length L of between 20 and 40 ⁇ m, of width 1 included between 2 and 5 microns, and with a thickness e between 1.5 and 5 microns. For each of these needles, L / l is between 1.67 and 50, and the thickness e is greater than 0.5 times the width 1.
  • the suspension is then filtered and then washed twice with 1 l of deionized water on a Buchner type filter.
  • the suspension is then filtered and then washed with 1 l of deionized water on a Buchner type filter.
  • the cake thus obtained is then resuspended in 1 l of deionized water and the pH is adjusted to 5 by addition of 0.1 N hydrochloric acid.
  • the suspension is then filtered and then washed with 1 l of deionized water. on a Buchner type filter.
  • the cake obtained is resuspended in 1 l of deionized water and the pH is adjusted to 1 1 by adding 1 N ammonia (NH 4 OH).
  • the suspension is then filtered and then washed twice with 1 l of water. permutated water on a Buchner type filter.
  • the cake obtained is constituted by a zirconium hydrate, or ZHO,
  • the powder thus obtained has a specific surface area of 350 m 2 / g, the sum of the mesoporous and microporous volumes is 0.20 cm / g and the powder is amorphous by X-ray diffraction.
  • the ZHO particles are in a form needles of length L between 20 and 40 microns, width 1 between 2 and 5 microns, and thickness e between 1, 5 and 5 microns. For each of these needles, L / l is between 1.67 and 50, and the thickness e is greater than 0.5 times the width 1.
  • the needles are similar to those of the starting ZBS derivative.
  • the cake obtained is then dried in an oven for at least 12 hours at 110 0 C, then spotted with agate mortar.
  • the powder obtained was calcined in air for 2 hours (ramp 2 ° C / min, air flow rate of 100 ml / min, an hourly space velocity HSV of 300 h -1) at 500 ° C.
  • the powder thus obtained has a specific surface area of 100 m 2 / g, the sum of the mesoporous and microporous volumes is 0.18 cm 2 / g and the powder is crystallized under a mixture of quadratic and monoclinic phases determined by ray diffraction.
  • the zirconia particles are in the form of needles of length L between 15 and 30 microns, width 1 between 1 and 4 microns, and thickness e between 0.7 and 4 microns. For each of these needles, L / 1 is between 1.67 and 50, and the thickness e is greater than 0.5 times the width 1.
  • the needles are similar to those of the ZBS derivative (shown in FIG. 3c) and ZHO initials.
  • Example 4 Powder in the form of stars
  • a Pyrex 1 1 beaker 110 g of zirconium oxycholide are dissolved in 300 ml of deionized water at 50 ° C. and then 5 g of cetyltrimethylammonium bromide or CTAB are added, followed by 50 ml of acid. 36% hydrochloric acid HCl, then 28 g of sodium sulphate are added and the mixture is made up to 500 ml with deionized water. The temperature is adjusted to 50 0 C and maintained for 15 minutes after complete dissolution of the reagents.
  • the acidity of the mother liquor is 2.4, the concentration of (Zr 4+ + Hf 4+ ) is 0.6 mol / l, the molar ratio between the anionic groups SO 4 2 " and (Zr 4+ + Hf 4+ ) is 0.6, and the concentration of CTAB additive is 0.025 mol / 1.
  • the presence of foam on the surface of the solution is observed.
  • the solution is then brought, still with stirring, to 60 ° C. with a heating ramp of 1 ° C / min, the solution is maintained at 60 ° C. for 1 h and then allowed to cool freely to below 50 ° C.
  • This procedure generates a suspension consisting of a solid phase and a liquid supernatant as well as foam.
  • the suspension is then filtered and then washed with 1 l of deionized water on a Buchner type filter.
  • the cake obtained consists of a basic zirconium sulfate, ZBS.
  • the ZBS powder thus obtained has a specific surface area of 3 m 2 / g and is amorphous by X-ray diffraction.
  • the ZBS particles are in the form of stars of between 5 and 40 ⁇ m in length.
  • the suspension is then filtered and then washed twice with 1 l of deionized water on a Buchner type filter.
  • the suspension is then filtered and then washed with 1 l of deionized water on a Buchner type filter.
  • the cake thus obtained is then resuspended in 1 l of deionized water and the pH is adjusted to 5. by adding 0.1 N hydrochloric acid.
  • the suspension is then filtered and then washed with 1 l of deionized water on a Buchner type filter.
  • the cake obtained is resuspended in 1 l of deionized water and the pH is adjusted to 11 by adding 1 N ammonia (NH 4 OH).
  • the suspension is then filtered and then washed twice with 1 l of water. permutated water on a Buchner type filter.
  • the cake obtained is constituted by a zirconium hydrate, or ZHO.
  • the powder thus obtained has a specific surface area of 340 m 2 / g, the sum of the mesoporous and microporous volumes is 0.20 cm 3 / g and the powder is amorphous by X-ray diffraction.
  • the ZHO particles are presented under the star shape of length between 5 and 40 microns, similar to those of the starting ZBS derivative.
  • the cake obtained is then dried in an oven for at least 12 hours at 0 ° C, and then stirred with agate mortar.
  • the powder obtained is calcined under air for 2 hours (temperature ramp of 2 ° C./min, air flow rate of 100 ml / min, ie a VHV hourly volume velocity of 300 h -1 ) at 500 ° C.
  • the powder thus obtained has a specific surface area of 90 m 2 / g, the sum of the mesoporous and microporous volumes is 0.18 cm 3 / g and the powder is crystallized in the form of a mixture of quadratic and monoclinic phases determined by diffraction with X-rays.
  • the zirconia particles are in the form of stars of between 5 and 30 ⁇ m in length, similar to that of the initial particles of the ZBS derivative (shown in FIG. 3d) and ZHO.
  • the ZBS star forming needles have a tapered and pointed shape. These needles are substantially of revolution about their longitudinal axis. The surface of their cross section, substantially discoidal, decreases gradually as the tip (s). In addition, the lateral outer surface of the needles is particularly smooth. ZHO and zirconia needles have similar shapes.
  • Example 5 Powder in the form of sea urchins
  • a beaker 1 1 Pyrex are brought into solution at 5O 0 C with stirring 110 g of zirconium oxycholure in 300 ml of deionized water and then 0.5 g of cetyltrimethylammonium bromide or CTAB then added 28 g of sodium sulphate and complete with 500 ml of deionized water. The temperature is adjusted to 50 0 C and maintained for 15 minutes after complete dissolution of the reagents.
  • the acidity of the mother liquor is 1.2, the concentration of (Zr 4+ + Hf 4+ ) is 0.6 mol / l, the molar ratio between the anionic groups SO 4 2 ' and (Zr 4+ + Hf 4+ ) is 0.6, and the concentration of CTAB additive is 0.0025 mol / l.
  • the presence of foam on the surface of the solution is observed.
  • the solution is then brought, still with stirring, to 60 ° C. with a heating ramp of 1 ° C./min.
  • the solution is maintained at 60 ° C. for 1 h and then allowed to cool freely to below 50 ° C.
  • This procedure generates a suspension consisting of a solid phase and a liquid supernatant as well as foam.
  • the suspension is then filtered and then washed with 1 l of deionized water on a Buchner type filter.
  • the cake obtained consists of a basic zirconium sulfate, ZBS.
  • the ZBS powder thus obtained has a specific surface area of 6 m 2 / g and is amorphous by X-ray diffraction.
  • the ZBS particles are in the form of aggregates with a particle size of between 10 and 30 ⁇ m consisting of particles of length L of 2 ⁇ m in the form of needles and stars.
  • the suspension is then filtered and then washed twice with 1 l of deionized water on a Buchner type filter.
  • the suspension is then filtered and then washed with 1 l of deionized water on a Buchner type filter.
  • the cake thus obtained is then resuspended in 1 l of deionized water and the pH is adjusted to 5 by addition of 0.1 N hydrochloric acid.
  • the suspension is then filtered and then washed with 1 l of deionized water. on a Buchner type filter.
  • the cake obtained is resuspended in 1 l of deionized water and the pH is adjusted to 11 by adding 1 N ammonia (NH 4 OH).
  • the suspension is then filtered and then washed twice with 1 l of water. water swapped on a Buchner type filter.
  • the cake obtained is constituted by a zirconium hydrate, or ZHO.
  • the powder thus obtained has a specific surface area of 360 m 2 / g, the sum of the mesoporous and microporous volumes is 0.25 cm 3 / g and the powder is amorphous by X-ray diffraction.
  • the ZHO particles are presented under a form of aggregates whose largest dimension is between 10 and 30 microns, consisting of particles of 2 microns in the form of needles and stars, similar to those of the starting ZBS derivative.
  • the cake obtained is then dried in an oven for at least 12 hours at 0 ° C, and then stirred with agate mortar.
  • the powder obtained was calcined in air for 2 hours (ramp 2 ° C / min, air flow rate of 100 ml / min, an hourly space velocity HSV of 300 h " ') at 500 0 C.
  • the powder thus obtained has a specific surface area of 120 m 2 / g, the sum of the mesoporous and microporous volumes is 0.21 cm 2 / g and the powder is crystallized in the form of a mixture of quadratic and monoclinic phases determined by ray diffraction.
  • the zirconia particles are in the form of aggregates whose largest dimension is between 5 and 20 ⁇ m, consisting of particles of 1 ⁇ m in the form of needles and stars, similar to those of initial particles of the derivative ZBS (shown in Figure 3e) and ZHO.
  • a beaker 1 1 Pyrex are brought into solution at 5O 0 C with stirring 110 g of zirconium oxycholure in 300 ml of deionized water and then 5 g of cétyltriméthylamrnonium bromide or CTAB then 25 ml of acid 36% hydrochloric acid HCl, then 28 g of sodium sulphate are added and the mixture is made up to 500 ml with deionized water. The temperature is adjusted to 50 ° C. and maintained for 15 minutes after complete dissolution of the reagents.
  • the acidity of the mother liquor is 2, the concentration of (Zr + + Hf 4+ ) is 0.6 mol / l, the molar ratio between the anionic groups SO 4 2 * and (Zr 4+ + Hf 4 + ) is 0.6, and the concentration of CTAB additive is 0.025 mol / l.
  • the presence of foam on the surface of the solution is observed.
  • the solution is then brought, still with stirring, to 60 ° C. with a heating ramp of 1 ° C./min.
  • the solution is maintained at 60 ° C. for 1 h and then allowed to cool freely to below 50 ° C.
  • This procedure generates a suspension consisting of a solid phase and a liquid supernatant as well as foam.
  • the suspension is then filtered and then washed with 1 l of deionized water on a Buchner type filter.
  • the cake obtained consists of a basic zirconium sulfate, ZBS.
  • the ZBS powder thus obtained has a specific surface area of 3 m 2 / g and is amorphous by X-ray diffraction.
  • the ZBS particles are in the form of a mixture of approximately 50% of quasi-spherical particles. so-called "bunch of grapes" and 50% platelets with a thickness e of between 1 and 3 ⁇ m, of length L between 10 and 20 ⁇ m, and of width 1 between 10 and 15 ⁇ m. For each of these platelets, L / l is less than 1.5.
  • the suspension is then filtered and then washed twice with 1 l of deionized water on a Buchner type filter.
  • the suspension is then filtered and then washed with 1 l of deionized water on a Buchner type filter.
  • the cake thus obtained is then resuspended in 1 l of deionized water and the pH is adjusted to 5 by addition of 0.1 N hydrochloric acid.
  • the suspension is then filtered and then washed with 1 l of deionized water. on a Buchner type filter.
  • the cake obtained is resuspended in 1 l of deionized water and the pH is adjusted to 11 by adding 1 N ammonia (NH 4 OH).
  • the suspension is then filtered and then washed twice with 1 l of water.
  • the cake obtained is constituted by a zirconium hydrate, or ZHO.
  • the powder thus obtained has a specific surface area of 340 m 2 / g, the sum of the mesoporous and microporous volumes is 0.22 cm 3 / g and the powder is diffractionally amorphous
  • the ZHO particles are in the form of a mixture of approximately 50% of particles of quasi-spherical shape called "bunch of grapes" and 50% of platelets with a thickness e of between 1 and 3 ⁇ m. , of length L between 10 and 20 microns, and width 1 between 10 and 15 microns, similar to those of the starting ZBS derivative. For each of these platelets, L / 1 is less than 1.5.
  • the cake obtained is then dried in an oven for at least 12 hours at 110 0 C, then spotted with agate mortar.
  • the powder obtained is calcined in air for 2 hours (temperature ramp of 2 ° C./min, air flow rate of 100 ml / min, ie a volume hourly velocity VVH of 300 h -1 ) at 500 ° C.
  • the powder thus obtained has a specific surface area of 80 m 2 / g, the sum of the mesoporous and microporous volumes is 0.15 cm 3 / g and the powder is crystallized in the form of a mixture of quadratic and monoclinic phases determined by diffraction with X-rays.
  • the zirconia particles are in the form of a mixture of about 50% of particles of quasi-spherical shape called "grape bunch" and 50% of platelets with a thickness e of between 1 and 2 ⁇ m. It has a length L between 8 and 15 ⁇ m, and a width 1 between 8 and 12 ⁇ m, which is similar to that of the initial particles of the ZBS derivative (represented in FIG. 3f) and of ZHO. L / l is less than 1.5.
  • EXAMPLE 7 Powder in the form of hollow particles
  • a Pyrex 1 1 beaker 55 g of zirconium oxycholide are dissolved in 300 ml of deionized water at 50 ° C. with stirring, then 2.5 g of cetyltrimethylammonium bromide or CTAB then 25 ml of 36% hydrochloric acid HCl, then 7 g of sodium sulfate and is added to 500 ml with deionized water, the temperature is adjusted to 50 0 C and maintained during 15 minutes after complete dissolution of the reagents.
  • the acidity of the mother liquor is 1.2, the concentration of (Zr 4+ + Hf 4+ ) is 0.3 mol / l, the molar ratio between the anionic groups SO 4 " and (Zr 4+ + Hf 4+ ) is 0.4, and the concentration of CTAB additive is 0.015 mol / l
  • the presence of foam on the surface of the solution is observed
  • the solution is then brought, still with stirring, at 60 ° C. with a heating ramp of 1 ° C./min
  • the solution is maintained at 60 ° C. for 1 h and then allowed to cool freely to below 50 ° C. This procedure generates a suspension consisting of a solid phase and a liquid supernatant as well as foam.
  • the suspension is then filtered and then washed with 1 l of deionized water on a Buchner type filter.
  • the cake obtained consists of a basic zirconium sulfate, ZBS.
  • the ZBS powder thus obtained has a specific surface area of 2 m 2 / g and is amorphous by X-ray diffraction.
  • the ZBS particles are in the form of a mixture of approximately 50% quasi-spherical particles. so-called "bunch of grapes" and 50% of hollow particles, with a sphericity index between 0.85 and 0.9, with a larger outside diameter D of between 50 and 300 ⁇ m, and with a larger inside diameter D inclusive between 35 and 280 ⁇ m.
  • the thickness of the wall of these spheres is between 5 and 20 microns, and the ratio D / D 'is less than 2.
  • the suspension is then filtered and then washed twice with 1 l of deionized water on a Buchner type filter.
  • the suspension is then filtered and then washed with 1 l of deionized water on a Buchner type filter.
  • the cake thus obtained is then resuspended in 1 l of deionized water and the pH is adjusted to 5 by addition of 0.1 N hydrochloric acid.
  • the suspension is then filtered and then washed with 1 l of deionized water. on a Buchner type filter.
  • the cake obtained is resuspended in 1 l of deionized water and the pH is adjusted to 1 1 by adding 1 N ammonia (NH 4 OH).
  • the suspension is then filtered and then washed twice with 1 l of water. permutated water on a Buchner type filter.
  • the cake obtained is constituted by a zirconium hydrate, or ZHO.
  • the powder thus obtained has a specific surface area of 280 m 2 / g, the sum of the mesoporous and microporous volumes is 0.15 cm 3 / g and the powder is amorphous by X-ray diffraction.
  • the ZHO particles are presented under the shape of a 50% mixture of particles of quasi-spherical shape called "grape bunch" and 50% of hollow particles, with a sphericity index between 0.85 and 0.9, with a larger outside diameter D of between 50 and 300 ⁇ m , and with a larger internal diameter D of between 35 and 280 ⁇ m.
  • the thickness of the wall of these spheres is between 5 and 20 microns, and the D / D 'ratio is between 1.1 and 1.5.
  • the resulting cake is then dried in an oven for at least 12 hours at 110 C ⁇ and clods in agate mortar.
  • the powder obtained is calcined under air for 2 hours (temperature ramp of 2 ° C./min, air flow rate of 100 ml / min, ie a hourly volume velocity VVH of 300 h -1 ) at 500 ° C.
  • the powder thus obtained has a specific surface area of 60 m 2 / g, the sum of the mesoporous and microporous volumes is 0.10 cm 3 / g and the powder is crystallized in the form of a mixture of quadratic and monoclinic phases determined by X-ray diffraction.
  • the zirconia particles are in the form of a mixture of about 50% of particles of quasi-spherical shape called "bunch of grapes" and 50% of hollow particles, of sphericity index between 0.85 and 0.9, larger outside diameter D between 50 and 300 ⁇ m, and larger inside diameter D 'between 35 and 280 ⁇ m.
  • the thickness of the wall of these spheres is between 5 and 20 microns, and the D / D 'ratio is between 1.1 and 1.5.
  • This form is similar to that of the initial particles of the ZBS derivative (shown in Figure 3g) and ZHO.
  • Example 8 Powder in the form of lamellae
  • the acidity of the mother liquor is 1, 2, the concentration of (Zr 4+ + Hf 4+ ) is 0.6 mol / l, the molar ratio between the anionic groups SO4 2 " and (Zr 4+ + Hf 4+ ) is 0.6, and the concentration of additive CTAB is 1 mol / 1.
  • the presence of foam on the surface of the solution is observed.
  • the solution is then brought, still with stirring, at 60 ° C. with a heating ramp of 1 ° C / min.
  • the solution is kept at 60 ° C. for 1 h and then allowed to cool freely to below 50 ° C.
  • This procedure generates a suspension consisting of a solid phase and a liquid supernatant as well as foam.
  • the suspension is then filtered and then washed with 1 l of deionized water on a Buchner type filter.
  • the cake obtained consists of a basic zirconium sulfate, ZBS.
  • the ZBS powder thus obtained has a specific surface area of 4 m 2 / g and is amorphous by X-ray diffraction.
  • the ZBS particles are in the form of a mixture of approximately 50% quasi-spherical particles. so-called "bunch of grapes" and 50% of platelets composed of 10 to 15 platelets of thickness e of 1 to 2 microns, length L between 10 and 20 microns, and width 1 between 10 and 15 microns. For each of these platelets, L / l is less than 1.5.
  • Teflon® PTFE beaker In a 1 1 Teflon® PTFE beaker, the cake is then suspended in 250 ml of deionized water. In a second beaker 1 liter Teflon® PTFE 5 is dissolved 25 g of NaOH in 250 ml of deionized water. The basic solution of sodium hydroxide is then gradually added to the suspension of ZBS; the pH of the final suspension is between 12 and 13. The suspension is then heated to 90 ° C. with a heating ramp of 1 ° C./min. The suspension is maintained at 90 ° C. for 2 h and then allowed to cool freely to below 50 ° C. This procedure generates a suspension consisting of a solid phase and a liquid supernatant.
  • the suspension is then filtered and then washed twice with 1 l of deionized water on a Buchner type filter.
  • the suspension is then filtered and then washed with 1 l of deionized water on a Buchner type filter.
  • the cake thus obtained is then resuspended in 1 l of deionized water and the pH is adjusted to 5 by addition of 0.1 N hydrochloric acid.
  • the suspension is then filtered and then washed with 1 l of deionized water. on a Buchner type filter.
  • the cake obtained is resuspended in 1 l of deionized water and the pH is adjusted to 1 liter by addition of ammonia (NH 4 OH) to 1 N.
  • the suspension is then filtered, then washed twice with 1 liter of permutated water on a Buchner type filter.
  • the cake obtained is constituted by a zirconium hydrate, or ZHO.
  • the powder thus obtained has a specific surface area of 340 m 2 / g, the sum of the mesoporous and microporous volumes is 0.25 cm 2 / g and the powder is amorphous by X-ray diffraction.
  • the ZHO particles are in the form of a mixture of about 50% of particles of quasi-spherical shape called "bunch of grapes" and 50% of slats composed of 10 to 15 platelets thick e of 1 to 2 microns, length L between 10 and 20 microns, and width 1 between 10 and 15 microns, similar to those of the particles of the starting ZBS derivative.
  • L / l is less than 1.5.
  • the cake obtained is then dried in an oven for at least 12 hours at 110 0 C, then spotted with agate mortar.
  • the powder obtained was calcined in air for 2 hours (ramp 2 ° C / min, air flow rate of 100 ml / min, an hourly space velocity HSV of 300 h "! At 500 ° C.
  • the powder thus obtained has a specific surface area of 100 m 2 / g, the sum of the mesoporous and microporous volumes is 0.20 cm 2 / g and is crystallized in the form of a mixture of quadratic and monoclinic phases determined by X-ray diffraction.
  • the zirconia particles are in the form of a mixture of approximately 50% of particles of quasi-spherical shape called "bunch of grapes" and 50% of slats composed of 10 to 15 plates of thickness e 0.5 at 1 ⁇ m, length L between 8 and 15 microns, and width 1 between 8 and 12 microns. This form is similar to that of the initial particles of the ZBS derivative and ZHO. For each of these platelets, L / 1 is less than 1.5.
  • Example 9 Powder in the form of needles, with a dopant introduced in the form of vttrium chloride YC13
  • a 1 1 Teflon® PTFE beaker 100 g of the ZBS of Example 3 is suspended in 250 ml of deionized water and then 80 g of yttrium chloride solution YC13 at 1 mol / l are added. (dopant type Dl).
  • a second 1 1 Teflon® PTFE beaker 25 g of NaOH sodium hydroxide are dissolved in 250 ml of deionized water.
  • the basic solution of sodium hydroxide is then gradually added to the suspension of ZBS; the pH of the final suspension is between 12 and 13.
  • the suspension is then heated to 90 ° C. with a heating ramp of 1 ° C./min.
  • the suspension is maintained at 90 ° C.
  • This powder has a specific surface area of 300 m 2 / g, the sum of the mesoporous and microporous volumes of 0.18 cm 2 / g and is amorphous by diffraction.
  • X-rays, ZHY particles are in the form of needles of length L ranging between 20 and 40 microns, width 1 between 2 and 5 microns, and thickness e between 1, 5 and 5 microns, similar to that of the starting ZBS derivative.
  • L / l is between 1.67 and 50, and the thickness e is greater than 0.5 times the width 1.
  • the cake obtained is then dried in an oven for at least 12 hours at 110 0 C, then spotted with agate mortar.
  • the powder obtained is calcined under air for 2 hours (temperature ramp of 2 ° C./min, air flow rate of 100 ml / min, ie a hourly volume velocity VVH of 300 h -1 ) at 800 ° C.
  • the powder thus obtained has a specific surface area of 50 m 2 / g, the sum of the mesoporous and microporous volumes is 0.15 cm 3 / g and the powder is crystallized in quadratic form determined by X-ray diffraction.
  • the zirconia particles doped with 3 mol% of YiCh are in the form of needles of length L between 15 and 30 microns, width 1 between 1 and 4 microns, and thickness e between 0.7 and 4 microns, similar to the initial particles of the initial ZBS derivative and ZHY.
  • L / l is between 1.67 and 50
  • the thickness e is greater than 0.5 times the width 1.
  • Example 10 Powder in the form of needles, with a dopant introduced in the form of yttrium chloride YCh
  • Teflon® PTFE 1 1 beaker 100 g of the ZBS of Example 3 is suspended in 250 ml of deionized water, 220 g of yttrium chloride solution YCl 3 at 1 mol / l are added. .
  • a second 1 1 Teflon® PTFE beaker dissolve 25 g of sodium hydroxide in 250 ml of deionized water.
  • the basic solution of sodium hydroxide is then gradually added to the suspension of ZBS; the pH of the final suspension is between 12 and 13.
  • the suspension is then heated to 90 ° C. with a heating ramp of 1 ° C./min. The suspension is maintained at 90 ° C.
  • the powder thus obtained has a specific surface area of 300 m 2 / g, the sum of the mesoporous and microporous volumes is 0.15 cm 3 / g, and the powder is amorphous by X-ray diffraction.
  • the particles of ZHY are presented under a shape of needles of length L between 20 and 40 microns, width 1 between 2 and 5 microns, and thickness e between 1.5 and 5 microns, similar to those of the starting ZBS derivative.
  • L / l is between 1.67 and 50, and the thickness e is greater than 0.5 times the width 1.
  • the cake obtained is then dried in an oven for at least 12 hours at 1 10 0 C, then spotted with agate mortar.
  • the powder obtained is calcined in air for 2 hours (temperature ramp of 2 ° C./min, air flow rate of 100 ml / min, ie a hourly volume velocity VVH of 300 h -1 ) at 800 ° C.
  • the powder thus obtained has a specific surface area of 45 m 2 / g, the sum of the mesoporous and microporous volumes is 0.13 cm 3 / g and the powder is crystallized in a cubic form determined by X-ray diffraction.
  • the zirconia particles doped with 8 mol% of Y 2 ⁇ 3 are in the form of needles of length L between
  • a Pyrex 11 beaker 110 g of zirconium oxycholide are dissolved in 300 ml of deionized water at a temperature of 50 ° C. and then 5 g of cetyltrimethylammonium bromide or CTAB and then 50 ml of hydrochloric acid are added. 36% HCl, then 28 g of sodium sulphate and is added to 500 ml with deionized water, the temperature is adjusted to 50 0 C and maintained for 15 minutes after complete dissolution of the reagents.
  • the acidity of the mother liquor is 2.4, the concentration of Zr 4+ ions and / or Hf 4+ is 0.6 mol / l, the molar ratio between the anionic groups SO 4 2 " and the Zr ions 4+ and / or Hf 4+ is 0.6, and the concentration of CTAB additive is 0.025 mol / 1.
  • the presence of foam on the surface of the mother liquor is observed.
  • the mother liquor is then brought, still stirring. at 60 ° C. with a heating ramp of 1 ° C./min
  • the mother liquor is maintained at 60 ° C. for 1 h and then allowed to cool freely to below 50 ° C.
  • This procedure generates a suspension consisting of a solid phase and a liquid supernatant, and the foam The suspension is then filtered and then washed with 11 of permutated water on a Buchner type filter The cake obtained consists of a basic zirconium sulfate, ZBS .
  • the main physico-chemical properties of the ZBS powder thus obtained are given in the following tables.
  • This powder has a specific surface area of 3 m 2 / g and is amorphous by X-ray diffraction.
  • the ZBS particles are in the form of stars whose largest dimension is between 5 and 40 ⁇ m.
  • Teflon® PTFE 11 beaker the cake is then suspended in 250 ml of deionized water.
  • 25 g of NaOH sodium hydroxide are dissolved in 250 ml of deionized water.
  • the basic solution of sodium hydroxide is then gradually added to the suspension of ZBS; the pH of the final suspension is between 12 and 13.
  • the suspension is then heated to 90 ° C. with a heating ramp of 1 ° C./min.
  • the suspension is maintained at 90 ° C. for 2 h and then allowed to cool freely to below 50 ° C. This procedure generates a suspension consisting of a solid phase and a liquid supernatant.
  • the suspension is then filtered and then washed twice with 11 of deionized water on a Buchner type filter.
  • the suspension is then filtered, then washed with 11 of deionized water on a Buchner type filter.
  • the cake thus obtained is then resuspended in 11 of deionized water and the pH is adjusted to 5 by addition of 0.1 N hydrochloric acid.
  • the suspension is then filtered and then washed with 11% of deionized water on a Buchner type filter.
  • the cake obtained is resuspended in 11 of deionized water and the pH is adjusted to 11 by adding ammonia (NH 4 OH) to 1 N.
  • the suspension is then filtered, then washed twice with 11 of deionized water on a Buchner type filter.
  • the cake obtained consists of a zirconium oxyhydroxide, or ZHO.
  • the powder thus obtained has a specific surface area of 340 m 2 / g, the sum of the mesoporous and microporous volumes of 0.20 cm 3 / g and the powder is amorphous by X-ray diffraction.
  • the ZHO particles are in the form of stars whose largest dimension is between 5 and 40 microns, similar to those of the ZBS derivative of departure.
  • the cake obtained is then dried in an oven for at least 12 hours at 110 0 C, then spotted with agate mortar.
  • the powder obtained is calcined in air for 2 hours (temperature ramp of 5 ° C./min, without air flow) at 1250 ° C.
  • the powder thus obtained has a specific surface area of 2 m 2 / g, the sum of the mesoporous and microporous volumes equal to 0.01 cm 3 / g and the powder is crystallized under the monoclinic phase determined by X-ray diffraction.
  • zirconia are in the form of stars whose largest dimension is between 5 and 30 microns, similar to those of the derivative ZBS (shown in Figure 3h) and hydrate ZHO initial.
  • the needles forming the zirconia stars have a tapered, rectilinear and pointed shape. These needles are substantially of revolution about their longitudinal axis. The surface of their cross section, substantially discoidal, decreases gradually as the tip (s). In addition, the lateral outer surface of the needles is particularly smooth.
  • P is the sum of the mesoporous volume and the microporous volume.
  • Dpores is the average equivalent diameter of pores less than 50 nm in size.
  • Quadratic phase refers to the quadratic phase
  • the invention makes it possible to manufacture new anisotropic particles or particles consisting of anisotropic base particles which, advantageously, make it possible to create a body or a powder having a high porosity.
  • bodies and powders are particularly useful in applications to catalysis or filtration.
  • anisotropic particles or particles consisting of anisotropic base particles may themselves be of a porous material, and in particular may have microporosity and / or mesoporosity. These microporosity and / or mesoporosity are examples of anisotropic base particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)
  • Dental Preparations (AREA)

Abstract

Poudre présentant une taille maximale de particules D99,5 inférieure à 200 μm et présentant - un indice de porosité Ip supérieur à 2, l'indice de porosité étant égal au rapport Asr/Asg où o Asg est l'aire spécifique géométrique théorique des particules de la poudre; o Asr est la mesure de l'aire spécifique réelle par BET, et/ou - lorsque toutes les dimensions des particules de base de la poudre sont supérieures à 50nm, une aire spécifique supérieure à 10m2/g et une somme de volumes mésoporeux et microporeux supérieure à 0,05 cm3g, ladite poudre comportant plus de 20% en nombre de particules de base, agrégées ou non, dont toutes les dimensions sont supérieures à 200 nra, présentant un indice de sphéricité inférieur à 0,6, et constituées en un oxyde de zirconium et/ou d'hafnium de formule MOx, M étant Zr4+, Hf4+, ou un mélange de Zr4+ et Hf4+, et x étant un nombre positif non nul.

Description

Poudre d'oxyde de zirconium
Domaine technique
L'invention concerne un procédé de fabrication d'une poudre destinée notamment à catalyser une réaction chimique ou à la filtration. L'invention concerne aussi une poudre fabriquée ou pouvant être fabriquée par un tel procédé. Plus généralement, l'invention concerne une poudre de dérivés de zirconium et/ou d'hafnium, une poudre d'hydrates de zirconium et/ou d'hafnium et une poudre d'oxydes de zirconium et/ou d'hafnium. L'invention concerne enfin l'utilisation d'une poudre selon l'invention dans certaines applications, notamment la catalyse et la filtration.
Etat de la technique
La catalyse concerne de nombreuses réactions, dans des domaines techniques variés, en particulier les applications environnementales, la pétrochimie, ou la chimie fine. Elle consiste à modifier la vitesse d'une réaction chimique en mettant en contact les réactifs de cette réaction avec un catalyseur, par exemple du platine, qui n'apparaît pas dans le bilan réactionnel. Généralement le catalyseur est préalablement déposé sur un support, par exemple sous la forme d'une poudre ou d'un corps constitué à partir d'une telle poudre. La poudre peut également parfois servir elle-même de catalyseur. La filtration de fluides concerne également de nombreuses applications, et notamment la filtration de liquides ou de gaz à haute température. A cet effet, les fluides traversent une poudre ou un corps constitué à partir d'une poudre de manière que les matières à filtrer soient retenues par les interstices entre les particules, liés à leur morphologie, ou dans les pores de ces particules. Dans une application en catalyse, les particules doivent présenter une surface spécifique maximale afin d'augmenter la surface de contact entre le catalyseur et les réactifs, que les particules soient utilisées comme support de catalyseur ou comme catalyseur elles- mêmes. Dans une application à la filtration, une perte de charge minimale est recherchée lors du passage du fluide à filtrer.
Dans ces applications, les particules peuvent également être soumises à des températures élevées ou à des contraintes thermomécaniques sévères. Des particules et des procédés pour leur fabrication sont notamment divulgués dans les documents suivants :
FR 2 662 434 concerne la fabrication de trichites de zircone monoclinique par synthèse hydrothermale. Ces trichites sont de dimensions micrométriques (environ 5 μm pour les exemples cités) et sont denses du fait d'une température de traitement hydrothermal comprise entre 3000C et 7000C.
EP 0 207 469 concerne la fabrication de cristaux de zircone, de zircone dopée au sulfate ou d'hydrate de zirconium, éventuellement dopé au sulfate, ces cristaux se présentant sous un forme lamellaire d'une épaisseur inférieure à 50 nm. Le procédé de fabrication de ces cristaux comporte un chauffage entre 110°C et 3500C d'une solution aqueuse acide (pH<2) d'un sel de zirconium soluble et de sulfates, conduisant à l'obtention d'un oxysulfate de zirconium hydraté (de formule suivi d'une calcination à une température supérieure à 6000C ou d'un traitement de désulfatation à une température comprise entre 70 et 1100C. EP 0 233 343 concerne la fabrication de particules ultrafines de zircone monoclinique se présentant sous la forme de fibres élémentaires de diamètre inférieur à 5 nm et agglomérées sous la forme de « tas » présentant une largeur comprise entre 30 et 200 nm et une longueur comprise entre 200 nm et 1 μm. L'article « Zirconia needles synthesized inside hexagonal swollen liquid crystals" - Chemistry Of Materials, 2004, vol. 16, pp 4187- 4192, décrit l'obtention d'aiguilles de taille millimétrique, voire centimétrique, présentant des pores de 20 nm, et constituées de plus petites aiguilles.
L'article « Products of thermal hydrolysis in Zr(SO4)^Zr(OH)4-H2O System" -Journal of the ceramic society of Japan, vol. 102, n°9, p 843-846, traite de la fabrication de zircone. Le procédé de fabrication qu'il décrit comporte une étape de précipitation d'une solution aqueuse acide (présentant une concentration en ions H+ de 0,4 mol. L"1) d'un sel de zirconium et de sulfates en présence de particules de Zr(OH)4. Les présents inventeurs considèrent que ces particules de Zr(OH)4 sont isotropes. Le produit de la réaction subit alors un traitement hydrothermal à 160-2400C qui conduit à l'obtention d'une poudre de particules de zircone que les inventeurs considèrent comme denses.
EP 0 194 191 concerne la fabrication d'une poudre fine de zircone stabilisée. Le procédé de fabrication met en œuvre un sol d'hydrate de zircone constitué de cristallites élémentaires de ZrO2 aciculaires de tailles comprises entre 1 et 50nm. Un traitement de calcination à une température comprise entre 7000C et 130O0C suivi d'un frittage à 130O0C conduit à des particules de zircone stabilisée qui, d'après les présents inventeurs, sont isotropes. L'article « Highly Ordered Porous Zirconias from Surfactant Controlled Synthèses: Zirconium Oxide-Sulfate and Zirconium Oxo Phosphate"- Chemistry Of Materials, 1999, vol. H, pp 227-234, décrit la fabrication d'une poudre de zircone et de sulfates. Le procédé de fabrication de cette poudre comporte une étape de précipitation par chauffage d'une solution aqueuse acide à 1000C pendant 48 heures. De telles conditions de chauffage conduisent, selon les inventeurs, à une morphologie isotrope des particules du précipité. Le précipité obtenu subit ensuite une calcination à 500°C pendant 5h. Il existe un besoin permanent pour de nouvelles particules présentant des surfaces spécifiques élevées et/ou des formes nouvelles. Il existe également un besoin pour des particules susceptibles de résister à des contraintes thermiques élevées, par exemple aux contraintes rencontrées lors de la combustion de gaz à hautes températures.
Un objectif de la présente invention est de répondre, au moins partiellement, à un ou plusieurs de ces besoins.
Résumé de l'invention
Procédés
Suivant un premier mode de réalisation principal, l'invention propose un procédé de fabrication d'une poudre de particules, comportant les étapes successives suivantes : a) préparation d'une liqueur mère acide par mélange d'au moins, voire par mélange de seulement :
[1] un solvant polaire ;
[2] un premier réactif, de préférence soîuble en milieu acide dans ledit solvant, apportant des ions Zr4+ et/ou Hf4+ ; [3] un deuxième réactif apportant des groupements anioniques ; [4] un additif choisi dans le groupe formé par les tensio-actifs anioniques ; les tensio-actifs amphotères ; les tensio-actifs cationiques, les acides carboxyliques et leurs sels ; les tensio-actifs non ioniques choisis dans le groupe des composés de formule RCO2R' et R-CONHR' et leurs mélanges, R et R' étant des chaînes carbonées aliphatiques, aromatiques et/ou alkylaromatiques ; et leurs mélanges ; [5] optionnellement, un autre tensioactif non-ionique ;
[6] optionnellement un agent porogène ; b) chauffage de la liqueur mère de manière à précipiter les ions Zr4+ et/ou Hf4+ et les groupements anioniques sous la forme d'un dérivé primaire de zirconium et/ou d'hafnium, et optionnellement séchage ; c) optionnellement transformation du dérivé primaire en un dérivé secondaire de zirconium et/ou d'hafnium par substitution desdits groupements anioniques par d'autres groupements anioniques, dits « groupements anioniques de substitution », et optionnellement séchage ; d) optionnellement, hydrolyse basique dudit dérivé primaire ou secondaire ; e) optionnellement, calcination (étape eι)) ou traitement hydrothermal (étape e2)) du dérivé primaire obtenu en fin d'étape b), du dérivé secondaire obtenu en fin d'étape c), ou de l'hydrate obtenu en fin d'étape d), de manière à obtenir un oxyde de zirconium et/ou d'hafnium, et optionnellement séchage.
Comme on le verra plus en détail dans la suite de la description, les inventeurs ont découvert que l'ajout de l'additif conduit, de manière simple et efficace, à l'obtention de particules présentant une morphologie ou des propriétés avantageuses. Les étapes optionnelles permettent de transformer ces particules en d'autres particules également utiles.
Les étapes a) et b), voire c), permettent de fabriquer des particules anisotropes et poreuses ou denses en un matériau choisi parmi les dérivés de zirconium et/ou d'hafnium, dopés ou non, de préférence choisi parmi les dérivés sulfatés de zirconium et/ou d'hafnium dopés ou non, les dérivés phosphatés de zirconium et/ou d'hafhium dopés ou non, les dérivés carbonates de zirconium et/ou d'hafnium dopés ou non, de préférence choisi parmi le sulfate basique de zirconium et/ou d'hafnium dopé ou non, le phosphate basique de zirconium et/ou d'hafnium dopé ou non, le carbonate basique de zirconium et/ou d'hafnium dopé ou non, et des mélanges de telles particules. L'étape d) permet de fabriquer des particules anisotropes et poreuses en un matériau choisi parmi les hydrates de zirconium et/ou d'hafnium, dopés ou non. De telles particules anisotropes et poreuses ne sont pas connues des inventeurs. Dans un mode de réalisation, pour fabriquer une poudre d'oxydes de zirconium et/ou d'hafnium, le procédé comporte au plus les étapes a) à e), pour fabriquer une poudre d'hydrates de zirconium et/ou d'hafnium, le procédé comporte au plus les étapes a) à d), pour fabriquer une poudre de dérivé de zirconium et/ou d'hafnium, le procédé comporte au plus les étapes a) à c).
Dans un mode de réalisation, le procédé ne comporte pas d'étape de gélification. Dans des modes de réalisation particuliers de l'invention, le procédé peut encore présenter une ou plusieurs des caractéristiques suivantes. Le solvant polaire est de l'eau.
Le premier réactif est choisi parmi les sels de zirconium et/ou d'hafnium solubles dans le solvant, les alkoxydes de zirconium et/ou d'hafnium, les dérivés de zirconium et/ou d'hafnium solubles en milieu acide dans le solvant, de préférence choisi parmi les oxychlorures de zirconium et/ou d'hafnium, les oxynitures de zirconium et/ou d'hafhium, de préférence choisi parmi les oxychlorures de zirconium et/ou d'hafnium, et leurs mélanges.
- La concentration en ions Zr4+ et/ou Hf4+ apportés par le premier réactif dans la liqueur mère est comprise entre 0,01 et 3 mol/litre. Cette concentration peut être supérieure à 0,1 mol/litre et/ou être inférieure à 1,2 mol/litre.
- Le deuxième réactif choisi de manière à apporter SO4 2" et/ou PO4 3".
- La concentration de l'additif dans la liqueur mère est comprise entre 10"5 mol/litre et 1 mol/litre. La concentration de l'additif peut être supérieure à 10 " mol/litre et/ou être inférieure à 10"' mol/litre.
- La liqueur mère est telle que :
- l'acidité est comprise entre 0,6 et 2 mol/1; et
- la concentration en Zr4+ et/ou Hf4+ dans la liqueur mère est comprise entre 0,1 et 1,2 mol/1; et - le rapport molaire groupements anioniques / (Zr4+ et/ou Hf4+) est compris entre 0,3 et 1, en particulier entre 0,6 et 1 ; et - la concentration en additif dans la liqueur mère est comprise entre 10"3 et 1(T1 mol/1 ; et à l'étape b),
- la rampe de chauffage est comprise entre 10"2 et 1 °C/minute ; et
- la température de chauffage, c'est-à-dire la température au palier, est comprise entre 55°C et 80°C, en particulier entre 55°C et 700C ; et
- la durée de maintien au palier est comprise entre 15 minutes et 2 heures. De préférence, la liqueur mère est adaptée de manière à conduire à une poudre comportant plus de 20%, plus de 50%, plus de 80 %, plus de 90 %, voire plus de 95 % en nombre de particules en des dérivés de zirconium et/ou d'hafnium, éventuellement dopés, à l'issue de l'étape b) ou de l'étape c), en des hydrates de zirconium et/ou d'hafnium, éventuellement dopés, à l'issue de l'étape d), ou, en des oxydes de zirconium et/ou d'hafnium, éventuellement dopés, à l'issue de l'étape e).
La liqueur mère est telle que: l'acidité est comprise entre 1,6 et 3 mol/1; et
- la concentration en Zr4+et/ou Hf4+ dans la liqueur mère est comprise entre 0,1 et 1,2 mol/1; et - le rapport molaire groupements anioniques / (Zr4+ et/ou Hf4+) est compris entre 0,5 et 1, en particulier entre 0,5 et 0,8 ; et
- la concentration en additif dans la liqueur mère est comprise entre 10"5 et 10"2 mol/1; et à l'étape b),
- la rampe de chauffage est comprise entre 10" et l°C/minute; et - la température de chauffage est comprise entre 60 et 80°C; et
- la durée de maintien au palier est comprise entre 1 heure et 10 heures. La liqueur mère est telle que: l'acidité est comprise entre 1,2 et 3 mol/1 ; et la concentration en Zr4+ et/ou Hf4+ dans la liqueur mère est comprise entre 0,1 et 1 ,2 mol/1 ; et le rapport molaire groupements anioniques / (Zr4+ et/ou Hf4+) est compris entre 0,8 et 2,0 ; et - la concentration en additif dans la liqueur mère est comprise entre 10"3 et ÎO'1 mol/1 ; et, à l'étape b), la rampe de chauffage est comprise entre 10" et l°C/minute; et la température de chauffage est comprise entre 6O0C et 8O0C; et - la durée de maintien au palier est comprise entre 30 minutes et 2 heures.
- La liqueur mère est telle que:
- l'acidité est comprise entre 1,2 et 3 mol/1; et la concentration en Zr4+ et/ou Hf4+ dans la liqueur mère est comprise entre 0,1 et 1,2 mol/1; et - le rapport molaire groupements anioniques / (Zr4+ et/ou Hf4+) est compris entre 0,3 et 1 ; et
- la concentration en additif dans la liqueur mère est comprise entre 10"5 et 10"2 mol/1; et, à l'étape b),
- la rampe de chauffage est comprise entre 10"2 et l°C/minute ; et - la température de chauffage est comprise entre 550C et 8O0C; et
- la durée de maintien au palier est comprise entre 30 minutes et 2 heures.
- La liqueur mère est telle que:
- l'acidité est comprise entre 1,2 à 3 mol/1; et la concentration en Zr4+ et/ou Hf4+ dans la liqueur mère est comprise entre 0,1 et 1,2 mol/1; et la rapport molaire groupements anioniques / (Zr4+ et/ou Hf4+) est compris entre 0,3 et 1 ; et la concentration en additif dans la liqueur mère est comprise entre 10" etlO"1 mol/1; et à l'étape b), - la rampe de chauffage est comprise entre 10"2 et l°C/minute; et
- la température du palier et comprise entre 6O0C et 800C; et la durée de maintien au palier est comprise entre 1 heure et 5 heures,
- La liqueur mère est telle que: l'acidité est compris entre 0,6 à 3 mol/1; et - la concentration en Zr4+ et/ou Hf4+ dans la liqueur mère est comprise entre
0,1 et 1,2 mol/1; et la rapport molaire groupements anioniques / (Zr et/ou Hr+) est compris entre 0,5 et 2; et - la concentration en additif dans la liqueur mère est comprise entre 10"2 et
1 mol/1; et à l'étape b), - la rampe de chauffage est comprise entre 10"2 et 10°C/minute; et la température de chauffage est comprise entre 600C et 1000C; et la durée du maintien au palier est comprise entre 30 minutes et 5 heures. - Toutes les dimensions d'au moins 80%, d'au moins 90%, d'au moins 95%, voire de sensiblement 100% des particules obtenues à l'issue de l'étape b), c), d) ou e) sont supérieures à 50 nm.
Les liqueurs mères décrites ci-dessus permettent d'obtenir, à l'issue de l'étape b), un dérivé primaire de zirconium et/ou d'hafnium présentant une solubilité dans l'eau à une température inférieure à 20°C inférieure à 10~3mol/l.
Dans un mode de réalisation, on détermine les paramètres des étapes a) et b) pour obtenir, à l'issue de l'étape b), des particules de dérivé primaire anisotropes.
De préférence, pour fabriquer des particules d'oxydes de zirconium et/ou d'hafnium présentant des dimensions déterminées, en particulier pour fabriquer des particules de base dont toutes dimensions sont supérieures à 50 nm, supérieures à 200 nm, voire supérieures à 250 nm, on utilise, comme particules de départ, des particules de dérivés ou d'hydrates de zirconium et/ou d'hafnium présentant lesdites dimensions.
Selon un deuxième mode de réalisation principal, l'invention concerne un procédé de fabrication d'une poudre de particules d'hydrates de zirconium et/ou d'hafnium dopés ou non et de leurs mélanges, comportant une étape d'hydrolyse basique d'une poudre de particules de départ en un dérivé de zirconium et/ou d'hafnium dopé ou non, de préférence choisi parmi les dérivés sulfatés de zirconium et/ou d'hafnium dopés ou non, les dérivés phosphatés de zirconium et/ou d'hafnium dopés ou non, les dérivés carbonates de zirconium et/ou d'hafnium dopés ou non, de préférence choisis parmi le sulfate basique de zirconium et/ou d'hafnium dopé ou non, le phosphate basique de zirconium et/ou d'hafnium dopé ou non, le carbonate basique de zirconium et/ou d'hafnium dopé ou non, et leurs mélanges, ou d'une poudre de départ en un mélange de telles particules, lesdites particules de départ étant constituées de particules de base anisotropes, agrégées ou non.
Selon l'invention, ce procédé comporte donc une étape consistant à hydrolyser, en milieu basique, des particules de départ de dérivé de zirconium et/ou d'hafnium, pour les transformer en particules d'hydrate de zirconium et/ou d'hafnium.
L'étape d'hydrolyse peut en particulier être une étape d) et, en particulier, comporter une ou plusieurs des caractéristiques optionnelles relatives à l'étape d). La poudre de particules de départ peut en particulier être une poudre fabriquée suivant un procédé de fabrication conforme au premier mode de réalisation principal décrit ci-dessus, et en particulier être une poudre obtenue à l'issue de l'étape b) ou de l'étape c).
Selon un troisième mode de réalisation principal, l'invention concerne un procédé de fabrication d'une poudre de particules d'oxydes de zirconium et/ou d'hafnium, dopés ou non, de préférence ZrO2, ZrO2 dopé, HfO2, HfO2 dopé, comportant une étape de calcination d'une poudre de particules de départ en un matériau choisi parmi les dérivés de zirconium et/ou d'hafnium dopés ou non, les hydrates de zirconium et/ou d'hafnium dopés ou non, et leurs mélanges, de préférence choisi parmi les dérivés sulfatés de zirconium et/ou d'hafnium dopés ou non, les dérivés phosphatés de zirconium et/ou d'hafnium dopés ou non, les dérivés carbonates de zirconium et/ou d'hafnium dopés ou non, les hydrates de zirconium et/ou d'hafnium dopés ou non, et leurs mélanges, de préférence choisis parmi le sulfate basique de zirconium et/ou d'hafnium dopé ou non, le phosphate basique de zirconium et/ou d'hafnium dopé ou non, le carbonate basique de zirconium et/ou d'hafnium dopé ou non, les hydrates de zirconium et/ou d'hafnium dopés ou non, et leurs mélanges, ou d'une poudre comportant un mélange de telles particules de départ, lesdites particules de départ comportant, voire étant constituées de particules de base anisotropes, agrégées ou non, et, lorsqu'elles sont en un hydrate, les particules de départ étant en outre poreuses.
L'étape de calcination peut être une étape et) du premier mode de réalisation principal et comporter une ou plusieurs des caractéristiques optionnelles de cette étape. Les particules de départ anisotropes peuvent en particulier être des particules fabriquées suivant un procédé conforme au premier mode de réalisation principal, et en particulier être issues des étapes b), c) ou d). Selon un quatrième mode de réalisation principal, l'invention concerne également un procédé de fabrication d'une poudre de particules d'oxydes de zirconium et/ou d'hafnium dopés ou non et leurs mélanges, comportant une étape de traitement hydrothermal d'une poudre de particules de départ en un matériau choisi parmi les dérivés de zirconium et/ou d'hafnium dopés ou non, les hydrates de zirconium et/ou d'hafnium dopés ou non et leurs mélanges, de préférence choisi parmi les dérivés sulfatés de zirconium et/ou d'hafnium dopés ou non, les dérivés phosphatés de zirconium et/ou d'hafnium dopés ou non, les dérivés carbonates de zirconium et/ou d'hafnium dopés ou non, les hydrates de zirconium et/ou d'hafnium dopés ou non et leurs mélanges, de préférence choisi parmi le sulfate basique de zirconium et/ou d'hafnium dopé ou non, le phosphate basique de zirconium et/ou d'hafnium dopé ou non, le carbonate basique de zirconium et/ou d'hafnium dopé ou non, d'hydrates de zirconium et/ou d'hafnium dopés ou non et leurs mélanges, ou d'un mélange de ces particules, lesdites particules de départ étant constituées de particules de base anisotropes, agrégées ou non, et, lorsqu'elles sont en un hydrate, les particules de départ étant en outre poreuses.
L'étape de traitement hydrothermal peut, en particulier, être une étape e2) comme celle d'un procédé suivant le premier mode de réalisation principal et comportant une ou plusieurs caractéristique(s) optionnel le(s) de l'étape e2) du premier mode de réalisation principal. Les particules de départ peuvent être fabriquées suivant un procédé conforme au premier mode de réalisation principal, et en particulier être issues des étapes b), c) ou d).
Dans des modes de réalisation particuliers, la poudre de particules de départ ne comporte que des particules en un matériau choisi parmi
(pour les deuxième, troisième et quatrième modes de réalisation principaux) les dérivés de zirconium et/ou d'hafnium dopés ou non, de préférence choisi parmi les dérivés sulfatés de zirconium et/ou d'hafnium dopés ou non, les dérivés phosphatés de zirconium et/ou d'hafnium dopés ou non, les dérivés carbonates de zirconium et/ou d'hafnium dopés ou non, de préférence choisis parmi le sulfate basique de zirconium et/ou d'hafnium dopé ou non, le phosphate basique de zirconium et/ou d'hafnium dopé ou non, le carbonate basique de zirconium et/ou d'hafnium dopé ou non, ,
(pour les troisième et quatrième modes de réalisation principaux) les hydrates de zirconium et/ou d'hafnium dopés ou non, ou un mélange de telles particules, lesdites particules de départ étant constituées de particules de base anisotropes, agrégées ou non, et, lorsqu'elles sont en un hydrate, les particules de départ étant en outre poreuses.
En particulier, selon ce mode de réalisation, ladite poudre de particules de départ ne comporte pas de sel de zirconium et/ou d'hafnium, comme les particules utilisées dans le procédé décrit dans « Products of thermal hydrolysis in Zr(SCUh-Zr(OH)4-H2O System" - Journal of the ceramic society of Japan, vol. 102, n°9, p 843-846.
Produits Les procédés décrits ci -dessus ont permis de découvrir plusieurs particules nouvelles. Les étapes a), b) et c) ont conduit à la découverte de particules de base anisotropes en un matériau choisi parmi les dérivés de zirconium et/ou d'hafnium dopés ou non, de préférence choisi parmi les dérivés sulfatés de zirconium et/ou d'hafnium dopés ou non, les dérivés phosphatés de zirconium et/ou d'hafnium dopés ou non, les dérivés carbonates de zirconium et/ou d'hafnium dopés ou non et leurs mélanges, de préférence choisi parmi le sulfate basique de zirconium et/ou d'hafnium dopé ou non, le phosphate basique de zirconium et/ou d'hafnium dopé ou non, le carbonate basique de zirconium et/ou d'hafnium dopé ou non et leurs mélanges.
L'invention concerne donc encore une poudre comportant plus de 20%, plus de 50%, plus de 80 %, plus de 90 %, voire plus de 95 % en nombre de particules de base anisotropes, agrégées ou non, en un matériau choisi parmi les dérivés de zirconium et/ou d'hafnium dopés ou non, de préférence choisi parmi les dérivés sulfatés de zirconium et/ou d'hafnium dopés ou non, les dérivés phosphatés de zirconium et/ou d'hafnium dopés ou non, les dérivés carbonates de zirconium et/ou d'hafnium dopés ou non et leurs mélanges, de préférence choisi parmi le sulfate basique de zirconium et/ou d'hafnium dopé ou non, le phosphate basique de zirconium et/ou d'hafnium dopé ou non, le carbonate basique de zirconium et/ou d'hafnium dopé ou non et leurs mélanges, ou d'un mélange de ces particules. Dans un mode de réalisation préféré, ces particules sont denses.
Dans un autre mode de réalisation, notamment en cas d'ajout d'un agent porogène à l'étape a), ces particules sont poreuses.
Ces particules de base sont insolubles dans l'eau et, de préférence, hydrolysables. De préférence, le matériau de ces particules de base est amorphe lorsqu'il n'est pas dopé. Lorsque ce matériau est dopé, il peut cependant présenter des cristaux formés à partir du dopant. Autrement dit, sur un diagramme en diffraction X, les pics correspondant à la détection de cristaux correspondent sensiblement tous à des cristaux contenant un dopant.
Les étapes a), b), optionnellement c), et d), ont conduit à la découverte de particules de base anisotropes et poreuses, agrégées ou non, en un matériau choisi parmi les hydrates de zirconium et/ou d'hafnium, dopés ou non, et leurs mélanges.
L'invention concerne donc encore une poudre comportant, pour plus de 20%, plus de 50%, plus de 80 %, plus de 90 %, voire plus de 95 % en nombre, des particules de base anisotropes et poreuses, agrégées ou non, en un hydrate de zirconium et/ou d'hafnium, dopé ou non, ou en un mélange de tels hydrates. Les particules de base peuvent présenter des compositions chimiques identiques ou différentes.
De préférence, le matériau de ces particules est amorphe lorsqu'il n'est pas dopé. Lorsque ce matériau est dopé, il peut cependant présenter des cristaux formés à partir du dopant.
Les étapes a), b), optionnellement c), d) et el) (calcination) et les étapes a), b), optionnellement c), d) et e2) (traitement hydrothermal) ont conduit à la découverte de particules de base, anisotropes et poreuses, agrégées ou non, en un matériau choisi parmi les oxydes de zirconium et/ou d'hafnium dopés ou non et leurs mélanges, de préférence ZrO2, ZrO2 dopé, HfO2, HfO2 dopé.
L'invention concerne donc encore une poudre comportant plus de 20%, plus de 50%, plus de 80 %, plus de 90 %, voire plus de 95 % en nombre de particules de base, anisotropes et poreuses, agrégées ou non, en un matériau choisi parmi les oxydes de zirconium et/ou d'hafnium dopés ou non et leurs mélanges, ou d'un mélange de ces particules. De préférence, le matériau de ces particules est cristallisé.
L'invention concerne également une poudre comportant plus de 20%, plus de 50%, plus de 80 %, plus de 90 %, voire plus de 95 % en nombre de particules de base, anisotropes et denses, agrégées ou non, en un matériau choisi parmi, les oxydes de zirconium et/ou d'hafnium, les oxydes de zirconium et/ou d'hafnium dopés et leurs mélanges, le dopant étant:
- un oxyde d'un élément choisi parmi l'yttrium Y, le lanthane La, le cérium Ce, le scandium Sc, le calcium Ca, le magnésium Mg et leurs mélanges, ledit dopant étant de préférence en solution solide avec l'oxyde de zirconium et/ou l'oxyde d'hafnium, de préférence en une quantité molaire inférieure ou égale à 20%. Le produit selon l'invention peut être en particulier une zircone dopée à l'oxyde d'yttrium ou une zircone dopée à l'oxyde de cérium; - un oxyde d'aluminium Al, de préférence dispersé dans de l'oxyde de zirconium et/ou d'hafnium, de préférence en une quantité molaire inférieure ou égale à 20%, de préférence encore inférieure ou égale à 3% ;
- et leurs mélanges.
De préférence, les particules de base de ladite poudre se présentent sous forme de plaquettes et/ou d'aiguilles et/ou sont agrégées sous forme d'étoiles et/ou de lamelles et/ou d'oursins et/ou de sphères creuses. De préférence encore, les particules de base se présentent sous la forme de plaquettes et/ou sont agrégées sous forme de lamelles et/ou d'étoiles, d'oursins et/ou de sphères creuses. De préférence, le matériau de ces particules est cristallisé.
Selon un mode de réalisation particulier, l'invention concerne une poudre de particules présentant une taille maximale inférieure à 200 μm, et comportant plus de 20%, plus de 50%, plus de 80 %, plus de 90 %, voire plus de 95 % en nombre de particules de base anisotropes, agrégées ou non, et choisies dans le groupe formé par : - les particules de base denses ou poreuses en un dérivé de zirconium et/ou d'hafnium, dopé ou non dopé, insoluble dans l'eau et hydrolysable, amorphe ou ne contenant pour seuls cristaux que des cristaux incluant un dopant, ledit dérivé du zirconium pouvant notamment être choisi parmi le sulfate basique de zirconium et/ou d'hafnium, le phosphate basique de zirconium et/ou d'hafnium, le carbonate basique de zirconium et/ou d'hafnium, et leurs mélanges ; les particules de base poreuses d'hydrates de zirconium et/ou d'hafnium, dopés ou non dopés, amorphes ou ne contenant pour seuls cristaux que des cristaux incluant un dopant ; les particules de base poreuses de zircone ZrO2 et/ou d'oxyde d'hafnium HfO2, dopé ou non dopé, et les mélanges de ces particules de base. De préférence, en particulier pour les particules de base poreuses en un dérivé de zirconium et/ou d'hafnium, dopé ou non dopé, insoluble dans l'eau et hydrolysable, amorphe ou ne contenant pour seuls cristaux que des cristaux incluant un dopant et pour les particules de base poreuses d'hydrates de zirconium et/ou d'hafnium, dopés ou non dopés, amorphes ou ne contenant, pour seuls cristaux, que des cristaux incluant un dopant et
- pour les particules de base poreuses de zircone Zrθ2 et/ou d'oxyde d'hafnium HfO2, dopé ou non dopé, ladite poudre présente un indice de porosité Ip supérieur à 2, de préférence supérieur à 5, de préférence supérieur à 10, voire supérieur à 20, voire encore supérieur à 50. Pour lesdites particules de base poreuses d'hydrates de zirconium et/ou d'hafnium, ladite poudre présente de préférence un indice de porosité Ip supérieur à 80, voire supérieur à 100.
L'obtention d'une porosité élevée, et en particulier d'un indice de porosité Ip supérieur à 2, nécessite, pour lesdites particules de base poreuses en un dérivé de zirconium et/ou d'hafnium et avec un procédé selon l'invention, l'ajout, dans la liqueur mère, d'un agent porogène. Lorsque les particules de base poreuses sont en un dérivé de zirconium et/ou d'hafnium, dopé ou non, ladite poudre peut présenter une aire spécifique supérieure à 10 mVg, voire supérieure à 20 m2/g, supérieure à 40 m2/g, supérieure à 50 m2/g, supérieure à 70 m*/g, supérieure à 100 mVg et la somme des volumes mésoporeux et microporeux de la poudre est supérieure à 0,05 cm3 /g, voire supérieure à 0,08 cm3 /g, voire supérieure à 0,10 cm3/g. Lorsque les particules de base poreuses sont en un hydrate de zirconium et/ou d'hafnium, dopé ou non, ladite poudre peut présenter une aire spécifique supérieure à 100 m2/g, supérieure à 200 m2/g, supérieure à 250 m2/g, supérieure à 300 m2/g et/ou inférieure à 380 m7g et la somme des volumes mésoporeux et microporeux de la poudre peut être supérieure à 0,10 cm3/g, supérieure à 0,15 cm3 /g, supérieure à 0,20 cm3/g et/ou inférieure à 0,30 cm3/g.
Lorsque les particules de base poreuses sont en zircone ZrC^ et/ou en oxyde d'hafnium HfO2, ladite poudre peut présenter une aire spécifique supérieure à 20 mVg, supérieure à 50 m2/g, supérieure à 70 m2/g, supérieure à 100 m2/g et/ou inférieure à 200 m2/g et la somme des volumes mésoporeux et microporeux de la poudre peut être supérieure à 0,08 cm3/g, supérieure à 0,10 cm3 /g, supérieure à 0,20 cm3/g et/ou inférieure à 0,30 cm3 /g. Pour une poudre de particules dont toutes les dimensions sont supérieures à 50 nm, (c'est- à-dire lorsque plus de 95% en nombre des particules de base présentent des dimensions toutes supérieures à 50 nm), les inventeurs considèrent que la caractéristique « présentant une aire spécifique supérieure à 10m2/g et une somme des volumes mésoporeux et microporeux supérieure à 0,05 cm3/g » est sensiblement équivalente à la caractéristique « présentant un indice de porosité Ip supérieur ou égal à 2 ».
L'invention concerne ainsi une poudre de particules telle que celles décrites ci-dessus dans laquelle la caractéristique « Ip supérieur ou égal à 2 » ou le caractère « poreux » serait remplacée, lorsque toutes les dimensions des particules de base sont supérieures à 50 nm, par la caractéristique « présentant une aire spécifique supérieure à 10 mVg et une somme des volumes mésoporeux et microporeux supérieure à 0,05 cm /g ».
Réciproquement, l'invention concerne une poudre de particules telle que celles décrites ci-dessus dans laquelle la caractéristique « Ip inférieur à 2 » ou le caractère « dense » serait remplacée, lorsque toutes les dimensions des particules de base sont supérieures à 50 nm, par la caractéristique « présentant une aire spécifique inférieure à 10 m2/g et une somme des volumes mésoporeux et microporeux inférieure à 0,05 cm3/g ».
Lorsque les particules de base denses d'une poudre selon l'invention sont en un dérivé de zirconium et/ou d'hafnium dopé ou non, et notamment un sulfate basique de zirconium et/ou d'hafnium dopé ou non, un phosphate basique de zirconium et/ou d'hafnium dopé ou non, un carbonate basique de zirconium et/ou d'hafnium dopé ou non, ou un mélange de ces dérivés, ladite poudre peut présenter une aire spécifique inférieure à 7 m2/g et la somme des volumes mésoporeux et microporeux de la poudre peut être inférieure à 0,05 cm3/g. Lorsque les particules de base denses d'une poudre selon l'invention sont en zircone ZrO2 et/ou en oxyde d'hafnium HfO2, ladite poudre peut présenter une aire spécifique inférieure à 7 m2/g, voire inférieure à 5 m2/g et la somme des volumes mésoporeux et microporeux de la poudre peut être inférieure à 0,02 cm3 /g,
De manière générale, l'invention concerne une poudre obtenue ou pouvant être obtenue suivant un procédé selon l'invention, en particulier par un procédé comportant une étape el) de calcination à une température inférieure à 1200°C.
Une poudre selon l'invention peut encore comporter une ou plusieurs des caractéristiques optionnelles suivantes :
La taille maximale (Dç^s) des particules de la poudre (de base ou agrégées) est inférieure à 150 μm, inférieure à 100 μm, inférieure à 80 μm, ou inférieure à 50 μm. Les particules sont insolubles dans l'eau. - Plus de 20%, plus de 50%, plus de 80 %, plus de 90 %, voire plus de 95 %, voire sensiblement 100 % en nombre des particules de base, indépendantes ou constituant une particule agrégée, présentent une forme choisie parmi une plaquette, notamment une plaquette d'une épaisseur supérieure à 50 nm et/ou une aiguille, notamment une aiguille d'une longueur supérieure à 200 nm. - Au moins 80%, de préférence au moins 90%, voire sensiblement 100% en nombre desdites particules sont des particules agrégées ordonnées, en particulier sous une forme en lamelle, notamment constituées de 2 à 50 plaquettes, en étoile, notamment comportant des branches fuselées et/ou rectilignes, voire ne comportant que de telles branches, notamment comportant de 3 à 15 branches, de préférence comportant plus de 3, 4 ou 5 branches, et en sphère, notamment en sphère creuse, présentant de préférence un indice de sphéricité supérieur à 0,7, et/ou sont des particules agrégées désordonnées, en particulier sous la forme d'oursins.
Les particules agrégées peuvent en particulier résulter d'un assemblage de particules de base en aiguille ou en plaquette. Ces particules de base peuvent elles-mêmes être assemblées sous forme de particules agrégées intermédiaires : Par exemple, les particules agrégées peuvent être constituées d'un assemblage d'étoiles ou d'un assemblage d'étoiles et d'aiguilles.
Les particules agrégées sont constituées de particules de base dont toutes les dimensions sont supérieures à 250 nm.
Toutes les dimensions des particules de base ou agrégées sont supérieures à 50 nm, supérieures à 100 nm, supérieures à 200 nm, supérieures à 250 nm, supérieures à 500 nm, voire supérieures à 600 nm. Une taille supérieure à 50 nm est notamment avantageuse pour créer des pores autorisant une bonne diffusion des gaz, et donc pour atteindre de bonnes performances catalytiques ou de filtration. Les particules peuvent être anisotropes, et notamment présenter une forme en plaquette ou présenter une forme en aiguille, en particulier d'une longueur supérieure à 200 nm. Au moins 95 % en nombre, voire sensiblement 100% en nombre des particules de base présentent une forme telle que toutes ses dimensions sont supérieures à 50 nm. Les particules de base présentent une forme différente de celle d'une plaquette, d'une aiguille ou d'une lamelle, en particulier lorsqu'elles présentent au moins une dimension inférieure à 50 nm.
Les particules sont dopées et le dopant des particules est choisi parmi les composés d'un élément choisi parmi l'yttrium Y, le scandium Sc, le cérium Ce, le silicium Si, le soufre S, l'aluminium Al, le calcium Ca, le magnésium Mg et leurs mélanges.
" Si les particules sont des particules de zircone et/ou d'oxyde d'hafnium, le composé dopant peut en particulier être un oxyde d'un élément choisi parmi Y, La, Ce, Sc, Ca, Mg et leurs mélanges, en solution solide avec l'oxyde de zirconium et/ou l'oxyde d'hafnium, de préférence en une quantité molaire inférieure ou égale à 20%. L'invention concerne en particulier une poudre de zircone dopée à l'oxyde d'yttrium ou une zircone dopée à l'oxyde de cérium ; un oxyde d'un élément choisi parmi Si, Al, S et leurs mélanges dispersé dans de l'oxyde de zirconium et/ou d'oxyde d'hafnium. Lorsque l'oxyde est un oxyde d'aluminium, de préférence sa quantité molaire est inférieure ou égale à 20%, de préférence encore inférieure ou égale à 3% ;
• Si les particules sont des particules d'hydrates de zirconium et/ou d'hafnium, le composé dopant peut en particulier être - un hydrate d'un élément choisi parmi Y, La, Ce, Sc, Ca, Mg et leurs mélanges, en mélange intime moléculaire avec l'hydrate de zirconium et/ou d'hafnium, de préférence en une quantité molaire inférieure ou égale à 20%. L'invention concerne en particulier une poudre d'un hydrate mixte de zirconium et d'yttrium, et/ou d'un hydrate mixte de zirconium et de cérium ; un hydrate d'aluminium, dispersé dans de l'hydrate de zirconium et/ou d'hafnium, de préférence en une quantité molaire inférieure ou égale à 20%, de préférence encore inférieure ou égale à 3% ; un oxyde d'un élément choisi parmi Si, S et leurs mélanges, dispersé dans de l'hydrate de zirconium et/ou d'hafnium.
• Si les particules sont des particules d'un dérivé de zirconium et/ou d'hafnium, le composé dopant peut en particulier être - un dérivé d'un élément choisi parmi Y, La, Ce, Sc, en mélange intime moléculaire avec le dérivé de zirconium et/ou d'hafnium, de préférence en une quantité molaire inférieure ou égale à 20%. L'invention concerne en particulier une poudre d'un dérivé mixte de zirconium et d'yttrium ou d'un dérivé mixte de zirconium et de cérium ; un sel d'un élément choisi parmi Ca, Mg et leurs mélanges, en mélange intime moléculaire avec le dérivé de zirconium et/ou d'hafnium, de préférence en une quantité molaire inférieure ou égale à 20% ; - un hydrate d'aluminium, en mélange intime moléculaire avec le dérivé de zirconium et/ou d'hafnium ou localisé en surface du dérivé de zirconium et/ou d'hafnium, de préférence en une quantité molaire inférieure ou égale à 20%, de préférence encore inférieure ou égale à 3% ; un oxyde d'un élément choisi parmi Si, S et leurs mélanges, en mélange intime moléculaire avec le dérivé de zirconium et/ou d'hafnium ou localisé en surface du dérivé de zirconium et/ou d'hafnium,
De préférence, la quantité molaire de dopant est déterminée de manière à représenter moins de 40%, voire moins de 20%, voire moins de 10%, voire moins de 5%, voire moins de 3% de la masse du matériau des particules. - La poudre de particules présente une aire spécifique de préférence supérieure à 10 m2/g, voire supérieure à 20 m2/g, voire supérieure à 50 m2/g, voire supérieure à 100 m2/g. La somme des volumes mésoporeux et microporeux de la poudre est de préférence supérieure à 0,05 cm3/g, voire supérieure à 0,1 cm3/g, voire supérieure à 0,15 cnrVg. - Quel que soit le mode de réalisation, de préférence, la teneur en impuretés d'une poudre selon l'invention est inférieure à 0,7%, de préférence inférieure à 0,5%, de préférence inférieure à 0,3%, de préférence encore inférieure à 0,1%, en pourcentages en masse de matière sèche.
L'invention concerne encore une poudre présentant une taille maximale de particules (D99:j) inférieure à 200 μm et présentant un indice de porosité Ip inférieur à 2, l'indice de porosité étant égal au rapport Asr/Asg
Asg est l'aire spécifique géométrique théorique calculée à partir de la forme et de la détermination des dimensions des particules de la poudre ; - Asr est la mesure de l'aire spécifique réelle par BET ; ladite poudre comportant plus de 20% en nombre de particules de base présentant un indice de sphéricité inférieur à 0,6, agrégées sous la forme d'étoiles comportant de 3 à 15 branches, notamment fuselées et/ou rectilignes, ou de lamelles constituées de 2 à 50 plaquettes, et - constituées en un oxyde de zirconium et/ou d'hafnium de formule MOx, M étant Zr4+, Hf4+, ou un mélange de Zr4+ et Hf4+, et x étant un nombre positif non nul. Dans la mesure où elles ne sont pas incompatibles avec ce mode de réalisation, les caractéristiques d'une poudre selon le mode de réalisation décrit précédemment sont applicables à cette poudre.
L'invention concerne aussi une poudre présentant une taille maximale de particules (D99>5) inférieure à 200 μm et présentant un indice de porosité Ip inférieur à 2, l'indice de porosité étant égal au rapport Asr/Asg
Asg est l'aire spécifique géométrique théorique calculée à partir de la forme et de la détermination des dimensions des particules de la poudre; Asr est la mesure de l'aire spécifique réelle par BET ; ladite poudre comportant plus de 20% en nombre de particules de base présentant un indice de sphéricité inférieur à 0,6, et constituées en un oxyde de zirconium et/ou d'hafnium de formule MOx, M étant Zr4+, Hf4+, ou un mélange de Zr4+ et Hl4+, et x étant un nombre positif non nul, ledit oxyde, dit « premier oxyde », étant dopé au moyen d'un dopant choisi parmi :
- un deuxième oxyde d'un élément choisi parmi Y, La, Ce, Sc, Ca, Mg et leurs mélanges, en solution solide avec ledit premier oxyde ;
- un deuxième oxyde d'un élément choisi parmi Si, Al1 S et leurs mélanges dispersé dans ledit premier oxyde ;
- et leurs mélanges.
Dans la mesure où elles ne sont pas incompatibles avec ce mode de réalisation, les caractéristiques d'une poudre selon les modes de réalisation décrits précédemment sont applicables à cette poudre. De préférence lesdites particules de base présentent une forme de plaquette et/ou sont agrégées sous la forme d'étoiles et/ou de lamelles et/ou d'oursins et/ou de sphères creuses.
L'invention concerne encore un corps structurel, notamment fabriqué par des techniques d'extrusion, de granulation (par exemple par atomisation), de moulage par injection, de pressage (pressage unidirectionnel, pressage à chaud, CIP, HIP...), de coulage (coulage en barbotine, coulage en bande,...), de revêtement (par centrifugation ou « spîn coating », par trempage ou « dip coating », ..), choisi parmi un corps présentant une densité supérieure à 98 % de la densité théorique du matériau le constituant, un corps présentant un indice de porosité Ip>2, une couche d'épaisseur inférieure à 1 mm présentant un indice de porosité Ip>2 ou de densité supérieure à 98 % de la densité théorique du matériau la composant, notamment un revêtement catalytique ou « washcoat » en anglais, par exemple, obtenue par dip coating ou par spin coating ou encore par coulage en bande, ledit corps ou ladite couche étant obtenu à partir d'une poudre conforme à l'invention.
L'invention concerne encore l'utilisation d'une poudre selon Pinvention ou d'un corps selon l'invention comme catalyseur, comme support d'un catalyseur, comme élément de filtration, notamment pour le traitement de gaz ou de liquides, comme élément d'une pile à combustible, notamment une anode ou un électrolyte, en particulier d'une pile à combustible du type SOFC, comme matériau piézo-électrique, comme connecteur optique, comme céramique dentaire ou, plus généralement, comme céramique structurale, c'est-à-dire dans toute application où de bonnes propriétés mécaniques et/ou une bonne résistance à l'usure sont recherchées.
L'invention concerne encore un catalyseur, un support d'un catalyseur, un élément de filtration, notamment pour le traitement de gaz ou de liquides, un élément d'une pile à combustible, notamment une anode ou un électrolyte, en particulier d'une pile à combustible du type SOFC, un matériau piézo-électrique, un connecteur optique, une céramique dentaire ou, plus généralement une céramique structurale, c'est-à-dire une pièce présentant de bonne propriétés mécaniques et/ou une bonne résistance à l'usure, remarquable en ce qu'elle comporte ou est obtenu(e) à partir d'une poudre selon l'invention.
Brève description des figures
D'autres caractéristiques et avantages de l'invention apparaîtront encore à la lecture de la description détaillée qui va suivre et à l'examen du dessin annexé dans lequel - la figure 1 représente un schéma décrivant les principales étapes d'un procédé selon l'invention ; les figures 2a à 2e représentent des schémas de particules en forme d'aiguille, de plaquette, de lamelle, d'étoile et de sphère creuse, respectivement ; les figures 3a à 3h représentent des photographies de poudres de particules.
Définitions
Les percentiles ou « centiles » 0,5 (D0,5), 50 (D50), et 99,5 (D9^s) sont les tailles de particules d'une poudre correspondant aux pourcentages en masse, de 0,5% de 50 % et 99,5 % respectivement, sur la courbe de distribution granulométrique cumulée des tailles des particules de la poudre, les tailles des particules étant classées par ordre croissant. Par exemple, 99,5 %, en masse des particules de la poudre ont une taille inférieure à 099,5 et 0,5 % des particules en masse ont une taille supérieure à 099,5. 0,5 % en masse des particules de la poudre ont une taille inférieure à Do1S. Les percentiles peuvent être déterminés à l'aide d'une distribution granulométrique réalisée à l'aide d'un sédigraphe. Le sédigraphe utilisé ici est un Sedigraph 5100 de la société Micromeritics®. D50 correspond à la « taille médiane » d'un ensemble de particules, c'est-à-dire à la taille divisant les particules de cet ensemble en première et deuxième populations égales en masse, ces première et deuxième populations ne comportant que des particules présentant une taille supérieure, ou inférieure respectivement, à la taille médiane. On appelle « taille maximale des particules d'une poudre », le percentile 99,5 (099,5) de ladite poudre.
Une « poudre » est un ensemble de particules. Ces particules peuvent être « de base », c'est-à-dire non associées à d'autres particules de base, « agglomérées » ou « agrégées ». A la différence d'un simple agglomérat de particules de base, une particule agrégée, encore appelée « agrégat », ne se dissocie pas facilement et résiste, par exemple, en cas d'application d'ultrasons. Classiquement, les liaisons entre particules de base dans une particule agrégée sont des liaisons chimiques alors que dans un agglomérat, elles résultent d'effets de charge ou de polarité.
Dans la présente description, on appelle "particules" les particules de base et les agrégats. Par « impuretés », on entend les constituants inévitables, introduits nécessairement avec les matières premières ou résultant de réactions avec ces constituants. Ici, par « impuretés », on entend donc tout élément différent du composé de zirconium et/ou d'hafnium (dérivé, hydrate ou oxyde), et du ou des dopants optionnels. La teneur en impuretés d'un « hydrate » ou d'un « dérivé » se mesure après une calcination à 10000C. Dans le cas d'un dérivé, le ou les éléments du ou des groupements anioniques dudit dérivé ne sont pas considérés comme impuretés. Par exemple, après calcination à 10000C d'un ZBS5 le souffre résiduel n'est pas considéré comme une impureté. On appelle « dopant » ou « composé dopant » d'un produit un constituant minoritaire, c'est-à-dire qui ne constitue pas le constituant présentant la teneur molaire la plus élevée dans le matériau considéré. Par exemple, une zircone dopée à l'alumine contient une quantité molaire d'alumine inférieure ou égale à celle de la zircone. En revanche, par exemple, l'oxyde de cérium du composé de formule Ce0,5Zro,5θ2, décrit dans l'article « Préparation of Mesoporous Ce0^Zr015O2 Mixed Oxide by Hydrothermal Templating Method », Journal of Rare Earths 25, 2007, 710-714, n'est pas un dopant. Par extension, on appelle aussi « dopant » l'espèce introduite au cours du procédé de fabrication du produit dopé. Ce dernier dopant peut être identique au dopant présent dans le produit dopé, ou être différent, c'est-à-dire constituer un précurseur du dopant présent dans le produit dopé. Le dopant présent dans le produit dopé peut alors également être qualifié de "successeur" du dopant introduit pendant la fabrication du produit dopé. Par exemple, l'ajout de YCl3 peut conduire à un sulfate basique de zirconium dopé au sulfate basique d'yttrium.
Le dopant d'une particule peut être localisé : - à l'intérieur de la particule sous la forme : o d'un composé défini (par exemple Zr0S04, ZrCeO4) ou d'une solution solide ou d'un mélange intime moléculaire (par exemple (ZrxYy)BS, (ZrxCCy)O2, avec x+y=l) et/ou o d'une dispersion (par exemple dispersion d'alumine dans une particule de zircone) et/ou o d'inclusions et/ou en surface de la particule.
On appelle généralement « dérivé » un composé de la forme M(OH)x(N')y(OH2)Z5 M étant un cation métallique ou un mélange de cations métalliques et N' un anion ou un mélange d'anions, les indices x et y étant des nombres strictement positifs, l'indice z étant un nombre positif ou nul, et présentant une solubilité dans l'eau à une température inférieure à 200C inférieure à 10"3 mol/1 (à la différence, par exemple, d'un sel de zirconium tel qu'un oxychlorure de zirconîum octahydraté, auquel conduit le procédé décrit dans « Zirconia Needles Synthesized Inside Hexagonal Swollen Liquid Crystals », Chemistry of Materials, 2004, 16, 4187-4192). Les anions peuvent être aussi bien minéraux (Cl") qu'organiques (acétate CH3-COO'), monoatomiques (F') ou polyatomiques (SO4 2").
En particulier si M est Zr4+, Hf4+, ou un mélange de Zr4+ et Hf4+, le dérivé sera dit
« dérivé de zirconium », « dérivé d'hafnium » ou « dérivé de zirconium et d'hafnium », respectivement.
Les étapes b) et c) permettent en particulier de fabriquer des dérivés de zirconium et/ou d'hafnium.
Sauf mention contraire, dans les présentes description et revendications, un « dérivé » est un dérivé susceptible d'être fabriqué par un procédé conforme à l'invention. On appelle « sulfate basique de zirconium » ou « ZBS » un dérivé de zirconium de formule générique Zr(OH) χ(SO4)y (H2O)2, avec y compris entre 0,2 et 2, x tel que x+2y = 4, et z un nombre positif ou nul.
On appelle « carbonate basique de zirconium » ou « ZBC » un dérivé de zirconium de formule générique Zr(OH)x(COa^(H2O)2, avec y compris entre 0,2 et 2, x tel que x+2y = 4, et z un nombre positif ou nul. On appelle « phosphate basique de zirconium » un dérivé de zirconium de formule générique Zr(OH)x(Pθ4)y(H2O)z, avec y compris entre 0,2 et 2, x tel que x +3y = 4, z un nombre positif ou nul.
On appelle « sel » un composé de la forme M(OH)x(N ')y(OH2)z, M étant un cation métallique ou un mélange de cations métalliques et N' un anion ou un mélange d'anions, les indices x, y et z étant des nombres positifs ou nuls, x+y > O5 et présentant une solubilité dans l'eau à une température inférieure à 200C supérieure à 10"3 mol/1. Les anions peuvent être aussi bien minéraux (Cl") qu'organiques (acétate CH3-COO"), monoatomiques (F") aussi bien que polyatomiques (SO42"). Dans le cas du zirconium, des sels typiques sont l'oxychlorure de zirconium Zr(OH)2Cl2(OH2)4 , le chlorure de zirconium ZrCl4 et le sulfate de zirconium Zr(SO4)2. On appelle « oxychlorure de zirconium » ou « ZOC » le sel de zirconium cristallisé de formule Zr(OH)2Cl2(OH2)4. On appelle classiquement « hydrate » un composé de la forme MOx(OH)y(OH2)z, M étant un cation métallique ou un mélange de cations métalliques, les indices x et z étant des nombres positifs ou nuls, l'indice y étant un nombre positif, et 2x+y étant égal à la valence du cation ou égal à la valence moyenne du mélange de cations. Par exemple, les hydrates de zirconium, ou « ZHO », présentent la formule ZrOx(OH)y(OH2)2j avec z > O, y > 0 et 2x + y = 4.
En particulier si M est Zr4+, Hf4+, ou un mélange de Zr4+ et Hf4+, l'hydrate sera un « hydrate de zirconium », « hydrate d'hafnium » ou « hydrate de zirconium et d'hafnium », respectivement. Si x et z sont nuls, l'hydrate aura pour formule Zr(OH)4 et sera également appelé « hydroxyde de zirconium ».
Selon cette définition, une zircone hydratée, de formule générale du type Zrθ2.n(H2O), n'est pas un hydrate au sens de l'invention.
Par définition, un hydrate présente une solubilité dans l'eau à une température inférieure à 2O0C inférieure à 10'3 mol/1. Sauf mention contraire, dans les présentes description et revendications, un « hydrate » est un hydrate susceptible d'être fabriqué par un procédé conforme à l'invention. On appelle classiquement « oxyde » un composé de formule MOx, M étant un cation métallique ou un mélange de cations métalliques, et x un nombre positif non nul. Par exemple, la zircone ZrO2 est un oxyde de zirconium. Dans le cas particulier du soufre et du phosphore, les composés sous la forme oxyde comprennent également tous les composés oxydés du soufre et du phosphore respectivement. Un composé oxydé de soufre est par exemple SO42*, un composé oxydé de phosphore est par exemple PO4 3'. En l'absence d'indications contraires, dans les présentes description et revendications, un « oxyde » est un oxyde susceptible d'être fabriqué par un procédé conforme à l'invention. On appelle classiquement « oxoanion » un anion contenant un oxyde, de la forme QOx11', Q étant un métal (par exemple le silicium) ou un non-métal (par exemple le carbone, le phosphore, le soufre), n étant un nombre entier supérieur ou égal à 1 et x étant égal à (n+w)/2, avec w la valence du métal ou non métal considéré. On appelle « calcination » un traitement thermique qui permet de transformer un produit sous une forme oxyde. Typiquement la calcination s'effectue à une température de 5000C et plus. On appelle « séchage » un traitement thermique, généralement effectué à une température inférieure à 4000C, qui permet d'éliminer tout le solvant, voire seulement le solvant ne participant pas à la constitution du produit séché. Par exemple, dans le cas où le solvant est de l'eau, le séchage d'un hydrate de zirconium permettra d'éliminer l'eau n'étant pas l'eau de constitution dudit hydrate. A la différence de la calcination, le séchage ne conduit pas à une transformation du produit traité sous une forme oxyde. On appelle « porosité ouverte » la porosité imputable à l'ensemble des pores accessibles d'un matériau se présentant sous la forme d'une poudre ou d'un solide mis en forme. Selon la classification de l'International Union of Pure and Applied Chemistry, 1994, vol.66, n°8, pp.1739-1758, les pores accessibles se divisent en 3 catégories en fonction de leur diamètre équivalent :
- les macropores sont les pores accessibles ayant un diamètre équivalent supérieur à 50 nm ; les mésopores sont les pores accessibles ayant un diamètre équivalent compris entre 2 et 50 nm ;
- les micropores sont les pores accessibles ayant un diamètre équivalent inférieur à 2 nm ; le diamètre équivalent d'un pore étant défini par la plus petite dimension dudit pore, comme indiqué dans le document de l'IUPAC. Par exemple, si le pore est cylindrique, le diamètre équivalent sera le diamètre du cylindre.
La « porosité ouverte » est la somme de la macroporosité, de la mésoporosité et de la microporosité.
Dans chacune desdites catégories, on appelle classiquement « volume poreux », le volume occupé par les pores accessibles des particules rapporté à la masse de la poudre ou du corps considéré. Le « volume macroporeux », « le volume mésoporeux » et « le volume microporeux » sont les volumes rapportés à la masse de poudre ou de solide correspondant aux macropores, aux mésopores et aux micropores, respectivement. Le volume macroporeux est classiquement mesuré par porosimétrie au mercure ; le volume mésopororeux et le volume microporeux sont classiquement mesurés par adsorption et désorption d'azote à -196 0C.
Un agent « porogène » est un agent qui, introduit à l'étape a) dans la liqueur mère, conduit à la création de pores, majoritairement ouverts, dans les particules. On appelle « indice de porosité » Ip d'une poudre de particules ou d'un corps, le rapport
Asr/ASg où
Asg est l'aire spécifique géométrique théorique calculée à partir de la forme et de la détermination des dimensions des particules de la poudre ou du corps;
Asr est la mesure de l'aire spécifique réelle par BET.
Ainsi, si Ip = 1 , soit Asr = Asg, les particules de la poudre ou du corps ne présentent pas de porosité ouverte et sont parfaitement denses. Dans la pratique, o si Ip > 2, soit Asr > 2Asg, les particules de la poudre ou du corps présentent une porosité ouverte significative, et sont ici qualifiées de « particules poreuses » ; o si Ip < 2, les particules de la poudre ou du corps sont très peu poreuses et sont ici qualifiées de « particules denses ».
L'indice de porosité caractérise la porosité ouverte des particules de la poudre ou du corps (microporosité, mésoporosité et macroporosité).
On appelle « agrégat poreux », « agglomérat poreux » ou « corps solide poreux », un agrégat, agglomérat ou corps solide, respectivement, présentant un indice de porosité Ip > 2.
Lorsqu'on évoque deux composés « et leurs mélanges », on inclut non seulement ces deux composés, des mélanges de ces composés dans lesquels les grains des composés sont clairement distincts, mais aussi les solutions solides et/ou mélanges intimes moléculaires de ces composés. Les « mélanges » des composés de zirconium et des composés d'hafnium incluent par exemple une solution solide de zirconium et d'hafnium (Zr5Hf)O2 et un mélange de grains de ZrO2 et de grains d'HfO2.
L'acidité d'une solution ou suspension est égale à la concentration en ion H+, [H+], de ladite solution ou suspension. L'acidité d'une solution ou suspension est aussi égale à 10"pH. L'acidité est exprimée en mol/1. On regroupe par le terme « propriétés texturales » l'ensemble des propriétés physiques de surface caractérisant une poudre ou un corps solide mis en forme, à savoir l'aire spécifique, le volume mésoporeux, le volume microporeux, le volume macroporeux, la distribution de taille des pores et la taille moyenne des pores.
On appelle « particules de base » les particules "élémentaires", et en particulier les particules en forme d'aiguille ou de plaquette : On appelle « aiguille » une particule anisotrope de forme générale allongée, c'est-à-dire s'étendant principalement le long d'une, ligne directrice, rectiligne ou non. Cependant, la longueur L, mesurée le long de cette ligne directrice, est inférieure à 50 fois à la largeur "1", la largeur "1" étant la plus grande dimension qu'il est possible de mesurer dans l'ensemble des plans transversaux (perpendiculaires à la ligne directrice) le long de la ligne directrice. En outre, l'épaisseur "e", c'est-à-dire la plus petite dimension mesurée dans le plan transversal dans lequel est mesuré la largeur "1", est supérieure à 0,5 fois la largeur "1".
Une aiguille est représentée schématiquement sur la figure 2a. Les figures 3b et 3c sont des photographies de poudre d'aiguilles. Les sections transversales d'une aiguille, c'est-à-dire perpendiculaires à la direction de la ligne directrice définissant sa longueur, peuvent être quelconques, et notamment être polygonales ou présenter la forme d'une ellipse ou d'un cercle.
Selon l'invention, de préférence 1,67 < L/l < 50, de préférence 2 < IVl, de préférence encore 5 < L/l. De préférence toujours, L/l < 20, et de préférence L/l < 10. On appelle « plaquette » une particule présentant une forme générale large et peu épaisse, à la manière d'une paillette. Autrement dit, une plaquette présente deux grandes faces, généralement sensiblement parallèles l'une à l'autre, écartées l'une de l'autre d'une distance faible par rapport aux dimensions desdites faces. Une plaquette est représentée schématiquement sur la figure 2b. La figure 3f est une photographie représentant des plaquettes (mélangées à des particules en « grappe »).
Plus précisément, on considère qu'une particule est une plaquette si la longueur "L", correspondant à la plus grande dimension mesurable sur une des deux grandes faces de la particule, est inférieure à 1,5 fois la largeur "1", la largeur "1" étant la plus grande dimension qu'il est possible de mesurer dans l'ensemble des plans transversaux (perpendiculaires à la longueur) le long de la direction de la longueur, et si l'épaisseur "e", c'est-à-dire la plus petite dimension mesurée dans le plan transversal dans lequel est mesurée la largeur "1", est inférieure à 0,5 fois la largeur "1". Selon l'invention, si e, L, et 1 désignent respectivement l'épaisseur, la longueur, et la largeur d'une plaquette, de préférence e < 0,25. 1, de préférence e < 0,22. 1 et/ou L < 1,2.
1.
De préférence selon l'invention, les sections perpendiculaires à la direction de l'épaisseur sont sensiblement constantes sur toute l'épaisseur de la plaquette.
De préférence encore, selon l'invention, les sections perpendiculaires à la direction de l'épaisseur présentent plus de 7 cotés, ou présentent la forme générale d'une ellipse ou d'un cercle.
Parmi les agrégats, on distingue les formes "ordonnées" et les formes "désordonnées", selon que les particules de base sont agencées de manière à constituer un agrégat de forme générale définie ou pas, respectivement. Parmi les formes ordonnées, on distingue en particulier les lamelles, les étoiles et les sphères, notamment les sphères creuses.
On appelle « lamelle » une particule constituée d'un empilement à plat d'au moins deux plaquettes de dimensions proches, de préférence avec un taux de recouvrement élevé. Autrement dit, les plaquettes sont similaires, en contact par leurs grandes faces et, de préférence, bien superposées les unes sur les autres. Une lamelle est représentée schématiquement sur la figure 2c.
De préférence, une lamelle au sens des présentes description et revendications est telle que Wl VWl < 1 ,5 et W27W2 < 1,5, - Wl et W2 désignant le grand axe et le petit axe, respectivement, de la plus petite ellipse à travers laquelle chacune des plaquettes constituant la lamelle peut passer, suivant la direction de son épaisseur (c'est-à-dire à plat), et - Wl' et W2' désignant le grand axe et le petit axe, respectivement, de la plus petite ellipse à travers laquelle la lamelle peut passer, suivant la direction d'empilement.
De préférence selon l'invention, les lamelles comportent moins de 50, de préférence moins de 20 plaquettes.
De préférence toujours, selon l'invention, Wl VWl < 1 ,2 et W27W2 < 1,2, de préférence encore W17W1 < 1,1 et W27W2 < 1,1 , Wl5 W2, Wl' et W2' étant tels que définis ci- dessus.
On appelle « étoile » une particule constituée d'un assemblage d'au moins deux aiguilles selon l'invention, éventuellement de différentes dimensions, les aiguilles se croisant sensiblement au centre de l'étoile. Une étoile est représentée schématiquement sur la figure 2d. L'agrégation des aiguilles pour former des étoiles est visible sur la photographie de la figure 3d. Une étoile peut résulter d'une fixation de plusieurs aiguilles sensiblement au milieu de leurs longueurs et/ou d'une croissance de plusieurs aiguilles à partir d'un même noyau (formant le cœur de l'étoile).
On appelle longueur « L » d'une étoile la longueur du grand axe de la plus petite ellipse dans laquelle peut être inscrite l'étoile (voir figure 2d).
De préférence, le nombre n' d'aiguilles constituant une étoile est inférieur à 15, de préférence inférieur à 8. On appelle « oursin » une particule constituée d'un assemblage sous forme désordonnée de particules de base, et notamment d'aiguilles et/ou de plaquettes selon l'invention. Les oursins sont donc des patatoïdes de forme indéterminée, au sens où la forme générale d'un oursin peut être très différente de celle d'un autre oursin. L'agrégation des aiguilles et des étoiles pour former des oursins est visible sur la photographie de la figure 3e. On appelle « sphère creuse » une particule isotrope et présentant une cavité centrale telle que si D désigne le plus grand diamètre extérieur de la particule (sa plus grande dimension extérieure) et D' désigne le plus grand diamètre intérieur de la cavité (sa plus grande dimension intérieure), D/D' < 2. Une sphère creuse est représentée schématiquement, en coupe, sur la figure 2e. Une agrégation d'aiguilles pour former des sphères creuses est visible sur une des photographies de la figure 3g.
Une sphère creuse selon l'invention est de préférence constituée d'aiguilles.
De préférence, selon l'invention, l'indice de sphéricité d'une sphère creuse est supérieur à
0,7, de préférence encore supérieur à 0,8.
On appelle « indice de sphéricité » le rapport entre la plus petite dimension et la plus grande dimension d'une particule, les dimensions étant mesurées "hors tout" selon des axes passant par le barycentre de la particule.
Une particule est dite « isotrope » si son indice de sphéricité est supérieur à 0,6. Une particule est dite « anisotrope » si son indice de sphéricité est compris entre 0,02 et 0,6. Par exemple, 0,02 est l'indice de sphéricité d'une aiguille dont la longueur L est 50 fois supérieure à l'épaisseur e. L'indice de sphéricité peut être supérieur à 0,05 (rapport longueur sur épaisseur égal à 20), voire supérieur à 0,1 (rapport L/e de 10). L'indice de sphéricité peut être inférieur à 0,5, voire inférieur à 0,4, voire inférieur à 0,35, voire inférieur à 0,3.
Par « particule de départ », on entend des particules utilisées pour mettre en œuvre un procédé selon l'invention. La nature des particules de départ est donc variable selon le procédé considéré.
Dans toutes les formules de composés, les indices sont classiquement des indices molaires.
Méthodes de caractérisation Morphologie des particules, à l'exception des sphères creuses
La présence de particules présentant des morphologies particulières est en général possible par l'observation de clichés pris au microscope électronique à balayage comme ceux des figures.
Ces clichés permettent également d'évaluer des dimensions des particules. En particulier, lorsque les particules de la poudre observée apparaissent présenter sensiblement toutes la même morphologie, il est possible de déterminer les dimensions en moyenne sur l'ensemble de ces particules.
Morphologie des sphères creuses
Après enrobage en résine et polissage fin (finition à la pâte diamantée micronique) d'un échantillon à caractériser, des clichés comportant entre 10 et 50 sphères creuses sont réalisés à l'aide d'un microscope électronique en balayage, le grossissement initial (xlOOO) utilisé étant adapté pour atteindre le nombre de sphères creuses à observer. Un grand nombre de clichés est nécessaire, généralement plus de 50. D'une part l'orientation de chaque sphère creuse étant aléatoire et d'autre part le polissage permettant une section aléatoire de chaque sphère creuse, il est alors possible d'en déterminer la structure interne (cavité). A partir de ces clichés, on peut également évaluer, en moyenne sur un ensemble de particules, le plus grand diamètre extérieur de la cavité D et le plus grand diamètre intérieur de la cavité D'.
Analyses chimiques Le dosage des ions chlorure Cl' est effectué après pyrohydrolyse par chromatographie ionique. Les teneurs en carbonate (CO3 2 ) et sulfate (SO4 2") sont déterminées à partir des teneurs en carbone et en soufre (converties respectivement en CO3 2" et sulfate SO4 2') mesurées sur un analyseur Carbone Soufre, modèle LECO CS-300.
Pour les autres éléments, si la teneur en l'élément est supérieure à 0,1% massique, elle est déterminée par spectroscopie de fluorescence X ; si la teneur en un élément est inférieure à 0,1% massique, elle est déterminée par ICP (Induction Coupled Plasma), sur un modèle Vista AX (commercialisé par la société Varian).
Perte au feu La perte au feu est déterminée par mesure de la perte de masse du produit après calcination du produit à 10000C pendant Ih.
Mesures de l'aire spécifique et des volumes mésoporeux et microporeux
Les propriétés texturales sont déterminées par adsorption/désorption physique de N2 à - 196 °C sur un modèle Nova 2000 commercialisé par la société Quantachrome. Les échantillons sont préalablement désorbés sous vide à 2500C pendant 2 heures pour les poudres calcinées ou corps solides calcinés et à 1000C pendant 2 heures pour les poudres non calcinées. L'aire spécifique est calculée par la méthode BET (Brunauer Emmet Teller) telle que décrite dans Journal of the American Chemical Society 60 (1938) pages 309 à 316. Les volumes mésoporeux et microporeux ainsi que la distribution de taille des mésopores et micropores sont déterminés avec la méthode BJH [décrite par E. P. Barrett, L.G. Joyner, P.H. Halenda, J. Am. Chem. Soc, 73 (1951) 373] appliquée à la branche de désorption de l'isotherme.
Détermination de Taire spécifique géométrique Asg L'aire spécifique géométrique des particules d'une poudre ou d'un corps est déterminée à partir d'observations réalisées en microscopie électronique à balayage MEB. L'aire spécifique géométrique Asg est donnée par la formule (1) :
avec pi la densité théorique du matériau (déterminée par intrusion d'Hélium) de la particule i, d\ et Di respectivement la plus petite dimension et la plus grande dimension de la particule i mesurées "hors tout" selon des axes passant par le barycentre de la particule i, et n le nombre de particules ayant fait l'objet d'une mesure, avec n > 200 . Dans le cas de particules agrégées, n fait référence au nombre de particules agrégées, et non au nombre de particules de base les constituant.
Mesure du volume macroporeux
Le volume macroporeux ainsi que la distribution de taille des macropores sont déterminés par porosimétrie Hg sur un modèle Porosizer 9320 commercialisé par la société Micromeritics. Les échantillons sont introduits sous forme de poudre ou de solide mis en forme. La pression maximale appliquée de 6000 psi permet de mesurer la porosité pour des diamètres de pores supérieurs à 50 nm.
Détermination de la structure cristalline (analyse DRX)
Les clichés de diffraction de rayons X de poudre sont obtenus sur un diffractomètre BRUKER ' D5005, utilisant la radiation Ka du cuivre (1,54060 À). Les données d'intensité sont enregistrées sur un intervalle 2Θ de 3-80° avec un pas de 0,02° et une durée de comptage de Is par pas. Les phases cristallines sont identifiées par comparaison avec les fichiers standard JCPDS.
La structure cristalline peut être confirmée par d'autres méthodes bien connues telles que la spectroscopie Raman ou, localement au niveau d'une particule de base, par microscopie électronique en transmission.
Détermination de la distribution granulométrique des particules
La distribution granulométrique des particules est déterminée par sédigraphie sur un sédigraphe modèle Sedigraph 5100 commercialisé par la société Micromeritics. L'échantillon à caractériser est mis en suspension dans une solution contenant du métaphosphate de sodium puis dispersée 2 fois 3 minutes sous ultra-sons (puissance de 70 W). La suspension est ensuite introduite sous agitation dans l'équipement pour analyse.
Description détaillée On décrit à présent de manière détaillée un mode de réalisation d'un procédé selon l'invention comportant des étapes a) à e) telles que présentées ci-dessus. Etape a)
A l'étape a), le solvant polaire [1] peut être choisi parmi l'eau, les alcools, les solvants organiques et leurs mélanges. De préférence, le solvant polaire est l'eau.
Le premier réactif [2] est choisi de manière à apporter des ions Zr4+ et/ou Hf4+. De préférence, il est soluble dans le solvant de la liqueur mère. De préférence encore, il peut être choisi parmi :
- les sels de zirconium et/ou d'hafnium solubles dans ledit solvant, comme par exemple les chlorures, les oxychlorures, les sulfates, les oxynitrates, les acétates, les formiates, les citrates ; les alkoxydes de zirconium et/ou d'hafnium, comme par exemple les butoxydes, les propoxydes ;
- les dérivés de zirconium et/ou d'hafnium solubles en milieu acide dans ledit solvant, comme par exemple les carbonates basiques, les hydroxydes ; et leurs mélanges.
De préférence, le premier réactif est choisi parmi les sels de zirconium et/ou d'hafnium solubles dans le solvant et leurs mélanges, de préférence parmi les oxychlorures, les oxynitrates et leurs mélanges, de préférence encore parmi les oxychlorures. Le deuxième réactif est choisi de manière à apporter des groupements anioniques de manière à former à l'étape b), par précipitation avec les ions Zr4+ et/ou Hf4+ apportés par le premier réactif, un dérivé de zirconium et/ou d'hafnium hydrolysable, de préférence anisotrope. Le deuxième réactif [3] est de préférence choisi de manière à apporter les groupements anioniques SO4 2" ou PO4 3" et leurs mélanges. Par exemple, le deuxième réactif peut être un mélange de Na2SO4 et de H2SO^ De préférence, le deuxième réactif est choisi de manière à apporter des groupements anioniques SO4 2" . Avec un premier réactif apportant des ions Zr4+, des deuxièmes réactifs apportant des groupements anioniques SO4 2" ou PO4 3" conduisent à du ZBS (Sulfate Basique de Zirconium) ou du phosphate basique de zirconium, respectivement, à l'issue de l'étape b). Même en l'absence d'étape c), ils peuvent conduire à des particules de ZHO (Hydrates de Zirconium) ou ZHO dopé à l'issue de l'étape d) d'hydrolyse basique du ZBS, ou du phosphate basique de zirconium. Ils peuvent également conduire, en cas d'étape ei) de calcination ou e2) de traitement hydrothermal de ZHO ou ZHO dopé ou ZBS ou ZBS dopé ou phosphate basique de zirconium ou phosphate basique de zirconium dopé, à des particules de zircone ou de zircone dopée. Dans un mode de réalisation particulier, le premier réactif permet d'apporter à la fois les ions Zr4+ et/ou Hf4+ et les groupements anioniques. Par exemple, le premier réactif peut être le sulfate de zirconium, Zr(SO4)2, qui permet d'apporter à la fois les ions Zr4+ et les groupements anioniques SO4 ".
Le rapport de la concentration en groupements anioniques sur la concentration en ions Zr4+et/ou Hf4+ est compris de préférence entre 0,2 et 5. De préférence, ce rapport est supérieur à 0,3, de préférence supérieur à 0,4, de préférence encore supérieur à 0,5 et/ou inférieur à 2, de préférence inférieur à 1,5, de préférence encore inférieur à 1,2. Par exemple, le rapport de la concentration en groupements anioniques SO4 2' sur la concentration en ions Zr4+ peut être compris entre 0,3 et 2, de préférence entre 0,4 et 1,5, de préférence encore compris entre 0,5 et 1,2.
La liqueur mère doit présenter un pH inférieur ou égal à 7, de préférence inférieur ou égal à 6, de préférence inférieur ou égal à 4, de préférence inférieur ou égal à 2. Le réglage du pH de la liqueur mère peut s'effectuer notamment par des ajouts d'acides et/ou de bases organiques ou inorganiques. L'additif [4] permet de modifier la morphologie et est choisi dans le groupe : - des tensio-actifs anioniques et leurs mélanges, notamment : o des carboxylates (de formule R-CO2 '-G+ avec R une chaîne carbonée aliphatique, aromatique ou alkylaromatique et G+ un cation monoatomique ou polyatomique et/ou un mélange de tels cations), de préférence choisis parmi les carboxylates éthoxylés, les acides gras éthoxylés ou propoxylés, les sarcosinates de formule R-C(O)N(CH3)CH2COO' et leurs mélanges ; o des sulfates (de formule R-SO3--G+ avec R une chaîne carbonée aliphatique, aromatique ou alkylaromatique et G+ un cation monoatomique ou polyatomique et/ou un mélange de tels cations), de préférence choisis parmi les alkylsulfates, les alkyléther sulfate s ou sulfates d'alcools gras éthoxylés, les nonylphényléthersulfates, et leurs mélanges ; o des sulfonates (de formule R-OSθ3 '-G+ avec R une chaîne carbonée aliphatique, aromatique ou alkylaromatique et G un cation monoatomique ou polyatomique et/ou un mélange de tels cations), de préférence choisis parmi les alkylarylsulfonates incluant les sulfonates de dodecylbenzène et sulfonates de tétrapropylbenzène, les oléfines α sulfonées, les acides gras et esters d'acides gras sulfonés, les sulfosuccinate et sulfosuccinamate de sodium, mono et di-esters de l'acide sulfosuccinique, les monoamides de l'acide sulfosuccinique, les N-acylaminoacides et N-acylprotéines, les N- acylaminoalkylsulfonates et taurinates, et leurs mélanges ; o des phosphates (de formule R'-(RO)n4-n(3"n)'-(3-n)G+ avec R et R' des chaînes carbonées aliphatiques, aromatiques et/ou alkylaromatiques, G un cation monoatomique ou polyatomique et/ou un mélange de tels cations, de préférence choisi parmi H+, Na+ et K+, et n un entier inférieur ou égal à 3), de préférence choisis parmi les mono- et di-esters de l'acide phosphorique, et leurs mélanges ;
- des tensio-actifs amphotères et leurs mélanges, notamment : o des bétaïnes de formule RR1NH-CH3COO" avec R et R' des chaînes carbonées aliphatiques, aromatiques et/ou alkylaromatiques ; o des sulfobétaïnes ; o des sels d'imidazolium ;
- des tensio-actifs cationiques et leurs mélanges, notamment : o des composés d'ammonium non quaternaire (de formule R'-RnNH(4.n)+-X" avec R et R' des chaînes carbonées aliphatiques, aromatiques et/ou alkylaromatiques, X" un anion monoatomique ou polyatomique et/ou un mélange de tels anions et n un entier inférieur à 4) ; o des sels d'ammonium quaternaire (de formule R^R4N+-X" avec R et R' des chaînes carbonées aliphatiques, aromatiques et/ou alkylaromatiques et X* un anion monoatomique ou polyatomique et/ou un mélange de tels anions), de préférence les alkyltriméthyl ammonium, les alkylbenzyldiméthylammonium, et leurs mélanges ; o des sels d'aminés ; o des sels d'ammonium d'aminés grasses éthoxylées ; o des dialkyldiméthylammonium ; o des sels d'imidazolinium ;
- des acides carboxyliques, leurs sels, et leurs mélanges, notamment les acides aliphatiques mono- ou dicarboxyliques, en particulier les acides saturés ; les acides gras, et particulier les acides gras saturés ; l'acide formique, l'acide acétique, l'acide propionique, l'acide butyrique, l'acide isobutyrique, l'acide valérique, l'acide caproïque, l'acide caprylique, l'acide caprique, l'acide laurique, l'acide myristique, l'acide palmitique, l'acide stéarique, l'acide hydroxystéarique, l'acide éthyl-2-hexanoïque, l'acide béhénique, l'acide nonylique, l'acide linolénique, l'acide abiétique, l'acide oléique, l'acide récinoléique, l'acide naphténique, l'acide phénylacétique ; les acides dicarboxyliques incluant les acides oxalique, maléique, succinique, glutarique, adipique, pimélique, subérique, azélaïque et sébacique. Les sels de ces acides peuvent être employés. Par sels d'acides carboxyliques, on entend les composés de formule (R-COO", G+), G+ étant un groupement cationique, de préférence Na+ ou NH4+.
- des tensio-actifs non-ioniques choisis parmi l'ensemble des composés de formule RCO2R' et R-CONHR' et leurs mélanges, R et R' étant des chaînes carbonées aliphatiques, aromatiques et/ou alkylaromatiques, et notamment : o des mono- et di-éthanolamides d'acides gras polyéthoxylés et polypropoxylés ; o des aminés grasses polyéthoxylées et polypropoxylées ; o les co-polymères blocs polyéthoxylés et polypropoxylés, comme par exemple les co-polymères de la famille Pluronic® commercialisés par la société BASF ; o les alcools gras et alkylphénols polyéthoxylés et polypropoxylés choisis parmi les ethoxylats d'alcools gras carboxyméthylés, cette famille incluant l'ensemble des alcools gras éthoxylés ou propoxylés incluant en fin de chaîne le groupement -CH2-COOH, de formule générale : R1-O-(CR2R3- CR4R5-O)n-CH2-COOH, Rl, R2, R3, R4 et R5 étant des chaînes carbonées aliphatiques, aromatiques et/ou alkylaromatiques et n un nombre entier ; o les oxydes d'aminé ; o les alkylimidazolines ; o et leurs mélanges;
- et leurs mélanges.
L'additif permettant de modifier la morphologie est choisi de préférence dans le groupe : des tensio-actifs anioniques et leurs mélanges, notamment : o des carboxylates (de formule R-CO2--G+ avec R une chaîne carbonée aliphatique, aromatique ou alkylaromatique et G+ un cation monoatomique ou polyatomique et/ou un mélange de tels cations), de préférence choisis parmi les carboxylates éthoxylés, les acides gras éthoxylés ou propoxylés, les sarcosinates de formule R-C(O)N(CH3)CH2COO" et leurs mélanges ; o des sulfates (de formule R-SO3--G+ avec R une chaîne carbonée aliphatique, aromatique ou alkylaromatique et G+ un cation monoatomique ou polyatomique et/ou un mélange de tels cations), de préférence choisis parmi les alkylsulfates, les alkyléthersulfates ou sulfates d'alcools gras éthoxylés, les nonylphényléthersulfates, et leurs mélanges ; o des sulfonates (de formule R-OSO3--G+ avec R une chaîne carbonée aliphatique, aromatique ou alkylaromatique et G+ un cation monoatomique ou polyatomique et/ou un mélange de tels cations), de préférence choisis parmi les alkylaryl sulfonates incluant les sulfonates de dodecylbenzène et sulfonates de tétrapropylbenzène, les oléfines α sulfonées, les acides gras et esters d'acides gras sulfonés, les sulfosuccinate et sulfosuccinamate de sodium, mono et di-esters de l'acide sulfosuccinique, les monoamides de l'acide sulfosuccinique, les N-acylaminoacides et N-acylprotéines, les N- acylaminoalkylsulfonates et taurinates, et leurs mélanges ; o des phosphates (de formule R'-(RO)nPO4-n (3"n)"-(3-n)G+ avec R et R' des chaînes carbonées aliphatiques, aromatiques et/ou alkylaromatiques, G+ un cation monoatomique ou polyatomique et/ou un mélange de tels cations, de préférence choisi parmi H+, Na+ et K+ , et n un entier inférieur ou égal à 3), de préférence choisis parmi les mono- et di-esters de l'acide phosphorique, et leurs mélanges ;
- des tensio-actifs cationiques et leurs mélanges, notamment : o des composés d'ammonium non quaternaire (de formule R'-RnNH(4-n) -X" avec R et R' des chaînes carbonées aliphatiques, aromatiques et/ou alkyl aromatiques, X' un anion monoatomique ou polyatomique et/ou un mélange de tels anions et n un entier inférieur à 4) ; o des sels d'ammonium quaternaire (de formule R^R4N+-X" avec R et R' des chaînes carbonées aliphatiques, aromatiques et/ou alkylaromatiques et X" un anion monoatomique ou polyatomique et/ou un mélange de tels anions), de préférence les alkyltriméthylammonium, les alkylbenzyldiméthylammonium, et leurs mélanges ; o des sels d'aminés ; o des sels d'ammonium d'aminés grasses éthoxylées ; o des dialkyldiméthylammonium ; o des sels d'imidazolinium.
De préférence, l'additif permettant de modifier la morphologie est choisi dans le groupe :
- des tensio-actifs anioniques et leurs mélanges, notamment : o des sulfates (de formule R-SO3--G+ avec R une chaîne carbonée aliphatique, aromatique ou alkylaromatique et G+ un cation monoatomique ou polyatomique et/ou un mélange de tels cations), de préférence choisis parmi les alkyl sulfates, les alkyléther sulfate s ou sulfates d'alcools gras éthoxylés, les nonylphényléthersulfates, et leurs mélanges ; o des phosphates (de formule R'-(RO)nPO4.n (3'n)'-(3-n)G+ avec R et R' des chaînes carbonées aliphatiques, aromatiques et/ou alkylaromatiques, et G+ un cation monoatomique ou polyatomique et/ou un mélange de tels cations, de préférence choisi parmi H+, Na+ et K+ , et n un entier inférieur ou égal à 3), de préférence choisis parmi les mono- et di-esters de l'acide phosphorique, et leurs mélanges ; - des tensio-actifs cationiques et leurs mélanges, notamment : o des composés d'ammonium non quaternaire (de formule R'-RnNH{4-n) -X avec R et R' des chaînes carbonées aliphatiques, aromatiques et/ou alkylaromatiques, X' un anion monoatomique ou polyatomique et/ou un mélange de tels anions et n un entier inférieur à 4) ; o des sels d'ammonium quaternaire (de formule R^R4N+-X" avec R et R' des chaînes carbonées aliphatiques, aromatiques et/ou alkylaromatiques et X" un anion monoatomique ou polyatomique et/ou un mélange de tels anions), de préférence les alkyltriméthylammonium, les alkylbenzyldiméthyl ammonium, et leurs mélanges ; Les additifs choisis parmi les tensio-actifs anioniques et/ou cationiques permettent avantageusement d'augmenter la proportion de particules de dérivé primaire anisotropes à l'issue de l'étape b).
De préférence encore, l'additif permettant de modifier la morphologie est choisi dans le groupe : - des alkylsulfates, comme le dodécyle sulfate de sodium ou SDS ;
- des composés d'ammonium non quaternaire (de formule R'-RnNH(4-n) -X" avec R et R' des chaînes carbonées aliphatiques, aromatiques et/ou alkylaromatiques, X" un anion monoatomique ou polyatomique et/ou un mélange de tels anions et n un entier inférieur à 4), comme le bromure de céthyltrirnéthylammonium ou CTAB.
Outre l'additif permettant de modifier la morphologie, un tensio-actif non-ionique [5], différent de ceux cités comme pouvant servir d'additif, peut être ajouté. Ce tensio-actif se distingue de l'additif [4] en ce qu'il ne permet pas, sans additif, de modifier la morphologie des particules obtenues. Associé à un additif, il peut cependant modifier l'impact dudit additif. De simples tests permettent de vérifier si un tensio-actif non- ionique modifie la morphologie des particules fabriquées ou non. Le tensio-actif optionnel peut notamment être choisi parmi l'ensemble des composés de formule R-OR', R-OH, R-(CH2-CH2-O)n-R', la famille des polyols R et R' étant des chaînes carbonées aliphatiques, aromatiques et/ou alkylaromatiques et n un nombre entier. Le tensioactif non- ionique optionnel est de préférence choisi parmi - les nonylphénols polyéthoxylés et polypropoxylés (par exemple la famille des Triton® commercialisée par la société Dow Chemicals) ;
- les alcools gras polyéthoxylés et polypropoxylés ;
- les octylphénols polyéthoxylés et polypropoxylés ; - les esters d'acides gras polyéthoxylés et polypropoxylés ;
- les alcools gras et alkylphénols polyéthoxylés et polypropoxylés, notamment les ethylène glycol, propylène glycol, glycérol, esters polyglycéryles et leurs dérivés polyéthoxylés et polypropoxylés et les polyéthylène-glycols ;
- les esters d'anhydrosorbitol incluant les esters de sorbitane polyéthoxylés et polypropoxylés et les esters de sorbitane ou Sorbate ; les alkylpolyglucosides ; les huiles éthoxylées et propoxylées ; et leurs mélanges.
Le tensioactif non-ionique optionnel peut par exemple être un agent anti-moussant ou un agent de tension superficielle, comme par exemple le CONTRASPUM K1012 commercialisé par la société Zschimmer et Schwartz. Un agent anti-moussant facilite avantageusement la mise en œuvre du procédé et/ou augmente son rendement. Un agent de tension superficielle peut par exemple augmenter l'effet de l'additif. Les définitions des différents tensioactifs ainsi que des exemples sont consultables dans « les techniques de l'ingénieur », volume K2 après l'actualisation n°52 (mai 2007), Tensioactifs K342.
L'agent porogène [6] peut notamment être choisi dans :
- la famille des latex, notamment parmi les acrylates de styrène et/ou les polyméthylacrylates, et parmi les propionates et/ou acétates de polyvinyle ; les oxydes et les sels de polyéthylène et/ou polypropylène ; et leurs mélanges.
L'ajout d'un agent porogène conduit avantageusement à créer de la porosité dans les particules obtenues à l'issue des étapes b), c), d) ou e). A cet effet, une étape de chauffage de ces particules peut être nécessaire afin d'éliminer l'agent porogène afin qu'il laisse la place à des pores. De préférence, la quantité d'agent porogène est supérieure à 0,5%, de préférence supérieure à 2% et/ou inférieure à 25%, de préférence inférieure à 10%, les pourcentages étant des pourcentages en masse par rapport au premier réactif de la liqueur mère.
Pour obtenir des particules anisotropes, l'additif est de préférence introduit dans la liqueur mère avant le deuxième réactif apportant les groupements anioniques, et immédiatement avant ou après le premier réactif apportant des ions Zr4+ et/ou Ht4+. Lorsque la liqueur mère contient un « autre » tensio-actif non ionique (c'est-à-dire un constituant [5]), et/ou un agent porogène, ces derniers sont de préférence introduits dans la liqueur mère immédiatement avant l'introduction du deuxième réactif, et donc, de préférence, après l'introduction du premier réactif et de l'additif.
Faute de respecter cet ordre, il est possible que certains additifs ne permettent pas de précipiter des particules anisotropes. Par exemple, avec le dodécyle sulfate de sodium (SDS) utilisé comme additif, des particules de dérivé primaire de zirconium et/ou d'hafnium anisotropes seront obtenues si cet additif est introduit immédiatement avant ou après le premier réactif et avant l'introduction du deuxième réactif dans la liqueur mère. L'ordre d'introduction des différents constituants de la liqueur mère peut par exemple être : introduction du solvant polaire, introduction du premier réactif, introduction de l'additif SDS, introduction de « l'autre » tensio-actif non ionique « optionnel » (constituant [5]), introduction de l'agent porogène, puis introduction du deuxième réactif. Au contraire, des particules de dérivé primaire de zirconium et/ou d'hafnium isotropes seront obtenues si cet additif est introduit après le deuxième réactif et avant l'introduction du premier réactif dans la liqueur mère. Avec certains additifs, l'ordre décrit ci-dessus n'est cependant pas impératif. Des tests de routine permettent d'évaluer l'impact de l'ordre d'introduction des constituants.
La température à laquelle la liqueur mère est préparée est de préférence comprise entre la température de solidification du solvant de la liqueur mère à pression atmosphérique et 50°C, de préférence comprise entre la température ambiante, classiquement 200C, et 500C, de préférence comprise entre 4O0C et 500C, afin de favoriser la dissolution des différents composants introduits dans le solvant de la liqueur mère, sans débuter de réactions de précipitation de particules. Après introduction de tous les réactifs dans la liqueur mère, celle-ci est maintenue entre la température de solidification du solvant de la liqueur mère à pression atmosphérique et 5O0C, de préférence comprise entre la température ambiante et 5O0C5 de préférence comprise entre 4O0C et 500C, de préférence pendant au moins 15 minutes, ce qui permet avantageusement une meilleure dissolution des réactifs, ainsi que l'atteinte d'une bonne homogénéité thermique et chimique.
Etape b)
A l'étape b), la température de chauffage est de préférence supérieure à 50 0C et/ou inférieure à la température d'ébullition, de préférence inférieure à 100°C, de préférence inférieure à 95°C, de préférence inférieure à 900C, de préférence inférieure à 800C, voire inférieure à 7O0C. La durée de maintien en température Δt peut être supérieure à 30 minutes, voire supérieure à 1 heure et/ou de préférence inférieure à 10 heures, voire inférieure à 5 heures.
Les inventeurs ont constaté qu'au-delà de 10 heures de maintien à 100°C, la morphologie des particules obtenues est isotrope. Le chauffage est de préférence effectué à pression atmosphérique.
La vitesse de montée en température v ne doit pas être trop rapide afin de favoriser une croissance de façon anisotrope. Elle est de préférence inférieure à 50°C/min, de préférence inférieure à 10°C/min. Le début de la phase de chauffage est défini comme étant l'instant où l'on commence à chauffer la liqueur mère, une fois tous les constituants introduits.
En fin d'étape b), une opération finale choisie parmi la filtration, le lavage, la neutralisation acido-basique, le séchage et les combinaisons de ces techniques peut optionnellement être appliquée. Toutes les techniques connues de l'homme du métier peuvent être utilisées. Si un séchage est effectué, une étape optionnelle de désagglomération peut être effectuée, par toute technique connue de l'homme du métier. La solubilité du composé obtenu à l'issue de l'étape b) est fonction de plusieurs paramètres. Notamment, pour obtenir un dérivé primaire présentant une solubilité dans l'eau mesurée à 2O0C inférieure à 10"3mol/l, il est préférable de se placer dans les conditions suivantes : - la concentration en ions H+ dans la liqueur mère est de préférence comprise entre
0,6 et 3 mol/1 ; - le rapport molaire de la concentration en groupements anioniques sur la concentration en ions Zr4+ et/ou Hf4+ dans la liqueur mère est de préférence compris entre 0,3 et 2 ;
- la température de chauffage de la liqueur mère est de préférence comprise entre 55 et 1000C.
Le Nouveau Traité de Chimie Minérale de Paul Pascal, tome IX1 pages 599-61O1 fournit des explications détaillées pour modifier la solubilité.
A l'issue de l'étape b), on peut ainsi obtenir une suspension de particules ou une poudre de particules qui, après séchage, sont insolubles dans le solvant polaire [1] et hydrolysables. Ces particules sont amorphes sauf éventuellement en cas d'addition d'un dopant, comme décrit ci-après.
On peut également obtenir des particules anisotropes. Le cas échéant, comme expliqué ci- dessus, des essais de routine permettent de rechercher de telles particules.
Etape c)
L'étape c) est optionnelle ou nécessaire selon que l'on souhaite fabriquer un dérivé secondaire faiblement soluble ou soluble en milieu acide dans le solvant polaire [1], respectivement. Un dérivé est considéré comme faiblement soluble si sa solubilité dans l'eau à pH égal à 2 est inférieure à 10"3 mol/1. Dans le cas contraire, le dérivé est considéré comme soluble,
A l'étape c), le dérivé primaire obtenu en fin d'étape b) peut subir un traitement permettant de substituer partiellement ou en totalité, de préférence en totalité les groupements anioniques apportés par le deuxième réactif par d'autres groupements anioniques, dits « groupements anioniques de substitution », présentant un fort pouvoir complexant avec le zirconium et/ou l'hafnium et de préférence sélectionnés parmi les oxoanions, les anions de la colonne 17 (halogénures), les molécules organiques comprenant un groupement carboxylate (R-COO'), et leurs mélanges. De préférence encore, les oxoanions sont sélectionnés parmi les phosphates, les sulfates et les carbonates ; les halogénures sont sélectionnés parmi les chlorures et fluorures ; les molécules organiques comprenant un groupement carboxylate sont sélectionnées parmi les formiates, les acétates, les oxalates et les tartrates. Pour effectuer ladite substitution, les particules de dérivé primaire sont mises en contact avec un composé apte à apporter les groupements anioniques de substitution. A l'étape c), le traitement du dérivé primaire peut par exemple être un traitement de carbonatation, de phosphatation, de fluoruration ou de chloruration afin d'associer au zirconium et/ou à l'hafnium un groupement anionique carbonate, phosphate, fluorure ou chlorure, respectivement.
Par exemple, après avoir obtenu un ZBS anisotrope en fin d'étape b), on peut optionnellement le transformer en carbonate basique de zirconium (ZBC) anisotrope par un traitement de carbonatation, ou le transformer en phosphate basique de zirconium anisotrope par un traitement de phosphatation. II est possible de tenir le même raisonnement avec un phosphate basique de zirconium au départ. Une étape c) permet donc d'obtenir des composés impossibles à obtenir à l'étape b), par exemple parce que solubles dans le solvant polaire [1] en milieu acide. A l'étape c), le traitement ne modifie pas le caractère éventuellement anisotrope des particules obtenues à l'étape b).
En fin d'étape c), une opération finale choisie parmi la filtration, le lavage, la neutralisation acido-basique, le séchage et les combinaisons de ces techniques peut optionnellement être appliquée. Toutes les techniques connues de l'homme du métier peuvent être utilisées. Si un séchage est effectué, une étape optionnelle de désagglomération peut être effectuée, par toute technique connue de l'homme du métier.
Etape d)
L'étape d) d'hydrolyse basique permet de faire réagir le dérivé primaire obtenu à l'issue de l'étape b) ou le dérivé secondaire obtenu à l'issue de l'étape c) et de le transformer en hydrate de zirconium et/ou d'hafnium. Cette réaction permet notamment de créer de la porosité au sein des particules.
Toutes les techniques connues de l'homme du métier peuvent être utilisées pour réaliser l'étape d) d'hydrolyse basique.
L'hydrolyse basique est réalisée par mise en contact dudit dérivé primaire ou secondaire avec au moins une source d'anions hydroxydes OH", de préférence une base forte, notamment NaOH, KOH, ou avec au moins une aminé, dans le but de substituer l'anion dudit dérivé par OH". Le dérivé primaire ou secondaire peut notamment être présenté sous la forme :
- d'une poudre ou
- d'une suspension, directement obtenue à l'étape b) ou c), ou obtenue après remise en suspension dans un solvant polaire, de préférence dans l'eau, notamment après une filtration, un lavage et/ou un séchage effectué en fin d'étape b) ou c). Ladite mise en contact peut par exemple résulter de :
- la mise en contact d'une poudre solide de dérivé primaire ou secondaire avec une solution basique liquide, - la mise en contact d'une base solide avec une suspension liquide de dérivé primaire ou secondaire,
- la mise en contact d'une solution basique liquide avec une suspension liquide de dérivé primaire ou secondaire,
- la mise en contact d'une base sous forme gazeuse, par exemple l'ammoniac, avec une suspension liquide de dérivé primaire ou secondaire, la mise en contact d'une base sous forme gazeuse, par exemple l'ammoniac, avec une poudre solide de dérivé primaire ou secondaire.
Si le dérivé primaire ou secondaire est en suspension dans une solution, les conditions suivantes seront de préférence utilisées : - concentration en Zr4+ et/ou Hf4+ dans ladite solution : de préférence inférieure à 10 mol/1 et supérieure à 0,01 mol/1 ; pH : de préférence supérieur à 11 ; température de réaction : supérieure à la température de solidification du solvant, de préférence supérieure à la température ambiante, de préférence encore supérieure à 50°C et inférieure à la température d'ébullition du solvant, de préférence inférieure à 9O0C,
Dans le cas où la suspension de dérivé primaire ou secondaire utilisée est la liqueur mère, l'introduction de la ou des sources d'anions hydroxydes OH' s'effectue de préférence à une température inférieure à 900C. En fin d'étape d), une opération finale choisie parmi la filtration, le lavage, la neutralisation acido-basique, le séchage et les combinaisons de ces techniques peut optionnellement être appliquée. Toutes les techniques connues de l'homme du métier peuvent être utilisées. Si un séchage est effectué, une étape optionnelle de désagglomération peut être effectuée par toute technique connue de l'homme du métier.
Etape e) A l'étape el), les conditions de calcination modifient l'indice de porosité In et l'aire spécifique de la poudre. La température de calcination peut notamment être supérieure à 4000C et/ou inférieure à 12000C, de préférence inférieure à 11000C, de préférence encore inférieure à 10000C. A des températures supérieures à 12000C, les particules obtenues présentent un indice de porosité faible, c'est-à-dire sont denses. A des températures inférieures à 12000C, les particules obtenues sont poreuses si le temps de maintien en palier est limité. Le temps de maintien en palier est généralement compris entre 1 heure et 5 heures, de préférence d'environ 2 heures.
L'invention concerne également des particules denses ou poreuses obtenues à l'issue de l'étape el).
A l'étape e2), le traitement hydrothermal modifie l'indice de porosité Ip et l'aire spécifique de la poudre. La température de traitement hydrothermal est supérieure à la température d'ébullition du solvant polaire, de préférence l'eau, à la pression considérée, de préférence supérieure à 1300C5 et/ou inférieure à 25O0C, de préférence inférieure à 200°C. A des températures supérieures à 25O0C, les particules obtenues présentent un indice de porosité faible, c'est-à-dire sont denses. A des températures inférieures à 25O0C, les particules obtenues sont poreuses.
Le traitement hydrothermal peut être réalisé par chauffage, en présence de vapeur d'eau, d'une poudre d'un dérivé primaire ou secondaire, d'un hydrate ou d'un oxyde, ledit dérivé, hydrate ou oxyde étant éventuellement dopé. Ce traitement peut notamment être réalisé avec :
- l'utilisation d'une poudre non séchée de dérivé primaire ou secondaire, ou d'hydrate, l'utilisation d'une suspension liquide de dérivé primaire ou secondaire, d'hydrate ou d'oxyde.
Si la poudre de dérivé primaire ou secondaire, d'hydrate ou d'oxyde est en suspension dans une solution, les conditions suivantes sont préférées : - concentration en Zr4+ et/ou Hf4+ dans la suspension totale : de préférence inférieure à 10 mol/1 et supérieure à 0,01 mol/1 ; pH : de préférence compris entre 6 et 8 ;
- température de réaction : de préférence supérieure à 13O0C, et/ou inférieure à 250°C, de préférence inférieure à 2000C ;
- durée de maintien en température : de préférence supérieure à 1 heure et, de préférence inférieure à 10 heures.
Par exemple, un traitement hydrothermal appliqué à un dérivé primaire ou secondaire de la présente invention permet de fabriquer une zircone anisotrope, éventuellement poreuse. Si le dérivé est dopé, la zircone obtenue sera également dopée.
Si un traitement hydrothermal est appliqué à un dérivé primaire ou secondaire, il peut conduire à un autre dérivé primaire ou secondaire, à un hydrate ou à un oxyde.
Si un traitement hydrothermal est appliqué à un hydrate ou à un oxyde, il peut conduire à un hydrate ou à un oxyde. L'invention concerne également des particules denses ou poreuses obtenues à l'issue de l'étape e2).
La calcination ou le traitement hydrothermal permettent d'obtenir de nouvelles formes anisotropes cristallisées, en particulier des particules d'oxydes de zirconium et/ou d'hafnium dopés par un oxyde d'un élément choisi parmi l'yttrium Y, le lanthane La, le cérium Ce, le scandium Sc, le calcium Ca, le magnésium Mg et leurs mélanges, l'oxyde dopant étant en solution solide avec l'oxyde de zirconium et/ou l'oxyde d'hafnium, ou des particules d'oxydes de zirconium et/ou d'hafnium dopés par un oxyde d'un élément choisi parmi Si, AI, S et leurs mélanges, l'oxyde dopant étant dispersé dans la particule d'oxyde de zirconium et/ou d'hafnium. Ces particules sont éventuellement poreuses si les particules de départ sont poreuses. L'étape e) permet par exemple la fabrication d'un oxysulfate de zirconium (cristallisé, anisotrope, poreux), par exemple ZrOSO4, par calcination ou par traitement hydrothermal d'un ZBS, ou encore d'une zircone dopée à l'oxyde d'yttrium en solution solide, par calcination ou traitement hydrothermal d'un hydrate de zirconium dopé par un hydrate d'yttrium en mélange intime moléculaire. Les règles ci-dessus permettent à l'homme du métier de trouver des particules adaptées à une application particulière par de simples tests de routine, et en particulier de trouver des particules anisotropes. Le cas échéant, il est possible de mettre en œuvre le plan d'expérience suivant. A l'issue de l'étape e), on peut ainsi procéder aux étapes suivantes : f) optionnellement, réalisation d'un premier test de conformité permettant de contrôler si la poudre de particules obtenue à l'issue de l'étape précédente présente : un pourcentage minimal de particules présentant une taille dans une plage de tailles acceptables incluse dans la plage 50 nm - 200 μm ; et un pourcentage minimal de particules anisotropes ; et, optionnellement, un indice de porosité, en particulier supérieur à 2; g) si le test de conformité est négatif, c'est-à-dire si ladite poudre n'est pas conforme, réexécution des étapes précédentes en modifiant les conditions de fabrication.
Le test de conformité à l'étape f) peut être, par exemple, considéré comme positif si plus de 20%, voire plus de 50%, voire plus de 80%, voire plus de 90%, voire plus de 95% en nombre des particules présentent une morphologie anisotrope et si plus de 50%, voire plus de 80%, voire plus de 90% en nombre des particules présentent une taille dans la plage de tailles acceptables. Ces critères peuvent notamment être utilisés lorsqu'aucune étape d) n'a été effectuée. Pour rechercher des particules poreuses, le test de conformité à l'étape f) peut être considéré comme positif si plus de 20%, voire plus de 50%, voire plus de 80%, voire plus de 90%, voire plus de 95% en nombre des particules présentent une morphologie anisotrope, et - si plus de 50%, voire plus de 80%, voire plus de 90% en nombre des particules présentent une taille dans la plage de tailles acceptables, et si l'indice de porosité Ip est supérieur à 2. Ces critères peuvent notamment être utilisés lorsqu'une étape d'hydrolyse basique (étape d)), voire une étape de calcination (étape eθ), voire une étape de traitement hydrothermal (étape e2)) a été effectuée.
La modification des conditions d'hydrolyse basique et/ou de calcination et/ou de traitement hydrothermal permet également d'agir sur l'indice de porosité. Une augmentation du pH lors de l'hydrolyse basique conduit à une augmentation de l'indice de porosité Ip. Lors de la calcination et/ou du traitement hydrothermal, l'indice Ip diminue lorsque la température de chauffage augmente et/ou lorsque le temps de maintien en palier augmente.
Quel que soit le test de conformité mis en œuvre à l'étape f), la borne inférieure de la plage de tailles acceptables peut notamment être de 100 nm, 150 nm, voire 200 nm et/ou la borne supérieure de la plage de tailles acceptables peut notamment être de 80 μm.
A l'étape g), si les particules ne sont pas conformes, on peut notamment déterminer les conditions d'une nouvelle synthèse en modifiant : lors de l'étape a) : o la nature de I ' additif ; et/ou o la concentration de l'additif d'un incrément de concentration de préférence supérieur à 5% de la concentration initiale et/ou inférieur à 15% de la concentration initiale, par exemple de 10% de la concentration initiale ; et/ou o l'ordre d'introduction dans le solvant des différents constituants de la liqueur mère, notamment en introduisant l'additif avant le deuxième réactif et immédiatement avant ou après le premier réactif et/ou o le pH, notamment en le fixant à une valeur inférieure à 2 ; et/ou o le rapport entre la quantité de groupements anioniques et la quantité d'ions Zr + et Hf4+ d'un incrément de préférence supérieur à 0,3 et/ou inférieur à 0,6, par exemple 0,4 ; et/ou - lors de l'étape b) : o la température de chauffage de préférence d'un incrément de température au plus de 15°C et/ou supérieur à 5°C, par exemple de 100C ; et/ou o la durée de maintien en température Δt d'un incrément de durée de préférence supérieur à 20 minutes et/ou inférieur à 40 minutes, par exemple de 30 minutes ; et/ou o la vitesse de montée à la température de chauffage v, de préférence en la fixant inférieure à S0°C/min, puis en la diminuant d'un incrément de 5°C/min ; et/ou lors de l'étape d) : o la température de chauffage d'un incrément de température de préférence au plus de 15°C et/ou supérieur à 50C, par exemple de 1O0C ; et/ou o le pH en le fixant de préférence à une valeur supérieure à 11 ; et/ou lors de l'étape ei) : o la température de chauffage en la fixant de préférence à une température inférieure à 12000C ; et/ou o la durée de maintien en température Δt d'un incrément de durée de préférence supérieur à 20 minutes et/ou inférieur à 40 minutes, par exemple de 30 minutes ; et/ou lors de l'étape e2) : o la température de chauffage en la fixant à une température de préférence inférieure à 2500C, ou inférieure à 2000C ; et/ou o la durée de maintien en température Δt d'un incrément de durée de préférence supérieur à 20 minutes et/ou inférieur à 40 minutes, par exemple de 30 minutes. Par « incrément », on entend une variation positive ou négative d'un paramètre.
Les inventeurs ont découvert et préconisent les règles suivantes :
Pour augmenter la taille maximale des particules, il est préférable, à l'étape a), d'augmenter l'acidité de la liqueur mère, et/ou le rapport entre la quantité de groupements anioniques et la quantité d'ions Zr4+ et Hf4+, et/ou la teneur en additif et/ou, à l'étape b), d'augmenter la température de chauffage et/ou la durée de maintien en température ; pour diminuer l'indice de sphéricité, il est préférable, à l'étape a), d'augmenter l'acidité de la liqueur mère, et/ou le rapport entre la quantité de groupements anioniques et la quantité d'ions Zr4+ et Hf4+, et/ou, à l'étape b), de diminuer la température de chauffage ; - pour favoriser l'agrégation des particules de base, il est préférable, à l'étape a), de diminuer l'acidité de la liqueur mère, et/ou d'augmenter le rapport entre la quantité de groupements anioniques et la quantité d'ions Zr4+ et Hf4+ et/ou, à l'étape b), d'augmenter la durée de maintien en température ; pour augmenter l'aire spécifique des particules, il est préférable, à l'étape a) d'augmenter la teneur en additif, et/ou à l'étape d) d'augmenter la température d'hydrolyse basique, et/ou à l'étape ei) de diminuer la température de calcination, et/ou à l'étape e2) de diminuer la température du traitement hydrothermal. Il en est de même pour augmenter le volume mésoporeux et/ou microporeux; - pour augmenter le rendement, c'est-à-dire la quantité de matière solide précipitée, il est préférable, à l'étape a), de diminuer l'acidité et/ou de choisir un rapport entre la quantité de groupements anioniques et la quantité d'ions Zr4+ et Hf4+ qui soit compris entre 0,5 et 1,2 et/ou d'augmenter la teneur en additif et/ou, à l'étape b), d'augmenter la température de chauffage et/ou d'augmenter la durée de maintien en température.
La morphologie et l'indice de sphéricité des particules sont modifiés par les valeurs des différents paramètres définis ci-dessus. Les inventeurs ont découvert et préconisent les règles suivantes :
En modifiant les paramètres d'une synthèse ayant généré des aiguilles de manière à augmenter le rapport entre la quantité de groupements anioniques, par exemple SO4 2" , et la quantité d'ions Zr4+ et/ou Hf4+ et/ou de manière à augmenter la teneur en additif, on augmente la quantité d'aiguilles par rapport à la quantité de particules isotropes lors d'une synthèse suivante ; En modifiant les paramètres d'une synthèse ayant généré des plaquettes de manière à augmenter l'acidité de la liqueur mère et/ou la durée de maintien en palier, on augmente la quantité de plaquettes par rapport à la quantité de particules isotropes lors d'une synthèse suivante ; En modifiant les paramètres d'une synthèse ayant généré des étoiles de manière à augmenter, dans la liqueur mère, le rapport entre la quantité de groupements anioniques, par exemple SO4 2", et la quantité d'ions Zr4+ et/ou Hf4+ et/ou la teneur en additif, on augmente la quantité d'étoiles par rapport à la quantité de particules isotropes lors d'une synthèse suivante ;
En modifiant les paramètres d'une synthèse ayant généré des oursins de manière à augmenter l'acidité de la liqueur mère et/ou avec la teneur en additif, on augmente la quantité d'oursins par rapport à la quantité de particules isotropes lors d'une synthèse suivante ; En modifiant les paramètres d'une synthèse ayant généré des sphères creuses de manière à augmenter, dans la liqueur mère, le rapport entre la quantité de groupements anioniques, par exemple SO4 2", et la quantité d'ions Zr + et/ou Hf4+ et/ou l'acidité de la liqueur mère, on augmente la quantité de sphères creuses par rapport à la quantité de particules isotropes lors d'une synthèse suivante ;
En modifiant les paramètres d'une synthèse ayant généré des lamelles de manière à augmenter, dans la liqueur mère, le rapport entre la quantité de groupements anioniques, par exemple SO4 2", et la quantité d'ions Zr + et/ou Hf4+ et/ou la teneur en additif, on augmente la quantité de lamelles par rapport à la quantité de particules isotropes lors d'une synthèse suivante ;
En modifiant les paramètres d'une synthèse ayant généré des aiguilles de manière à diminuer la teneur en additif dans la liqueur mère, on rend plus fines les aiguilles lors d'une synthèse suivante ; En modifiant les paramètres d'une synthèse ayant généré des aiguilles de manière à augmenter, dans la liqueur mère, le rapport entre la quantité de groupements anioniques, par exemple SO4 ", et la quantité d'ions Zr + et Hr+ et/ou l'acidité de la liqueur mère, on augmente la quantité d'étoiles lors d'une synthèse suivante, les deux formes pouvant coexister lors de la transition; En modifiant les paramètres d'une synthèse ayant généré des aiguilles de manière à augmenter l'acidité et/ou diminuer la teneur en additif de la liqueur mère, on augmente la quantité d'oursins lors la synthèse suivante, les deux formes pouvant coexister lors de la transition; En modifiant les paramètres d'une synthèse ayant généré des aiguilles de manière à augmenter l'acidité et/ou la durée de maintien en température de la liqueur mère, on augmente la quantité de sphères creuses, les deux formes pouvant coexister lors de la transition; - En modifiant les paramètres d'une synthèse ayant généré des oursins de manière à augmenter l'acidité et/ou la durée de maintien en température de la liqueur mère, on augmente la quantité de sphères creuses, les deux formes pouvant coexister lors de la transition;
En modifiant les paramètres d'une synthèse ayant généré des plaquettes de manière à augmenter la teneur en additif de la liqueur mère, on augmente la quantité de lamelles, les deux formes pouvant coexister lors de la transition. Dans un mode de réalisation, on détermine les paramètres des étapes a) et b) pour obtenir, à l'issue de l'étape b), des particules de dérivé primaire anisotropes.
Le tableau suivant récapitule les conditions préférées pour les étapes a) et b) pour obtenir une majorité, en nombre, de particules présentant certaines morphologies particulières.
Dans la première colonne "*" indique les paramètres prépondérants.
L'ordre d'introduction des constituants dans la liqueur mère est l'ordre préféré mentionné ci-dessus.
Les règles et conditions précédentes, selon des modes de réalisation préférés de l'invention, ne sont pas limitatives. Elles permettent, avec les exemples décrits ci-après, de fabriquer une poudre adaptée à une application particulière.
Par ailleurs, les procédés connus appliqués aux produits actuellement disponibles ont permis aux inventeurs de faire les constats suivants :
- la précipitation de solutions basiques ou l'hydrolyse de dérivés connus de l'art antérieur conduisent à une morphologie isotrope des hydrates fabriqués, qu'il y ait présence ou non de tensio-actifs ;
- un traitement hydrothermal réalisé à une température supérieure à 2000C, voire supérieure à 250 0C, d'une suspension de particules isotropes ou d'une solution conduit à des poudres de particules denses cristallisées, éventuellement anisotropes. Ce type de traitement hydrothermal est décrit par exemple dans l'article « Morphology of zirconia synthesized hydrothermally from zirconium oxychloride », Journal of the American Ceramic Society, 1992, vol. 75, n°9, pp. 2515-2519.
- un traitement hydrothermal réalisé à une température inférieure à 2000C conduit à des poudres de particules isotropes. Ce type de traitement est décrit par exemple dans l'article « Nucleation and growth for synthesis of nanometric zirconia particles by forced hydrolysis », Journal of Colloid and Interface Science, 1998, vol. 198, pp 87-99. la combustion d'un sel métallique, l'oxydation d'un métal, ou encore la calcination à haute température de précurseurs conduisent à des poudres de particules denses, éventuellement anisotropes.
Les étapes du procédé qui vient d'être décrit peuvent être modifiées afin de doper les particules fabriquées. Un dopant ou plusieurs dopants peuvent être introduits à une ou plusieurs étapes, selon des techniques connues de l'homme du métier :
Etape a)
A l'étape a), un dopant A choisi parmi les composés d'éléments de la colonne 17
(halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium
Y, de scandium Sc, de lanthanides, d'alcalino-terreux (éléments de la colonne 2 du tableau périodique des éléments), de titane Ti, de silicium Si5 de soufre S, de phosphore
P, d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn, de fer Fe, de manganèse Mn, de niobium Nb, de gallium Ga, d'étain Sn5 de plomb Pb et leurs mélanges peut être ajouté de façon optionnelle à la liqueur mère. Lesdits composés peuvent être par exemple des oxydes, des hydrates, des sels, des carbures, des nitrures, des métaux. Un composé d'yttrium peut par exemple être un sel d'yttrium, par exemple le sel YCl3.
De préférence, le dopant A est choisi parmi les oxydes, les hydrates, les sels, de préférence encore parmi les sels. Si le dopant A est un composé de soufre S et/ou de phosphore P et leurs mélanges, de préférence ce composé est SO4 2' et/ou PO4 3", de préférence introduit par le deuxième réactif.
Si le dopant A est un composé d'aluminium Al, il est de préférence choisi parmi les hydrates d'aluminium. Si le dopant A est un composé de silicium Si, l'oxyde de silicium est préféré.
De préférence encore, le dopant A est soluble en milieu acide. Le dopant A est de préférence choisi parmi les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de praséodyme Pr5 de néodyme Nd, de calcium Ca, de magnésium Mg, de baryum Ba, de strontium Sr, de titane Ti, de silicium Si, de soufre S, de phosphore P, d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn, de fer Fe, de manganèse Mn, de niobium Nb, de galium Ga, d'étain Sn, de plomb Pb et leurs mélanges, de préférence choisi parmi les composés des éléments de la colonne 17 (halogénures), les composés des éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, de soufre S, de phosphore P, d'aluminium Al et leurs mélanges. De préférence encore, le dopant A est choisi parmi les composés de chlore Cl, de fluor F, de sodium Na, de potassium K, d'yttrium Y5 de scandium Sc, de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, de soufre S, de phosphore P, d'aluminium Al et leur mélanges. De préférence enfin, le dopant A est choisi parmi les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, de soufre S, d'aluminium Al et leurs mélanges. A l'issue de l'étape b), le dérivé primaire obtenu sera alors un dérivé primaire de zirconium et/ou d'hafnium dopé. Par exemple, si à l'étape a) la solution mère contient un oxychlorure de zirconium, de l'eau, un additif permettant de modifier la morphologie, un deuxième réactif amenant les groupements anioniques SO4 2", et un sel d'yttrium YCl3, le dérivé primaire obtenu à l'issu de l'étape b) sera un sulfate basique de zirconium dopé à un sulfate basique d'yttrium.
Dans un mode de réalisation particulier préféré, un dopant A est ajouté lors de l'étape a).
Etape b)
A l'étape b), après obtention d'une suspension de particules de dérivé primaire, éventuellement dopé, ou d'une poudre de particules de dérivé primaire éventuellement dopé, un dopant B choisi parmi les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthanides, d'alcalino-terreux (éléments de la colonne 2 du tableau périodique des éléments), de titane Ti, de silicium Si, d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn, de fer Fe, de manganèse Mn, de niobium Nb5 de galium Ga, d'étain Sn, de plomb Pb et leurs mélanges peut être ajouté de façon optionnelle à la liqueur mère.
Lesdits composés peuvent être par exemple des oxydes, des hydrates, des sels, des carbures, des nitrures, des métaux. Un composé d'yttrium peut par exemple être un sel d'yttrium, par exemple le sel YCl3. De préférence, le dopant B est choisi parmi les oxydes, les hydrates, les sels, de préférence encore parmi les sels.
Si le dopant B est un composé d'aluminium Al, il est de préférence choisi parmi les hydrates d'aluminium.
Si le dopant B est un composé de silicium Si, il s'agit de préférence de l'oxyde de silicium. Le dopant B est de préférence choisi parmi les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc5 de lanthane La, de cérium Ce, de praséodyme Pr, de néodyme Nd, de calcium Ca, de magnésium Mg, de baryum Ba, de strontium Sr, de titane Ti, de silicium Si5 d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn, de fer Fe, da manganèse Mn, de niobium Nb, de galium Ga5 d'étain Sn, de plomb Pb et leurs mélanges, de préférence choisi parmi les composés des éléments de la colonne 17 (halogénures), les composés des éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce5 de calcium Ca, de magnésium Mg, de silicium Si, d'aluminium Al et leurs mélanges. De préférence encore, le dopant B est choisi parmi les composés de chlore Cl5 de fluor F5 de sodium Na, de potassium K, d'yttrium Y, de scandium Sc, de lanthane La1 de cérium Ce, de calcium Ca5 de magnésium Mg, de silicium Si, d'aluminium Al et leurs mélanges. De préférence enfin, le dopant B est choisi parmi les composés d'yttrium Y, de scandium Sc, de lanthane La5 de cérium Ce, de calcium Ca, de magnésium Mg5 de silicium Si, d'aluminium Al et leurs mélanges.
A l'issue de l'étape b), le dérivé primaire obtenu sera alors un dérivé primaire de zirconium et/ou d'hafnium dopé. Le dopant B ou un successeur du dopant B peut être associé audit dérivé primaire par tout procédé connu de l'homme du métier, par exemple par un procédé d'imprégnation ou par co-précipitation après remise en suspension.
L'ajout d'un dopant A à l'étape a) n'exclut pas l'ajout d'un dopant B à l'étape b), et réciproquement.
Etape c)
A l'étape c), optionnelle, avant de faire subir au dérivé primaire de zirconium et/ou d'hafnium un traitement visant à substituer les groupements anioniques dudit dérivé primaire apportés par le deuxième réactif par d'autres groupements anioniques présentant un fort pouvoir complexant avec le zirconium et/ou l'hamium, un dopant Cl choisi parmi les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthanides, d'alcalino-terreux (éléments de la colonne 2 du tableau périodique des éléments), de titane Ti, de silicium Si5 de soufre S, de phosphore P5 d'aluminium Al, de tungstène W, de chrome Cr5 de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu5 de zinc Zn, de fer Fe, de manganèse Mn, de niobium Nb, de galium Ga, d'étain Sn, de plomb Pb et leurs mélanges peut être utilisé de façon optionnelle pour doper ledit dérivé primaire, Lesdits composés peuvent être par exemple des oxydes, des hydrates, des sels, des carbures, des nitrures, des métaux. Un composé d'yttrium peut par exemple être un sel d'yttrium, par exemple le sel YCI3.
De préférence, le dopant Cl est choisi parmi les oxydes, les hydrates, les sels, de préférence encore parmi les sels. Si le dopant Cl est un composé de soufre S et/ou de phosphore P et leurs mélanges, de préférence ce composé est SO4 2" et/ou PO4 3", de préférence introduit par le composé apte à d'assurer la substitution des groupements anioniques apportés par le deuxième réactif. Si le dopant Cl est un composé d'aluminium Al, il est de préférence choisi parmi les hydrates d'aluminium. Si le dopant Cl est un composé de silicium Si5 il s'agit de préférence de l'oxyde de silicium. Le dopant Cl est de préférence choisi parmi les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce5 de praséodyme Pr5 de néodyme Nd, de calcium Ca, de magnésium Mg, de baryum Ba, de strontium Sr, de titane Ti, de silicium Si, de soufre S, de phosphore P, d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn5 de fer Fe, de manganèse Mn, de niobium Nb, de galium Ga, d'étain Sn, de plomb Pb et leurs mélanges, de préférence choisi parmi les composés des éléments de la colonne 17 (halogénures), les composés des éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, de soufre S, de phosphore P, d'aluminium Al et leurs mélanges. De préférence encore, le dopant Cl est choisi parmi les composés de chlore Cl, de fluor F, de sodium Na5 de potassium K, d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, de soufre S, de phosphore P, d'aluminium Al et leurs mélanges. De préférence enfin, le dopant Cl est choisi parmi les composés d'yttrium Y, de scandium Sc5 de lanthane La5 de cérium Ce, de calcium Ca5 de magnésium Mg, de silicium Si, de soufre S, d'aluminium Al et leurs mélanges. A l'issue de l'étape c), le dérivé secondaire obtenu sera alors un dérivé secondaire de zirconium et/ou d'hafnium dopé.
L'ajout d'un dopant A à l'étape a) et/ou l'ajout d'un dopant B à l'étape b) n'exclut pas l'ajout d'un dopant Cl à l'étape c), et réciproquement.
En fin d'étape c), optionnelle, le dérivé secondaire obtenu, éventuellement dopé, peut être dopé à partir d'un dopant C2 choisi parmi les composés d'éléments de la colonne 17
(halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthanides, d'alcalino-terreux (éléments de la colonne 2 du tableau périodique des éléments), de titane Ti, de silicium Si, de soufre S, de phosphore P, d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V5 d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn5 de fer Fe, de manganèse Mn, de niobium Nb, de galium Ga, d'étain Sn, de plomb Pb, de cobalt Co, de ruthénium Ru, de rhodium Rh, de palladium Pd, d'argent Ag, d'osmium Os1 d'iridium Ir, de platine Pt, d'or Au et leurs mélanges ; de préférence le dopant C2 est choisi parmi les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc1 de lanthane La, de cérium Ce, de praséodyme Pr, de néodyme Nd, de calcium Ca, de magnésium Mg, de baryum Ba, de strontium Sr, de titane Ti, de silicium Si, de soufre S5 de phosphore P, d'aluminium Al, de tungstène W, de chrome Cr5 de molybdène Mo, de vanadium V, d'antimoine Sb5 de nickel Ni, de cuivre Cu, de zinc Zn, de fer Fe, de manganèse Mn5 de niobium Nb, de galium Ga, d'étain Sn, de plomb Pb5 de cobalt Co, de ruthénium Ru, de rhodium Rh, de palladium Pd, d'argent Ag, d'osmium Os, d'iridium Ir, de platine Pt, d'or Au et leurs mélanges. De préférence encore, le dopant C2 est choisi parmi les composés des éléments de la colonne 17 (halogénures), les composés des éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthane La5 de cérium Ce5 de calcium Ca, de magnésium Mg, de silicium Si, de soufre S5 de phosphore P, d'aluminium Al et leurs mélanges. De préférence, le dopant C2 est choisi parmi les composés de chlore Cl, de fluor F, de sodium Na, de potassium K, d'yttrium Y, de scandium Sc5 de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, de soufre S, de phosphore P, d'aluminium Al et leurs mélanges. De préférence encore, le dopant C2 est choisi parmi les composés d'yttrium Y, de scandium Sc5 de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, de soufre S5 d'aluminium Al et leurs mélanges.
Les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc5 de lanthanides, d'alcalino-terreux (éléments de la colonne 2 du tableau périodique des éléments), de titane Ti, de silicium Si, de soufre S, de phosphore P5 d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo5 de vanadium V5 d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn, de fer Fe, de manganèse Mn5 de niobium Nb, de galium Ga, d'étain Sn, de plomb Pb et leurs mélanges, peuvent être par exemple des oxydes, des hydrates, des sels, des carbures, des nitrures, des métaux. Un composé d'yttrium peut par exemple être un sel d'yttrium, par exemple le sel YCl3. De préférence, lesdits composés sont choisis parmi les oxydes, les hydrates, les sels, de préférence encore parmi les sels. Les composés de cobalt Co, de ruthénium Ru, de rhodium Rh, de palladium Pd, d'argent Ag, d'osmium Os1 d'iridium Ir, de platine Pt, d'or Au et leurs mélanges peuvent être par exemple des oxydes, des hydrates, des sels, des métaux. Un composé de platine peut par exemple être un sel de platine. De préférence, lesdits composés de cobalt Co, de ruthénium Ru, de rhodium Rh, de palladium Pd, d'argent Ag, d'osmium Os, d'iridium Ir, de platine Pt, d'or Au et leurs mélanges sont choisis parmi les oxydes, les hydrates, les sels, les métaux, de préférence encore parmi les métaux.
Pour doper le dérivé secondaire, tout procédé connu de l'homme du métier, par exemple par un procédé d'imprégnation, par co -précipitation après remise en suspension, peut être envisagé.
L'ajout d'un dopant A à l'étape a) et /ou l'ajout d'un dopant B à l'étape b) et/ou l'utilisation d'un dopant Cl à l'étape c) n'exclut pas l'utilisation d'un dopant C2 et réciproquement.
Etape d)
A l'étape d), lorsque le dérivé primaire ou le dérivé secondaire, dopé ou non, est en suspension, avant de réaliser l'hydrolyse basique, un dopant Dl choisi parmi les composés à base d'yttrium Y, de scandium Sc, de lanthanides, d'alcalino-terreux (éléments de la colonne 2 du tableau périodique des éléments), de titane Ti, de silicium Si, de soufre S5 de phosphore P, d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn, de fer Fe, de manganèse Mn, de niobium Nb, de galium Ga, d'étain Sn, de plomb Pb et leurs mélanges, peut optionnellement être ajouté dans la suspension. Lesdits composés peuvent être par exemple des oxydes, des hydrates, des sels, des carbures, des nitrures, des métaux. Un composé d'yttrium peut par exemple être un sel d'yttrium, par exemple le sel YCl3.
De préférence, le dopant Dl est choisi parmi les oxydes, les hydrates, les sels, de préférence encore parmi les sels. De préférence encore, le dopant Dl est soluble dans le solvant polaire dans lequel le dérivé primaire ou le dérivé secondaire est en suspension. Le dopant Dl est de préférence choisi parmi les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de praséodyme Pr, de néodyme Nd, de calcium Ca, de magnésium Mg, de baryum Ba, de strontium Sr, de titane Ti, de silicium Si, de soufre S, de phosphore P, d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn, de fer Fe1 de manganèse Mn, de niobium Nb, de galium Ga, d'étain Sn, de plomb Pb et leurs mélanges, de préférence encore le dopant Dl est choisi parmi les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, de soufre S, d'aluminium Al et leurs mélanges. Le dopant Dl est de préférence introduit dans le solvant en même temps que le dérivé primaire ou dérivé secondaire.
Par exemple, si avant de réaliser l'hydrolyse basique d'un ZBS, un sel d'yttrium est ajouté dans la suspension, l'hydrate obtenu sera un hydrate de zirconium dopé à un hydrate d'yttrium. L'ajout d'un dopant A à l'étape a) et /ou l'ajout d'un dopant B à l'étape b) et/ou l'utilisation d'un dopant Cl à l'étape c) et/ou d'un dopant C2 en fin d'étape c) n'exclut pas l'ajout d'un dopant Dl à l'étape d), et réciproquement. Dans un mode de réalisation particulier, on ajoute un dopant A à l'étape a) et un dopant Dl à l'étape d), le dopant A étant différent du dopant Dl. L'hydrate obtenu à l'issue de l'étape d) est alors co-dopé, et par exemple est un hydrate de zirconium co-dopé.
Après hydrolyse basique, l'hydrate de zirconium et/ou d'hafnium, éventuellement dopé, éventuellement séché, peut être dopé à l'aide d'un dopant D2 choisi parmi les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthanides, d'alcalino-terreux (éléments de la colonne 2 du tableau périodique des éléments), de titane Ti, de silicium Si, de soufre S, de phosphore P, d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn, de fer Fe, de manganèse Mn, de niobium Nb, de galium Ga, d'étain Sn, de plomb Pb, de cobalt Co, de ruthénium Ru, de rhodium Rh, de palladium Pd, d'argent Ag, d'osmium Os, d'iridium Ir, de platine Pt, d'or Au et leurs mélanges ; de préférence le dopant D2 est choisi parmi les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de praséodyme Pr, de néodyme Nd, de calcium Ca, de magnésium Mg, de baryum Ba, de strontium Sr, de titane Ti, de silicium Si, de soufre S, de phosphore P, d'aluminium Al5 de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn, de fer Fe, de manganèse Mn, de niobium Nb, de galium Ga, d'étain Sn, de plomb Pb, de cobalt Co, de ruthénium Ru, de rhodium Rh, de palladium Pd, d'argent Ag, d'osmium Os, d'iridium Ir, de platine Pt, d'or Au et leurs mélanges ; de préférence encore, le dopant D2 est choisi parmi les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, de soufre S, de phosphore P, d'aluminium Al et leurs mélanges. De préférence encore, le dopant D2 est choisi parmi les composés de chlore Cl, de fluor F, de sodium Na, de potassium K, d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, de soufre S, de phosphore P, d'aluminium Al et leurs mélanges. De préférence encore, le dopant D2 est choisi parmi les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, de soufre S, d'aluminium Al et leurs mélanges.
Les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthanides, d'alcalino-terreux (éléments de la colonne 2 du tableau périodique des éléments), de titane Ti, de silicium Si, de soufre S, de phosphore P, d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn, de fer Fe, de manganèse Mn, de niobium Nb, de galium Ga, d'étain Sn, de plomb Pb et leurs mélanges, peuvent être par exemple des oxydes, des hydrates, des sels, des carbures, des nitrures, des métaux. Un composé d'yttrium peut par exemple être un sel d'yttrium, par exemple le sel YCl3.
De préférence, lesdits composés sont choisis parmi les oxydes, les hydrates, les sels, de préférence encore, le cas échéant, parmi les hydrates.
Les composés de cobalt Co, de ruthénium Ru, de rhodium Rh, de palladium Pd, d'argent Ag, d'osmium Os, d'iridium Ir, de platine Pt, d'or Au et leurs mélanges peuvent être par exemple des oxydes, des hydrates, des sels, des métaux. Un composé de platine peut par exemple être un sel de platine. De préférence, lesdits composés de cobalt Co, de ruthénium Ru5 de rhodium Rh, de palladium Pd, d'argent Ag, d'osmium Os, d'iridium Ir, de platine Pt, d'or Au et leurs mélanges sont choisis parmi les oxydes, les hydrates, les sels, les métaux, de préférence encore parmi les métaux. Pour doper l'hydrate, tout procédé connu de l'homme du métier, par exemple par un procédé d'imprégnation, par co-précipitation après remise en suspension, peut être utilisé.
Cette opération de dopage peut être réalisée plusieurs fois.
L'ajout d'un dopant A à l'étape a) et /ou l'ajout d'un dopant B à l'étape b) et/ou l'utilisation d'un dopant Cl à l'étape c) et/ou l'utilisation d'un dopant C2 en fin d'étape c) et/ou l'ajout d'un dopant Dl avant hydrolyse basique n'exclut pas l'utilisation d'un dopant D2 après hydrolyse basique, et réciproquement.
Etape e)
A l'étape e), avant de réaliser la calcination du dérivé obtenu en fin d'étape b) ou c), ou de l'hydrate obtenu en fin d'étape d), un dopant El choisi parmi les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthanides, d'alcalino-terreux (éléments de la colonne 2 du tableau périodique des éléments), de titane Ti5 de silicium Si, de soufre S, de phosphore P, d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn, de fer Fe, de manganèse Mn, de niobium Nb, de galium Ga, d'étain Sn, de plomb Pb, de cobalt Co, de ruthénium Ru, de rhodium Rh, de palladium Pd, d'argent Ag, d'osmium Os, d'iridium Ir, de platine Pt, d'or Au ; et leurs mélanges peut optionnel lement être utilisé pour doper le dérivé ou l'hydrate. Le dopant El est de préférence choisi parmi les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de praséodyme Pr, de néodyme Nd, de calcium Ca, de magnésium Mg, de baryum Ba, de strontium Sr, de titane Ti, de silicium Si, de soufre S, de phosphore P, d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn, de fer Fe3 de manganèse Mn, de niobium Nb, de galium Ga, d'étain Sn, de plomb Pb, de cobalt Co, de ruthénium Ru, de rhodium Rh, de palladium Pd, d'argent Ag, d'osmium Os, d'iridium Ir, de platine Pt, d'or Au, et leurs mélanges ; de préférence encore, le dopant El est choisi parmi les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, de soufre S5 de phosphore P, d'aluminium Al et leurs mélanges.
De préférence encore, le dopant El est choisi parmi les composés de chlore Cl, de fluor F, de sodium Na, de potassium K, d'yttrium Y5 de scandium Sc, de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, de soufre S, de phosphore P3 d'aluminium Al et leurs mélanges. De préférence encore, le dopant El est choisi parmi les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, de soufre S, d'aluminium Al et leurs mélanges. Les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthanides, d'alcalino-terreux (éléments de la colonne 2 du tableau périodique des éléments), de titane Ti, de silicium Si, de soufre S, de phosphore P, d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn, de fer Fe, de manganèse Mn, de niobium Nb, de galium Ga, d'étain Sn, de plomb Pb et leurs mélanges, peuvent être par exemple des oxydes, des hydrates, des sels, des carbures, des nitrures, des métaux. Un composé d'yttrium peut par exemple être un sel d'yttrium, par exemple le sel YCl3.
De préférence, lesdits composés sont choisis parmi les oxydes, les hydrates, les sels, de préférence encore, le cas échéant, parmi les oxydes. Les composés de cobalt Co, de ruthénium Ru, de rhodium Rh, de palladium Pd, d'argent
Ag, d'osmium Os, d'iridium Ir, de platine Pt, d'or Au et leurs mélanges peuvent être par exemple des oxydes, des hydrates, des sels, des métaux. Un composé de platine peut par exemple être un sel de platine.
De préférence, lesdits composés de cobalt Co, de ruthénium Ru, de rhodium Rh, de palladium Pd, d'argent Ag, d'osmium Os, d'iridium Ir, de platine Pt, d'or Au et leurs mélanges sont choisis parmi les oxydes, les hydrates, les sels, les métaux, de préférence encore parmi les métaux. L'oxyde obtenu après calcination sera un oxyde dopé.
Le dopage peut être effectué par toutes les techniques connues de l'homme du métier, en particulier par ajout d'une poudre ou par imprégnation au moyen d'une suspension.
L'ajout d'un dopant A à l'étape a) et /ou l'ajout d'un dopant B à l'étape b) et/ou l'utilisation d'un dopant Cl à l'étape c) et/ou l'utilisation d'un dopant C2 en fin d'étape c) et/ou l'ajout d'un dopant Dl avant hydrolyse basique et/ou l'utilisation d'un dopant D2 après hydrolyse basique n'exclut pas l'utilisation d'un dopant El avant calcination, et réciproquement.
Après l'étape de calcination, l'oxyde de zirconium et/ou d'hafnium, éventuellement dopé, éventuellement séché, peut être dopé à l'aide d'un dopant E2 choisi parmi les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthanides, d'alcalino-terreux (éléments de la colonne 2 du tableau périodique des éléments), de titane Ti, de silicium Si, de soufre S, de phosphore P, d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo5 de vanadium V5 d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn5 de fer Fe5 de manganèse Mn5 de niobium Nb, de galium Ga, d'étain Sn, de plomb Pb5 de cobalt Co5 de ruthénium Ru, de rhodium Rh, de palladium Pd, d'argent Ag, d'osmium Os, d'iridium Ir5 de platine Pt, d'or Au et leurs mélanges ; de préférence le dopant E2 est choisi parmi les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de praséodyme Pr, de néodyme Nd5 de calcium Ca, de magnésium Mg, de baryum Ba, de strontium Sr, de titane Ti, de silicium Si3 de soufre S, de phosphore P5 d'aluminium Al5 de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V5 d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn5 de fer Fe5 de manganèse Mn5 de niobium Nb, de galium Ga, d'étain Sn, de plomb Pb, de cobalt Co, de ruthénium Ru5 de rhodium Rh, de palladium Pd5 d'argent Ag, d'osmium Os, d'iridium Ir, de platine Pt, d'or Au et leurs mélanges ; de préférence encore, le dopant E2 est choisi parmi les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg, de silicium Si, de soufre S1 de phosphore P, d'aluminium Al et leurs mélanges. De préférence encore, le dopant E2 est choisi parmi les composés de chlore Cl, de fluor F, de sodium Na, de potassium K, d'yttrium Y, de scandium Sc, de lanthane La5 de cérium Ce, de calcium Ca5 de magnésium Mg, de silicium Si1 de soufre S, de phosphore P, d'aluminium Al et leurs mélanges. De préférence encore, le dopant E2 est choisi parmi les composés d'yttrium Y, de scandium Sc, de lanthane La, de cérium Ce, de calcium Ca, de magnésium Mg1 de silicium Si, de soufre S, d'aluminium Al et leurs mélanges.
Les composés d'éléments de la colonne 17 (halogénures), les composés d'éléments de la colonne 1 (alcalins), les composés d'yttrium Y, de scandium Sc, de lanthanides, d'alcalino-terreux (éléments de la colonne 2 du tableau périodique des éléments), de titane Ti5 de silicium Si, de soufre S, de phosphore P, d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo5 de vanadium V, d'antimoine Sb, de nickel Ni5 de cuivre Cu, de zinc Zn, de fer Fe, de manganèse Mn, de niobium Nb, de galium Ga, d'étain Sn, de plomb Pb et leurs mélanges, peuvent être par exemple des oxydes, des hydrates, des sels, des carbures, des nitrures, des métaux. Un composé d'yttrium peut par exemple être un sel d'yttrium, par exemple le sel YCl3.
De préférence, lesdits composés sont choisis parmi les oxydes, les hydrates, les sels, de préférence encore parmi les sels.
Les composés de cobalt Co, de ruthénium Ru, de rhodium Rh, de palladium Pd, d'argent Ag, d'osmium Os, d'iridium Ir, de platine Pt, d'or Au et leurs mélanges peuvent être par exemple des oxydes, des hydrates, des sels, des métaux. Un composé de platine peut par exemple être un sel de platine.
De préférence, lesdits composés de cobalt Co, de ruthénium Ru, de rhodium Rh, de palladium Pd, d'argent Ag5 d'osmium Os, d'iridium Ir, de platine Pt, d'or Au et leurs mélanges sont choisis parmi les oxydes, les hydrates, les sels, les métaux, de préférence encore parmi les métaux.
Le dopage dudit oxyde peut être effectué par tout procédé connu de l'homme du métier, par exemple par un procédé d'imprégnation.
L'ajout d'un dopant A à l'étape a) et /ou l'ajout d'un dopant B à l'étape b) et/ou l'utilisation d'un dopant Cl à l'étape c) et/ou l'utilisation d'un dopant C2 en fin d'étape c) et/ou l'ajout d'un dopant Dl avant hydrolyse basique et/ou l'utilisation d'un dopant D2 après hydrolyse basique et/ou l'utilisation d'un dopant El avant calcination n'exclut pas l'utilisation d'un dopant E2 après calcination, et réciproquement.
Dans une variante de l'invention, on effectue un triple dopage de la zircone en ajoutant un premier, un deuxième et un troisième dopant. Par exemple, on fabrique un dérivé ZBS dopé Y par ajout d'un sel d'yttrium. Puis un hydrate co-dopé Y/Ce par ajout d'un sel de cérium. Puis enfin, avant calcination, on ajoute un sel d'aluminium et on obtient une zircone dopée Y/Ce/Al. De manière générale, l'utilisation d'un dopant peut être effectuée indépendamment de l'utilisation d'un ou plusieurs autres dopants.
Cependant, pour que le dopant soit localisé à l'intérieur de la particule sous la forme d'un composé défini, d'une solution solide, ou d'un mélange intime moléculaire, il est préférable que les dopants soient de type A et/ou Cl et/ou Dl et/ou El. Pour que le dopant soit localisé à l'intérieur de la particule sous la forme d'une dispersion ou d'une inclusion, ou soit localisé en surface de la particule, il est préférable que le dopant soit de type B et/ou C2 et/ou D2 et/ou E2.
La quantité molaire de dopant dans les particules peut être inférieure à 40%, inférieure à 20%, inférieure à 10%, voire inférieure à 5% ou même inférieure à 3%.
EXEMPLES
Les exemples suivants sont fournis à des fins illustratives et ne limitent pas l'invention.
Exemple comparatif 1 : Poudre hors invention
Dans un bêcher de 1 1 en Pyrex, on met en solution sous agitation 1 10 g d'oxycholure de zirconium dans 300 ml d'eau permutée, puis on ajoute 28 g de sulfate de sodium et on complète à 500 ml par de l'eau permutée. L'acidité de la liqueur mère est de 1,2, la concentration en (Zr4+ + Hf4+) est de 0,6 mol/1 et le rapport molaire entre les groupements anioniques SO42" et (Zr4+ + Hf4+) est de 0,6. Après dissolution complète des réactifs, la solution est portée, toujours sous agitation, à 900C avec une rampe de chauffage de l°C/min. La solution est maintenue à 900C pendant 1 h puis laissée à refroidir librement jusqu'en dessous de 50 0C. Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un sulfate basique de zirconium, ZBS. La poudre ainsi obtenue présente une aire spécifique de 3 m2/g et est amorphe par diffraction aux rayons X. Les particules de ZBS se présentent sous une forme quasi- sphérique caractéristique dite en « grappe de raisin ».
Dans un bêcher de 1 1 en Téflon® PTFE, le gâteau est ensuite mis en suspension dans 250 ml d'eau permutée. Dans un second Bêcher de 1 1 en Téflon® PTFE, on dissout 25 g de soude NaOH dans 250 ml d'eau permutée. La solution basique de soude est ensuite ajoutée progressivement à la suspension de ZBS ; le pH de la suspension finale est compris entre 12 et 13. La suspension est ensuite portée à 9O0C avec une rampe de chauffage de l°C/min. La suspension est maintenue à 90°C pendant 2 h puis laissée à refroidir librement jusqu'en dessous de 500C. Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau ainsi obtenu est alors remis en suspension dans 1 1 d'eau permutée et le pH est ajusté à 5 par ajout d'acide chlorhydrique à 0,1 N. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est remis en suspension dans 1 1 d'eau permutée et le pH est ajusté à 11 par ajout d'ammoniaque (NH4OH) à 1 N. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un hydrate de zirconium, ou ZHO. La poudre ainsi obtenue présente une aire spécifique de 320 m2/g. La somme des volumes mésoporeux et microporeux de 0,18 cm3 /g et la poudre est amorphe par diffraction aux rayons X. Les particules de ZHO se présentent sous une forme quasi-sphérique similaire à celle du dérivé ZBS de départ.
Le gâteau obtenu est alors séché à l'étuve pendant au moins 12 heures à HO0C, puis émotté au mortier en agate. La poudre obtenue est calcinée sous air pendant 2 heures (rampe en température de 2°C/min ; débit d'air de 100 ml/minf soit une vitesse volumique horaire VVH de 300 h-1) à 5000C.
La poudre ainsi obtenue présente une aire spécifique de 60 m /g ; la somme des volumes mésoporeux et microporeux est de 0,12 cm3 /g ; la poudre est cristallisée sous la forme d'un mélange de phases quadratique et monoclinique déterminées par diffraction aux rayons X. Les particules de zircone se présentent sous une forme quasi-sphérique similaire à celle des particules initiales du dérivé ZBS (représentées sur la figure 3a) et du ZHO.
Exemple 2 : Poudre sous forme d'aiguilles Dans un bêcher de 1 1 en Pyrex, on met en solution à 500C sous agitation 210 g d'oxychlorure de zirconium dans 300 ml d'eau permutée puis on ajoute 2,5 g de dodécyle sulfate de sodium ou SDS, puis on ajoute 52 g de sulfate de sodium et on complète à 500 ml par de l'eau permutée, la température est ajustée à 5O0C et maintenue pendant 15 minutes après dissolution complète des réactifs. L'acidité de la liqueur mère est de 2, la concentration en (Zr4+ + Hf4+) est de 1 mol/1, le rapport molaire entre les groupements anioniques SO4 2" et (Zr4+ + Hf4+) est de 0,6, et la concentration en additif SDS est de 0,02 mol/1. La présence de mousse en surface de la solution est observée. La solution est ensuite portée, toujours sous agitation, à 700C avec une rampe de chauffage de l°C/min. La solution est maintenue à 7O0C pendant 15 min puis laissée à refroidir librement jusqu'en dessous de 50 0C.
Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide ainsi que de mousse. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un sulfate basique de zirconium, ZBS. La poudre de ZBS ainsi obtenue présente une aire spécifique de 6 m2/g et est amorphe par diffraction aux rayons X. Les particules de ZBS se présentent sous une forme d'aiguilles de longueur L comprise entre 0,5 et 3 μm, de largeur 1 comprise entre 0,3 et 0,8 μm, et d'épaisseur e comprise entre 0,25 et 0,8 μm. Pour chacune de ces aiguilles, L/l est compris entre 1 ,67 et 50, et l'épaisseur e est supérieure à 0,5 fois la largeur 1. Dans un bêcher de 1 1 en Téflon® PTFE, le gâteau est ensuite mis en suspension dans 250 ml d'eau permutée. Dans un second bêcher de 1 1 en Téflon® PTFE, on dissout 25 g de soude NaOH dans 250 ml d'eau permutée. La solution basique de soude est ensuite ajoutée progressivement à la suspension de ZBS ; le pH de la suspension finale est compris entre 12 et 13. La suspension est ensuite porté à 90°C avec une rampe de chauffage de l°C/min. La suspension est maintenue à 900C pendant 2 h puis laissée à refroidir librement jusqu'en dessous de 5O0C. Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau ainsi obtenu est alors remis en suspension dans 1 1 d'eau permutée et le pH est ajusté à 5 par ajout d'acide chlorhydrique à 0,1 N. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est remis en suspension dans 1 1 d'eau permutée et le pH est ajusté à 1 1 par ajout d'ammoniaque (NH4OH) à 1 N. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un hydrate de zirconium, ou ZHO.
La poudre ainsi obtenue présente une aire spécifique de 360 m2/g et est amorphe par diffraction aux rayons X. La somme des volumes mésoporeux et microporeux est de 0,25 cm3 /g. Les particules de ZHO se présentent sous une forme d'aiguilles de longueur L comprise entre 0,5 et 3 μm, de largeur 1 comprise entre 0,3 et 0,8 μm, et d'épaisseur e comprise entre 0,25 et 0,8 μm, similaires à celles du dérivé ZBS de départ. Pour chacune de ces aiguilles, L/l est compris entre 1,67 et 50, et l'épaisseur e est supérieure à 0,5 fois la largeur 1. Le gâteau obtenu est alors séché à l'étuve pendant au moins 12 heures à HO0C, puis émotté au mortier en agate. La poudre obtenue est calcinée sous air pendant 2 heures (rampe en température de 2°C/min ; débit d'air de 100 ml/min, soit une vitesse volumique horaire VVH de 300 h"1) à 5000C.
La poudre ainsi obtenue présente une aire spécifique de 120 m2/g, la somme des volumes mésoporeux et microporeux est de 0,20 cm3 /g et la poudre est cristallisée sous la forme d'un mélange de phases quadratique et monoclinique déterminées par diffraction aux rayons X. Les particules de zircone se présentent sous une forme d'aiguilles de longueur L comprise entre 1 et 2 μm, de largeur 1 comprise entre 0,3 et 0,8 μm, et d'épaisseur e comprise entre 0,25 et 0,8 μm, similaires aux particules initiales du dérivé ZBS (représentées sur la figure 3b) et de ZHO. Pour chacune de ces aiguilles, L/l est compris entre 1 ,67 et 50, et l'épaisseur e est supérieure à 0,5 fois la largeur 1.
Exemple 3 : Poudre sous forme d'aiguilles
Dans un bêcher de 1 1 en Pyrex, on met en solution à 5O0C sous agitation 110 g d'oxycholure de zirconium dans 300 ml d'eau permutée puis on ajoute 20 g de bromure de cétyltriméthylarnmonium ou CTAB, puis on ajoute 42 g de sulfate de sodium et on complète à 500 ml par de l'eau permutée. La température est ajustée à 500C et maintenue pendant 15 minutes après dissolution complète des réactifs. L'acidité de la liqueur mère est de 1,2, la concentration en (Zr4+ + Hf4+) est de 0,6 mol/1, le rapport molaire entre les groupements anioniques SO4 2" et (Zr4+ + Hf4+) est de 0,9, et la concentration en additif CTAB est de 0,1 mol/1. La présence de mousse en surface de la solution est observée. La solution est ensuite portée, toujours sous agitation, à 6O0C avec une rampe de chauffage de l°C/min. La solution est maintenue à 6O0C pendant 30 min puis laissée à refroidir librement jusqu'en dessous de 50 0C.
Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide ainsi que de mousse. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un sulfate basique de zirconium, ZBS.
La poudre de ZBS ainsi obtenue présente une aire spécifique de 3 m /g et est amorphe par diffraction aux rayons X. Les particules de ZBS se présentent sous une forme d'aiguilles de longueur L comprise entre 20 et 40 μm, de largeur 1 comprise entre 2 et 5 μm, et d'épaisseur e comprise entre 1,5 et 5 μm. Pour chacune de ces aiguilles, L/l est compris entre 1,67 et 50, et l'épaisseur e est supérieure à 0,5 fois la largeur 1.
Dans un bêcher de 1 1 en Téflon® PTFE, le gâteau est ensuite mis en suspension dans 250 ml d'eau permutée. Dans un second bêcher de 1 1 en Téflon® PTFE, on dissout 25 g de soude NaOH dans 250 ml d'eau permutée. La solution basique de soude est ensuite ajoutée progressivement à la suspension de ZBS ; le pH de la suspension finale est compris entre 12 et 13. La suspension est ensuite portée à 900C avec une rampe de chauffage de l°C/min. La suspension est maintenue à 9O0C pendant 2 h puis laissée à refroidir librement jusqu'en dessous de 5O0C. Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau ainsi obtenu est alors remis en suspension dans 1 1 d'eau permutée et le pH est ajusté à 5 par ajout d'acide chlorhydrique à 0,1 N. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est remis en suspension dans 1 1 d'eau permutée et le pH est ajusté à 1 1 par ajout d'ammoniaque (NH4OH) à 1 N. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un hydrate de zirconium, ou ZHO,
La poudre ainsi obtenue présente une aire spécifique de 350 m2/g, la somme des volumes mésoporeux et microporeux est de 0,20 cm /g et la poudre est amorphe par diffraction aux rayons X. Les particules de ZHO se présentent sous une forme d'aiguilles de longueur L comprise entre 20 et 40 μm, de largeur 1 comprise entre 2 et 5 μm, et d'épaisseur e comprise entre 1 ,5 et 5 μm. Pour chacune de ces aiguilles, L/l est compris entre 1,67 et 50, et l'épaisseur e est supérieure à 0,5 fois la largeur 1. Les aiguilles sont similaires à celles du dérivé ZBS de départ. Le gâteau obtenu est alors séché à l'étuve pendant au moins 12 heures à 1100C, puis émotté au mortier en agate. La poudre obtenue est calcinée sous air pendant 2 heures (rampe en température de 2°C/min ; débit d'air de 100 ml/min, soit une vitesse volumique horaire VVH de 300 h'1) à 500°C.
La poudre ainsi obtenue présente une aire spécifique de 100 m2/g, la somme des volumes mésoporeux et microporeux est de 0,18 cnrVg et la poudre est cristallisée sous un mélange de phases quadratique et monoclinique déterminées par diffraction aux rayons
X. Les particules de zircone se présentent sous une forme d'aiguilles de longueur L comprise entre 15 et 30 μm, de largeur 1 comprise entre 1 et 4 μm, et d'épaisseur e comprise entre 0,7 et 4 μm. Pour chacune de ces aiguilles, L/l est compris entre 1 ,67 et 50, et l'épaisseur e est supérieure à 0,5 fois la largeur 1. Les aiguilles sont similaires à celles du dérivé ZBS (représentées sur la figure 3c) et de ZHO initiales. Exemple 4 : Poudre sous forme d'étoiles
Dans un bêcher de 1 1 en Pyrex, on met en solution à 50°C sous agitation 110 g d'oxycholure de zirconium dans 300 ml d'eau permutée puis on ajoute 5 g de bromure de cétyltriméthylammoniurn ou CTAB puis 50 ml d'acide chlorhydrique HCl à 36 %, puis on ajoute 28 g de sulfate de sodium et on complète à 500 ml par de l'eau permutée. La température est ajustée à 500C et maintenue pendant 15 minutes après dissolution complète des réactifs. L'acidité de la liqueur mère est de 2,4, la concentration en (Zr4+ + Hf4+) est de 0,6 mol/1, le rapport molaire entre les groupements anioniques SO4 2" et (Zr4+ + Hf4+) est de 0,6, et la concentration en additif CTAB est de 0,025 mol/1. La présence de mousse en surface de la solution est observée. La solution est ensuite portée, toujours sous agitation, à 6O0C avec une rampe de chauffage de l°C/min, La solution est maintenue à 6O0C pendant 1 h puis laissée à refroidir librement jusqu'en dessous de 50 0C.
Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide ainsi que de mousse. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un sulfate basique de zirconium, ZBS.
La poudre de ZBS ainsi obtenue présente une aire spécifique de 3 m2/g et est amorphe par diffraction aux rayons X. Les particules de ZBS se présentent sous la forme d'étoiles de longueur comprise entre 5 et 40 μm.
Dans un bêcher de 1 1 en Téflon® PTFE, le gâteau est ensuite mis en suspension dans 250 ml d'eau permutée. Dans un second bêcher de 1 1 en Téflon® PTFE, on dissout 25 g de soude NaOH dans 250 ml d'eau permutée. La solution basique de soude est ensuite ajoutée progressivement à la suspension de ZBS ; le pH de la suspension finale est compris entre 12 et 13. La suspension est ensuite portée à 9O0C avec une rampe de chauffage de l °C/min. La suspension est maintenue à 9O0C pendant 2 h puis laissée à refroidir librement jusqu'en dessous de 5O0C. Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau ainsi obtenu est alors remis en suspension dans 1 1 d'eau permutée et le pH est ajusté à 5 par ajout d'acide chlorhydrique à 0,1 N. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est remis en suspension dans 1 1 d'eau permutée et le pH est ajusté à 11 par ajout d'ammoniaque (NH4OH) à 1 N. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un hydrate de zirconium, ou ZHO.
La poudre ainsi obtenue présente une aire spécifique de 340 m2/g, la somme des volumes mésoporeux et microporeux est de 0,20 cm3/g et la poudre est amorphe par diffraction aux rayons X. Les particules de ZHO se présentent sous la forme d'étoiles de longueur comprise entre 5 et 40 μm, similaires à celles du dérivé ZBS de départ.
Le gâteau obtenu est alors séché à l'étuve pendant au moins 12 heures à HO0C, puis émotté au mortier en agate. La poudre obtenue est calcinée sous air pendant 2 heures (rampe en température de 2°C/min ; débit d'air de 100 ml/min, soit une vitesse volumique horaire VVH de 300 h"1) à 500°C. La poudre ainsi obtenue présente une aire spécifique de 90 m2/g, la somme des volumes mésoporeux et microporeux est de 0,18 cm3/g et la poudre est cristallisée sous la forme d'un mélange de phases quadratique et monoclinique déterminées par diffraction aux rayons X. Les particules de zircone se présentent sous la forme d'étoiles de longueur comprise entre 5 et 30 μm, similaire à celle des particules initiales du dérivé ZBS (représentées sur la figure 3d) et ZHO.
Comme représenté sur la figure 3d, les aiguilles formant les étoiles de ZBS présentent une forme fuselée et pointue. Ces aiguilles sont sensiblement de révolution autour de leur axe longitudinal. La surface de leur section transversale, sensiblement discoïdale, diminue progressivement à l'approche de la ou des pointe(s). En outre, la surface extérieure latérale des aiguilles est particulièrement lisse. Les aiguilles de ZHO et de zircone présentent des formes similaires.
Exemple 5 : Poudre sous forme d'oursins
Dans un bêcher de 1 1 en Pyrex, on met en solution à 5O0C sous agitation 110 g d'oxycholure de zirconium dans 300 ml d'eau permutée puis on ajoute 0,5 g de bromure de cétyltriméthylammonium ou CTAB, puis on ajoute 28 g de sulfate de sodium et on complète à 500 ml par de l'eau permutée. La température est ajustée à 500C et maintenue pendant 15 minutes après dissolution complète des réactifs. L'acidité de la liqueur mère est de 1,2, la concentration en (Zr4+ + Hf4+) est de 0,6 mol/1, le rapport molaire entre les groupements anioniques SO4 2' et (Zr4+ + Hf4+) est de 0,6, et la concentration en additif CTAB est de 0,0025 mol/1. La présence de mousse en surface de la solution est observée. La solution est ensuite portée, toujours sous agitation, à 600C avec une rampe de chauffage de l°C/min. La solution est maintenue à 600C pendant 1 h puis laissée à refroidir librement jusqu'en dessous de 50 0C.
Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide ainsi que de mousse. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un sulfate basique de zirconium, ZBS.
La poudre de ZBS ainsi obtenue présente une aire spécifique de 6 m2/g et est amorphe par diffraction aux rayons X. Les particules de ZBS se présentent sous une forme d'agrégats de dimension comprise entre 10 et 30 μm constitués de particules de longueur L de 2 μm se présentant sous la forme d'aiguilles et d'étoiles.
Dans un bêcher de 1 1 en Téflon® PTFE, le gâteau est ensuite mis en suspension dans 250 ml d'eau permutée. Dans un second bêcher de 1 1 en Téflon® PTFE, on dissout 25 g de soude NaOH dans 250 ml d'eau permutée. La solution basique de soude est ensuite ajoutée progressivement à la suspension de ZBS ; le pH de la suspension finale est compris entre 12 et 13. La suspension est ensuite portée à 9O0C avec une rampe de chauffage de l°C/min. La suspension est maintenue à 900C pendant 2 h puis laissée à refroidir librement jusqu'en dessous de 5O0C. Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau ainsi obtenu est alors remis en suspension dans 1 1 d'eau permutée et le pH est ajusté à 5 par ajout d'acide chlorhydrique à 0,1 N. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est remis en suspension dans 1 1 d'eau permutée et le pH est ajusté à 11 par ajout d'ammoniaque (NH4OH) à 1 N. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un hydrate de zirconium, ou ZHO.
La poudre ainsi obtenue présente une aire spécifique de 360 m2/g, la somme des volumes mésoporeux et microporeux est de 0,25 cm3/g et la poudre est amorphe par diffraction aux rayons X. Les particules de ZHO se présentent sous une forme d'agrégats dont la plus grande dimension est comprise entre 10 et 30 μm, constitués de particules de 2 μm se présentant sous la forme d'aiguilles et d'étoiles, similaires à celles du dérivé ZBS de départ.
Le gâteau obtenu est alors séché à l'étuve pendant au moins 12 heures à HO0C, puis émotté au mortier en agate. La poudre obtenue est calcinée sous air pendant 2 heures (rampe en température de 2°C/min ; débit d'air de 100 ml/min, soit une vitesse volumique horaire VVH de 300 h"') à 5000C.
La poudre ainsi obtenue présente une aire spécifique de 120 m2/g, la somme des volumes mésoporeux et microporeux est de 0,21 cnrVg et la poudre est cristallisée sous la forme d'un mélange de phases quadratique et monoclinique déterminées par diffraction aux rayons X. Les particules de zircone se présentent sous une forme d'agrégats dont la plus grande dimension est comprise entre 5 et 20 μm, constitués de particules de 1 μm se présentant sous la forme d'aiguilles et d'étoiles, similaires à celles des particules initiales du dérivé ZBS (représentées sur la figure 3e) et de ZHO.
Exemple 6 : Poudre sous forme de plaquettes
Dans un bêcher de 1 1 en Pyrex, on met en solution à 5O0C sous agitation 110 g d'oxycholure de zirconium dans 300 ml d'eau permutée puis on ajoute 5 g de bromure de cétyltriméthylamrnonium ou CTAB puis 25 ml d'acide chlorhydrique HCl à 36 %, puis on ajoute 28 g de sulfate de sodium et on complète à 500 ml par de l'eau permutée. La température est ajustée à 5O0C et maintenue pendant 15 minutes après dissolution complète des réactifs. L'acidité de la liqueur mère est de 2, la concentration en (Zr + + Hf4+) est de 0,6 mol/1, le rapport molaire entre les groupements anioniques SO4 2* et (Zr4+ + Hf4+) est de 0,6, et la concentration en additif CTAB est de 0,025 mol/1. La présence de mousse en surface de la solution est observée. La solution est ensuite portée, toujours sous agitation, à 600C avec une rampe de chauffage de l°C/min. La solution est maintenue à 6O0C pendant 1 h puis laissée à refroidir librement jusqu'en dessous de 50
0C.
Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide ainsi que de mousse. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un sulfate basique de zirconium, ZBS.
La poudre de ZBS ainsi obtenue présente une aire spécifique de 3 m2/g et est amorphe par diffraction aux rayons X. Les particules de ZBS se présentent sous la forme d'un mélange d'environ 50 % de particules de forme quasi-sphérique dite « grappe de raisin » et 50 % de plaquettes d'épaisseur e comprise entre 1 et 3 μm , de longueur L comprise entre 10 et 20 μm, et de largeur 1 comprise entre 10 et 15 μm. Pour chacune de ces plaquettes, L/l est inférieur à 1,5.
Dans un bêcher de 1 1 en Téflon® PTFE, le gâteau est ensuite mis en suspension dans 250 ml d'eau permutée, Dans un second bêcher de 1 1 en Téflon® PTFE, on dissout 25 g de soude NaOH dans 250 ml d'eau permutée. La solution basique de soude est ensuite ajoutée progressivement à la suspension de ZBS ; le pH de la suspension finale est compris entre 12 et 13. La suspension est ensuite portée à 90°C avec une rampe de chauffage de l°C/min. La suspension est maintenue à 900C pendant 2 h puis laissée à refroidir librement jusqu'en dessous de 500C. Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau ainsi obtenu est alors remis en suspension dans 1 1 d'eau permutée et le pH est ajusté à 5 par ajout d'acide chlorhydrique à 0,1 N. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est remis en suspension dans 1 1 d'eau permutée et le pH est ajusté à 11 par ajout d'ammoniaque (NH4OH) à 1 N. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un hydrate de zirconium, ou ZHO. La poudre ainsi obtenue présente une aire spécifique de 340 m2/g, la somme des volumes mésoporeux et microporeux est de 0,22 cm3 /g et la poudre est amorphe par diffraction aux rayons X. Les particules de ZHO se présentent sous la forme d'un mélange d'environ 50 % de particules de forme quasi-sphérique dite « grappe de raisin » et 50 % de plaquettes d'épaisseur e comprise entre 1 et 3 μm, de longueur L comprise entre 10 et 20 μm, et de largeur 1 comprise entre 10 et 15 μm, similaires à celles du dérivé ZBS de départ. Pour chacune de ces plaquettes, L/l est inférieur à 1 ,5.
Le gâteau obtenu est alors séché à l'étuve pendant au moins 12 heures à 1100C, puis émotté au mortier en agate. La poudre obtenue est calcinée sous air pendant 2 heures (rampe en température de 2°C/min ; débit d'air de 100 ml/min, soit une vitesse volumique horaire VVH de 300 h"1) à 5000C. La poudre ainsi obtenue présente une aire spécifique de 80 m2/g, la somme des volumes mésoporeux et microporeux est de 0,15 cm3 /g et la poudre est cristallisée sous la forme d'un mélange de phases quadratique et monoclinique déterminées par diffraction aux rayons X. Les particules de zircone se présentent sous la forme d'un mélange d'environ 50 % de particules de forme quasi-sphérique dite « grappe de raisin » et 50 % de plaquettes d'épaisseur e comprise entre 1 et 2 μm, de longueur L comprise entre 8 et 15 μm, et de largeur 1 comprise entre 8 et 12 μm. Cette forme est similaire à celle des particules initiales du dérivé ZBS (représentées sur la figure 3f) et de ZHO. Pour chacune de ces plaquettes, L/l est inférieur à 1,5.
Exemple 7 : Poudre sous forme de particules creuses Dans un bêcher de 1 1 en Pyrex, on met en solution à 500C sous agitation 55 g d'oxycholure de zirconium dans 300 ml d'eau permutée puis on ajoute 2,5 g de bromure de cétyltriméthylammonium ou CTAB puis 25 ml d'acide chlorhydrique HCl à 36 %, puis on ajoute 7 g de sulfate de sodium et on complète à 500 ml par de l'eau permutée, la température est ajustée à 500C et maintenue pendant 15 minutes après dissolution complète des réactifs. L'acidité de la liqueur mère est de 1,2, la concentration en (Zr4+ + Hf4+) est de 0,3 mol/1, le rapport molaire entre les groupements anioniques SO4 " et (Zr4+ + Hf4+) est de 0,4, et la concentration en additif CTAB est de 0,015 mol/1. La présence de mousse en surface de la solution est observée. La solution est ensuite portée, toujours sous agitation, à 6O0C avec une rampe de chauffage de l°C/min. La solution est maintenue à 6O0C pendant 1 h puis laissée à refroidir librement jusqu'en dessous de 50 0C. Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide ainsi que de mousse. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un sulfate basique de zirconium, ZBS. La poudre de ZBS ainsi obtenue présente une aire spécifique de 2 m2/g et est amorphe par diffraction aux rayons X. Les particules de ZBS se présentent sous la forme d'un mélange d'environ 50 % de particules de forme quasi-sphérique dite « grappe de raisin » et 50 % de particules creuses, d'indice de sphéricité compris entre 0,85 et 0,9, de plus grand diamètre extérieur D compris entre 50 et 300 μm, et de plus grand diamètre intérieur D' compris entre 35 et 280 μm. L'épaisseur de la paroi de ces sphères est comprise entre 5 et 20 μm, et le rapport D/D' est inférieur à 2.
Dans un bêcher de 1 1 en Téflon® PTFE, le gâteau est ensuite mis en suspension dans 250 ml d'eau permutée. Dans un second bêcher de 1 1 en Téflon® PTFE, on dissout 25 g de soude NaOH dans 250 ml d'eau permutée. La solution basique de soude est ensuite ajoutée progressivement à la suspension de ZBS ; le pH de la suspension finale est compris entre 12 et 13. La suspension est ensuite portée à 900C avec une rampe de chauffage de l°C/min. La suspension est maintenue à 900C pendant 2 h puis laissée à refroidir librement jusqu'en dessous de 500C. Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau ainsi obtenu est alors remis en suspension dans 1 1 d'eau permutée et le pH est ajusté à 5 par ajout d'acide chlorhydrique à 0,1 N. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est remis en suspension dans 1 1 d'eau permutée et le pH est ajusté à 1 1 par ajout d'ammoniaque (NH4OH) à 1 N. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un hydrate de zirconium, ou ZHO.
La poudre ainsi obtenue so présente une aire spécifique de 280 m2/g, la somme des volumes mésoporeux et microporeux est de 0,15 cm3 /g et la poudre est amorphe par diffraction aux rayons X. Les particules de ZHO se présentent sous la forme d'un mélange 50 % de particules de forme quasi-sphérique dite « grappe de raisin » et 50 % de particules creuses, d'indice de sphéricité compris entre 0,85 et 0,9, de plus grand diamètre extérieur D compris entre 50 et 300 μm, et de plus grand diamètre intérieur D' compris entre 35 et 280 μm. L'épaisseur de la paroi de ces sphères est comprise entre 5 et 20 μm, et le rapport D/D' est compris entre 1,1 et 1,5. Ces formes sont similaires à celles du dérivé ZBS de départ.
Le gâteau obtenu est alors séché à l'étuve pendant au moins 12 heures à 110αC, puis émotté au mortier en agate. La poudre obtenue est calcinée sous air pendant 2 heures (rampe en température de 2°C/min ; débit d'air de 100 ml/min, soit une vitesse volumique horaire VVH de 300 h'1) à 5000C.
La poudre ainsi obtenue présente une aire spécifique de 60 m2/g, la somme des volumes mésoporeux et microporeux est de 0,10 cm3/g et la poudre est cristallisée sous la forme d'un mélange de phases quadratique et monoclinique déterminées par diffraction aux rayons X. Les particules de zircone se présentent sous la forme d'un mélange d'environ 50 % de particules de forme quasi-sphérique dite « grappe de raisin » et 50 % de particules creuses, d'indice de sphéricité compris entre 0,85 et 0,9, de plus grand diamètre extérieur D compris entre 50 et 300 μm, et de plus grand diamètre intérieur D' compris entre 35 et 280 μm. L'épaisseur de la paroi de ces sphères est comprise entre 5 et 20 μm, et le rapport D/D' est compris entre 1,1 et 1,5. Cette forme est similaire à celle des particules initiales du dérivé ZBS (représentées sur Ia figure 3g) et de ZHO.
Exemple 8 : Poudre sous forme de lamelles
Dans un bêcher de 1 litre en Pyrex, on met en solution à 500C sous agitation 110 g d'oxycholure de zirconium dans 300 ml d'eau permutée, puis on ajoute 100 g de bromure de cétyltriméthylammonium ou CTAB, puis on ajoute 28 g de sulfate de sodium et on complète à 500 ml par de l'eau permutée. La température est ajustée à 5O0C et maintenue pendant 15 minutes après dissolution complète des réactifs. L'acidité de la liqueur mère est de 1 ,2, la concentration en (Zr4+ + Hf4+) est de 0,6 mol/1, le rapport molaire entre les groupements anioniques SO42" et (Zr4+ + Hf4+) est de 0,6, et la concentration en additif CTAB est de 1 mol/1. La présence de mousse en surface de la solution est observée. La solution est ensuite portée, toujours sous agitation, à 6O0C avec une rampe de chauffage de 1 °C/min. La solution est maintenue à 60°C pendant 1 h puis laissée à refroidir librement jusqu'en dessous de 50 0C.
Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide ainsi que de mousse. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un sulfate basique de zirconium, ZBS.
La poudre de ZBS ainsi obtenue présente une aire spécifique de 4 m2/g et est amorphe par diffraction aux rayons X. Les particules de ZBS se présentent sous la forme d'un mélange d'environ 50 % de particules de forme quasi-sphérique dite « grappe de raisin » et 50 % de lamelles composées de 10 à 15 plaquettes d'épaisseur e de 1 à 2 μm, de longueur L comprise entre 10 et 20 μm, et de largeur 1 comprise entre 10 et 15 μm. Pour chacune de ces plaquettes, L/l est inférieur à 1,5.
Dans un bêcher de 1 1 en Téflon® PTFE, le gâteau est ensuite mis en suspension dans 250 ml d'eau permutée. Dans un second bêcher de 1 litre en Téflon® PTFE5 on dissout 25 g de soude NaOH dans 250 ml d'eau permutée. La solution basique de soude est ensuite ajoutée progressivement à la suspension de ZBS ; le pH de la suspension finale est compris entre 12 et 13. La suspension est ensuite portée à 90°C avec une rampe de chauffage de l°C/min. La suspension est maintenue à 90°C pendant 2 h puis laissée à refroidir librement jusqu'en dessous de 5O0C. Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau ainsi obtenu est alors remis en suspension dans 1 1 d'eau permutée et le pH est ajusté à 5 par ajout d'acide chlorhydrique à 0,1 N. La suspension est ensuite filtrée, puis lavée avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est remis en suspension dans 1 1 d'eau permutée et le pH est ajusté à 1 litre par ajout d'ammoniaque (NH4OH) à 1 N. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 litre d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un hydrate de zirconium, ou ZHO. La poudre ainsi obtenue présente une aire spécifique de 340 m2/g, la somme des volumes mésoporeux et microporeux est de 0,25 cmVg et la poudre est amorphe par diffraction aux rayons X. Les particules de ZHO se présentent sous la forme d'un mélange d'environ 50 % de particules de forme quasi-sphérique dite « grappe de raisin » et 50 % de lamelles composées de 10 à 15 plaquettes d'épaisseur e de 1 à 2 μm, de longueur L comprise entre 10 et 20 μm, et de largeur 1 comprise entre 10 et 15 μm, similaires à celles des particules du dérivé ZBS de départ. Pour chacune de ces plaquettes, L/l est inférieur à 1,5.
Le gâteau obtenu est alors séché à l'étuve pendant au moins 12 heures à 1100C, puis émotté au mortier en agate. La poudre obtenue est calcinée sous air pendant 2 heures (rampe en température de 2°C/min ; débit d'air de 100 ml/min, soit une vitesse volumique horaire VVH de 300 h"!) à 500°C.
La poudre ainsi obtenue présente une aire spécifique de 100 m2/g, la somme des volumes mésoporeux et microporeux est de 0,20 cmVg et est cristallisée sous la forme d'un mélange de phases quadratique et monoclinique déterminées par diffraction aux rayons X. Les particules de zircone se présentent sous la forme d'un mélange d'environ 50 % de particules de forme quasi-sphérique dite « grappe de raisin » et 50 % de lamelles composées de 10 à 15 plaquettes d'épaisseur e de 0,5 à 1 μm, de longueur L comprise entre 8 et 15 μm, et de largeur 1 comprise entre 8 et 12 μm. Cette forme est similaire à celle des particules initiales du dérivé ZBS et de ZHO. Pour chacune de ces plaquettes, L/l est inférieur à 1 ,5.
Exemple 9 : Poudre sous forme d'aiguilles, avec un dopant introduit sous la forme de chlorure d'vttrium YC13
Dans un bêcher de 1 1 en Téflon® PTFE, 100 g du ZBS de l'exemple 3 est mis en suspension dans 250 ml d'eau permutée, puis on ajoute 80 g de solution de chlorure d'yttrium YC13 à 1 mol/1 (dopant de type Dl). Dans un second bêcher de 1 1 en Téflon® PTFE, on dissout 25 g de soude NaOH dans 250 ml d'eau permutée. La solution basique de soude est ensuite ajoutée progressivement à la suspension de ZBS ; le pH de la suspension finale est compris entre 12 et 13. La suspension est ensuite portée à 9O0C avec une rampe de chauffage de l°C/min. La suspension est maintenue à 900C pendant 2 h puis laissée à refroidir librement jusqu'en dessous de 50°C. Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau ainsi obtenu est alors remis en suspension dans 1 1 d'eau permutée et le pH est ajusté à 5 par ajout d'acide chlorhydrique à 0,1 N, puis ajusté à 11 par ajout d'ammoniaque (NH4OH) à 1 N. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un hydrate de zirconium dopé par un hydrate d'yttrium, ou ZHY.
Les principales propriétés physico-chimiques de la poudre ainsi obtenue sont données dans le tableau Ib. Cette poudre présente une aire spécifique de 300 m /g, la somme des volumes mésoporeux et microporeux de 0,18 cm /g et est amorphe par diffraction aux rayons X, Les particules de ZHY se présentent sous une forme d'aiguilles de longueur L comprise entre 20 et 40 μm, de largeur 1 comprise entre 2 et 5 μm, et d'épaisseur e comprise entre 1 ,5 et 5 μm, similaire à celle du dérivé ZBS de départ. Pour chacune de ces aiguilles, L/l est compris entre 1,67 et 50, et l'épaisseur e est supérieure à 0,5 fois la largeur 1.
Le gâteau obtenu est alors séché à l'étuve pendant au moins 12 heures à 1100C, puis émotté au mortier en agate. La poudre obtenue est calcinée sous air pendant 2 heures (rampe en température de 2°C/min ; débit d'air de 100 ml/min, soit une vitesse volumique horaire VVH de 300 h'1) à 8000C.
La poudre ainsi obtenue présente une aire spécifique de 50 m2/g, la somme des volumes mésoporeux et microporeux est de 0,15 cm3/g et la poudre est cristallisée sous forme quadratique déterminée par diffraction aux rayons X. Les particules de zircone dopée à 3% molaires d'YiCh se présentent sous une forme d'aiguilles de longueur L comprise entre 15 et 30 μm, de largeur 1 comprise entre 1 et 4 μm, et d'épaisseur e comprise entre 0,7 et 4 μm, similaires aux particules initiales du dérivé ZBS et du ZHY initiales. Pour chacune de ces aiguilles, L/l est compris entre 1,67 et 50, et l'épaisseur e est supérieure à 0,5 fois la largeur 1.
Exemple 10 : Poudre sous forme d'aiguilles, avec un dopant introduit sous la forme de chlorure d'yttrium YCh
Dans un bêcher de 1 1 en Téflon® PTFE, 100 g du ZBS de l'exemple 3 est mis en suspension dans 250 ml d'eau permutée, on ajoute 220 g de solution de chlorure d'yttrium YCl3 à 1 mol/1. Dans un second bêcher de 1 1 en Téflon® PTFE, on dissout 25 g de soude NaOH dans 250 ml d'eau permutée. La solution basique de soude est ensuite ajoutée progressivement à la suspension de ZBS ; le pH de la suspension finale est compris entre 12 et 13. La suspension est ensuite portée à 9O0C avec une rampe de chauffage de l°C/min. La suspension est maintenue à 9O0C pendant 2 h puis laissée à refroidir librement jusqu'en dessous de 500C. Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau ainsi obtenu est alors remis en suspension dans 1 1 d'eau permutée et le pH est ajusté à 5 par ajout d'acide chlorhydrique à 0,1 N, puis ajusté à 11 par ajout d'ammoniaque (NH4OH) à 1 N. La suspension est ensuite filtrée, puis lavée 2 fois avec 1 1 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un hydrate de zirconium dopé par un hydrate d'yttrium, ou ZHY.
La poudre ainsi obtenue présente une aire spécifique de 300 m2/g, la somme des volumes mésoporeux et microporeux est de 0,15 cm3 /g, et la poudre est amorphe par diffraction aux rayons X. Les particules de ZHY se présentent sous une forme d'aiguilles de longueur L comprise entre 20 et 40 μm, de largeur 1 comprise entre 2 et 5 μm, et d'épaisseur e comprise entre 1,5 et 5 μm, similaires à celles du dérivé ZBS de départ. Pour chacune de ces aiguilles, L/l est compris entre 1,67 et 50, et l'épaisseur e est supérieure à 0,5 fois la largeur 1. Le gâteau obtenu est alors séché à l'étuve pendant au moins 12 heures à 1 100C, puis émotté au mortier en agate. La poudre obtenue est calcinée sous air pendant 2 heures (rampe en température de 2°C/min ; débit d'air de 100 ml/min, soit une vitesse volumique horaire VVH de 300 h"1) à 8000C.
La poudre ainsi obtenue présente une aire spécifique de 45 m /g, la somme des volumes mésoporeux et microporeux est de 0,13 cm3 /g et la poudre est cristallisée sous une forme cubique déterminée par diffraction aux rayons X. Les particules de zircone dopée à 8% molaires d'Y2θ3 se présentent sous une forme d'aiguilles de longueur L comprise entre
15 et 30 μm, de largeur 1 comprise entre 1 et 4 μm, et d'épaisseur e comprise entre 0,7 et
4 μm, similaires aux particules initiales du dérivé ZBS et du ZHY initiales. Pour chacune de ces aiguilles, L/l est compris entre 1,67 et 50, et l'épaisseur e est supérieure à 0,5 fois la largeur 1. Exemple 11 ; Poudre sous forme d'étoiles
Dans un bêcher de 11 en Pyrex, on met en solution à 500C sous agitation 110 g d'oxycholure de zirconium dans 300 ml d'eau permutée puis on ajoute 5 g de bromure de cétyltriméthylammonium ou CTAB puis 50 ml d'acide chlorhydrique HCl à 36 %, puis on ajoute 28 g de sulfate de sodium et on complète à 500 ml par de l'eau permutée, la température est ajustée à 500C et maintenue pendant 15 minutes après dissolution complète des réactifs. L'acidité de la liqueur mère est de 2,4, la concentration en ions Zr4+ et/ou Hf4+ est de 0,6 mol/1, le rapport molaire entre les groupements anioniques SO4 2" et les ions Zr4+ et/ou Hf4+ est de 0,6, et la concentration en additif CTAB est de 0,025 mol/1. La présence de mousse en surface de la liqueur mère est observée. La liqueur mère est ensuite portée, toujours sous agitation, à 60°C avec une rampe de chauffage de l°C/min. La liqueur mère est maintenue à 600C pendant 1 h puis laissée à refroidir librement jusqu'en dessous de 50 0C. Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide,et de la mousse. La suspension est ensuite filtrée, puis lavée avec 11 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un sulfate basique de zirconium, ZBS.
Les principales propriétés physico-chimiques de la poudre de ZBS ainsi obtenue sont données dans les tableaux suivants. Cette poudre présente une aire spécifique de 3 m2/g et est amorphe par diffraction aux rayons X. Les particules de ZBS se présentent sous la forme d'étoiles dont la plus grande dimension est comprise entre 5 et 40 μm.
Dans un bêcher de 11 en Téflon® PTFE, le gâteau est ensuite mis en suspension dans 250 ml d'eau permutée. Dans un second bêcher de 11 en Téflon® PTFE, on dissout 25 g de soude NaOH dans 250 ml d'eau permutée. La solution basique de soude est ensuite ajoutée progressivement à la suspension de ZBS ; le pH de la suspension finale est compris entre 12 et 13. La suspension est ensuite portée à 9O0C avec une rampe de chauffage de l °C/min. La suspension est maintenue à 9O0C pendant 2 h puis laissée à refroidir librement jusqu'en dessous de 5O0C. Cette procédure génère une suspension constituée d'une phase solide et d'un surnageant liquide. La suspension est ensuite filtrée, puis lavée 2 fois avec 11 d'eau permutée sur un filtre de type Buchner. La suspension est ensuite filtrée, puis lavée avec 11 d'eau permutée sur un filtre de type Buchner. Le gâteau ainsi obtenu est alors remis en suspension dans 11 d'eau permutée et le pH est ajusté à 5 par ajout d'acide chlorhydrique à 0,1 N. La suspension est ensuite filtrée, puis lavée avec 11 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est remis en suspension dans 11 d'eau permutée et le pH est ajusté à 11 par ajout d'ammoniaque (NH4OH) à 1 N. La suspension est ensuite filtrée, puis lavée 2 fois avec 11 d'eau permutée sur un filtre de type Buchner. Le gâteau obtenu est constitué par un oxyhydroxyde de zirconium, ou ZHO.
La poudre ainsi obtenue présente une aire spécifique de 340 m2/g, la somme des volumes mésoporeux et microporeux de 0,20 cm3/g et la poudre est amorphe par diffraction aux rayons X. Les particules de ZHO se présentent sous la forme d'étoiles dont la plus grande dimension est comprise entre 5 et 40 μm, similaires à celles du dérivé ZBS de départ.
Le gâteau obtenu est alors séché à l'étuve pendant au moins 12 heures à 1100C, puis émotté au mortier en agate. La poudre obtenue est calcinée sous air pendant 2 heures (rampe en température de 5°C/min, sans flux d'air) à 1250°C.
La poudre ainsi obtenue présente une aire spécifique de 2 m2/g, la somme des volumes mésoporeux et microporeux égale à 0,01 cm3/g et la poudre est cristallisée sous la phase monoclinique déterminée par diffraction aux rayons X. Les particules de zircone se présentent sous la forme d'étoiles dont la plus grande dimension est comprise entre 5 et 30 μm, similaires à celles du dérivé ZBS (représenté sur la figure 3h) et de l'hydrate ZHO initiaux.
Comme représenté sur la figure 3h, les aiguilles formant les étoiles de zircone présentent une forme fuselée, rectiligne et pointue. Ces aiguilles sont sensiblement de révolution autour de leur axe longitudinal. La surface de leur section transversale, sensiblement discoïdale, diminue progressivement à l'approche de la ou des pointe(s). En outre, la surface extérieure latérale des aiguilles est particulièrement lisse.
Les tableaux suivants précisent les compositions des exemples fabriqués, ainsi que leur perte au feu.
Les tableaux suivants fournissent les résultats de mesures effectuées sur les particules des exemples.
« P » désigne la somme du volume mésoporeux et du volume microporeux.
Dpores désigne le diamètre équivalent moyen des pores de dimension inférieure à 50 nm.
« Mono » désigne la phase monoclinique.
« Quadra » » désigne la phase quadratique.
« Cub » désigne la phase cubique
Comme cela apparaît clairement à présent, l'invention permet de fabriquer de nouvelles particules anisotropes ou constituées de particules de base anisotropes qui, avantageusement, permettent de créer un corps ou une poudre présentant une porosité élevée. De tels corps et poudres sont particulièrement utiles dans des applications à la catalyse ou à la filtration.
En outre, ces particules anisotropes ou constituées de particules de base anisotropes peuvent être elles-mêmes en un matériau poreux, et en particulier présenter de la microporosité et/ou de la mésoporosité. Ces microporosité et/ou mésoporosité sont
10 notamment exploitables pour la catalyse de certaines réactions chimiques.

Claims

REVENDICATIONS
1. Poudre présentant une taille maximale de particules D9915 inférieure à 200 μm et présentant - un indice de porosité Ip supérieur à 2, l'indice de porosité étant égal au rapport Asr/Asg où o Asg est l'aire spécifique géométrique théorique des particules de la poudre ; o Asr est la mesure de l'aire spécifique réelle par BET, et/ou - lorsque toutes les dimensions des particules de base de la poudre sont supérieures à 50nm, une aire spécifique supérieure à lOmVg et une somme de volumes mésoporeux et microporeux supérieure à 0,05 cm3/g, ladite poudre comportant plus de 20% en nombre de particules de base, agrégées ou non, dont toutes les dimensions sont supérieures à 200 nm, présentant un indice de sphéricité inférieur à 0,6, et constituées en un oxyde de zirconium et/ou d'hafnium de formule MOx, M étant Zr4+, Hf4+, ou un mélange de Zr4+ et Hf4+, et x étant un nombre positif non nul.
2. Poudre selon la revendication précédente, comportant plus de 90% en nombre de dites particules de base.
3. Poudre selon l'une quelconque des revendications précédentes, dans laquelle lesdites particules de base présentent un indice de sphéricité supérieur à 0,02.
4. Poudre selon la revendication précédente, dans laquelle lesdites particules de base présentent un indice de sphéricité supérieur à 0,1 et inférieur à 0,3.
5. Poudre selon l'une quelconque des revendications précédentes, présentant une aire spécifique supérieure à 50 mz/g et une somme de volumes mésoporeux et microporeux supérieure à 0,10 cm /g.
6. Poudre selon la revendication précédente, présentant une aire spécifique supérieure à 100 mVg et une somme de volumes mésoporeux et microporeux supérieure à 0,10 cm3/g.
7. Poudre selon l'une quelconque des revendications précédentes, dans laquelle au moins 80% en nombre desdites particules de base présentent une forme en aiguille et/ou en plaquette.
8. Poudre selon la revendication précédente, dans laquelle au moins 80% en nombre desdites particules de base sont assemblées sous forme de particules agrégées ordonnées et/ou désordonnées.
9. Poudre selon la revendication précédente, dans laquelle lesdites particules agrégées sont sous la forme d'étoiles comportant de 3 à 15 branches.
10. Poudre selon la revendication 8, dans laquelle lesdites particules agrégées sont sous la forme de lamelles constituées de 2 à 50 plaquettes.
11. Poudre selon la revendication 8, dans laquelle lesdites particules agrégées sont sous la forme de sphères creuses présentant un indice de sphéricité supérieur à 0,7 et comportant une cavité centrale telle que, si D désigne le plus grand diamètre extérieur de la particule et D' désigne le plus grand diamètre intérieur de la cavité, D/D' < 2.
12. Poudre selon l'une quelconque des revendications précédentes, dans laquelle toutes les dimensions des particules de base sont supérieures à 200 nm.
13. Poudre selon l'une quelconque des revendications précédentes, présentant une taille maximale de particules Dg^s inférieure à 150 μm.
14. Poudre selon l'une quelconque des revendications précédentes, ledit oxyde étant dopé au moyen d'un dopant choisi parmi les composés d'éléments de la colonne 17, les composés d'éléments de la colonne 1, les composés d'yttrium Y, de scandium Sc, de lanthanides, d'alcalino-terreux, de titane Ti, de silicium Si, de soufre S5 de phosphore P, d'aluminium Al, de tungstène W, de chrome Cr, de molybdène Mo, de vanadium V, d'antimoine Sb, de nickel Ni, de cuivre Cu, de zinc Zn, de fer Fe5 de manganèse Mn, de niobium Nb, de gallium Ga, d'étain Sn, de plomb Pb, de cobalt Co, de ruthénium Ru, de rhodium Rh, de palladium Pd, d'argent Ag5 d'osmium Os, d'iridium Ir, de platine Pt, d'or Au, et leurs mélanges.
15. Poudre selon la revendication précédente, ledit oxyde, dit « premier oxyde », étant dopé au moyen d'un dopant choisi parmi : - un deuxième oxyde d'un élément choisi parmi Y, La, Ce, Sc, Ca, Mg et leurs mélanges, en solution solide avec ledit premier oxyde ;
- un deuxième oxyde d'un élément choisi parmi Si, AI5 S et leurs mélanges dispersé dans ledit premier oxyde ; - et leurs mélanges.
16. Poudre selon l'une quelconque des deux revendications immédiatement précédentes, la quantité molaire de dopant étant inférieure ou égale à 20 %.
17. Poudre selon l'une quelconque des revendications précédentes, les particules présentant une forme différente de celle d'une plaquette, d'une aiguille ou d'une lamelle.
18. Poudre présentant une taille maximale de particules 099,5 inférieure à 200 μm, une aire spécifique inférieure à 1OmVg et une somme de volumes mésoporeux et microporeux inférieure à 0,05 cm3/g, toutes les dimensions des particules de base constituant ladite poudre étant supérieures à 50nm, ladite poudre comportant plus de 20% en nombre de particules de base présentant un indice de sphéricité inférieur à 0,6, agrégées sous la forme d'étoiles comportant de 3 à 15 branches fuselées et/ou rectilignes ou de lamelles constituées de 2 à 50 plaquettes, et constituées en un oxyde de zirconium et/ou d'hafhium de formule MOx, M étant Zr4+, Hf4+, ou un mélange de Zr4+ et Hf4+, et x étant un nombre positif non nul.
19. Poudre présentant une taille maximale de particules D9915 inférieure à 200 μm, une aire spécifique inférieure à 1OmVg et une somme de volumes mésoporeux et microporeux inférieure à 0,05 cm3 /g, toutes les dimensions des particules de base de ladite poudre étant supérieures à 50nm, ladite poudre comportant plus de 20% en nombre de particules de base présentant un indice de sphéricité inférieur à 0,6, et constituées en un oxyde de zirconium et/ou d'hafnium de formule MOx, M étant Zr4+, Hf4+, ou un mélange de Zr4+ et Hf4+, et x étant un nombre positif non nul, ledit oxyde, dit « premier oxyde », étant dopé au moyen d'un dopant choisi parmi : - un deuxième oxyde d'un élément choisi parmi Y, La, Ce, Sc, Ca, Mg et leurs mélanges, en solution solide avec ledit premier oxyde ;
- un deuxième oxyde d'un élément choisi parmi Si, Al, S et leurs mélanges dispersé dans ledit premier oxyde ; - et leurs mélanges.
20. Poudre selon la revendication précédente, dans laquelle lesdites particules de base présentent une forme de plaquettes et/ou sont agrégées sous la forme d'étoiles et/ou de lamelles et/ou d'oursins et/ou de sphères creuses.
21. Poudre selon l'une quelconque des deux revendications immédiatement précédentes, dans laquelle toutes les dimensions des particules de base sont supérieures à 200 nm.
22. Procédé de fabrication d'une poudre de particules d'oxydes de zirconium et/ou d'hafnium, dopés ou non, comportant une étape de calcination (eθ) ou de traitement hydrothermal (e2)) d'une poudre de particules de départ, constituées de particules de base, agrégées ou non, lesdites particules de base présentant un indice de sphéricité inférieur à 0,6, lesdites particules de départ étant en un matériau choisi parmi
- les dérivés de zirconium et/ou d'hafnium de formule M(OH)x(N' )y(OH2)z, M étant Zr4+, Hf4+, ou un mélange de Zr4+ et Hf4+, N' étant un anion ou un mélange d'anions, les indices x et y étant des nombres strictement positifs, z étant un nombre positif ou nul, ledit matériau présentant une solubilité dans l'eau à une température inférieure à 2O0C inférieure à 10"3 mol/1, ledit dérivé pouvant être dopé ou non,
- les hydrates de zirconium et/ou d'hafnium de formule MOx(OH)y(OH2)z, M étant Zr4+, Hr4+, ou un mélange de Zr4+ et Hf4+, les indices x et z étant des nombres positifs ou nuls, l'indice y étant un nombre positif, et 2x+y étant égal à 4, dopé ou non, ou en un mélange de tels hydrates, dopés ou non, et
- leurs mélanges, ou d'un mélange de ces particules, et lorsque lesdites particules de départ sont en un hydrate, ladite poudre de particules de départ présentant - un indice de porosité Ip supérieur à 2, l'indice de porosité étant égal au rapport Asr/Asg où o Asg est l'aire spécifique géométrique théorique des particules de Ia poudre ; o Asr est la mesure de l'aire spécifique réelle par BET, et/ou
- une aire spécifique supérieure à 10m2/g et une somme de volumes mésoporeux et microporeux supérieure à 0,05 cm /g, toutes les dimensions desdites particules de base étant supérieures à 50nm.
23. Procédé selon la revendication précédente, dans lequel ledit matériau est choisi parmi le sulfate basique de zirconium et/ou d'hafnium, dopé ou non, le phosphate basique de zirconium et/ou d'hafnium dopé ou non, le carbonate basique de zirconium et/ou d'hafnium dopé ou non, et leurs mélanges.
24. Dispositif choisi parmi un catalyseur, un support d'un catalyseur, un élément de filtration, un élément d'une pile à combustible, un matériau piézo-électrique, un connecteur optique, une céramique dentaire, une céramique structurale, comportant ou obtenu(e) à partir d'une poudre selon l'une quelconque des revendications 1 à
21.
EP09787335A 2008-09-30 2009-09-30 Poudre d'oxyde de zirconium Withdrawn EP2344427A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0805407A FR2936515B1 (fr) 2008-09-30 2008-09-30 Poudre d'oxyde de zirconium
PCT/IB2009/054288 WO2010038204A1 (fr) 2008-09-30 2009-09-30 Poudre d'oxyde de zirconium

Publications (1)

Publication Number Publication Date
EP2344427A1 true EP2344427A1 (fr) 2011-07-20

Family

ID=40565246

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09787335A Withdrawn EP2344427A1 (fr) 2008-09-30 2009-09-30 Poudre d'oxyde de zirconium

Country Status (5)

Country Link
EP (1) EP2344427A1 (fr)
JP (1) JP2012504094A (fr)
CN (1) CN102227390A (fr)
FR (1) FR2936515B1 (fr)
WO (1) WO2010038204A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9868110B2 (en) 2012-10-08 2018-01-16 Santoku Corporation Method for producing composite oxide and composite oxide catalyst

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3003557B1 (fr) * 2013-03-19 2015-05-01 Rhodia Operations Composition a base d'oxyde de zirconium, de cerium, de niobium et d'etain, procede de preparation et utilisation en catalyse
JP6453235B2 (ja) * 2013-12-11 2019-01-16 日本碍子株式会社 多孔質板状フィラー、及び断熱膜
WO2015087887A1 (fr) * 2013-12-11 2015-06-18 日本碍子株式会社 Charge poreuse en forme de plaque et film isolant thermique
WO2015119302A1 (fr) 2014-02-10 2015-08-13 日本碍子株式会社 Ensemble de charges poreuses en forme de plaque, son procédé de production, et film isolant contenant l'ensemble de charges poreuses en forme de plaque
DE112016003208B4 (de) * 2015-07-16 2020-01-23 Ngk Insulators, Ltd. Poröses Keramikpartikel
CN105712399B (zh) * 2016-01-20 2017-10-24 淄博晶泽光学材料科技有限公司 一种二氧化锆抛光粉的制备方法
CN107008340B (zh) * 2017-04-20 2019-08-02 同济大学 一种三维放射状锡镍合金负载铂纳米粒子复合材料的合成方法
JP6533332B1 (ja) * 2018-12-06 2019-06-19 Yamakin株式会社 歯科用接着性組成物
CN109776092B (zh) * 2019-03-29 2021-08-31 内蒙古工业大学 球形、四方相纳米氧化锆粉体的制备方法
CN112670562B (zh) * 2020-12-25 2022-09-13 华北电力大学(保定) 一种具有多孔/非多孔复合型的锂离子导体材料

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60180917A (ja) * 1984-02-28 1985-09-14 Etsuro Kato ジルコニア系微結晶の配向性集合粒子,およびジルコニア系異方形状粒子または繊維状ジルコニアの製造方法
FR2578241B1 (fr) * 1985-03-01 1990-03-30 Rhone Poulenc Spec Chim Zircone stabilisee, son procede de preparation et son application dans des compositions ceramiques
JPS62223018A (ja) * 1985-12-10 1987-10-01 Etsuro Kato 薄板状含水ジルコニア微結晶および製造方法
EP0207469B1 (fr) * 1985-07-03 1993-03-31 Nissan Chemical Industries Ltd. Cristaux fins écailleux du type zircone et leur procédé d'obtention
JPH07257925A (ja) * 1988-02-17 1995-10-09 Showa Shell Sekiyu Kk ジルコニア微小粒子
JPH02296711A (ja) * 1989-05-12 1990-12-07 Shin Etsu Chem Co Ltd 球状シリカ微粒子およびその製造方法
FR2661169B1 (fr) * 1990-04-20 1992-11-06 Elf Aquitaine Procede de synthese d'oxydes metalliques a surface specifique et a porosite elevees, oxydes obtenus, catalyseurs renfermant lesdits oxydes et procede d'hydrotraitement de charges hydrocarbonees utilisant ledit catalyseur.
JP2001294478A (ja) * 2000-04-12 2001-10-23 Ngk Spark Plug Co Ltd セラミックボール、セラミックボールの製造方法及びセラミックボールベアリング
JP4254222B2 (ja) * 2002-12-05 2009-04-15 東レ株式会社 ジルコニア粉末
JP4777891B2 (ja) * 2004-07-09 2011-09-21 旭化成ケミカルズ株式会社 シクロオレフィン製造用触媒及び製造方法
JP4660135B2 (ja) * 2004-07-26 2011-03-30 第一稀元素化学工業株式会社 ジルコニア系多孔質体及びその製造方法
DE102004039139A1 (de) * 2004-08-12 2006-02-23 Degussa Ag Yttrium-Zirkon-Mischoxidpulver
JP4951908B2 (ja) * 2005-09-20 2012-06-13 宇部興産株式会社 球状亜鉛酸化物又は酸炭化物微粒子の製造方法
JP5063252B2 (ja) * 2006-08-22 2012-10-31 第一稀元素化学工業株式会社 多孔質ジルコニア系粉末及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010038204A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9868110B2 (en) 2012-10-08 2018-01-16 Santoku Corporation Method for producing composite oxide and composite oxide catalyst

Also Published As

Publication number Publication date
JP2012504094A (ja) 2012-02-16
FR2936515A1 (fr) 2010-04-02
WO2010038204A1 (fr) 2010-04-08
CN102227390A (zh) 2011-10-26
FR2936515B1 (fr) 2011-08-05

Similar Documents

Publication Publication Date Title
EP2344427A1 (fr) Poudre d&#39;oxyde de zirconium
JP7203792B2 (ja) 個別化された無機粒子
JP3963962B2 (ja) ペロブスカイト化合物の結晶性セラミック粉体の合成方法
TWI635905B (zh) 金屬摻雜氧化鈰組合物
FR2601352A1 (fr) Procede de production d&#39;une poudre de titanate d&#39;un cation divalent et procede de production d&#39;une coforme a base de perovskite d&#39;un cation divalent.
WO2000069790A2 (fr) Procede de production d&#39;oxydes d&#39;aluminium et produits obtenus a partir de ces derniers
WO2018115436A1 (fr) Oxyde mixte résistant au vieillissement à base de cérium, de zirconium, d&#39;aluminium et de lanthane pour convertisseur catalytique automobile
JP5464840B2 (ja) ジルコニア微粒子の製造方法
WO2010038203A1 (fr) Poudre d&#39;hydrate de zirconium
JP2008031023A (ja) ジルコニアゾル及びその製造方法
JP2015504836A (ja) ゾル−ゲルを少なくとも3つの金属塩から調製するための方法、およびセラミックメンブレンを調製するためのその方法の使用
US9108862B2 (en) Method of making rutile titanium dioxide microspheres containing elongated TiO2-nanocrystallites
US20100266487A1 (en) High temperature stable anatase titanium dioxide
WO2010038205A1 (fr) Procede de fabrication d &#39; un derive, d &#39; un hydrate ou d&#39; un oxyde de zirconium
Shih et al. Controlled morphological structure of ceria nanoparticles prepared by spray pyrolysis
KR20200101417A (ko) 다공성 알루미늄 하이드레이트
US20070086941A1 (en) Fine barium titanate particles
EP2245110A1 (fr) Dioxyde de titane luminescent dopé au samarium
WO2010038206A1 (fr) Poudre de dérivé de zirconium
WO2019043346A1 (fr) Oxyde mixte a base de cerium et de zirconium
JP4061679B2 (ja) ジルコニア微粉末及びその製造方法
JP4696338B2 (ja) ジルコニア微粉末の製造方法
JP2003137541A (ja) 高比表面積アルミナの製造方法と得られる高比表面積アルミナ
CN115724464A (zh) 一种纳米氧化锆及其制备方法与应用
Santos et al. Nanostructured titanate compounds–Effect of ZrO2 addition and its influence on microstructure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110329

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20121002

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160714