EP2318569A1 - Verfahren zur anodischen dehydrodimerisierung von substituierten arylalkoholen - Google Patents
Verfahren zur anodischen dehydrodimerisierung von substituierten arylalkoholenInfo
- Publication number
- EP2318569A1 EP2318569A1 EP09782303A EP09782303A EP2318569A1 EP 2318569 A1 EP2318569 A1 EP 2318569A1 EP 09782303 A EP09782303 A EP 09782303A EP 09782303 A EP09782303 A EP 09782303A EP 2318569 A1 EP2318569 A1 EP 2318569A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- alcohols
- alkyl
- electrolysis
- mediators
- aryl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
- C25B3/20—Processes
- C25B3/23—Oxidation
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
- C25B3/20—Processes
- C25B3/29—Coupling reactions
Definitions
- the invention relates to a process for the preparation of biaryl alcohols, which is carried out by anodic dehydrodimerization of substituted phenols in the presence of partially and / or perfluorinated mediators and a conductive salt on a graphite electrode.
- the method according to the invention makes it possible to use very inexpensive electrode materials, undivided cell structures and solvent-free methods.
- mediators e.g. 1, 1, 1, 3,3,3-hexafluoroisopropanol or the much cheaper trifluoroacetic acid are used.
- the workup and recovery of the desired biphenols is very simple.
- Biaryls are known as such and are industrially produced and used. Compounds of this class of compounds are i.a. as backbones for ligands of great interest for stereoselective transformations.
- One possible approach to this class of substance is the electrochemical oxidative dimerization of phenols, which, however, is nonselective in electrolytes known to those skilled in the art.
- iron (III) salts or other strong oxidizing agents are used as an alternative to the electrochemical dimerization of phenols.
- Particularly favored and therefore frequently used substrates have annellated benzene rings or sterically demanding alkyl groups.
- the 2,2'-dihydroxy-1,1'-binaphthyl (BINOL) prepared from 2-naphthol can be used here.
- the main product is usually not the desired ortho, ortho-linked product 2 but a derivative of the Pummerer ketone (3).
- the formation of the tricyclic skeleton 3 is known for para-alkyl-substituted phenols and is also found in the synthesis of many natural products.
- BDD boron-doped diamond electrodes
- the object of the present invention is to provide a method with which the selective and efficient oxidative coupling of substituted phenols takes place without having to work in the presence of expensive electrode material.
- the coupling of substituted phenols should take place in the ortho position.
- This object is achieved by a process for the preparation of biaryl alcohols, wherein substituted aryl alcohols are anodically dehydro-dimerized in the presence of partially and / or perfluorinated mediators and at least one conducting salt with the aid of a graphite electrode.
- the process according to the invention is advantageous if the OH group of the substituted aryl alcohols used is seated directly on the aromatic compound.
- the process according to the invention is advantageous if the substituted aryl alcohols used are identical.
- the process according to the invention is advantageous if the substituted aryl alcohols used can be mononuclear or polynuclear.
- the process according to the invention is advantageous if the dimerization takes place ortho to the alcohol group of the substituted aryl alcohols.
- the process according to the invention is advantageous if the mediators used are partially and / or perfluorinated alcohols and / or acids.
- the process according to the invention is advantageous if the mediators used are 1, 1, 1, 3,3,3-hexafluoroisopropanol or trifluoroacetic acid.
- the process according to the invention is advantageous if the conductive salts used are those selected from the group consisting of alkali metal, alkaline earth metal, tetra (C 1 to C 6 alkyl) ammonium salts.
- the counterions of the conducting salts are selected from the group consisting of sulfate, hydrogensulfate, alkyl sulfates, aryl sulfates, halides, phosphates, carbonates, alkyl phosphates, alkyl carbonates, nitrate, alcoholates, tetrafluoroborate, hexafluorophosphate and perchlorate.
- the process according to the invention is advantageous if no further solvent is used for the electrolysis.
- the process according to the invention is advantageous if a flow cell is used for the electrolysis.
- the process according to the invention is advantageous when current densities of 1 to 1000 mA / cm 2 are used.
- the process according to the invention is advantageous if the electrolysis is carried out at temperatures in the range from -20 to 60 ° C. and normal pressure.
- the process according to the invention is advantageous if 2,4-dimethylphenol is used as the aryl alcohol.
- aryl alcohol is understood as meaning aromatic alcohols in which the hydroxyl group is bonded directly to the aromatic nucleus.
- the aromatic which is based on the aryl alcohol, may be mononuclear or polynuclear.
- the aromatic is preferably mononuclear (phenol derivatives) or binuclear (naphthol derivatives), in particular mononuclear.
- the aryl alcohols may also carry further substituents.
- substituents are independently selected from the group of C 1 -C 10 -alkyl groups, halogens, C 1 -C 10 -alkoxy groups, alkylene or arylene radicals interrupted by oxygen or sulfur, C 1 -C 10 -alkoxycarboxyl, nitrile, nitro and C 1 -C 10 -alkoxycarbamoyl, particularly preferably methyl, ethyl, n-propyl, isopropyl, n-butyl, trifluoromethyl, fluorine, chlorine, bromine, iodine, methoxy, ethoxy, methylene, ethylene, propylene, isopropylene, benzylidene, nitrile, nitro, very particularly preferably methyl, Me - thoxy, methylene, ethylene, trifluoromethyl, fluorine and bromine.
- aryl alcohols can be used.
- electron-rich arenes such as phenol and mono- or polysubstituted phenols and naphthol ( ⁇ - and ß-) and substituted derivatives thereof, very particularly preferred are phenols, and particularly particularly preferred are 4-alkyl and 2,4-dialkyl-substituted phenols.
- Suitable substrates for the electrodimerization according to the present invention are in principle all aryl alcohols, provided that they are capable of dimerization due to their spatial structure and steric requirements.
- the aryl alcohols may be mononuclear, dinuclear, trinuclear or higher nuclear. Preferably, they are mononuclear or dinuclear, in particular mononuclear.
- the aryl alcohols preferably have an OH function.
- Suitable aryl alcohols include phenol and mono- and polysubstituted substituted phenols represented by the following formula (I) wherein R1 to R4 are independently the same or different and are selected from the following substituents: H, Ci-Cio-alkyl , C 1 -C 10 -alkoxy, halogen, C 1 -C 10 -alkoxycarboxyl, nitrile and also mono- and di-C 1 -C 10 -alkoxycarbamoyl.
- R1 to R4 are independently the same or different and are selected from the following substituents: H, Ci-Cio-alkyl , C 1 -C 10 -alkoxy, halogen, C 1 -C 10 -alkoxycarboxyl, nitrile and also mono- and di-C 1 -C 10 -alkoxycarbamoyl.
- naphthol ⁇ - and ⁇ -
- substituted derivatives thereof according to the following formulas (II) and (III), in which the radicals R 1 to R 7, identical or different and selected from the following substituents: H, Ci-Cio Alkyl, Ci-Cio-Alkoxy, halogen, Ci-Cio-Alkoxycarboxyl, nitrile as well as mono- and di-C1-C10-Alkoxycarbamoyl.
- the electrolyte solution is worked up by general separation methods.
- the electrolyte solution is generally first distilled and recovered the individual compounds in the form of different fractions separately. Further purification can be carried out, for example, by crystallization, distillation, sublimation or chromatographic.
- the preparation of the biaryl alcohol is carried out electrolytically, with the corresponding aryl alcohol being oxidized anodically.
- the process according to the invention is referred to below as electrodimerization. It has surprisingly been found that arise by the process according to the invention using mediators, the biaryl alcohols selectively and in high yield. Furthermore, it has been found that very inexpensive electrode materials, undivided cell structures and solvent-free methods can be used by the method according to the invention.
- the workup and recovery of the desired biphenols is very simple.
- the electrolyte solution is worked up by general separation methods. For this purpose, the electrolyte solution is generally first distilled and recovered the individual compounds in the form of different fractions separately.
- Further purification can be carried out, for example, by crystallization, distillation, sublimation or chromatographic.
- Partially and / or perfluorinated alcohols and / or acids preferably perfluorinated alcohols and carboxylic acids, very particularly preferably 1, 1, 1, 3, 3, 3-hexafluoroisopropanol or trifluoroacetic acid are used as mediators in the process according to the invention. No additional solvents are required in the electrolyte.
- electrolysis is carried out in the usual, known in the art electrolysis cells. Suitable electrolysis cells are known to the person skilled in the art. Preferably, one works continuously in undivided flow cells or discontinuously in beaker cells.
- bipolar switched capillary gap cells or Plattenstapelzellen, in which the electrodes are designed as plates and are arranged plane-parallel as in Ullmann's Encyclopedia of Industrial Chemistry, 1999 electronic release, Sixth Edition, VCH-Weinheim, Volumne and in Electrochemistry , Chapter 3.5. special cell designs as well as Chapter 5, Organic Electrochemistry, Subchapter 5.4.3.2 Cell Design.
- the current densities at which the process is carried out are generally 1 to 1000, preferably 5 to 100 mA / cm 2 .
- the temperatures are usually from -20 to 60 ° C., preferably from 10 to 60 ° C.
- the reaction is generally carried out under atmospheric pressure. Higher pressures are preferably used when operating at higher temperatures to avoid boiling of the co-solvents or mediators.
- Suitable anode materials are, for example, noble metals such as platinum or metal oxides such as ruthenium or chromium oxide or mixed oxides of the type RuO x TiO x and diamond electrodes. Preference is given to graphite or carbon electrodes.
- the cathode material for example, iron, steel, stainless steel, nickel or E- delmetalle such as platinum and graphite or carbon materials and diamond electrodes into consideration.
- the system is preferably graphite as the anode and cathode, graphite as the anode and nickel, stainless steel or steel as the cathode and platinum as the anode and cathode.
- the aryl alcohol compound is dissolved in a suitable solvent.
- a suitable solvent preferably solvents from the group of polar protic and polar aprotic solvents, are suitable.
- the aryl alcohol compound itself serves as a solvent and reagent.
- polar aprotic solvents examples include nitriles, amides, carbonates, ethers, ureas, chlorinated hydrocarbons.
- polar aprotic solvents examples include Actonitrile, dimethylformamide, dimethyl sulfoxide, propylene carbonate and dichloromethane.
- polar protic solvents examples include alcohols, carboxylic acids and amides.
- polar protic solvents examples include methanol, ethanol, propanol, butanol, pentanol and hexanol. These may also be partially or completely halogenated, e.g. 1, 1, 1, 3,3,3-hexafluoroisopropanol (HFIP) or trifluoroacetic acid (TFA).
- HFIP 1, 1, 1, 3,3,3-hexafluoroisopropanol
- TFA trifluoroacetic acid
- the electrolysis solution is added to customary cosolvents.
- these are the inert solvents customary in organic chemistry and have a high oxidation potential. Examples include its dimethyl carbonate, propylene carbonate, tetrahydrofuran, dimethoxyethane, acetonitrile or dimethylformamide.
- Conducting salts which are contained in the electrolysis solution are generally alkali metal, alkaline earth metal, tetra (C 1 -C 6 -alkyl) ammonium, preferably tri (cis-bisalkyl) -methylammonium salts.
- Suitable counterions are sulfate, bisulfate, alkyl sulfates, aryl sulfates, halides, phosphates, carbonates, alkyl phosphates, alkyl carbonates, nitrate, alcoholates, tetrafluoroborate, hexafluorophosphate or perchlorate.
- the acids derived from the abovementioned anions are suitable as conductive salts.
- MTBS methyltributylammonium methylsulfates
- MTES methyltriethylammonium methylsulfate
- TABF tetrabutylammonium, tetrafluoroborate
- TFA trifluoroacetic acid
- AcOH acetic acid
- Phenol 2,4-dimethylphenol
- MTES methyltriethylammonium methyl sulfate
- Phenol 2-bromo-4-methylphenol
- a N, N-dimethylpyrrolidinium methylsulfate
- b yield considering the recovered phenol
- c isolation by crystallization from toluene and chromatographic
- d isolation by crystallization from 'PrOH: water and chromatographic.
- Example 1 Anodic oxidation of 2,4-dimethylphenol on graphite electrodes with trifluoroacetic acid
- the solvent is first removed and then excess phenol recovered by short path distillation.
- the reaction residue is taken up in 50 mL water and 30 mL TBME, the phases are separated and the aqueous phase extracted again with 3x30 mL TBME.
- the combined organic phases are washed with 50 ml of water and saturated sodium chloride solution, dried over magnesium sulfate and the solvent removed under reduced pressure.
- the crude product is dissolved in 10 ml of toluene at 50 ° C.
- the slow addition of n-heptane succeeds in crystallizing the product, which is obtained by filtration and washing with a little cold n-heptane.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09782303A EP2318569B1 (de) | 2008-09-01 | 2009-08-28 | Verfahren zur anodischen dehydrodimerisierung von substituierten phenolen |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08163356 | 2008-09-01 | ||
EP09782303A EP2318569B1 (de) | 2008-09-01 | 2009-08-28 | Verfahren zur anodischen dehydrodimerisierung von substituierten phenolen |
PCT/EP2009/061101 WO2010023258A1 (de) | 2008-09-01 | 2009-08-28 | Verfahren zur anodischen dehydrodimerisierung von substituierten arylalkoholen |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2318569A1 true EP2318569A1 (de) | 2011-05-11 |
EP2318569B1 EP2318569B1 (de) | 2012-03-28 |
Family
ID=41413363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09782303A Not-in-force EP2318569B1 (de) | 2008-09-01 | 2009-08-28 | Verfahren zur anodischen dehydrodimerisierung von substituierten phenolen |
Country Status (5)
Country | Link |
---|---|
US (1) | US8449755B2 (de) |
EP (1) | EP2318569B1 (de) |
JP (1) | JP5535215B2 (de) |
AT (1) | ATE551445T1 (de) |
WO (1) | WO2010023258A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8747646B2 (en) | 2009-06-05 | 2014-06-10 | Basf Se | Process for the anodic cross-dehydrodimerization of arenes |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2438215A1 (de) * | 2009-06-05 | 2012-04-11 | Basf Se | Verfahren zur herstellung von unsymmetrischen biarylalkoholen |
DE102013203866A1 (de) * | 2013-03-07 | 2014-09-11 | Evonik Industries Ag | Elektrochemische Kupplung eines Phenols mit einem Naphthol |
DE102013211745A1 (de) | 2013-06-21 | 2014-12-24 | Evonik Industries Ag | Elektrochemisches Verfahren zur Herstellung von symmetrischen Biphenolen unter Verwendung von Essigsäure als Elektrolyt |
DE102013211744A1 (de) | 2013-06-21 | 2014-12-24 | Evonik Industries Ag | Elektrochemisches Verfahren zur Herstellung von symmetrischen Biphenolen unter Verwendung einer Glaskohlenstoffanode |
DE102014209967A1 (de) | 2014-05-26 | 2015-12-17 | Evonik Degussa Gmbh | Verfahren zur Herstellung von 2,2'-Biphenolen unter Verwendung von Selendioxid |
DE102014209976A1 (de) | 2014-05-26 | 2015-11-26 | Evonik Degussa Gmbh | Verfahren zur Herstellung von 2,2'-Biphenolen unter Verwendung von Selendioxid und halogeniertem Lösungsmittel |
SG10201601501QA (en) | 2015-03-05 | 2016-10-28 | Evonik Degussa Gmbh | Preparation of 2,2`-biaryls in the presence of molybdenum(v) chloride |
EP3095776A1 (de) | 2015-05-20 | 2016-11-23 | Evonik Degussa GmbH | Kupplung von einem Phenol und einem Aren unter Verwendung von Selendioxid |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4101391A (en) * | 1976-01-05 | 1978-07-18 | Monsanto Company | Electrolytic oxidative methyl-methyl coupling of cresol salts |
JPH0243388A (ja) * | 1988-08-03 | 1990-02-13 | Mitsubishi Kasei Corp | 4,4’−ジヒドロキシビフェニル類の製造法 |
DE102004005508A1 (de) * | 2004-02-04 | 2005-08-25 | Basf Ag | Anodische Dimerisierung substituierter Benzole |
DE102005003012A1 (de) * | 2005-01-21 | 2006-07-27 | Basf Ag | Anodische Dimerisierung von Hydroxy-substituierten Aromaten |
-
2009
- 2009-08-28 EP EP09782303A patent/EP2318569B1/de not_active Not-in-force
- 2009-08-28 JP JP2011524388A patent/JP5535215B2/ja not_active Expired - Fee Related
- 2009-08-28 AT AT09782303T patent/ATE551445T1/de active
- 2009-08-28 US US13/059,548 patent/US8449755B2/en active Active
- 2009-08-28 WO PCT/EP2009/061101 patent/WO2010023258A1/de active Application Filing
Non-Patent Citations (1)
Title |
---|
See references of WO2010023258A1 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8747646B2 (en) | 2009-06-05 | 2014-06-10 | Basf Se | Process for the anodic cross-dehydrodimerization of arenes |
Also Published As
Publication number | Publication date |
---|---|
ATE551445T1 (de) | 2012-04-15 |
US20110147228A1 (en) | 2011-06-23 |
WO2010023258A1 (de) | 2010-03-04 |
JP5535215B2 (ja) | 2014-07-02 |
EP2318569B1 (de) | 2012-03-28 |
US8449755B2 (en) | 2013-05-28 |
WO2010023258A8 (de) | 2010-04-22 |
JP2012501383A (ja) | 2012-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2318569B1 (de) | Verfahren zur anodischen dehydrodimerisierung von substituierten phenolen | |
EP2438214B1 (de) | Verfahren zur anodischen kreuz-dehydrodimerisierung von arenen | |
WO2010139687A1 (de) | Verfahren zur herstellung von unsymmetrischen biarylalkoholen | |
EP0012215B1 (de) | 2-Hydroxybutansulfonsaures Cholin und dessen Verwendung als Leitsalz | |
EP0902846B1 (de) | Verfahren zur herstellung von phthaliden | |
EP1339664B1 (de) | Herstellung von butantetracarbonsäurederivaten mittels gekoppelter elektrosynthese | |
EP1899289A1 (de) | Verfahren zur herstellung von arylaminen, arylethern und arylthioethern | |
WO2006100289A1 (de) | Verfahren zur herstellung von alkoxylierten 2,5-dihydrofuran- oder tetra-1,1,4,4-alkoxylierten but-2-enderivaten | |
EP2411564B1 (de) | Elektrochemisches verfahern zur herstellung von 3-tert.-butylbenzaldehyd-dimethylacetal | |
WO2005075709A2 (de) | Anodische dimerisierung substituierter benzole | |
EP2041336B1 (de) | Elektrochemische herstellung sterisch gehinderter amine | |
DE3874195T2 (de) | Reduktion von carbonsaeureestern. | |
DE102015216001A1 (de) | Verfahren zur Herstellung von unsymmetrischen OCO-Pincerliganden aus der Gruppe der m-Terphenylverbindungen | |
DE2331712A1 (de) | Verfahren zur herstellung von 2methoxy-3,6-dichlorbenzoesaeure | |
EP1913178A1 (de) | Verfahren zur herstellung von 1,1,4,4-tetraalkoxy-but-2-enderivaten | |
EP2534281A2 (de) | Verfahren zur herstellung von 4-isopropylcyclohexylmethanol | |
EP0085158B1 (de) | Verfahren zur Herstellung von Cycloalkenonderivaten | |
WO2020053353A1 (de) | Elektrochemische synthese von s-arylthiocarbamaten | |
DE2428878C2 (de) | Verfahren zur Herstellung von p-Hydroxymethyl-benzoesäureestern | |
DE10324192A1 (de) | Verfahren zur Herstellung von alkoxylierten 2,5-Dihydrofuran-oder tetra-1,1,4,4-alkoxylierten But-2-enderivaten | |
WO2006087321A1 (de) | Selektive spaltung von substituierten bisbenzylamiden und -aminen | |
DE102018128228A1 (de) | Verfahren zur Oxidation kohlenstoffhaltiger organischer Verbindungen mit elektrochemisch erzeugten Oxidationsmitteln und Anordnung zur Durchführung des Verfahrens | |
DE3228663A1 (de) | Verfahren zur herstellung von dichlormilchsaeure oder dem nitril oder amid der dichlormilchsaeure | |
DE2731743A1 (de) | Verfahren zur herstellung von 1-amino-4-alkoxynaphthalinen aus 1-nitronaphthalinen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20110401 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
17Q | First examination report despatched |
Effective date: 20110805 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RTI1 | Title (correction) |
Free format text: METHOD FOR ANODIC DEHYDRODIMERISATION OF SUBSTITUTED PHENOLS |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 551445 Country of ref document: AT Kind code of ref document: T Effective date: 20120415 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502009003166 Country of ref document: DE Effective date: 20120524 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20120328 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120628 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20120328 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120629 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120728 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120730 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 |
|
26N | No opposition filed |
Effective date: 20130103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120831 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502009003166 Country of ref document: DE Effective date: 20130103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120709 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120828 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120828 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120328 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 551445 Country of ref document: AT Kind code of ref document: T Effective date: 20140828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140828 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20170828 Year of fee payment: 9 Ref country code: GB Payment date: 20170830 Year of fee payment: 9 Ref country code: FR Payment date: 20170828 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20170828 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180831 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180831 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180828 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502009003166 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C25B0003100000 Ipc: C25B0003290000 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20201029 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502009003166 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220301 |