EP2438215A1 - Verfahren zur herstellung von unsymmetrischen biarylalkoholen - Google Patents

Verfahren zur herstellung von unsymmetrischen biarylalkoholen

Info

Publication number
EP2438215A1
EP2438215A1 EP10724438A EP10724438A EP2438215A1 EP 2438215 A1 EP2438215 A1 EP 2438215A1 EP 10724438 A EP10724438 A EP 10724438A EP 10724438 A EP10724438 A EP 10724438A EP 2438215 A1 EP2438215 A1 EP 2438215A1
Authority
EP
European Patent Office
Prior art keywords
ortho
group
alkoxyarylalkohole
alcohols
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10724438A
Other languages
English (en)
French (fr)
Inventor
Florian Stecker
Andreas Fischer
Itamar Michael Malkowsky
Siegfried R. Waldvogel
Axel Kirste
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP10724438A priority Critical patent/EP2438215A1/de
Publication of EP2438215A1 publication Critical patent/EP2438215A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/29Coupling reactions

Definitions

  • the invention relates to a process for the preparation of unsymmetrical biaryl alcohols, which is carried out by anodic dehydrodimerization of substituted ortho-alkoxy aryl alcohols in the presence of partially and / or perfluorinated mediators and a conductive salt.
  • Biaryls are known as such and are used industrially. Compounds such as 3,3 ', 5,5'-tetramethylbiphenyl-2,2'-diol are of great interest as backbones for ligands.
  • One possible approach to this class of compounds is the (electrochemical) oxidative dimerization of phenols. However, this is often unselective.
  • Diamond electrodes can be realized using conductive salts and fluorinated mediators as described by A. Kirste, M. Nieger, IM Malkowsky, F. Stecker, A. Fischer, SR Waldvogel in Chem. Eur. J. 2009, 15, 2273 and described in WO-A 2006/077204. A process for preparing the unsymmetrical biaryl alcohols is not described.
  • the object of the present invention is to provide a process which enables the selective and efficient anodic dehydrodimerization of substituted ortho-alkoxyaryl alcohols to unsymmetrical biaryl alcohols.
  • the process according to the invention is advantageous if the OH group of the ortho-alkoxyaryl alcohols used is bound directly to the aromatic compound.
  • the process according to the invention is advantageous if the substituted orthoalkoxyaryl alcohols used are identical.
  • the process according to the invention is advantageous if the substituted orthoalkoxyaryl alcohols used are mononuclear or dinuclear.
  • the process according to the invention is advantageous if the dimerization takes place in the ortho position to the one and in the meta position relative to the other alcohol group of the ortho-alkoxyaryl alcohols.
  • the process according to the invention is advantageous if the mediators used are partially and / or perfluorinated alcohols and / or acids.
  • the process according to the invention is advantageous if 1, 1, 1, 3,3,3-hexafluoroisopropanol and / or trifluoroacetic acid are used as mediators.
  • the process according to the invention is advantageous, in which the conductive salts used are those which are selected from the group of alkali metal, alkaline earth metal, tetra (C 1 to C 6 alkyl) ammonium salts.
  • the counterions of the conducting salts are selected from the group consisting of sulfate, hydrogensulfate, alkyl sulfates, aryl sulfates, halides, phosphates, carbonates, alkyl phosphates, alkyl carbonates, nitrate, alcoholates, tetrafluoroborate, hexafluorophosphate and perchlorate.
  • the process according to the invention is advantageous if no further solvent is used for the electrolysis.
  • the method according to the invention is advantageous if a nickel cathode is used.
  • the process according to the invention is advantageous if a flow cell is used for the electrolysis.
  • the process according to the invention is advantageous when current densities of 1 to 1000 mA / cm 2 are used.
  • the process according to the invention is advantageous if the electrolysis is carried out at temperatures in the range from -20 to 100 ° C. and atmospheric pressure.
  • the process according to the invention is advantageous if 4-methylguajacol is used as ortho-alkoxyaryl alcohol.
  • the inventive method when the anode is selected from the group of graphite and boron doped diamond electrode.
  • ortho-alkoxyaryl alcohol is understood as meaning aromatic alcohols which are substituted ortho-substituted by an alkoxy group and in which the hydroxyl group is bonded directly to the aromatic nucleus.
  • the aromatic which is based on the ortho-Alkoxyarylalkohol, may be mononuclear or polynuclear.
  • the aromatic is preferably mononuclear (phenol derivatives) according to formula I or binuclear (naphthol derivatives) according to formula II, particular preference is given to mononuclear aromatics.
  • the alkoxy group (OAlk) of the ortho-alkoxyaryl alcohols which are used in the process according to the invention are C.sub.1- to C.sub.10-alkoxy group, preferably methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, tert-butyl Butoxy groups, more preferably, methoxy, ethoxy, n-propoxy, most preferably methoxy groups.
  • the ortho-Alkoxyarylalkohle can carry further substituents R1 to R6.
  • R 1 to R 6 are independently selected from the group of C 1 -C 10 -alkyl groups, halogens, C 1 -C 10 -alkoxy groups, alkylene or arylene radicals interrupted by oxygen or sulfur, C 1 -C 10 -alkoxycarboxylic, nitrile, nitro- and Ci-Cio-Alkoxycarbamoyl phenomenon.
  • the substituents are preferably selected from the group of methyl, ethyl, n-propyl, isopropyl, n-butyl, trifluoromethyl, fluorine, chlorine, bromine, iodine, methoxy, ethoxy, methylene, ethylene, propylene, isopropylene, benzylidene, nitrile, nitro ,
  • the substituents are particularly preferably selected from the group of methyl, methoxy, methylene, ethylene, trifluoromethyl, fluorine and bromine.
  • the unsymmetrical biaryl alcohol is produced electrochemically, with the corresponding ortho-alkoxyaryl alcohol being anodically oxidized.
  • the process according to the invention is referred to below as electrodimerization. It has surprisingly been found that the unsymmetrical biaryl alcohols are produced selectively and in high yield by the process according to the invention using mediators. Furthermore, it has been found that by the These methods can be applied to undivided cell structures as well as solvent-free methods.
  • the electrolyte solution is worked up by general separation methods.
  • the electrolyte solution is generally first distilled and recovered the individual compounds in the form of different fractions separately. Further purification can be carried out, for example, by crystallization, distillation, sublimation or chromatographic.
  • Electrodes selected from the group of iron, steel, stainless steel, nickel, noble metals such as platinum, graphite, carbon materials such as the diamond electrodes are used for the process according to the invention. These diamond electrodes are formed by applying one or more diamond layers to a substrate. Possible support materials are niobium, silicon, tungsten, titanium, silicon carbide, tantalum, graphite or ceramic supports such as titanium suboxide. However, a support of niobium, titanium or silicon is preferred for the method according to the invention, very particular preference is given to a support of niobium, if a diamond electrode is used.
  • the anode is selected from the group of graphite and diamond electrode, wherein the diamond electrode may also be doped with other elements. Boron and nitrogen are preferred as doping elements. The process according to the invention with a boron-doped diamond electrode (BDD electrode) as anode is very particularly preferred.
  • the cathode material is selected from the group of iron, steel, stainless steel, nickel, precious metals such as platinum, graphite, carbon materials and diamantelekt- roden.
  • the cathode is selected from the group of nickel, steel and stainless steel.
  • the cathode is particularly preferably made of nickel.
  • Preferred electrode material combinations for anode and cathode are a combination of graphite anode and nickel cathode and the combination of boron-doped diamond anode and nickel cathode.
  • Partially and / or perfluorinated alcohols and / or acids preferably perfluorinated alcohols and carboxylic acids, very particularly preferably 1, 1, 1, 3, 3, 3-hexafluoroisopropanol or trifluoroacetic acid are used as mediators in the process according to the invention.
  • the electrolysis is carried out in the usual, known in the art electrolysis cells.
  • Suitable electrolysis cells are known to the person skilled in the art. Preferably, one works continuously in undivided flow cells or discontinuously in beaker cells.
  • Particularly suitable are bipolar switched capillary gap cells or Plattenstapelzellen, in which the electrodes are designed as plates and are arranged plane-parallel as in Ullmann's Encyclopedia of Industrial Chemistry, 1999 electronic release, Sixth Edition, Wiley-VCH-Weinheim, (doi: 10 1002 / 14356007.a09_183.pub2) and in Electrochemistry, Chapter 3.5. special cell designs as well as Chapter 5, Organic Electrochemistry, Subchapter 5.4.3.2 Cell Design.
  • the current densities at which the process is carried out are generally 1 to 1000, preferably 5 to 100 mA / cm 2 .
  • the temperatures are usually from -20 to 100 ° C., preferably from 10 to 60 ° C.
  • the reaction is generally carried out under atmospheric pressure. Higher pressures are preferably used when operating at higher temperatures to avoid boiling of the co-solvents or mediators.
  • the ortho-alkoxyaryl alcohol compound are dissolved in a suitable solvent.
  • suitable solvents known to the person skilled in the art, preferably solvents from the group of polar protic and polar aprotic solvents, are suitable.
  • the ortho-alkoxyaryl alcohol compound itself serves as solvent and reagent.
  • polar aprotic solvents include nitriles, amides, carbonates, ethers, ureas, chlorinated hydrocarbons.
  • particularly preferred polar aprotic solvents include acetonitrile, dimethylformamide, dimethyl sulfoxide, propylene carbonate and dichloromethane.
  • polar protic solvents include alcohols, carboxylic acids and amides.
  • particularly preferred polar protic solvents include methanol, ethanol, propanol, butanol, pentanol and hexanol. These may also be partially or fully halogenated, such as 1, 1, 1, 3,3,3-hexafluoroisopropanol (HFIP) or trifluoroacetic acid (TFA).
  • HFIP 1, 1, 1, 1, 3,3,3-hexafluoroisopropanol
  • TFA trifluoroacetic acid
  • the electrolysis solution is added to customary cosolvents.
  • these are the inert solvents customary in organic chemistry with a high oxidation potential. Examples include its dimethyl carbonate, propylene carbonate, tetrahydrofuran, dimethoxyethane, acetonitrile or dimethylformamide.
  • Conducting salts which are contained in the electrolysis solution are generally alkali metal, alkaline earth metal, tetra (C 1 -C 6 -alkyl) ammonium, preferably tri (C 1 -C 6 -alkyl) methylammonium salts.
  • Suitable counterions are sulfates, hydrogen sulfates, alkyl sulfates, aryl sulfates, halides, phosphates, carbonates, alkyl phosphates, alkyl carbonates, nitrates, alkoxides, tetrafluoroborate, hexafluorophosphate or perchlorate.
  • the acids derived from the abovementioned anions are suitable as conductive salts.
  • MTBS methyltributylammonium methylsulfates
  • MTES methyltriethylammonium methylsulfate
  • TABF tetrabutylammonium, tetrafluoroborate
  • the electrolyte consisting of 2.76 g of 4-methylguajacol, 0.68 g of methyltriethylammonium methyl sulfate (MTES) and 30 ml of hexafluoroisopropanol (HFIP) according to Table 1 submitted.
  • MTES methyltriethylammonium methyl sulfate
  • HFIP hexafluoroisopropanol
  • the electrolysis is carried out under galvanostatic control and at current densities between 2.8-9.5 mA / cm 2 .
  • the reaction is stopped after reaching the set charge limit (1 F per mole of 4-methylguajacol).
  • the cooled reaction mixture is transferred with about 20 ml of toluene into a flask, from which toluene and the fluorinated solvent used are almost completely removed on a rotary evaporator. Excess phenol can be recovered by short path distillation at 1, 0 * 10 1 mbar and 125 0 C.

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von unsymmetrischen Biarylen, wobei durch anodische Dehydrodimerisierung von substituierten ortho-Alkoxy-arylalkoholen in Gegenwart von teil- und/oder perfluorierten Mediatoren und einem Leitsalz gearbeitet wird.

Description

Verfahren zur Herstellung von unsymmetrischen Biarylalkoholen
Beschreibung
Die Erfindung betrifft ein Verfahren zur Herstellung von unsymmetrischen Biarylalkoholen, wobei durch anodische Dehydrodimerisierung von substituierten ortho-Alkoxy- arylalkoholen in Gegenwart von teil- und/oder perfluorierten Mediatoren und einem Leitsalz gearbeitet wird.
Biaryle sind als solche bekannt und werden industriell eingesetzt. Verbindungen wie 3,3',5,5'-Tetramethylbiphenyl-2,2'-diol sind als Rückgrate für Liganden von sehr großem Interesse. Ein möglicher Zugang zu dieser Substanzklasse ist die (elektrochemische) oxidative Dimerisierung von Phenolen. Diese verläuft jedoch oftmals unselektiv.
Es konnte gezeigt werden, dass die symmetrische Phenolkupplung an bordotierten
Diamantelektroden (BDD) unter Verwendung von Leitsalzen und fluorierten Mediatoren realisiert werden kann wie es von A. Kirste, M. Nieger, I. M. Malkowsky, F. Stecker, A. Fischer, S. R. Waldvogel in Chem. Eur. J. 2009, 15, 2273 und in WO-A 2006/077204 beschrieben ist. Ein Verfahren zur Herstellung der unsymmetrischen Biarylalkohole wird nicht beschrieben.
Unter Verwendung von anderen Kohlenstoffelektroden und auch fluorierten Carbonsäuren als Mediatoren kann eine selektive und effiziente symmetrische Biphenol- kupplung von z.B. 2,4-Dimethylphenol erreicht werden. Das lösungsmittelfreie Verfah- ren benötigt lediglich ungeteilte Elektrolysenzellen wie es von A. Fischer, I. M. Malkowsky, F. Stecker, A. Kirste, S. R. Waldvogel in Anodic Preparation of Biphenols on BDD electrodes und EP-A 08163356.2 beschrieben ist. Die Verwendung einer Diamantelektrode als Anode für die Herstellung der unsymmetrischen Biarylverbindungen wurde hier nicht beschrieben.
Die Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren bereitzustellen, mit dem die selektive und effiziente anodische Dehydrodimerisierung von substituierten ortho-Alkoxyarylalkoholen zu unsymmetrischen Biarylalkoholen ermöglicht wird.
Diese Aufgabe wird gelöst durch ein Verfahren zur Herstellung von unsymmetrischen Biarylalkoholen, wobei substituierte ortho-Alkoxyarylalkohole in Gegenwart von teil- und/oder perfluorierten Mediatoren und wenigstens einem Leitsalz anodisch dehydro- dimerisiert werden.
Vorteilhaft ist das erfindungsgemäße Verfahren, wenn die OH-Gruppe der eingesetzten ortho-Alkoxyarylalkohole direkt an den Aromaten gebunden ist. Vorteilhaft ist das erfindungsgemäße Verfahren, wenn die eingesetzten substituierten ortho-Alkoxyarylalkohole identisch sind.
Vorteilhaft ist das erfindungsgemäße Verfahren, wenn die eingesetzten substituierten ortho-Alkoxyarylalkohole ein- oder zweikernig sind.
Vorteilhaft ist das erfindungsgemäße Verfahren, wenn die Dimerisierung in ortho- Stellung zur einen und in meta-Stellung zur anderen Alkoholgruppe der ortho- Alkoxyarylalkohole stattfindet.
Vorteilhaft ist das erfindungsgemäße Verfahren, wenn die eingesetzten Mediatoren teil- und/oder perfluorierte Alkohole und/oder Säuren sind.
Vorteilhaft ist das erfindungsgemäße Verfahren, wenn als Mediatoren 1 ,1 ,1 ,3,3,3- Hexafluorisopropanol und/oder Trifluoressigsäure eingesetzt werden.
Vorteilhaft ist das erfindungsgemäße Verfahren, wobei als Leitsalze solche eingesetzt werden, die ausgewählt sind aus der Gruppe von Alkali-, Erdalkali-, Tetra(d- bis Cβ- alkyl)ammoniumsalzen.
Vorteilhaft ist das erfindungsgemäße Verfahren, wenn die Gegenionen der Leitsalze ausgewählt sind aus der Gruppe von Sulfat, Hydrogensulfat, Alkylsulfate, Arylsulfate, Halogenide, Phosphate, Carbonate, Alkylphosphate, Alkylcarbonate, Nitrat, Alkoholate, Tetrafluorborat, Hexafluorophosphat und Perchlorat.
Vorteilhaft ist das erfindungsgemäße Verfahren, wenn für die Elektrolyse kein weiteres Lösungsmittel eingesetzt wird.
Vorteilhaft ist das erfindungsgemäße Verfahren, wenn eine Nickelkathode verwendet wird.
Vorteilhaft ist das erfindungsgemäße Verfahren, wenn für die Elektrolyse eine Durchflusszelle eingesetzt wird.
Vorteilhaft ist das erfindungsgemäße Verfahren, wenn Stromdichten von 1 bis 1000 mA /cm2 eingesetzt werden.
Vorteilhaft ist das erfindungsgemäße Verfahren, wenn die Elektrolyse bei Temperaturen im Bereich von -20 bis 1000C und Normaldruck durchgeführt wird.
Vorteilhaft ist das erfindungsgemäße Verfahren, wenn als ortho-Alkoxyarylalkohol 4- Methylguajacol eingesetzt wird. Vorteilhaft ist das erfindungsgemäße Verfahren, wenn die Anode ausgewählt ist aus der Gruppe von Graphit- und bordotierter Diamantelektrode.
Unter ortho-Alkoxyarylalkohol werden im Rahmen der vorliegenden Erfindung aromatische mit einer Alkoxygruppe in ortho-Stellung substituierte Alkohole verstanden, bei denen die Hydroxylgruppe direkt an den aromatischen Kern gebunden ist.
Der Aromat, der dem ortho-Alkoxyarylalkohol zugrunde liegt, kann ein- oder mehrkernig sein. Bevorzugt ist der Aromat einkernig (Phenolderivate) gemäß Formel I oder zweikernig (Naphtholderivate) gemäß Formel II, besonders bevorzugt sind einkernige Aromaten.
I
Die Alkoxygruppe (OAIk) der ortho-Alkoxyarylalkohole, die in dem erfindungsgemäßen Verfahren eingesetzt werden sind Ci bis Cio-Alkoxygruppe, bevorzugt Methoxy, Etho- xy, n-Propoxy, i-Propoxy-, n-Butoxy, i-Butoxy, tert-Butoxygruppen, besonders bevorzugt, Methoxy-, Ethoxy-, n-Propoxy-, ganz besonders bevorzugt Methoxygruppen. Die ortho-Alkoxyarylalkohle können noch weitere Substituenten R1 bis R6 tragen. Diese Substituenten R1 bis R6 sind unabhängig voneinander ausgewählt aus der Gruppe von Ci-Cio-Alkylgruppen, Halogenen, Ci-Cio-Alkoxygruppen, durch Sauerstoff oder Schwefel unterbrochene Alkylen- oder Arylenreste, Ci-Cio-Alkoxycarboxyl-, Nitril-, Nitro- sowie Ci-Cio-Alkoxycarbamoylgruppen. Bevorzugt sind die Substituenten ausgewählt aus der Gruppe von Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Trifluormethyl, Fluor, Chlor, Brom, lod, Methoxy, Ethoxy, Methylen, Ethylen, Propylen, Isopropylen, Benzyliden, Nitril, Nitro. Besonders bevorzugt sind die Substituenten ausgewählt aus der Gruppe von Methyl, Methoxy, Methylen, Ethylen, Trifluormethyl, Fluor und Brom.
Die Herstellung des unsymmetrischen Biarylalkohols erfolgt elektrochemisch, wobei der entsprechende ortho-Alkoxyarylalkohol anodisch oxidiert wird. Das erfindungsgemäße Verfahren wird nachfolgend Elektrodimerisierung genannt. Es wurde überraschender Weise gefunden, dass durch das erfindungsgemäße Verfahren unter Verwendung von Mediatoren die unsymmetrischen Biarylalkohole selektiv und in hoher Ausbeute entstehen. Des Weiteren wurde gefunden, dass durch das erfindungsgemä- ße Verfahren ungeteilte Zellaufbauten sowie lösungsmittelfreie Verfahren angewendet werden können.
Die Aufarbeitung und Gewinnung der unsymmetrischen Biarylalkohole gestaltet sich sehr einfach. Nach Beendigung der Reaktion wird die Elektrolytlösung nach allgemei- nen Trennmethoden aufgearbeitet. Hierzu wird die Elektrolytlösung im Allgemeinen zuerst destilliert und die einzelnen Verbindungen in Form von unterschiedlichen Fraktionen getrennt gewonnen. Eine weitere Reinigung kann beispielsweise durch Kristallisation, Destillation, Sublimation oder chromatographisch erfolgen.
Für das erfindungsgemäße Verfahren sind Elektroden ausgewählt aus der Gruppe von Eisen, Stahl, Edelstahl, Nickel, Edelmetalle wie Platin, Graphit, Kohlematerialien wie die Diamantelektroden. Diese Diamantelektroden entstehen in dem man auf ein Trägermaterial ein oder mehrere Diamantschichten aufbringt. Als mögliche Trägermaterialien eignen sich Niob, Silizium, Wolfram, Titan, Siliziumcarbid, Tantal, Graphit oder keramische Träger wie Titansuboxid. Bevorzugt für das erfindungsgemäße Verfahren ist jedoch ein Träger aus Niob, Titan oder Silizium, ganz besonders bevorzugt ist ein Träger aus Niob, wenn eine Diamantelektrode eingesetzt wird. Bevorzugt ist die Anode ausgewählt aus der Gruppe von Graphit- und Diamantelektrode, wobei die Diamantelektrode auch noch mit weiteren Elementen dotiert sein kann. Als Dotierungselemente sind Bor und Stickstoff bevorzugt. Ganz besonders bevorzugt ist das erfindungsgemäße Verfahren mit einer bordotierten Diamantelektrode (BDD-Elektrode) als Anode.
Das Kathodenmaterial ist dabei ausgewählt aus der Gruppe von Eisen-, Stahl-, Edelstahl-, Nickel-, Edelmetalle- wie Platin-, Graphit-, Kohlematerialien- und Diamantelekt- roden. Bevorzugt ist die Kathode ausgewählt aus der Gruppe von Nickel, Stahl und Edelstahl. Besonders bevorzugt ist die Kathode aus Nickel.
Bevorzugte Elektrodenmaterialkombinationen für Anode und Kathode sind eine Kombination aus Graphitanode und Nickelkathode sowie die Kombination aus bordotierter Diamantanode und Nickelkathode.
Als Mediatoren werden im erfindungsgemäßen Verfahren teil- und/oder perfluorierte Alkohole und/oder Säuren, bevorzugt perfluorierte Alkohole sowie Carbonsäuren, ganz besonders bevorzugt 1 ,1 ,1 ,3,3,3-Hexafluorisopropanol oder Trifluoressigsäure ver- wendet.
Im Elektrolyten sind keine weiteren Lösungsmittel erforderlich.
Die Elektrolyse wird in den üblichen, dem Fachmann bekannten Elektrolysezellen durchgeführt. Geeignete Elektrolysezellen sind dem Fachmann bekannt. Vorzugsweise arbeitet man kontinuierlich in ungeteilten Durchflusszellen oder diskontinuierlich in Becherglaszellen. Ganz besonders geeignet sind bipolar geschaltete Kapillarspaltzellen oder Plattensta- pelzellen, bei denn die Elektroden als Platten ausgestaltet sind und planparallel angeordnet sind wie es in Ullmann's Encyclopedia of Industrial Chemistry, 1999 electronic release, Sixth Edition, Wiley-VCH-Weinheim, (doi: 10. 1002/14356007.a09_183.pub2) und in Electrochemistry, Chapter 3.5. special cell designs sowie Chapter 5, Organic Electrochemistry, Subchapter 5.4.3.2 Cell Design beschrieben ist.
Die Stromdichten, bei denen das Verfahren durchgeführt wird, betragen im allgemeinen 1 - 1000, bevorzugt 5 - 100 mA/cm2. Die Temperaturen betragen üblicherweise -20 bis 1000C, bevorzugt 10 bis 600C. Im Allgemeinen wird bei Normaldruck gearbeitet. Höhere Drücke werden bevorzugt dann angewandt, wenn bei höheren Temperaturen gearbeitet werden soll, um ein Sieden der Ausgangsverbindungen bzw. Cosolventien bzw. Mediatoren zu vermeiden.
Zur Durchführung der Elektrolyse werden die ortho-Alkoxyarylalkoholverbindung in einem geeigneten Lösungsmittel gelöst. Es eignen sich die üblichen, dem Fachmann bekannten Lösungsmittel, vorzugsweise Lösungsmittel aus der Gruppe der polaren protischen und polaren aprotischen Lösungsmittel. Besonders bevorzugt dient die or- tho-Alkoxyarylalkoholverbindung selbst als Lösungsmittel und Reagenz. Beispiele für polare aprotische Lösungsmittel umfassen Nitrile, Amide, Carbonate, E- ther, Harnstoffe, Chlorkohlenwasserstoffe. Beispiele für besonders bevorzugte polare aprotische Lösungsmittel umfassen Actonitril, Dimethylformamid, Dimethylsulfoxid, Propylencarbonat und Dichlormethan. Beispiele für polare protische Lösungsmittel umfassen Alkohole, Carbonsäuren und Amide. Beispiele für besonders bevorzugte polare protische Lösungsmittel umfassen Methanol, Ethanol, Propanol, Butanol, Pentanol und Hexanol. Diese können auch teilweise oder vollständig halogeniert sein, wie 1 ,1 ,1 ,3,3,3-Hexafluorisopropanol (HFIP) oder Trifluoressigsäure (TFA).
Gegebenenfalls setzt man der Elektrolyselösung übliche Cosolvenzien zu. Dabei han- delt es sich um die in der organischen Chemie üblichen inerten Lösungsmittel mit einem hohen Oxidationspotential. Beispielhaft genannt seinen Dimethylcarbonat, Propylencarbonat, Tetrahydrofuran, Dimethoxyethan, Acetonitril oder Dimethylformamid.
Als Leitsalze, die in der Elektrolyselösung enthalten sind, handelt es sich im Allgemei- nen um Alkali-, Erdalkali-, Tetra(d- bis C6-alkyl)ammonium-, bevorzugt Tri(Ci- bis Cβ- alkyl)-methylammoniumsalze. Als Gegenion kommen Sulfate, Hydrogensulfate, Alkyl- sulfate, Arylsulfate, Halogenide, Phosphate, Carbonate, Alkylphosphate, Alkylcarbona- te, Nitrat, Alkoholate, Tetrafluorborat, Hexafluorophosphat oder Perchlorat in Betracht. Weiterhin kommen die von den vorstehend genannten Anionen abgeleiteten Säuren als Leitsalze in Betracht. Ganz besonders bevorzugt sind Methyltributylammoniummethylsulfate (MTBS), Me- thyltriethylammoniummethylsulfat (MTES), Methyltripropylmethylammoniummethylsul- fate, oder Tetrabutylammonium, Tetrafluoroborat (TBABF).
Beispiele: (Tabellen mit Umsetzungen)
Beispiel 1 : Anodische Oxidation von 4-Methylguajacol an einer BDD-Anode mit He- xafluorisopropanol (HFIP)
In einer Elektrolysezelle, an die über einen Flansch eine BDD-beschichtete Siliziumplatte angebracht und als Anode geschaltet ist, wird der Elektrolyt bestehend aus 2,76 g 4-Methylguajacol, 0,68 g Methyltriethylammoniummethylsulfat (MTES) und 30 ml_ Hexafluorisopropanol (HFIP) gemäß Tabelle 1 vorgelegt. Dabei ist die Anodenoberfläche vollständig mit Elektrolyt bedeckt. Als Kathode wird ein Nickelnetz verwendet, das in einer Distanz von 1 cm zur BDD-Anode in den Elektrolyten getaucht wird. Die Zelle wird in einem Sandbad temperiert (500C). Die Durchführung der Elektrolyse erfolgt unter galvanostatischer Kontrolle und bei Stromdichten zwischen 2,8-9,5 mA/cm2. Die Umsetzung wird nach Erreichen des eingestellten Ladungslimits (1 F pro mol 4- Methylguajacol) abgebrochen. Das erkaltete Reaktionsgemisch wird mit ca. 20 ml_ To- luol in einen Kolben überführt, woraus am Rotationsverdampfer Toluol und das verwendete fluorierte Lösungsmittel nahezu vollständig entfernt werden. Überschüssiges Phenol kann mittels Kurzwegdestillation bei 1 ,0*10-1 mbar und 125 0C zurückgewonnen werden. Durch säulenchromatographische Aufreinigung des Destillationsrückstands an Kieselgel 60 (CH:EE=4:1 ) und anschließendem Waschen mit wenig kaltem n-Heptan kann das Produkt als farbloser, kristalliner Feststoff isoliert werden (0.90 g). Rp-Wert (CH:EE=2:1 ): 0.33; 1 H NMR (300 MHz, CDCI3) δ = 6.80 (s, 1 H), 6.76 (s, 1 H), 6.68 (d, J=1.7, 1 H), 6.56 (d, J=1.7, 1 H), 5.28 (s, 2H), 3.90 (s, 6H), 2.30 (s, 3H), 2.13 (s, 3H); 13C-NMR (100 MHz, CDCI3): δ = 13C NMR (75 MHz, CDCI3) δ = 146.25, 145.80, 143.21 , 140.41 , 130.00, 128.70, 128.32, 127.37, 123.34, 1 16.15, 1 12.29, 1 10.54, 55.95, 55.89, 21.06, 19.49. Tabelle 1 :
Umsetzung von 4-Methylguajacol (MG) an BDD unter Verwendung von HFIP
M HFIP: 1 ,1 ,1 ,3,3,3-Hexafluorisopropanol A: Ausbeute SA: Stromausbeute
Tabelle 2:
Umsetzung weiterer Guajacolderivate an BDD unter Verwendung von HFIP.
a Bezogen auf gesamtes Produkt: es entstehen ein symmetrisches 3,3'-Dihydroxy-1 ,1 '- biphenyl und das unsymmetrische Biphenyl im Verhältnis 2,5:1 ; Trennung der Isomere bisher nicht möglich. A: Ausbeute SA: Stromausbeute

Claims

Patentansprüche
1. Verfahren zur Herstellung von unsymmetrischen Biarylalkoholen, wobei substituierte ortho-Alkoxyarylalkohole in Gegenwart von teil- und/oder perfluorierten Me- diatoren und wenigstens einem Leitsalz anodisch dehydrodimerisiert werden.
2. Verfahren nach Anspruch 1 , wobei die OH-Gruppe der eingesetzten ortho- Alkoxyarylalkohole direkt an den Aromaten gebunden ist.
3. Verfahren nach einem der Ansprüche 1 bis 2, wobei die eingesetzten substituierten ortho-Alkoxyarylalkohole identisch sind.
4. Verfahren nach einem der Ansprüche 1 bis 3, wobei die eingesetzten substituierten ortho-Alkoxyarylalkohole ein- oder zweikernig sind.
5. Verfahren nach einem der Ansprüche 1 bis 4, wobei die Dimerisierung in ortho- Stellung zur einen und in meta-Stellung zur anderen Alkoholgruppe der ortho- Alkoxyarylalkohole stattfindet.
6. Verfahren nach einem der Ansprüche 1 bis 5, wobei die eingesetzten Mediatoren teil- und/oder perfluorierte Alkohole und/oder Säuren sind.
7. Verfahren nach einem der Ansprüche 1 bis 6, wobei als Mediatoren 1 ,1 ,1 ,3,3,3- Hexafluorisopropanol und/oder Trifluoressigsäure eingesetzt werden.
8. Verfahren nach einem der Ansprüche 1 bis 7, wobei als Leitsalze solche eingesetzt werden, die ausgewählt sind aus der Gruppe von Alkali-, Erdalkali-, Tet- ra(Ci- bis C6-alkyl)ammoniumsalzen.
9. Verfahren nach einem der Ansprüche 1 bis 8, wobei die Gegenionen der Leitsalze ausgewählt sind aus der Gruppe von Sulfat, Hydrogensulfat, Alkylsulfate, A- rylsulfate, Halogenide, Phosphate, Carbonate, Alkylphosphate, Alkylcarbonate, Nitrat, Alkoholate, Tetrafluorborat, Hexafluorophosphat und Perchlorat.
10. Verfahren nach einem der Ansprüche 1 bis 9, wobei für die Elektrolyse kein weiteres Lösungsmittel eingesetzt wird.
1 1. Verfahren nach einem der Ansprüche 1 bis 10, wobei eine Nickelkathode verwendet wird.
12. Verfahren nach einem der Ansprüche 1 bis 1 1 , wobei für die Elektrolyse eine Durchflusszelle eingesetzt wird.
13. Verfahren nach einem der Ansprüche 1 bis 12, wobei Stromdichten von 1 bis 1000 mA /cm2 eingesetzt werden.
14. Verfahren nach einem der Ansprüche 1 bis 13, wobei die Elektrolyse bei Temperaturen im Bereich von -20 bis 1000C und Normaldruck durchgeführt wird.
15. Verfahren nach einem der Ansprüche 1 bis 16, wobei als Arylalkohol 4-Methyl- guajacol eingesetzt wird.
16. Verfahren nach einem der Ansprüche 1 bis 15, wobei die Anode ausgewählt ist aus der Gruppe von Graphit- und bordotierter Diamantelektrode.
EP10724438A 2009-06-05 2010-06-01 Verfahren zur herstellung von unsymmetrischen biarylalkoholen Withdrawn EP2438215A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10724438A EP2438215A1 (de) 2009-06-05 2010-06-01 Verfahren zur herstellung von unsymmetrischen biarylalkoholen

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09162076 2009-06-05
EP10724438A EP2438215A1 (de) 2009-06-05 2010-06-01 Verfahren zur herstellung von unsymmetrischen biarylalkoholen
PCT/EP2010/057619 WO2010139687A1 (de) 2009-06-05 2010-06-01 Verfahren zur herstellung von unsymmetrischen biarylalkoholen

Publications (1)

Publication Number Publication Date
EP2438215A1 true EP2438215A1 (de) 2012-04-11

Family

ID=42358670

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10724438A Withdrawn EP2438215A1 (de) 2009-06-05 2010-06-01 Verfahren zur herstellung von unsymmetrischen biarylalkoholen

Country Status (5)

Country Link
US (1) US8747645B2 (de)
EP (1) EP2438215A1 (de)
JP (1) JP2012528825A (de)
CN (1) CN102459707A (de)
WO (1) WO2010139687A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102459706B (zh) * 2009-06-05 2015-02-11 巴斯夫欧洲公司 芳烃的阳极交叉脱氢二聚方法
DE102013203865A1 (de) * 2013-03-07 2014-09-11 Evonik Industries Ag Elektrochemische Kupplung zweier Phenole, welche sich in ihrem Oxidationspotential unterscheiden
DE102013211745A1 (de) 2013-06-21 2014-12-24 Evonik Industries Ag Elektrochemisches Verfahren zur Herstellung von symmetrischen Biphenolen unter Verwendung von Essigsäure als Elektrolyt
DE102013211744A1 (de) 2013-06-21 2014-12-24 Evonik Industries Ag Elektrochemisches Verfahren zur Herstellung von symmetrischen Biphenolen unter Verwendung einer Glaskohlenstoffanode
DE102014209967A1 (de) 2014-05-26 2015-12-17 Evonik Degussa Gmbh Verfahren zur Herstellung von 2,2'-Biphenolen unter Verwendung von Selendioxid
DE102014209976A1 (de) 2014-05-26 2015-11-26 Evonik Degussa Gmbh Verfahren zur Herstellung von 2,2'-Biphenolen unter Verwendung von Selendioxid und halogeniertem Lösungsmittel
WO2015181018A1 (de) * 2014-05-26 2015-12-03 Evonik Degussa Gmbh Verfahren zur herstellung von unsymmetrischen biphenolen mittels einsatz von selendioxid
SG10201601501QA (en) 2015-03-05 2016-10-28 Evonik Degussa Gmbh Preparation of 2,2`-biaryls in the presence of molybdenum(v) chloride
EP3095776A1 (de) 2015-05-20 2016-11-23 Evonik Degussa GmbH Kupplung von einem Phenol und einem Aren unter Verwendung von Selendioxid
DE102015216000A1 (de) * 2015-08-21 2017-02-23 Evonik Degussa Gmbh Verfahren zur Herstellung von symmetrischen Pincerliganden aus der Gruppe der m-Terphenylverbindungen

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3992435A (en) * 1975-04-07 1976-11-16 Standard Oil Company (Indiana) Process for electrolytic synthesis of polyalkylbiphenylpolycarboxylic acid compounds
US4101391A (en) 1976-01-05 1978-07-18 Monsanto Company Electrolytic oxidative methyl-methyl coupling of cresol salts
JPH0243388A (ja) * 1988-08-03 1990-02-13 Mitsubishi Kasei Corp 4,4’−ジヒドロキシビフェニル類の製造法
DE59408039D1 (de) * 1993-12-11 1999-05-06 Hoechst Ag Verfahren zur Herstellung von 2,2'-Dimethyl-1,1'-binaphtyl und 2,7'-Dimethyl-1,1'-binaphtyl
DE4411024A1 (de) * 1994-03-30 1995-12-21 Hoechst Ag Verfahren zur Herstellung von 4,4'-Dimethyl-1,1'-binaphthyl
JPH08245459A (ja) * 1995-03-16 1996-09-24 Dainippon Ink & Chem Inc フェノール性水酸基含有縮合多環式化合物の二量化物の製法
DE19641344A1 (de) 1995-10-17 1997-04-24 Basf Ag Verfahren zur Herstellung von Biarylen
JPH09176074A (ja) * 1995-12-28 1997-07-08 Kibun Foods Inc 抗菌・抗カビ・抗炎症活性物質とその製造方法
FR2803856B1 (fr) * 2000-01-13 2002-07-05 Atofina Synthese de l'hydroxyde de tetramethylammonium
DE102004005508A1 (de) 2004-02-04 2005-08-25 Basf Ag Anodische Dimerisierung substituierter Benzole
DE102005003012A1 (de) 2005-01-21 2006-07-27 Basf Ag Anodische Dimerisierung von Hydroxy-substituierten Aromaten
CN100436649C (zh) * 2005-01-28 2008-11-26 华东师范大学 联苯的电化学合成方法
AU2007251601B2 (en) * 2006-05-15 2011-05-19 Akzo Nobel Chemicals International B.V. An electrochemical process to prepare a halogenated carbonyl group-containing compound
WO2010023258A1 (de) * 2008-09-01 2010-03-04 Basf Se Verfahren zur anodischen dehydrodimerisierung von substituierten arylalkoholen
CN102459706B (zh) * 2009-06-05 2015-02-11 巴斯夫欧洲公司 芳烃的阳极交叉脱氢二聚方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010139687A1 *

Also Published As

Publication number Publication date
WO2010139687A1 (de) 2010-12-09
US8747645B2 (en) 2014-06-10
CN102459707A (zh) 2012-05-16
JP2012528825A (ja) 2012-11-15
US20120067736A1 (en) 2012-03-22

Similar Documents

Publication Publication Date Title
WO2010139687A1 (de) Verfahren zur herstellung von unsymmetrischen biarylalkoholen
EP2438214B1 (de) Verfahren zur anodischen kreuz-dehydrodimerisierung von arenen
EP2318569B1 (de) Verfahren zur anodischen dehydrodimerisierung von substituierten phenolen
EP3337801B1 (de) Verfahren zur herstellung von (4s)-4-(4-cyano-2-methoxyphenyl)-5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridin-3-carboxamid und wiedergewinnung von (4s)-4-(4-cyano-2-methoxyphenyl)-5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridin-3-carboxamid mittels elektrochemischer methoden
DE102014202274B4 (de) Elektrochemisches Verfahren zur Kupplung von Phenol mit Anilin
DE10058304A1 (de) Verfahren zur Herstellung von alkoxylierten Carbonylverbindungen durch ein anodisches Oxidationsverfahren unter Nutzung der kathodischen Koppelreaktion zur organischen Synthese
EP1619273B1 (de) Verfahren zur Herstellung von 2-Alkin-1-acetalen
WO2009071478A1 (de) Verfahren zur reduktiven hydrodimerisierung von ungesättigten organischen verbindungen mittels einer diamantelektrode
EP1863781A1 (de) Verfahren zur herstellung von alkoxylierten 2,5-dihydrofuran- oder tetra-1,1,4,4-alkoxylierten but-2-enderivaten
EP2411564A1 (de) Elektrochemisches verfahern zur herstellung von 3-tert.-butylbenzaldehyd-dimethylacetal
EP2041336A2 (de) Elektrochemische herstellung sterisch gehinderter amine
EP3133189A1 (de) Verfahren zur herstellung von unsymmetrischen oco-pincerliganden aus der gruppe der m-terphenylverbindungen
EP1913178A1 (de) Verfahren zur herstellung von 1,1,4,4-tetraalkoxy-but-2-enderivaten
DE102004005508A1 (de) Anodische Dimerisierung substituierter Benzole
EP1853549A1 (de) Selektive spaltung von substituierten bisbenzylamiden und -aminen
EP2171128B1 (de) Verfahren zur herstellung von isocyanaten durch anodische oxidation vom formamiden
DE102005007285A1 (de) Elektrochemisches Verfahren zur Herstellung von Trimethylorthoformiat oder Orthokohlensäuremethylester
WO2020053353A1 (de) Elektrochemische synthese von s-arylthiocarbamaten
DE2331711A1 (de) Verfahren zur selektiven elektrolytischen entbromierung
DE102004045029A1 (de) Verfahren zur Herstellung von Glyoxalsäurealkylesterdialkylacetal
EP0085158A2 (de) Verfahren zur Herstellung von Cycloalkenonderivaten
WO2005066390A2 (de) Elektrochemische alkoxylierende oxidative kohlenstoff-kohlenstoff-bindungsspaltung am 1,2-diphenylethan und derivaten an der diamantelektrode

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120105

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20161209

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180403

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180814