WO2010023258A1 - Verfahren zur anodischen dehydrodimerisierung von substituierten arylalkoholen - Google Patents

Verfahren zur anodischen dehydrodimerisierung von substituierten arylalkoholen Download PDF

Info

Publication number
WO2010023258A1
WO2010023258A1 PCT/EP2009/061101 EP2009061101W WO2010023258A1 WO 2010023258 A1 WO2010023258 A1 WO 2010023258A1 EP 2009061101 W EP2009061101 W EP 2009061101W WO 2010023258 A1 WO2010023258 A1 WO 2010023258A1
Authority
WO
WIPO (PCT)
Prior art keywords
alcohols
alkyl
electrolysis
mediators
aryl
Prior art date
Application number
PCT/EP2009/061101
Other languages
English (en)
French (fr)
Other versions
WO2010023258A8 (de
Inventor
Andreas Fischer
Itamar Michael Malkowsky
Florian Stecker
Siegfried Waldvogel
Axel Kirste
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to AT09782303T priority Critical patent/ATE551445T1/de
Priority to EP09782303A priority patent/EP2318569B1/de
Priority to US13/059,548 priority patent/US8449755B2/en
Priority to JP2011524388A priority patent/JP5535215B2/ja
Publication of WO2010023258A1 publication Critical patent/WO2010023258A1/de
Publication of WO2010023258A8 publication Critical patent/WO2010023258A8/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/29Coupling reactions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/23Oxidation

Definitions

  • the invention relates to a process for the preparation of biaryl alcohols, which is carried out by anodic dehydrodimerization of substituted phenols in the presence of partially and / or perfluorinated mediators and a conductive salt on a graphite electrode.
  • the method according to the invention makes it possible to use very inexpensive electrode materials, undivided cell structures and solvent-free methods.
  • mediators e.g. 1, 1, 1, 3,3,3-hexafluoroisopropanol or the much cheaper trifluoroacetic acid are used.
  • the workup and recovery of the desired biphenols is very simple.
  • Biaryls are known as such and are industrially produced and used. Compounds of this class of compounds are i.a. as backbones for ligands of great interest for stereoselective transformations.
  • One possible approach to this class of substance is the electrochemical oxidative dimerization of phenols, which, however, is nonselective in electrolytes known to those skilled in the art.
  • iron (III) salts or other strong oxidizing agents are used as an alternative to the electrochemical dimerization of phenols.
  • Particularly favored and therefore frequently used substrates have annellated benzene rings or sterically demanding alkyl groups.
  • the 2,2'-dihydroxy-1,1'-binaphthyl (BINOL) prepared from 2-naphthol can be used here.
  • the main product is usually not the desired ortho, ortho-linked product 2 but a derivative of the Pummerer ketone (3).
  • the formation of the tricyclic skeleton 3 is known for para-alkyl-substituted phenols and is also found in the synthesis of many natural products.
  • BDD boron-doped diamond electrodes
  • the object of the present invention is to provide a method with which the selective and efficient oxidative coupling of substituted phenols takes place without having to work in the presence of expensive electrode material.
  • the coupling of substituted phenols should take place in the ortho position.
  • This object is achieved by a process for the preparation of biaryl alcohols, wherein substituted aryl alcohols are anodically dehydro-dimerized in the presence of partially and / or perfluorinated mediators and at least one conducting salt with the aid of a graphite electrode.
  • the process according to the invention is advantageous if the OH group of the substituted aryl alcohols used is seated directly on the aromatic compound.
  • the process according to the invention is advantageous if the substituted aryl alcohols used are identical.
  • the process according to the invention is advantageous if the substituted aryl alcohols used can be mononuclear or polynuclear.
  • the process according to the invention is advantageous if the dimerization takes place ortho to the alcohol group of the substituted aryl alcohols.
  • the process according to the invention is advantageous if the mediators used are partially and / or perfluorinated alcohols and / or acids.
  • the process according to the invention is advantageous if the mediators used are 1, 1, 1, 3,3,3-hexafluoroisopropanol or trifluoroacetic acid.
  • the process according to the invention is advantageous if the conductive salts used are those selected from the group consisting of alkali metal, alkaline earth metal, tetra (C 1 to C 6 alkyl) ammonium salts.
  • the counterions of the conducting salts are selected from the group consisting of sulfate, hydrogensulfate, alkyl sulfates, aryl sulfates, halides, phosphates, carbonates, alkyl phosphates, alkyl carbonates, nitrate, alcoholates, tetrafluoroborate, hexafluorophosphate and perchlorate.
  • the process according to the invention is advantageous if no further solvent is used for the electrolysis.
  • the process according to the invention is advantageous if a flow cell is used for the electrolysis.
  • the process according to the invention is advantageous when current densities of 1 to 1000 mA / cm 2 are used.
  • the process according to the invention is advantageous if the electrolysis is carried out at temperatures in the range from -20 to 60 ° C. and normal pressure.
  • the process according to the invention is advantageous if 2,4-dimethylphenol is used as the aryl alcohol.
  • aryl alcohol is understood as meaning aromatic alcohols in which the hydroxyl group is bonded directly to the aromatic nucleus.
  • the aromatic which is based on the aryl alcohol, may be mononuclear or polynuclear.
  • the aromatic is preferably mononuclear (phenol derivatives) or binuclear (naphthol derivatives), in particular mononuclear.
  • the aryl alcohols may also carry further substituents.
  • substituents are independently selected from the group of C 1 -C 10 -alkyl groups, halogens, C 1 -C 10 -alkoxy groups, alkylene or arylene radicals interrupted by oxygen or sulfur, C 1 -C 10 -alkoxycarboxyl, nitrile, nitro and C 1 -C 10 -alkoxycarbamoyl, particularly preferably methyl, ethyl, n-propyl, isopropyl, n-butyl, trifluoromethyl, fluorine, chlorine, bromine, iodine, methoxy, ethoxy, methylene, ethylene, propylene, isopropylene, benzylidene, nitrile, nitro, very particularly preferably methyl, Me - thoxy, methylene, ethylene, trifluoromethyl, fluorine and bromine.
  • aryl alcohols can be used.
  • electron-rich arenes such as phenol and mono- or polysubstituted phenols and naphthol ( ⁇ - and ß-) and substituted derivatives thereof, very particularly preferred are phenols, and particularly particularly preferred are 4-alkyl and 2,4-dialkyl-substituted phenols.
  • Suitable substrates for the electrodimerization according to the present invention are in principle all aryl alcohols, provided that they are capable of dimerization due to their spatial structure and steric requirements.
  • the aryl alcohols may be mononuclear, dinuclear, trinuclear or higher nuclear. Preferably, they are mononuclear or dinuclear, in particular mononuclear.
  • the aryl alcohols preferably have an OH function.
  • Suitable aryl alcohols include phenol and mono- and polysubstituted substituted phenols represented by the following formula (I) wherein R1 to R4 are independently the same or different and are selected from the following substituents: H, Ci-Cio-alkyl , C 1 -C 10 -alkoxy, halogen, C 1 -C 10 -alkoxycarboxyl, nitrile and also mono- and di-C 1 -C 10 -alkoxycarbamoyl.
  • R1 to R4 are independently the same or different and are selected from the following substituents: H, Ci-Cio-alkyl , C 1 -C 10 -alkoxy, halogen, C 1 -C 10 -alkoxycarboxyl, nitrile and also mono- and di-C 1 -C 10 -alkoxycarbamoyl.
  • naphthol ⁇ - and ⁇ -
  • substituted derivatives thereof according to the following formulas (II) and (III), in which the radicals R 1 to R 7, identical or different and selected from the following substituents: H, Ci-Cio Alkyl, Ci-Cio-Alkoxy, halogen, Ci-Cio-Alkoxycarboxyl, nitrile as well as mono- and di-C1-C10-Alkoxycarbamoyl.
  • the electrolyte solution is worked up by general separation methods.
  • the electrolyte solution is generally first distilled and recovered the individual compounds in the form of different fractions separately. Further purification can be carried out, for example, by crystallization, distillation, sublimation or chromatographic.
  • the preparation of the biaryl alcohol is carried out electrolytically, with the corresponding aryl alcohol being oxidized anodically.
  • the process according to the invention is referred to below as electrodimerization. It has surprisingly been found that arise by the process according to the invention using mediators, the biaryl alcohols selectively and in high yield. Furthermore, it has been found that very inexpensive electrode materials, undivided cell structures and solvent-free methods can be used by the method according to the invention.
  • the workup and recovery of the desired biphenols is very simple.
  • the electrolyte solution is worked up by general separation methods. For this purpose, the electrolyte solution is generally first distilled and recovered the individual compounds in the form of different fractions separately.
  • Further purification can be carried out, for example, by crystallization, distillation, sublimation or chromatographic.
  • Partially and / or perfluorinated alcohols and / or acids preferably perfluorinated alcohols and carboxylic acids, very particularly preferably 1, 1, 1, 3, 3, 3-hexafluoroisopropanol or trifluoroacetic acid are used as mediators in the process according to the invention. No additional solvents are required in the electrolyte.
  • electrolysis is carried out in the usual, known in the art electrolysis cells. Suitable electrolysis cells are known to the person skilled in the art. Preferably, one works continuously in undivided flow cells or discontinuously in beaker cells.
  • bipolar switched capillary gap cells or Plattenstapelzellen, in which the electrodes are designed as plates and are arranged plane-parallel as in Ullmann's Encyclopedia of Industrial Chemistry, 1999 electronic release, Sixth Edition, VCH-Weinheim, Volumne and in Electrochemistry , Chapter 3.5. special cell designs as well as Chapter 5, Organic Electrochemistry, Subchapter 5.4.3.2 Cell Design.
  • the current densities at which the process is carried out are generally 1 to 1000, preferably 5 to 100 mA / cm 2 .
  • the temperatures are usually from -20 to 60 ° C., preferably from 10 to 60 ° C.
  • the reaction is generally carried out under atmospheric pressure. Higher pressures are preferably used when operating at higher temperatures to avoid boiling of the co-solvents or mediators.
  • Suitable anode materials are, for example, noble metals such as platinum or metal oxides such as ruthenium or chromium oxide or mixed oxides of the type RuO x TiO x and diamond electrodes. Preference is given to graphite or carbon electrodes.
  • the cathode material for example, iron, steel, stainless steel, nickel or E- delmetalle such as platinum and graphite or carbon materials and diamond electrodes into consideration.
  • the system is preferably graphite as the anode and cathode, graphite as the anode and nickel, stainless steel or steel as the cathode and platinum as the anode and cathode.
  • the aryl alcohol compound is dissolved in a suitable solvent.
  • a suitable solvent preferably solvents from the group of polar protic and polar aprotic solvents, are suitable.
  • the aryl alcohol compound itself serves as a solvent and reagent.
  • polar aprotic solvents examples include nitriles, amides, carbonates, ethers, ureas, chlorinated hydrocarbons.
  • polar aprotic solvents examples include Actonitrile, dimethylformamide, dimethyl sulfoxide, propylene carbonate and dichloromethane.
  • polar protic solvents examples include alcohols, carboxylic acids and amides.
  • polar protic solvents examples include methanol, ethanol, propanol, butanol, pentanol and hexanol. These may also be partially or completely halogenated, e.g. 1, 1, 1, 3,3,3-hexafluoroisopropanol (HFIP) or trifluoroacetic acid (TFA).
  • HFIP 1, 1, 1, 3,3,3-hexafluoroisopropanol
  • TFA trifluoroacetic acid
  • the electrolysis solution is added to customary cosolvents.
  • these are the inert solvents customary in organic chemistry and have a high oxidation potential. Examples include its dimethyl carbonate, propylene carbonate, tetrahydrofuran, dimethoxyethane, acetonitrile or dimethylformamide.
  • Conducting salts which are contained in the electrolysis solution are generally alkali metal, alkaline earth metal, tetra (C 1 -C 6 -alkyl) ammonium, preferably tri (cis-bisalkyl) -methylammonium salts.
  • Suitable counterions are sulfate, bisulfate, alkyl sulfates, aryl sulfates, halides, phosphates, carbonates, alkyl phosphates, alkyl carbonates, nitrate, alcoholates, tetrafluoroborate, hexafluorophosphate or perchlorate.
  • the acids derived from the abovementioned anions are suitable as conductive salts.
  • MTBS methyltributylammonium methylsulfates
  • MTES methyltriethylammonium methylsulfate
  • TABF tetrabutylammonium, tetrafluoroborate
  • TFA trifluoroacetic acid
  • AcOH acetic acid
  • Phenol 2,4-dimethylphenol
  • MTES methyltriethylammonium methyl sulfate
  • Phenol 2-bromo-4-methylphenol
  • a N, N-dimethylpyrrolidinium methylsulfate
  • b yield considering the recovered phenol
  • c isolation by crystallization from toluene and chromatographic
  • d isolation by crystallization from 'PrOH: water and chromatographic.
  • Example 1 Anodic oxidation of 2,4-dimethylphenol on graphite electrodes with trifluoroacetic acid
  • the solvent is first removed and then excess phenol recovered by short path distillation.
  • the reaction residue is taken up in 50 mL water and 30 mL TBME, the phases are separated and the aqueous phase extracted again with 3x30 mL TBME.
  • the combined organic phases are washed with 50 ml of water and saturated sodium chloride solution, dried over magnesium sulfate and the solvent removed under reduced pressure.
  • the crude product is dissolved in 10 ml of toluene at 50 ° C.
  • the slow addition of n-heptane succeeds in crystallizing the product, which is obtained by filtration and washing with a little cold n-heptane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von Biarylalkoholen, wobei durch anodische Dehydrodimerisierung von substituierten Arylalkoholen in Gegenwart von teil und/oder perfluorierten Mediatoren und einem Leitsalz an einer Graphitelektrode gearbeitet wird.

Description

VERFAHREN ZUR ANODISCHEN DEHYDRODIMERISIERUNG VON SUBSTITUIERTEN ARYLALKOHOLEN
Beschreibung
Die Erfindung betrifft ein Verfahren zur Herstellung von Biarylalkoholen, wobei durch anodischen Dehydrodimerisierung von substituierten Phenolen in Gegenwart von teil und/oder perfluorierten Mediatoren und einem Leitsalz an einer Graphitelektrode gearbeitet wird.
Durch das erfindungsgemäße Verfahren können sehr preiswerte Elektrodenmaterialien, ungeteilte Zellaufbauten sowie lösungsmittelfreie Verfahren angewendet werden. Als Mediatoren können z.B. 1 ,1 ,1 ,3,3,3-Hexafluorisopropanol oder die wesentlich günstigere Trifluoressigsäure eingesetzt werden. Die Aufarbeitung und Gewinnung der gewünschten Biphenole gestaltet sich sehr ein- fach.
Biaryle sind als solche bekannt und werden industriell hergestellt und eingesetzt. Verbindungen dieser Verbindungsklasse sind u.a. als Rückgrate für Liganden von sehr großem Interesse für stereoselektive Transformationen. Ein möglicher Zugang zu die- ser Substanzklasse ist die elektrochemische oxidative Dimerisierung von Phenolen, die in dem Fachmann bekannten Elektrolyten jedoch unselektiv verläuft. Alternativ zur e- lektrochemischen Dimerisierung von Phenolen werden Eisen(lll)-Salze oder auch andere starke Oxidationsmittel verwendet.
G. Lessene und K. S. Feldman beschreiben in Modern Arene Chemistry, Ed: D. Astruc, VCH-Wiley, Weinheim 2002, Seite 479-538, dass sich diese Transformation in einigen Fällen mittel Übergangsmetell-Katalyse auch unter aeroben Bedingungen realisieren lässt. Nachteilige an dieser Synthese ist der Einsatz von Eisenschlorid, da dies zu zahlreichen Nebenprodukten führt. Des Weiteren lässt sich nach diesen aeroben Bedin- gungen nur stark aktivierte Verbindungen umsetzen.
Besonders begünstigte und deshalb häufig eingesetzte Substrate weisen annellierte Benzolringe oder sterisch anspruchsvolle Alkylgruppen auf. Als Beispiel kann hier das aus 2-Naphthol hergestellte 2,2'-Dihydroxy-1 ,1 '-binaphthyl (BINOL) gelten.
Versucht man 2,4-Dimethylphenol (1 ) analog den Lehrbuchvorschriften von C. E.
Rommel, Staatsexamensarbeit, Münster 2002 und allgemein von H. Lund, M. M. Bai- zer, Organic Electrochemistry: An Introduction and a Guide, 3rd edition, Marcel Dekker, New York 1991 , Chapter 22.lll, 885-908 einer oxidativen Kupplung zu unterwerfen, so erhält man meist als Hauptprodukt nicht das gewünschte ortho,ortho-verknüpfte Pro- dukt 2, sondern ein Derivat des Pummerer Ketons (3). Die Bildung des tricyclischen Gerüstes 3 ist bei para-alkyl-substituierten Phenolen bekannt und findet sich ebenfalls in der Synthese vieler Naturstoffe.
Figure imgf000003_0001
3
Seit einigen Jahren wird die anodische Synthese von Biphenolen, im Speziellen von 3,3',5,5'-Tetramethyl-2,2'-biphenol (2), mit verschiedenen elektrochemischen Methoden intensiv untersucht. In den unterschiedlichsten Elektrolytsystemen zeigte sich bei der direkten Umsetzung ebenfalls eine starke Präferenz zur Bildung des Derivats des Pummerer Ketons (3). Das gewünschte Dehydrodimer 2 wurde lediglich in 3-7 % Ausbeute isoliert. I. M. Malkowsky, C. E. Rommel, K. Wedeking, R. Fröhlich, K. Bergander, M. Nieger, C. Quaiser, U. Griesbach, H. Pütter und S. R. Waldvogel beschrieben in
Eur. J. Org. Chem. 2006, 241-245 die Bildung weiterer, zuvor nicht beschriebener pen- tacyclischer Gerüste. Weitergehende Untersuchungen ergaben, dass freie Phenoxyl- radikale für die Bildung des Pummerer Ketons verantwortlich sind. Um eine gezielte Verknüpfung in den ortho-Positionen zu erreichen, wurde, wie von I. M. Malkowsky, R. Fröhlich, U. Griesbach, H. Pütter und S. R. Waldvogel in Eur. J. Inorg. Chem. 2006, 1690-1697 und von I. M. Malkowsky, U. Griesbach, H. Pütter und S. R. Waldvogel in Chem. Eur. J. 2006, 12, 7482-7488 beschrieben, ein Bor-Templat entwickelt. Wie von C. Rommel, I. M. Malkowsky, S. R. Waldvogel, H. Pütter und U. Griesbach in WO-A 2005/075709 beschrieben, gelingt die elektrochemische Umsetzung dieser mehrstufigen Sequenz für eine größere Substratbreite und auch in größeren Maßstäben. Ein zusätzlicher Nachteil neben dem hohen präparativen Aufwand ergab sich aus der Verwendung von Acetonitril im Elektrolyten.
Mithilfe von Bor-dotierten Diamantelektroden (BDD) konnte für 2, 4-Dimethylphenol als alleiniges Substrat eine direkte anodische Umsetzung gefunden werden, wie es I. M. Malkowsky, U. Griesbach, H. Pütter und S. R. Waldvogel in Eur. J. Org. Chem. 2006, 4569-4572; und M. Malkowsky, S. R. Waldvogel, H. Pütter und U. Griesbach in WO-A 2006/077204 beschreiben. Das Verhältnis von Biphenol zu Pummerer Keton liegt meist besser als 18:1. Um einen elektrochemischen Abbrand an der BDD-Anode zu vermeiden, wird die Phenolkupplung nur bis zum einem Umsatz von ca. 30% gebracht. Zusätzliche Nachteile dieses Verfahrens bestehen in der geringen Stabilität der BDD-Elektroden, deren Preis sowie der fehlenden Substratbreite.
Die Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren bereitzustellen, mit dem die selektive und effiziente oxidative Kupplung von substituierten Phenolen erfolgt ohne in Gegenwart von teuerem Elektrodenmaterial arbeiten zu müssen. Vorzugsweise soll die Kupplung von substituierten Phenolen in ortho-Stellung erfolgen. Diese Aufgabe wird gelöst durch ein Verfahren zur Herstellung von Biarylalkoholen, wobei substituierte Arylalkohole in Gegenwart von teil- und/oder perfluorierten Mediatoren und wenigstens einem Leitsalz mit Hilfe einer Graphitelektrode anodisch dehydro- dimerisiert werden.
Vorteilhaft ist das erfindungsgemäße Verfahren, wenn die OH-Gruppe der eingesetzten, substituierten Arylalkohole direkt am Aromaten sitzt.
Vorteilhaft ist das erfindungsgemäße Verfahren, wenn die eingesetzten substituierten Arylalkohole identisch sind.
Vorteilhaft ist das erfindungsgemäße Verfahren, wenn die eingesetzten substituierten Arylalkohole ein- oder mehrkernig sein können.
Vorteilhaft ist das erfindungsgemäße Verfahren, wenn die Dimerisierung in ortho- Stellung zur Alkoholgruppe der substituierten Arylalkohole stattfindet.
Vorteilhaft ist das erfindungsgemäße Verfahren, wenn die eingesetzten Mediatoren teil- und/oder perfluorierte Alkohole und/oder Säuren sind.
Vorteilhaft ist das erfindungsgemäße Verfahren, wenn als Mediatoren 1 ,1 ,1 ,3,3,3- Hexafluorisopropanol oder Trifluoressigsäure eingesetzt wird.
Vorteilhaft ist das erfindungsgemäße Verfahren, wenn als Leitsalze solche eingesetzt werden, die ausgewählt sind aus der Gruppe von Alkali, Erdalkali, Tetra(d- bis Cβ- alkyl)ammoniumsalzen.
Vorteilhaft ist das erfindungsgemäße Verfahren, wenn die Gegenionen der Leitsalze ausgewählt sind aus der Gruppe von Sulfat, Hydrogensulfat, Alkylsulfate, Arylsulfate, Halogenide, Phosphate, Carbonate, Alkylphosphate, Alkylcarbonate, Nitrat, Alkoholate, Tetrafluorborat, Hexafluorophosphat und Perchlorat.
Vorteilhaft ist das erfindungsgemäße Verfahren, wenn für die Elektrolyse kein weiteres Lösungsmittel eingesetzt wird.
Vorteilhaft ist das erfindungsgemäße Verfahren, wenn für die Elektrolyse eine Durchflusszelle eingesetzt wird.
Vorteilhaft ist das erfindungsgemäße Verfahren, wenn Stromdichten von 1 bis 1000 mA/cm2 eingesetzt werden. Vorteilhaft ist das erfindungsgemäße Verfahren, wenn die Elektrolyse bei Temperaturen im Bereich von -20 bis 600C und Normaldruck durchgeführt wird.
Vorteilhaft ist das erfindungsgemäße Verfahren, wenn als Arylalkohol 2,4-Dimethyl- phenol eingesetzt wird.
Unter Arylalkohol werden im Rahmen der vorliegenden Erfindung aromatische Alkohole verstanden, bei denen die Hydroxylgruppe direkt an den aromatischen Kern gebunden ist.
Der Aromat, der dem Arylalkohol zugrunde liegt, kann ein- oder mehrkernig sein. Vorzugsweise ist der Aromat einkernig (Phenolderivate) oder zweikernig (Naphtholderiva- te), insbesondere einkernig. Die Arylalkohole können auch noch weitere Substituenten tragen. Diese Substituenten sind unabhängig voneinander ausgewählt aus der Gruppe von Ci-Cio-Alkylgruppen, Halogenen, Ci-Cio-Alkoxygruppen, durch Sauerstoff oder Schwefel unterbrochene Alkylen- oder Arylenreste, Ci-Cio-Alkoxycarboxyl, Nitril, Nitro sowie Ci-Cio-Alkoxycarbamoyl, besonders bevorzugt Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Trifluormethyl, Fluor, Chlor, Brom, lod, Methoxy, Ethoxy, Methylen, Ethylen, Propylen, Isopropylen, Benzyliden, Nitril, Nitro, ganz besonders bevorzugt Methyl, Me- thoxy, Methylen, Ethylen, Trifluormethyl, Fluor und Brom. Mit dem neuen Verfahren kann eine breite Palette an Arylalkoholen eingesetzt werden. Besonders bevorzugt sind elektronenreiche Arene wie Phenol und einfach oder mehrfach substituierte Phenole sowie Naphthol (α- und ß-) und substituierte Derivate davon, ganz besonders bevorzugt sind Phenole und insbesondere ganz besonders bevorzugt sind 4-Alkyl- sowie 2,4-dialkylsubstituierte Phenole.
Als Substrate für die Elektrodimerisierung nach der vorliegenden Erfindung eignen sich prinzipiell sämtliche Arylalkohole, sofern diese aufgrund ihrer räumlichen Struktur und sterischen Anforderungen zu einer Dimerisierung in der Lage sind. Die Arylalkohole können einkernig, zweikernig, dreikernig oder höherkernig sein. Vorzugsweise sind sie einkernig oder zweikernig, insbesondere einkernig. Weiterhin weisen die Arylalkohole vorzugsweise eine OH-Funktion auf.
Beispiele für geeignete Arylalkohole umfassen Phenol und einfach und mehrfache substituierte Phenole die von der nachfolgenden Formel (I) wiedergegeben werden, in der die Reste R1 bis R4, unabhängig voneinander gleich oder verschieden und aus folgenden Substituenten ausgewählt sind: H, Ci-Cio-Alkyl, Ci-Cio-Alkoxy, Halogen, d- Cio-Alkoxycarboxyl, Nitril sowie Mono- und Di- Ci-Cio-Alkoxycarbamoyl.
Figure imgf000006_0001
Weitere Beispiele umfassen Naphthol (α- und ß-) und substituierte Derivate davon nach den nachfolgenden Formeln (II) und (III), in denen die Reste R1 bis R7, gleich oder verschieden und aus folgenden Substituenten ausgewählt sind: H, Ci-Cio-Alkyl, Ci-Cio-Alkoxy, Halogen, Ci-Cio-Alkoxycarboxyl, Nitril sowie Mono- und Di- C1-C10- Alkoxycarbamoyl.
Figure imgf000006_0002
Nach Beendigung der Reaktion wird die Elektrolytlösung nach allgemeinen Trennmethoden aufgearbeitet. Hierzu wird die Elektrolytlösung im Allgemeinen zuerst destilliert und die einzelnen Verbindungen in Form von unterschiedlichen Fraktionen getrennt gewonnen. Eine weitere Reinigung kann beispielsweise durch Kristallisation, Destillation, Sublimation oder chromatographisch erfolgen.
Die Herstellung des Biarylalkohols erfolgt elektrolytisch, wobei der entsprechende Aryl- alkohol anodisch oxidiert wird. Das erfindungsgemäße Verfahren wird nachfolgend Elektrodimerisierung genannt. Es wurde überraschender weise gefunden, dass durch das erfindungsgemäße Verfahren unter Verwendung von Mediatoren die Biarylalkohole selektiv und in hoher Ausbeute entstehen. Des Weiteren wurde gefunden, dass durch das erfindungsgemäße Verfahren sehr preiswerte Elektrodenmaterialien, ungeteilte Zellaufbauten sowie lösungsmittelfreie Verfahren angewendet werden können. Die Aufarbeitung und Gewinnung der gewünschten Biphenole gestaltet sich sehr einfach. Nach Beendigung der Reaktion wird die Elektrolytlösung nach allgemeinen Trennmethoden aufgearbeitet. Hierzu wird die Elektrolytlösung im Allgemeinen zuerst destilliert und die einzelnen Verbindungen in Form von unterschiedlichen Fraktionen getrennt gewonnen. Eine weitere Reinigung kann beispielsweise durch Kristallisation, Destillation, Sublimation oder chromatographisch erfolgen. Als Mediatoren werden im erfindungsgemäßen Verfahren teil- und/oder perfluorierte Alkohole und/oder Säuren, bevorzugt perfluorierte Alkohole sowie Carbonsäuren, ganz besonders bevorzugt 1 ,1 ,1 ,3,3,3-Hexafluorisopropanol oder Trifluoressigsäure verwendet. Im Elektrolyten sind keine weiteren Lösungsmittel erforderlich.
Die entsprechenden Produkte können durch Kurzwegdestillation und Fällung NMR-rein erhalten werden.
Die Elektrolyse wird in den üblichen, dem Fachmann bekannten Elektrolysezellen durchgeführt. Geeignete Elektrolysezellen sind dem Fachmann bekannt. Vorzugsweise arbeitet man kontinuierlich in ungeteilten Durchflusszellen oder diskontinuierlich in Becherglaszellen.
Ganz besonders geeignet sind bipolar geschaltete Kapillarspaltzellen oder Plattensta- pelzellen, bei denn die Elektroden als Platten ausgestaltet sind und planparallel ange- ordnet sind wie es in Ullmann's Encyclopedia of Industrial Chemistry, 1999 electronic release, Sixth Edition, VCH-Weinheim, Volumne und in Electrochemistry, Chapter 3.5. special cell designs sowie Chapter 5, Organic Electrochemistry, Subchapter 5.4.3.2 Cell Design beschrieben ist.
Die Stromdichten, bei denen das Verfahren durchgeführt wird, betragen im allgemeinen 1 - 1000, bevorzugt 5 - 100 mA/cm2. Die Temperaturen betragen üblicherweise -20 bis 600C, bevorzugt 10 bis 600C. Im Allgemeinen wird bei Normaldruck gearbeitet. Höhere Drücke werden bevorzugt dann angewandt, wenn bei höheren Temperaturen gearbeitet werden soll, um ein Sieden der Ausgangsverbindungen bzw. Cosolventien bzw. Mediatoren zu vermeiden.
Als Anodenmaterialien eignen sich beispielsweise Edelmetalle wie Platin oder Metalloxide wie Ruthenium oder Chromoxid oder Mischoxide des Typs RuOxTiOx sowie Diamantelektroden. Bevorzugt sind Graphit oder Kohleelektroden. Als Kathodenmaterial kommen beispielsweise Eisen, Stahl, Edelstahl, Nickel oder E- delmetalle wie Platin sowie Graphit oder Kohlematerialien sowie Diamantelektroden in Betracht. Bevorzugt ist das System Graphit als Anode und Kathode, Graphit als Anode und Nickel, Edelstahl oder Stahl als Kathode sowie Platin als Anode und Kathode.
Zur Durchführung der Elektrolyse wird die Arylalkoholverbindung in einem geeigneten Lösungsmittel gelöst. Es eignen sich die üblichen, dem Fachmann bekannten Lösungsmittel, vorzugsweise Lösungsmittel aus der Gruppe der polaren protischen und polaren aprotischen Lösungsmittel. Besonders bevorzugt dient die Arylalkoholverbindung selbst als Lösungsmittel und Reagenz.
Beispiele für polare aprotische Lösungsmittel umfassen Nitrile, Amide, Carbonate, E- ther, Harnstoffe, Chlorkohlenwasserstoffe.
Beispiele für besonders bevorzugte polare aprotische Lösungsmittel umfassen Actonitril, Dimethylformamid, Dimethylsulfoxid, Propylencarbonat und Dichlormethan. Beispiele für polare protische Lösungsmittel umfassen Alkohole, Carbonsäuren und Amide.
Beispiele für besonders bevorzugte polare protische Lösungsmittel umfassen Metha- nol, Ethanol, Propanol, Butanol, Pentanol und Hexanol. Diese können auch teilweise oder vollständig halogeniert sein, wie z.B. 1 ,1 ,1 ,3,3,3-Hexafluorisopropanol (HFIP) o- der Trifluoressigsäure (TFA).
Gegebenenfalls setzt man der Elektrolyselösung übliche Cosolvenzien zu. Dabei handelt es sich um die in der organischen Chemie üblichen inerten Lösungsmittel mit ei- nem hohen Oxidationspotential. Beispielhaft genannt seinen Dimethylcarbonat, Propylencarbonat, Tetrahydrofuran, Dimethoxyethan, Acetonitril oder Dimethylformamid. Als Leitsalze, die in der Elektrolyselösung enthalten sind, handelt es sich im Allgemeinen um Alkali, Erdalkali, Tetra(d- bis C6-alkyl)ammonium-, bevorzugt Tri(Ci- bis Ce- alkyl)-methylammoniumsalze. Als Gegenion kommen Sulfat, Hydrogensulfat, Alkylsul- fate, Arylsulfate, Halogenide, Phosphate, Carbonate, Alkylphosphate, Alkylcarbonate, Nitrat, Alkoholate, Tetrafluorborat, Hexafluorophosphat oder Perchlorat in Betracht. Weiterhin kommen die von den vorstehend genannten Anionen abgeleiteten Säuren als Leitsalze in Betracht. Bevorzugt sind Methyltributylammoniummethylsulfate (MTBS), Methyltriethylammoni- ummethylsulfat (MTES), Methyltripropylmethylammoniummethylsulfate, oder Tetrabu- tylammonium, Tetrafluoroborat (TBABF).
Beispiele: (Tabellen mit Umsetzungen)
Tabelle 1 :
Umsetzung von 2,4-Dimethylphenol an Graphit unter Verwendung von HFIP^
Figure imgf000008_0001
Figure imgf000009_0001
HFIP: 1 ,1 ,1 ,3,3,3-Hexafluorisopropanol
Tabelle 2:
Umsetzung von 2,4-Dimethylphenol an Graphit unter Verwendung von Carbonsäuren
Figure imgf000009_0002
TFA: Trifluoressigsäure; AcOH: Essigsäure; Phenol: 2,4-Dimethylphenol; MTES: Methyltriethylammoniummethylsulfat
Tabelle 3: Umsetzung von 2-Brom-4-methylphenol an Graphit
Figure imgf000009_0003
Phenol: 2-Brom-4-methylphenol; a: N,N-Dimethylpyrrolidiniummethylsulfat; b: Ausbeute unter Berücksichtigung des rückgewonnenen Phenols; c: Isolierung durch Kristallisation aus Toluol und chromatographisch; d: Isolierung durch Kristallisation aus 'PrOH:Wasser und chromatographisch.
Beispiel 1 : Anodische Oxidation von 2,4-Dimethylphenol an Graphitelektroden mit Trifluoressig- säure
Figure imgf000010_0001
In einer ungeteilten Standardelektrolysezelle mit Graphitanode und -kathode (A = 9 cm2) wird der Elektrolyt bestehend aus 15.90 g (0,1301 mol, 53 Gew.-%) 2,4- Dimethylphenol, 1.00 g (4.4 mmol, 3 Gew.-%) Methyltriethylammoniummethylsulfat und 9 ml_ (44 Gew.-%) Trifluoressigsäure vorgelegt. Unter galvanostatischen Bedingungen wird bei 300C und einer Stromdichte von 10 mA/cm2 eine Elektrolyse durchgeführt. Dabei werden 9669 C (0.77 F/mol) bei einer maximalen Klemmspannung von 18 V aufgebracht. Nach Beenden der Reaktion wird der Elektrolyt mit Toluol in einen Kolben überführt und nachfolgend Trifluoressigsäure sowie Toluol bei Raumdruck destillativ entfernt. Anschließend werden 5.89 g überschüssiges Phenol mittels Kurzwegdestilla- tion bei 4.5x10"3 mbar zurückgewonnen. Der Reaktionsrückstand wird in 30 ml_ wäss- rigem Isopropanol ('PrOHihbO = 4:1) aufgenommen. Durch Lagerung über Nacht bei 4°C gelingt die Kristallisation des Produkts, welches mittels Filtration und Waschen mit wenig kaltem n-Heptan erhalten wird (4.24 g). Weiteres Produkt kann aus dem Filtrat durch kurze säulenchromatographische Aufreinigung an Kieselgel (CH:EE=98:2) iso- liert werden (2.15 g). Insgesamt werden 6.39 g (0,026 mol, 64%), wobei überschüssiges Phenol bei der Ausbeute berücksichtigt wird, leicht rötliches, kristallines Produkt erhalten.
Schmelzpunkt: 133°C; RF-Wert (CH:EE=95:5): 0.33; 1H-NMR (400 MHz, CDCI3): δ = 2.29 (s, 12H, CH3), 4.84 (s, 2H, OH), 6.88 (s, 2H, 4-H), 7.01 (s, 2H, 6-H); 13C-NMR (100 MHz, CDCI3): δ = 16.15 (3-CH3), 20.41 (5-CH3), 122.23 (C-1 ), 125.17 (C-3),
128.51 (C-6), 129.98 (C-5), 131.97 (C-4), 149.13 (C-2); HRMS: m/z für [Ci6Hi902]+ berechnet 243.1380, gefunden 243.1389; MS (ESI+): m/z (%): 243.1 (100) [Ci6Hi902]+.
Beispiel 2: Anodische Oxidation von 2-Brom-4-methylphenol an Graphit-elektroden
Figure imgf000010_0002
In einer ungeteilten Standardelektrolysezelle mit Graphitanode und -kathode (A = 9 cm2) wird der Elektrolyt bestehend aus 20.02 g (0,107 mol, 53 Gew.-%) 2-Brom-4- methylphenol, 1.00 g (4.4 mmol, 3 Gew.-%) Methyltriethylammoniummethylsulfat und 11 ml_ (44 Gew.-%) Trifluoressigsäure vorgelegt. Unter galvanostatischen Bedingungen wird bei 30 0C und einer Stromdichte von 10 mA/cm2 eine Elektrolyse durchge- führt. Dabei werden 7950 C (0.77 F/mol) bei einer maximalen Klemmspannung von 22 V aufgebracht. Nach Beenden der Reaktion wird der Elektrolyt mit Toluol in einen Kolben überführt und nachfolgend Trifluoressigsäure sowie Toluol bei Raumdruck destillativ entfernt. Anschließend werden 9.08 g überschüssiges Phenol mittels Kurz- wegdestillation bei 5.0x10"3 mbar zurückgewonnen. Der Reaktionsrückstand wird in 30 ml_ wässrigem Isopropanol ('PrOHihbO = 4:1 ) aufgenommen. Durch Lagerung über Nacht bei 4 0C gelingt die Kristallisation des Produkts. Dieses wird in wenig MTBE aufgenommen und über Cellite filtriert. Durch entfernen des Lösungsmittels wird reines Produkt erhalten (1.35 g). Weiteres Produkt kann aus dem Filtrat durch säulenchroma- tographische Aufreinigung an Kieselgel (CH:EE=95:5) isoliert werden (6.90 g). Insgesamt werden 8.25 g (0,022 mol, 76%), wobei überschüssiges Phenol bei der Ausbeute berücksichtigt wird, farbloses, kristallines Produkt erhalten.
Schmelzpunkt: 144-145 0C; RF-Wert (CH:EE=95:5): 0.06; 1H-NMR (300 MHz, CDCI3): δ = 2.31 (s, 6H, CH3), 5.80 (s, 2H, OH), 6.88 (d, 4JH,H = 2.1 Hz, 2H, 6-H), 7.01 (d, 4JH,H = 2.1 Hz, 2H, 4-H); 13C-NMR (75 MHz, CDCI3): δ = 20.24 (5-CH3), 110.94 (C-3), 125.33 (C-1 ), 131.44 (C-5), 131.60 (C-6), 132.58 (C-4), 147.11 (C-2).
Beispiel 3:
Anodische Oxidation von 2,4-Dimethylphenol an Graphitelektroden mit HFIP
Figure imgf000011_0001
In einer ungeteilten Standardelektrolysezelle mit Graphitanode und -kathode (A = 9 cm2) wird der Elektrolyt bestehend aus 15.98 g (0,1308 mol, 52 Gew.-%) 2,4-Di- methylphenol, 1.00 g (4.4 mmol, 1 Gew.-%) Methyltriethylammoniummethylsulfat und 9 mL (47 Gew.-%) Hexafluorisopropanol vorgelegt. Unter galvanostatischen Bedingungen wird bei 30 0C und einer Stromdichte von 10 mA/cm2 eine Elektrolyse durchgeführt. Dabei werden 9721 C (0.77 F/mol) bei einer maximalen Klemmspannung von 12.8 V aufgebracht. Nach Beenden der Reaktion wird zunächst das Lösungsmittel ent- fernt und anschließend überschüssiges Phenol mittels Kurzwegdestillation zurückgewonnen. Der Reaktionsrückstand wird in 50 mL Wasser und 30 mL TBME aufgenommen, die Phasen getrennt und die wässrige Phase nochmals mit 3x30 mL TBME extrahiert. Die vereinigten organischen Phasen werden mit jeweils 50 mL Wasser und gesättigter Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und das Lösungsmittel unter vermindertem Druck entfernt. Das Rohprodukt wird in 10 mL Toluol bei 500C gelöst. Durch langsame Zugabe von n-Heptan gelingt die Kristallisation des Produkts, welches mittels Filtration und Waschen mit wenig kaltem n-Heptan erhalten wird. Weiteres Produkt kann aus dem Filtrat durch säulenchromatographische Aufreinigung an Kieselgel (CH:EE=98:2, dann 95:5) isoliert werden. Insgesamt werden 4,43 g (0,018 mol, 28%) farbloses, kristallines Produkt erhalten. Schmelzpunkt: 135-136 0C; RF-Wert (CH:EE=95:5): 0.33; 1H-NMR (300 MHz, CDCI3): δ = 2.29 (s, 12H, CH3), 5.01 (s, 2H, OH), 6.88 (s, 2H, 4-H), 7.01 (s, 2H, 6-H); 13C-NMR (75 MHz, CDCI3): δ = 16.14 (3-CH3), 20.41 (5-CH3), 122.17 (C-1), 125.16 (C-3), 128.49 (C-6), 130.00 (C-5), 132.00 (C-4), 149.13 (C-2).

Claims

Patentansprüche
1. Verfahren zur Herstellung von Biarylalkoholen, wobei substituierte Arylalkohole in Gegenwart von teil- und/oder perfluorierten Mediatoren und wenigstens einem Leitsalz mit Hilfe einer Graphitelektrode anodisch dehydrodimerisiert werden.
2. Verfahren nach Anspruch 1 , wobei die OH-Gruppe der eingesetzten Arylalkohole direkt an den Aromaten gebunden ist.
3. Verfahren nach einem der Ansprüche 1 bis 2, wobei die eingesetzten substituierten Arylalkohole identisch sind.
4. Verfahren nach einem der Ansprüche 1 bis 3, wobei die eingesetzten substituierten Arylalkohole ein- oder mehrkernig sein können.
5. Verfahren nach einem der Ansprüche 1 bis 4, wobei die Dimerisierung in ortho- Stellung zur Alkoholgruppe der Arylalkohole stattfindet.
6. Verfahren nach einem der Ansprüche 1 bis 5, wobei die eingesetzten Mediatoren teil- und/oder perfluorierte Alkohole und/oder Säuren sind.
7. Verfahren nach einem der Ansprüche 1 bis 6, wobei als Mediatoren 1 ,1 ,1 ,3,3,3- Hexafluorisopropanol oder Trifluoressigsäure eingesetzt wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, wobei als Leitsalze solche eingesetzt werden, die ausgewählt sind aus der Gruppe von Alkali, Erdalkali, Tetra(d- bis C6-alkyl)ammoniumsalzen.
9. Verfahren nach einem der Ansprüche 1 bis 8, wobei die Gegenionen der Leitsal- ze ausgewählt sind aus der Gruppe von Sulfat, Hydrogensulfat, Alkylsulfate, A- rylsulfate, Halogenide, Phosphate, Carbonate, Alkylphosphate, Alkylcarbonate, Nitrat, Alkoholate, Tetrafluorborat, Hexafluorophosphat und Perchlorat.
10. Verfahren nach einem der Ansprüche 1 bis 9, wobei für die Elektrolyse kein wei- teres Lösungsmittel eingesetzt wird.
1 1. Verfahren nach einem der Ansprüche 1 bis 10, wobei für die Elektrolyse eine Durchflusszelle eingesetzt wird.
12. Verfahren nach einem der Ansprüche 1 bis 1 1 , wobei Stromdichten von 1 bis 1000 mA /cm2 eingesetzt werden.
13. Verfahren nach einem der Ansprüche 1 bis 12, wobei die Elektrolyse bei Temperaturen im Bereich von -20 bis 600C und Normaldruck durchgeführt wird.
14. Verfahren nach einem der Ansprüche 1 bis 13, wobei als Arylalkohol 2,4-Di- methylphenol eingesetzt wird.
PCT/EP2009/061101 2008-09-01 2009-08-28 Verfahren zur anodischen dehydrodimerisierung von substituierten arylalkoholen WO2010023258A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT09782303T ATE551445T1 (de) 2008-09-01 2009-08-28 Verfahren zur anodischen dehydrodimerisierung von substituierten phenolen
EP09782303A EP2318569B1 (de) 2008-09-01 2009-08-28 Verfahren zur anodischen dehydrodimerisierung von substituierten phenolen
US13/059,548 US8449755B2 (en) 2008-09-01 2009-08-28 Process for the anodic dehydrodimerization of substituted phenols
JP2011524388A JP5535215B2 (ja) 2008-09-01 2009-08-28 置換アリールアルコールのアノード脱水素二量化のための方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08163356.2 2008-09-01
EP08163356 2008-09-01

Publications (2)

Publication Number Publication Date
WO2010023258A1 true WO2010023258A1 (de) 2010-03-04
WO2010023258A8 WO2010023258A8 (de) 2010-04-22

Family

ID=41413363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/061101 WO2010023258A1 (de) 2008-09-01 2009-08-28 Verfahren zur anodischen dehydrodimerisierung von substituierten arylalkoholen

Country Status (5)

Country Link
US (1) US8449755B2 (de)
EP (1) EP2318569B1 (de)
JP (1) JP5535215B2 (de)
AT (1) ATE551445T1 (de)
WO (1) WO2010023258A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010139687A1 (de) * 2009-06-05 2010-12-09 Basf Se Verfahren zur herstellung von unsymmetrischen biarylalkoholen
US8747646B2 (en) 2009-06-05 2014-06-10 Basf Se Process for the anodic cross-dehydrodimerization of arenes
DE102013211744A1 (de) 2013-06-21 2014-12-24 Evonik Industries Ag Elektrochemisches Verfahren zur Herstellung von symmetrischen Biphenolen unter Verwendung einer Glaskohlenstoffanode
DE102013211745A1 (de) 2013-06-21 2014-12-24 Evonik Industries Ag Elektrochemisches Verfahren zur Herstellung von symmetrischen Biphenolen unter Verwendung von Essigsäure als Elektrolyt
DE102014209976A1 (de) 2014-05-26 2015-11-26 Evonik Degussa Gmbh Verfahren zur Herstellung von 2,2'-Biphenolen unter Verwendung von Selendioxid und halogeniertem Lösungsmittel
EP2949638A1 (de) 2014-05-26 2015-12-02 Evonik Degussa GmbH Verfahren zur herstellung von 2,2 -biphenolen unter verwendung von selendioxid
EP3064484A1 (de) 2015-03-05 2016-09-07 Evonik Degussa GmbH Herstellung von 2,2'-biarylen in gegenwart von molybdän(v)-chlorid
EP3095776A1 (de) 2015-05-20 2016-11-23 Evonik Degussa GmbH Kupplung von einem Phenol und einem Aren unter Verwendung von Selendioxid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013203866A1 (de) * 2013-03-07 2014-09-11 Evonik Industries Ag Elektrochemische Kupplung eines Phenols mit einem Naphthol

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4101391A (en) * 1976-01-05 1978-07-18 Monsanto Company Electrolytic oxidative methyl-methyl coupling of cresol salts
WO2005075709A2 (de) * 2004-02-04 2005-08-18 Basf Aktiengesellschaft Anodische dimerisierung substituierter benzole
WO2006077204A2 (de) * 2005-01-21 2006-07-27 Basf Aktiengesellschaft Anodische dimerisierung von hydroxy-substituierten aromaten

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0243388A (ja) * 1988-08-03 1990-02-13 Mitsubishi Kasei Corp 4,4’−ジヒドロキシビフェニル類の製造法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4101391A (en) * 1976-01-05 1978-07-18 Monsanto Company Electrolytic oxidative methyl-methyl coupling of cresol salts
WO2005075709A2 (de) * 2004-02-04 2005-08-18 Basf Aktiengesellschaft Anodische dimerisierung substituierter benzole
WO2006077204A2 (de) * 2005-01-21 2006-07-27 Basf Aktiengesellschaft Anodische dimerisierung von hydroxy-substituierten aromaten

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010139687A1 (de) * 2009-06-05 2010-12-09 Basf Se Verfahren zur herstellung von unsymmetrischen biarylalkoholen
US8747646B2 (en) 2009-06-05 2014-06-10 Basf Se Process for the anodic cross-dehydrodimerization of arenes
US8747645B2 (en) 2009-06-05 2014-06-10 Basf Se Process for preparing unsymmetrical biaryl alcohols
DE102013211744A1 (de) 2013-06-21 2014-12-24 Evonik Industries Ag Elektrochemisches Verfahren zur Herstellung von symmetrischen Biphenolen unter Verwendung einer Glaskohlenstoffanode
DE102013211745A1 (de) 2013-06-21 2014-12-24 Evonik Industries Ag Elektrochemisches Verfahren zur Herstellung von symmetrischen Biphenolen unter Verwendung von Essigsäure als Elektrolyt
EP2949637A1 (de) 2014-05-26 2015-12-02 Evonik Degussa GmbH Verfahren zur herstellung von 2,2 -biphenolen unter verwendung von selendioxid und halogeniertem lösungsmittel
DE102014209976A1 (de) 2014-05-26 2015-11-26 Evonik Degussa Gmbh Verfahren zur Herstellung von 2,2'-Biphenolen unter Verwendung von Selendioxid und halogeniertem Lösungsmittel
EP2949638A1 (de) 2014-05-26 2015-12-02 Evonik Degussa GmbH Verfahren zur herstellung von 2,2 -biphenolen unter verwendung von selendioxid
DE102014209967A1 (de) 2014-05-26 2015-12-17 Evonik Degussa Gmbh Verfahren zur Herstellung von 2,2'-Biphenolen unter Verwendung von Selendioxid
US9517986B2 (en) 2014-05-26 2016-12-13 Evonik Degussa Gmbh Process for preparing 2,2′-biphenols using selenium dioxide
EP3064484A1 (de) 2015-03-05 2016-09-07 Evonik Degussa GmbH Herstellung von 2,2'-biarylen in gegenwart von molybdän(v)-chlorid
EP3095776A1 (de) 2015-05-20 2016-11-23 Evonik Degussa GmbH Kupplung von einem Phenol und einem Aren unter Verwendung von Selendioxid
US9771311B2 (en) 2015-05-20 2017-09-26 Evonik Degussa Gmbh Coupling a phenol and an arene using selenium dioxide

Also Published As

Publication number Publication date
WO2010023258A8 (de) 2010-04-22
JP2012501383A (ja) 2012-01-19
EP2318569A1 (de) 2011-05-11
US20110147228A1 (en) 2011-06-23
US8449755B2 (en) 2013-05-28
EP2318569B1 (de) 2012-03-28
ATE551445T1 (de) 2012-04-15
JP5535215B2 (ja) 2014-07-02

Similar Documents

Publication Publication Date Title
EP2318569B1 (de) Verfahren zur anodischen dehydrodimerisierung von substituierten phenolen
EP2438214B1 (de) Verfahren zur anodischen kreuz-dehydrodimerisierung von arenen
WO2010139687A1 (de) Verfahren zur herstellung von unsymmetrischen biarylalkoholen
EP0012215B1 (de) 2-Hydroxybutansulfonsaures Cholin und dessen Verwendung als Leitsalz
EP0902846B1 (de) Verfahren zur herstellung von phthaliden
EP1339664B1 (de) Herstellung von butantetracarbonsäurederivaten mittels gekoppelter elektrosynthese
WO2006100289A1 (de) Verfahren zur herstellung von alkoxylierten 2,5-dihydrofuran- oder tetra-1,1,4,4-alkoxylierten but-2-enderivaten
EP2411564B1 (de) Elektrochemisches verfahern zur herstellung von 3-tert.-butylbenzaldehyd-dimethylacetal
WO2005075709A2 (de) Anodische dimerisierung substituierter benzole
EP2041336B1 (de) Elektrochemische herstellung sterisch gehinderter amine
DE2331712A1 (de) Verfahren zur herstellung von 2methoxy-3,6-dichlorbenzoesaeure
WO2007014932A1 (de) Verfahren zur herstellung von 1,1,4,4-tetraalkoxy-but-2-enderivaten
EP0085158B1 (de) Verfahren zur Herstellung von Cycloalkenonderivaten
EP2534281A2 (de) Verfahren zur herstellung von 4-isopropylcyclohexylmethanol
WO2020053353A1 (de) Elektrochemische synthese von s-arylthiocarbamaten
DE102018128228A1 (de) Verfahren zur Oxidation kohlenstoffhaltiger organischer Verbindungen mit elektrochemisch erzeugten Oxidationsmitteln und Anordnung zur Durchführung des Verfahrens
WO2006087321A1 (de) Selektive spaltung von substituierten bisbenzylamiden und -aminen
DE2403446A1 (de) Verfahren zur herstellung hydrierter indole
DE2618276A1 (de) Verfahren zur elektrochemischen dihydrierung von naphthylaethern
DE3228663A1 (de) Verfahren zur herstellung von dichlormilchsaeure oder dem nitril oder amid der dichlormilchsaeure
EP0621352A2 (de) Verfahren zur Herstellung von Terephthalaldehydtetraalkylacetalen
DE102013211745A1 (de) Elektrochemisches Verfahren zur Herstellung von symmetrischen Biphenolen unter Verwendung von Essigsäure als Elektrolyt
DE2731743A1 (de) Verfahren zur herstellung von 1-amino-4-alkoxynaphthalinen aus 1-nitronaphthalinen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09782303

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13059548

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2011524388

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009782303

Country of ref document: EP