EP0621352A2 - Verfahren zur Herstellung von Terephthalaldehydtetraalkylacetalen - Google Patents

Verfahren zur Herstellung von Terephthalaldehydtetraalkylacetalen Download PDF

Info

Publication number
EP0621352A2
EP0621352A2 EP94103543A EP94103543A EP0621352A2 EP 0621352 A2 EP0621352 A2 EP 0621352A2 EP 94103543 A EP94103543 A EP 94103543A EP 94103543 A EP94103543 A EP 94103543A EP 0621352 A2 EP0621352 A2 EP 0621352A2
Authority
EP
European Patent Office
Prior art keywords
xylene
reaction solution
iii
terephthalaldehyde
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP94103543A
Other languages
English (en)
French (fr)
Other versions
EP0621352A3 (de
Inventor
Dieter Dr. Hermeling
Heinz Hannebaum
Wunibald Kippenberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0621352A2 publication Critical patent/EP0621352A2/de
Publication of EP0621352A3 publication Critical patent/EP0621352A3/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/23Oxidation

Definitions

  • the present invention relates to an improved process for the electrochemical production of terephthalaldehyde tetraalkylacetals of the formula I. in which the radicals R are C1-C6-alkyl groups.
  • Terephthalaldehyde tetraalkylacetals are valuable intermediates for organic syntheses and, after their hydrolysis, can be used in the form of terephthalaldehyde for the production of optical brighteners, fiber precursors and polymers.
  • JP-A 85/39 183 it is known to produce terephthalaldehyde tetraalkylacetals by electrooxidation of p-tolylaldehyde dialkyl acetals in the presence of an aliphatic alcohol or an alcohol / acetic acid mixture and a neutral conductive salt. Furthermore, this document mentions without further explanation that p-xylene can be oxidized electrochemically to the corresponding terephthalaldehyde tetraalkylacetal in the presence of an aliphatic alcohol and acetic acid.
  • EP-A 12 240 describes the electrochemical oxidation of p-xylene in alcoholic solution in the presence of a neutral conductive salt to give the corresponding p-tolylaldehyde dialkyl acetals. However, the direct oxidation to the respective tetraalkylacetals is not mentioned.
  • DE-A 33 22 399 describes the anodic oxidation of p-xylene to p-tolylaldehyde dimethyl acetal, the electrochemical reaction taking place in methanol and sulfuric acid or a sulfonic acid.
  • the direct oxidation to terephthalaldehyde tetramethyl acetal is also not observed in this process.
  • the invention was therefore based on the object of making the terephthalaldehyde tetraalkylacetals (I), which are valuable for organic syntheses, electrochemically accessible in a simple and economical manner.
  • a process for the electrochemical preparation of terephthalaldehyde tetraalkylacetals of the formula I in which the radicals R are C1-C6-alkyl groups which is characterized in that compounds (II) or mixtures thereof which are used in the electrochemical oxidation of p-xylene in addition to I and p-tolylaldehyde dialkyl acetal (III) in the presence of a neutral conductive salt or an acid in alkanolic solution, after extensive separation of I and, if desired, a part of the oxidation products II and III subject to further electrochemical oxidation.
  • the electrochemical oxidation of p-xylene in alkanolic solution produces not only the valuable products terephthalaldehyde tetraalkylacetal (I) and p-tolylaldehyde dialkyl acetal (III) the following intermediate methylalkoxylated oxidation products of p-xylene, which are referred to as compounds (II):
  • the compounds (II) are used either individually or as a mixture as starting compounds. They are usually about 1 to 50% by weight, preferably about 5 to 30% by weight, part of the alkanolic electrolysis solution.
  • p-xylene and p-tolylaldehyde dialkyl acetal (III) in a mixture with II are oxidized electrochemically. They are contained in the electrolysis solution in an amount corresponding to the compounds (II).
  • the amounts of the various starting compounds can vary.
  • the mixture to be oxidized after recycling the components separated from I and optionally from III and adding fresh p-xylene, has the following composition: 50 to 90 wt% p-xylene 0.1 to 2% by weight of I 0.1 to 5% by weight IIa 0.1 to 5 wt% IIb 5 to 40 wt% IIc and 0 to 30% by weight III
  • the following alkanols for example, are suitable as an alkanol component of the electrolysis solution: Methanol, ethanol, n-propanol, n-butanol, n-pentanol and n-hexanol, the isomers of the four last-mentioned compounds also being possible.
  • Particularly preferred alkanols are methanol and ethanol.
  • auxiliary electrolytes Another component of the electrolysis solution are neutral conductive salts or acids, which can also be referred to as auxiliary electrolytes and serve to improve conductivity.
  • the neutral conductive salts are e.g. Halides, sulfonates, sulfates, phosphonates, phosphates, hexafluorophosphates, tetrafluoroborates and perchlorates.
  • Its cationic part can be an alkali metal, e.g. lithium, sodium, potassium and rubidium, preferably sodium and potassium, as well as a quaternary ammonium residue, e.g. Tetramethylammonium, tetraethylammonium, tetra-n-propylammonium, dimethyldiethylammonium, dimethyldi-n-propylammonium and diethyldi-n-butylammonium.
  • the relevant conductive salts are, for example, halides such as sodium and potassium fluoride, sulfonates such as sodium and potassium benzene sulfonate, sulfates such as tetramethylammonium methylsulfate, phosphate such as tetramethylammonium methylphosphate, hexafluorophosphates such as sodium and potassium hexate fluorate such as tetrafluorotoro fluorate such as tetrafluorotoro fluorate such as tetrafluorotoro fluorate such as tetrafluorotoro fluorate, such as tetra fluorine, such as tetra fluorine, such as tetra fluorine, such as tetra fluorine, such as tetra fluorine, as well as tetramethyl fluorate, such as tetra fluoride, such as tetrafluoride, and tetrafluoride
  • mixtures for example of sodium and potassium benzene sulfonate, can also be used as conductive salts.
  • the process according to the invention can also be carried out in the presence of an acidic auxiliary electrolyte.
  • the following acids are suitable: sulfuric acid, half esters of sulfuric acid such as methyl sulfate, alkane sulfonic acids such as methyl and ethyl sulfonic acid and aromatic sulfonic acids such as benzene and p-toluenesulfonic acid, with sulfuric acid and benzenesulfonic acid being preferred.
  • the auxiliary electrolytes are preferably used in the electrolysis solution in an amount of 0.1 to 5% by weight, in particular 0.2 to 3% by weight.
  • terephthalaldehyde tetraalkylacetals (I) can be carried out in the electrolysis cells customary for electrochemical oxidation. As a rule, are suitable for this particularly undivided electrolysis cells.
  • the reaction can also be carried out in divided electrolysis cells.
  • noble metals such as platinum, metal oxides such as lead dioxide, ruthenium dioxide, chromium-III-oxide and metals such as titanium, which are coated with a metal oxide layer such as ruthenium dioxide, and graphite can be used as the anode material.
  • Suitable cathode materials are e.g. Metals such as lead, iron, copper, nickel and zinc, metal alloys such as steel, precious metals such as platinum and graphite.
  • Graphite is preferably used for both electrodes.
  • the electrochemical oxidation can be carried out at 0.5 to 20 and preferably at 1 to 10 bar.
  • electrolysis can be carried out at a current density of preferably 0.1 to 30 A / dm2, particularly 1 to 10 A / dm2.
  • the theoretically necessary amount of charge is 8 F. In practice, 8.5 to 12 F per mole of starting compounds used is expediently used.
  • the electrolysis can be carried out batchwise or continuously.
  • the electrolyzed solution can be worked up using customary methods such as distillation, extraction, filtration and crystallization.
  • the process products are preferably distilled off.
  • the compounds (II) or their mixtures are subjected to further electrochemical oxidation.
  • the complete or partial removal of the likewise desired p-tolylaldehyde dialkyl acetal (III) is recommended when the ratio of I to III is in a range from about 0.03 to 1 to 0.33 to 1, in particular 0.2 to 1 to 0.3 to 1 falls.
  • dialkylacetal (III) can be subjected to the electrochemical oxidation either individually or together with II.
  • the process according to the invention is of particular importance if the compounds (II) or their mixtures are returned to the stage of the electrochemical oxidation of p-xylene.
  • the reaction solution obtained in the electrochemical oxidation in the electrolysis cell is expanded to a pressure which is 10 mbar to 10 bar lower than the pressure in the electrolysis cell.
  • the electrolysis cell preferably has an overpressure, based on normal pressure, of 0.1 to 6 bar. This pressure can preferably be built up in the electrolysis cell by means of a pump, but can also be generated by an inert gas such as nitrogen. After the oxidation step, the reaction solution is preferably let down to normal pressure.
  • the first of these preferred embodiments also provides the following continuous mode of operation: After the reaction solution has been let down, a partial stream of the reaction solution is separated off and worked up. This partial stream is generally less than 5% by weight, preferably 0.01 to 1% by weight, of the total stream. Part of the gas dissolved in the reaction solution is discharged from the electrolysis circuit through this partial flow. A separate degassing of the entire reaction solution is not necessary, but can be advantageous in the case of small partial flows and relatively large amounts of gas.
  • the partial flow is worked up as described above. Solvents, auxiliary electrolyte, starting compounds and, if appropriate, incompletely oxidized intermediates can be added to the reaction solution which is returned to the electrolytic cell. The recycled reaction solution is further replaced by the amount of starting compounds which corresponds to the amount of the separated product. After recycling and oxidation, the cycle described is repeated as often as required.
  • the gas released during the expansion of the reaction solution after the electrolysis is also separated off, which is predominantly hydrogen discharged from the electrolysis cell.
  • the reaction solution is then returned to the electrolysis cell, electrolyzed and then expanded.
  • This sequence of process steps is referred to below as cycles. It has proven to be beneficial exposing the reaction solution to a large number of cycles, as a result of which a higher yield can be achieved economically than in just two cycles. 50 to 5000 cycles are preferred, particularly preferably 200 to 3000 cycles.
  • the oxidation of p-xylene in one cycle is generally not carried out until conversion is complete.
  • the turnover is generally 0.01 to 5% of the theoretical turnover.
  • reaction solution is worked up on the product. This is done in a manner known per se, predominantly by distillation. If a solvent is present in the reaction solution, it is distilled off. If neutral salts are used as auxiliary electrolyte, these can then be filtered off before the acetal I is distilled. Solvents, electrolyte and unreacted starting compound can be used again in further process approaches.
  • preferably 60 to 95, in particular 70 to 90,% by weight of the p-xylene to be reacted are initially introduced into the electrolysis cell in a batchwise procedure, and the remaining amount is added, preferably continuously, during the electrolysis.
  • the process according to the invention has the advantage over the prior art that terephthalaldehyde tetraalkylacetals (I) are selectively accessible directly from p-xylene by electrooxidation. It is also advantageous that the corresponding p-tolylaldehyde dialkyl acetals (III) can also be obtained here as valuable products.
  • the electrolysis apparatus used in the following examples consisted of an undivided flow cell with 11 bipolar graphite electrode plates.
  • the electrode plates each had an area of 150 cm2.
  • the distance between the electrodes was 1 mm in each case.
  • the individual electrolyte solutions were each passed through the cell at a rate of 200 l / h.

Abstract

Elektrochemische Herstellung von Terephthalaldehydtetraalkylacetalen I <IMAGE> wobei R C1-C6-Alkyl bedeuten, indem man Verbindungen (II) oder deren Gemische, die bei der elektrochemischen Oxidation von p-Xylol neben I und p-Tolylaldehyddialkylacetal (III) in Gegenwart eines neutralen Leitsalzes oder einer Säure in alkanolischer Lösung entstehen, nach weitgehender Abtrennung von I und gewünschtenfalls eines Teiles der Oxidationsprodukte II und III der weiteren elektrochemischen Oxidation unterwirft.

Description

  • Die vorliegende Erfindung betrifft ein verbessertes Verfahren zur elektrochemischen Herstellung von Terephthalaldehydtetraalkylacetalen der Formel I
    Figure imgb0001

    in der die Reste R C₁-C₆-Alkylgruppen bedeuten.
  • Terephthalaldehydtetraalkylacetale sind wertvolle Zwischenprodukte für organische Synthesen und können nach ihrer Hydrolyse in Form des Terephthalaldehyds zur Herstellung von optischen Aufhellern, Faservorprodukten und Polymeren verwendet werden.
  • Aus der JP-A 85/39 183 ist es bekannt, Terephthalaldehydtetraalkylacetale durch Elektrooxidation von p-Tolylaldehyddialkylacetalen in Gegenwart eines aliphatischen Alkohols oder eines Alkohol/Essigsäure-Gemisches und eines neutralen Leitsalzes herzustellen. Ferner wird in dieser Schrift ohne nähere Erläuterungen erwähnt, daß sich p-Xylol elektrochemisch in Gegenwart eines aliphatischen Alkohols und Essigsäure zum entsprechenden Terephthalaldehydtetraalkylacetal oxidieren lasse.
  • Aus der EP-A 12 240 geht die elektrochemische Oxidation von p-Xylol in alkoholischer Lösung in Gegenwart eines neutralen Leitsalzes zu den entsprechenden p-Tolylaldehyddialkylacetalen hervor. Die Direktoxidation zu den jeweiligen Tetraalkylacetalen wird jedoch nicht erwähnt.
  • In der DE-A 33 22 399 wird die anodische Oxidation von p-Xylol zu p-Tolylaldehyddimethylacetal beschrieben, wobei die elektrochemische Umsetzung in Methanol und Schwefelsäure oder einer Sulfonsäure erfolgt. Auch bei diesem Verfahren ist die Direktoxidation zum Terephthalaldehydtetramethylacetal nicht zu beobachten.
  • Der Erfindung lag daher die Aufgabe zugrunde, die für organische Synthesen wertvollen Terephthalaldehydtetraalkylacetale (I) auf einfache und wirtschaftliche Weise elektrochemisch zugänglich zu machen.
  • Demgemäß wurde ein Verfahren zur elektrochemischen Herstellung von Terephthalaldehydtetraalkylacetalen der Formel I
    Figure imgb0002

    in der die Reste R C₁-C₆-Alkylgruppen bedeuten, gefunden, welches dadurch gekennzeichnet ist, daß man Verbindungen (II) oder deren Gemische, die bei der elektrochemischen Oxidation von p-Xylol neben I und p-Tolylaldehyddialkylacetal (III) in Gegenwart eines neutralen Leitsalzes oder einer Säure in alkanolischer Lösung entstehen, nach weitgehender Abtrennung von I und gewünschtenfalls eines Teiles der Oxidationsprodukte II und III der weiteren elektrochemischen Oxidation unterwirft.
  • Bei der elektrochemischen Oxidation von p-Xylol in alkanolischer Lösung entstehen neben den wertvollen Produkten Terephthalaldehydtetraalkylacetal (I) und p-Tolylaldehyddialkylacetal (III)
    Figure imgb0003

    noch die folgenden intermediären methylalkoxylierten Oxidationsprodukte des p-Xylols, welche als Verbindungen (II) bezeichnet werden:
    Figure imgb0004

    Bei der elektrochemischen Herstellung von I werden als Ausgangsverbindungen die Verbindungen (II) entweder einzeln oder als Gemisch eingesetzt. Sie sind üblicherweise zu ca. 1 bis 50 Gew.-%, vorzugsweise zu ca. 5 bis 30 Gew.-% Bestandteil der alkanolischen Elektrolyselösung.
  • Darüber hinaus werden auch p-Xylol und p-Tolylaldehyddialkylacetal (III) im Gemisch mit II elektrochemisch oxidiert. Sie sind in einer den Verbindungen (II) entsprechenden Menge in der Elektrolyselösung enthalten.
  • Für den Fall, daß Gemische elektrochemisch oxidiert werden, können die Mengen der verschiedenen Ausgangsverbindungen variieren. In der Regel hat das zu oxidierende Gemisch nach Rückführung der von I und gegebenenfalls von III abgetrennten Komponenten und Zugabe von frischem p-Xylol die folgende Zusammensetzung:
    50 bis 90 Gew.-% p-Xylol
    0,1 bis 2 Gew.-% I
    0,1 bis 5 Gew.-% IIa
    0,1 bis 5 Gew.-% IIb
    5 bis 40 Gew.-% IIc und
    0 bis 30 Gew.-% III
    Als alkanolischer Bestandteil der Elektrolyselösung kommen beispielsweise die folgenden Alkanole in Betracht:
    Methanol, Ethanol, n-Propanol, n-Butanol, n-Pentanol und n-Hexanol, wobei auch die Isomeren der vier zuletzt genannten Verbindungen möglich sind. Besonders bevorzugte Alkanole sind Methanol und Ethanol.
  • Sie dienen nicht nur als Reaktionsmedium für die elektrochemische Oxidation, sondern sie haben auch die Funktion eines Alkoxylierungsmittels. Zweckmäßigerweise sind sie zu 50 bis 99 Gew.-%, vorzugsweise 70 bis 95 Gew.-% in der Elektrolyselösung enthalten.
  • Ein weiterer Bestandteil der Elektrolyselösung sind neutrale Leitsalze oder Säuren, die auch als Hilfselektrolyte bezeichnet werden können und zur Verbesserung der Leitfähigkeit dienen.
  • Als neutrale Leitsalze dienen z.B. Halogenide, Sulfonate, Sulfate, Phosphonate, Phosphate, Hexafluorophosphate, Tetrafluoroborate und Perchlorate. Ihr kationischer Teil kann ein Alkalimetall, beispielsweise Lithium, Natrium, Kalium und Rubidium, vorzugsweise Natrium und Kalium, sowie ein quartärer Ammoniumrest sein, z.B. Tetramethylammonium, Tetraethylammonium, Tetra-n-propylammonium, Dimethyldiethylammonium, Dimethyldi-n-propylammonium und Diethyldi-n-butylammonium.
  • Die in Betracht kommenden Leitsalze sind beispielsweise Halogenide wie Natrium- und Kaliumfluorid, Sulfonate wie Natrium- und Kaliumbenzolsulfonat, Sulfate wie Tetramethylammoniummethylsulfat, Phosphonate wie Natriumphosphonat, Phosphate wie Tetramethylammoniummethylphosphat, Hexafluorophosphate wie Natrium- und Kaliumhexafluorophosphat, Tetrafluoroborate wie Tetramethylammoniumtetrafluoroborat, sowie Perchlorate wie Natriumperchlorat, wobei Natriumbenzolsulfonat besonders bevorzugt ist.
  • Darüber hinaus können als Leitsalze auch Mischungen, beispielsweise aus Natrium- und Kaliumbenzolsulfonat eingesetzt werden.
  • Das erfindungsgemäße Verfahren kann auch in Gegenwart eines sauren Hilfselektrolyten durchgeführt werden. Dabei kommen folgende Säuren in Betracht: Schwefelsäure, Halbester der Schwefelsäure wie Methylsulfat, Alkansulfonsäuren wie Methyl- und Ethylsulfonsäure und aromatische Sulfonsäuren wie Benzol- und p-Toluolsulfonsäure, wobei Schwefelsäure und Benzolsulfonsäure bevorzugt sind.
  • Die Hilfselektrolyte werden vorzugsweise in einer Menge von 0,1 bis 5 Gew.-%, besonders 0,2 bis 3 Gew.-% in der Elektrolyselösung verwendet.
  • Die Herstellung von Terephthalaldehydtetraalkylacetalen (I) kann in den für elektrochemische Oxidationen gebräuchlichen Elektrolysezellen durchgeführt werden. In der Regel eignen sich hierfür besonders ungeteilte Elektrolysezellen. Die Umsetzung kann auch in geteilten Elektrolysezellen durchgeführt werden.
  • Als Anodenmaterial können beispielsweise Edelmetalle wie Platin, Metalloxide wie Bleidioxid, Rutheniumdioxid, Chrom-III-oxid und Metalle wie Titan, die mit einer Metalloxidschicht wie Rutheniumdioxid überzogen sind, sowie Graphit verwendet werden. Als Kathodenmaterial eignen sich z.B. Metalle wie Blei, Eisen, Kupfer, Nickel und Zink, Metallegierungen wie Stahl, Edelmetalle wie Platin sowie Graphit. Vorzugsweise verwendet man für beide Elektroden Graphit.
  • Nach den bisherigen Beobachtungen gelingt die elektrochemische Oxidation um so besser, je höher die Temperaturen sind. Aus diesem Grunde empfiehlt sich ein Bereich von 20 bis 200, vorzugsweise 80 bis 140°C.
  • Die elektrochemische Oxidation kann bei 0,5 bis 20 und vorzugsweise bei 1 bis 10 bar durchgeführt werden.
  • Beim erfindungsgemäßen Verfahren kann bei einer Stromdichte von vorzugsweise 0,1 bis 30 A/dm², besonders 1 bis 10 A/dm² elektrolysiert werden.
  • Die theoretisch notwendige Ladungsmenge beträgt 8 F. Zweckmäßigerweise wendet man in der Praxis 8,5 bis 12 F pro Mol eingesetzter Ausgangsverbindungen auf.
  • Die Elektrolyse kann sowohl diskontinuierlich als auch kontinuierlich erfolgen.
  • Die Aufarbeitung der elektrolysierten Lösung kann nach den üblichen Methoden wie Destillation, Extraktion, Filtration und Kristallisation erfolgen. Vorzugsweise destilliert man die Verfahrensprodukte ab.
  • Nach weitgehender Abtrennung von I und gewünschtenfalls eines Teiles der Oxidationsprodukte II und III, werden die Verbindungen (II) oder deren Gemische der weiteren elektrochemischen Oxidation unterworfen. Insbesondere ist die gänzliche oder teilweise Abtrennung des ebenfalls erwünschten p-Tolylaldehyddialkylacetals (III) dann zu empfehlen, wenn das Verhältnis von I zu III in einen Bereich von ca. 0,03 zu 1 bis 0,33 zu 1, insbesondere 0,2 zu 1 bis 0,3 zu 1 fällt.
  • Für den Fall, daß man überwiegend Terephthalaldehydtetraalkylacetal (I) als Produkt wünscht, kann das entsprechende Dialkylacetal (III) entweder einzeln oder zusammen mit II der elektrochemischen Oxidation unterworfen werden.
  • Besondere Bedeutung hat das erfindungsgemäße Verfahren, wenn man die Verbindungen (II) oder deren Gemische in die Stufe der elektrochemischen Oxidation von p-Xylol zurückführt.
  • In zwei bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens wird die bei der elektrochemischen Oxidation in der Elektrolysezelle anfallende Reaktionslösung auf einen Druck entspannt, der 10 mbar bis 10 bar geringer ist als der Druck in der Elektrolysezelle. Vorzugsweise herrscht in der Elektrolysezelle ein Überdruck, bezogen auf Normaldruck, von 0,1 bis 6 bar. Dieser Druck kann in der Elektrolysezelle bevorzugt durch eine Pumpe aufgebaut werden, aber auch durch ein inertes Gas wie Stickstoff erzeugt werden. Die Reaktionslösung wird nach dem Oxidationsschritt vorzugsweise auf Normaldruck entspannt.
  • Die erste dieser bevorzugten Ausführungsformen sieht ferner folgende kontinuierliche Arbeitsweise vor: Nach Entspannung der Reaktionslösung wird ein Teilstrom der Reaktionslösung abgetrennt und aufgearbeitet. Dieser Teilstrom ist im allgemeinen kleiner als 5 Gew.-%, bevorzugt 0,01 bis 1 Gew.-% des Gesamtstroms. Durch diesen Teilstrom wird ein Teil des in der Reaktionslösung gelösten Gases aus dem Elektrolysekreis ausgeschleust. Eine gesonderte Entgasung der gesamten Reaktionslösung ist nicht erforderlich, kann jedoch bei kleinen Teilströmen und relativ großen Gasmengen vorteilhaft sein. Die Aufarbeitung des Teilstromes erfolgt wie oben beschrieben. Lösungsmittel, Hilfselektrolyt, Ausgangsverbindungen und ggfs. nicht vollständig oxidierte Zwischenprodukte können der Reaktionslösung, die in die Elektrolysezelle zurückgeführt wird, zugesetzt werden. Die zurückgeführte Reaktionslösung wird weiterhin um die Menge an Ausgangsverbindungen ersetzt, die der Menge des abgetrennten Produktes entspricht. Nach Rückführung und Oxidation wiederholt sich der beschriebene Zyklus beliebig oft.
  • In der zweiten dieser bevorzugten Ausführungsformen der Erfindung wird bei diskontinuierlichem Arbeiten ferner beim Entspannen der Reaktionslösung nach der Elektrolyse frei werdendes Gas, wobei es sich überwiegend um aus der Elektrolysezelle ausgeschleusten Wasserstoff handelt, abgetrennt. Daraufhin wird die Reaktionslösung in die Elektrolysezelle zurückgeführt, elektrolysiert und anschließend entspannt. Diese Folge von Verfahrensschritten wird im folgenden als Zyklen bezeichnet. Es hat sich als vorteilhaft erwiesen, die Reaktionslösung einer Vielzahl Zyklen auszusetzen, wodurch in wirtschaftlicher Weise eine höhere Ausbeute erzielt werden kann als in nur zwei Zyklen. Bevorzugt sind 50 bis 5000 Zyklen, besonders bevorzugt 200 bis 3000. Die Oxidation von p-Xylol in einem Zyklus wird im allgemeinen nicht bis zum vollständigen Umsatz geführt. Je nach Anzahl der Zyklen beträgt der Umsatz im allgemeinen 0,01 bis 5 % des theoretischen Umsatzes. Ist der gewünschte Oxidationsgrad von p-Xylol erreicht, wird die Reaktionslösung auf das Produkt aufgearbeitet. Dies geschieht in an sich bekannter Weise, vorwiegend destillativ. Ist ein Lösungsmittel in der Reaktionslösung vorhanden, so wird dieses abdestilliert. Bei Verwendung von Neutralsalzen als Hilfselektrolyt können diese anschließend abfiltriert werden, bevor das Acetal I destilliert wird. Lösungsmittel, Elektrolyt und nicht umgesetzte Ausgangsverbindung können in weiteren Verfahrensansätzen wieder eingesetzt werden.
  • In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens legt man bei diskontinuierlicher Arbeitsweise bevorzugt 60 bis 95, insbesondere 70 bis 90 Gew.-% des umzusetzenden p-Xylols in der Elektrolysezelle vor und gibt die restliche Menge während der Elektrolyse, vorzugsweise kontinuierlich, zu.
  • Das erfindungsgemäße Verfahren weist gegenüber dem Stand der Technik den Vorteil auf, daß Terephthalaldehydtetraalkylacetale (I) selektiv durch Elektrooxidation direkt aus p-Xylol zugänglich sind. Außerdem ist es vorteilhaft, daß man auch die entsprechenden p-Tolylaldehyddialkylacetale (III) hier als ebenfalls wertvolle Produkte erhalten kann.
  • Beispiele
  • Die in den folgenden Beispielen verwendete Elektrolyseapparatur bestand aus einer ungeteilten Durchflußzelle mit 11 bipolaren Graphitelektrodenplatten. Die Elektrodenplatten hatten jeweils eine Fläche von 150 cm². Der Abstand der Elektroden betrug jeweils 1 mm.
  • Die einzelnen Elektrolytlösungen wurden jeweils mit einer Geschwindigkeit von 200 l/h durch die Zelle geleitet.
  • Beispiel 1 Diskontinuierliche Herstellung von Terephthalaldehydtetramethylacetal (I) aus p-Methoxymethylbenzaldehyddimethylacetal (IIc)
  • 285 g (1,45 mol) p-Methoxymethylbenzaldehyddimethylacetal (IIc), gelöst in 2 670 g Methanol, wurden in Gegenwart von 30 g Natriumbenzolsulfonat bei 60°C und bei einer Stromdichte von 3,4 A/dm² anodisch oxidiert. Dabei wurde pro Mol eingesetztes p-Methoxymethylbenzaldehyddimethylacetal eine Ladungsmenge von 5 F verbraucht.
  • Nach Abtrennung von Methanol und Natriumbenzolsulfonat wurde das Rohprodukt destillativ aufgearbeitet. Es wurden 246 g Terephthalaldehydtetramethylacetal (I) erhalten.
    Ausbeute, bezogen auf eingesetztes IIc: 75 %
    Ausbeute, bezogen auf umgesetztes IIc (Selektivität) 93 %;
    Umsatz: 80 %
    Die Ausgangsverbindung (IIc) wurde in wiederholten Ansätzen wie folgt hergestellt:
    450 g (4,2 mol) p-Xylol, gelöst in 2520 g Methanol, wurden in Gegenwart von 30 g Natriumbenzolsulfonat bei 65°C und bei einer Stromdichte 3,4 A/dm² anodisch oxidiert. Dabei wurde pro Mol eingesetztes p-Xylol eine Ladungsmenge von 9 F verbraucht.
  • Methanol und Natriumbenzolsulfonat wurden abgetrennt, und das Rohprodukt wurde destillativ auf die folgenden drei Fraktionen aufgearbeitet:
    • a) 25 g Terephthalaldehydtetramethylacetal I (Ausbeute 3 %)
    • b) 104 g p-Methoxymethylbenzaldehyddimethylacetal IIc (Ausbeute 13 %)
    • c) 448 g p-Tolylaldehyddimethylacetal III (Ausbeute 64 %)
    Beispiel 2 Diskontinuierliche Herstellung von Terephthalaldehydtetramethylacetal (I) aus p-Methoxymethylbenzaldehydimethylacetal (IIc)
  • 127,7 g (0,65 mol) p-Methoxymethylbenzaldehyddimethylacetal, gelöst in 1200 g Methanol, wurden in Gegenwart von 13 g Natriumbenzolsulfonat bei 60°C und einer Stromdichte 3,4 A/dm² anodisch oxidiert. Dabei wurde eine Ladungsmenge von 5 F verbraucht.
  • Die Aufarbeitung der Elektrolyselösung erfolgte entsprechend Beispiel 1. Es wurden 111,2 g Terephthaldehydtetramethylacetal (I) erhalten.
    Umsatz: 80 %
    Ausbeute: 75 %
  • Beispiel 3 Diskontinuierliche Herstellung von Terephthalaldehydtetramethylacetal (I) aus einem Gemisch aus p-Xylol und p-Methoxymethylbenzaldehyddimethylacetal (IIc)
  • Ein Gemisch aus 450 g (4,24 mol) p-Xylol und 110 g (0,56 mol) p-Methoxymethylbenzaldehyddimethylacetal (IIc), gelöst in 2 410 g Methanol, wurde in Gegenwart von 30 g Natriumbenzolsulfonat bei 65°C und einer Stromdichte von 3,4 A/dm² anodisch oxidiert. Dabei wurde pro Mol der eingesetzten Ausgangssubstanzen eine Ladungsmenge von 8,5 F verbraucht.
  • Die Aufarbeitung erfolgte entsprechend Beispiel 1. Neben 172 g IIc wurden folgende Verbindungen isoliert:
    75,8 g Terephthalaldehydtetramethylacetal (I); Ausbeute, bezogen auf p-Xylol und IIc: 7 %
    440,7 g p-Tolylaldehyddimethylacetal (III), Ausbeute, bezogen auf p-Xylol: 63 %
  • Beispiel 4 Diskontinuierliche Herstellung von Terephthalaldehydtetramethylacetal (I) aus einem Gemisch aus p-Xylol und p-Methoxymethylbenzaldehyddimethylacetal (IIc)
  • Ein Gemisch aus 450 g (4,24 mol) p-Xylol und 170 g (0,87 mol) IIc, gelöst in 2 350 g Methanol, wurde in Gegenwart von 30 g Natriumbenzolsulfonat bei 50°C und einer Stromdichte von 3,4 A/dm² anodisch oxidiert. Dabei wurde pro Mol der eingesetzten Ausgangssubstanzen eine Ladungsmenge von 12,5 F verbraucht.
  • Die Aufarbeitung erfolgte entsprechend Beispiel 1. Neben 218 g IIc wurden folgende Verbindungen isoliert:
    138 g Terephthalaldehydtetramethylacetal (I); Ausbeute, bezogen auf p-Xylol und IIc: 12 %
    409 g p-Tolylaldehyddimethylacetal (III), Ausbeute, bezogen auf p-Xylol: 58 %
  • Beispiel 5 Kontinuierliche Herstellung von Terephthalaldehydtetramethylacetal (I) aus einem Gemisch aus p-Xylol und p-Methoxymethylbenzaldehyddimethylacetal
  • 110 g einer Elektrolyselösung, bestehend aus 15 Gew.-% p-Xylol, 2,7 Gew.-% p-Methoxymethylbenzaldehyddimethylacetal, 80,3 Gew.-% Methanol und 2 Gew.-% Natriumbenzolsulfonat, wurden stündlich in einer Durchflußzelle kontinuierlich bei 60°C anodisch oxidiert, d.h. über einen Zeitraum von insgesamt 24 Stunden 396 g (3,74 mol) p-Xylol und 71,3 g (0,36 mol) p-Methoxymethylbenzaldehyddimethylacetal. Dabei wurde pro Mol der eingesetzten Ausgangssubstanzen eine Ladungsmenge von 10,9 F verbraucht.
  • Die in 24 Stunden gesammelten Elektrolyseausträge (2 650 g) wurden entsprechend Beispiel 1 aufgearbeitet. Neben 4 g p-Xylol, 8 g α-Methoxy-p-xylol und 130 g p-Methoxymethylbenzaldehyddimethylacetal wurden folgende Verbindungen isoliert:
    101 g Terephthalaldehydtetramethylacetal (I); Ausbeute, bezogen auf in 24 Stunden eingeleitetes p-Xylol und IIc: 11 %
    357 g p-Tolylaldehyddimethylacetal (III), Ausbeute, bezogen auf in 24 Stunden eingeleitetes p-Xylol: 57,5 %
  • Beispiel 6 Kontinuierliche Herstellung von Terephthalaldehydtetramethylacetal (I) aus einem Gemisch aus p-Xylol und p-Methoxymethylbenzaldehyddimethylacetal (IIc)
  • Die Durchführung erfolgte entsprechend Beispiel 5. Kontinuierlich wurden pro Stunde 132 g Elektrolyselösung bestehend aus 15 Gew.-% p-Xylol, 2,7 Gew.-% IIc, 80,3 Gew.-% Methanol und 2 Gew.-% Natriumbenzolsulfonat in der Durchflußelektrolysezelle anodisch oxidiert, d.h. über einen Zeitraum von insgesamt 24 Stunden 475,2 g (4,48 mol) p-Xylol und 86,6 g (0,44 mol) IIc. Dabei wurde pro Mol der eingesetzten Ausgangssubstanzen eine Ladungsmenge von 9,1 F verbraucht.
  • Die in 24 Stunden gesammelten Elektrolyseausträge (3 168 g) wurden entsprechend Beispiel 1 aufgearbeitet. Neben 6 g p-Xylol, 12 g α-Methoxy-p-xylol (IIa) und 135 g IIc wurden folgende Verbindungen isoliert:
    71 g Terephthalaldehydtetramethylacetal (I); Ausbeute, bezogen auf in 24 Stunden eingeleitetes p-Xylol und IIc: 6 %
    490 g p-Tolylaldehyddimethylacetal (III), Ausbeute, bezogen auf in 24 Stunden eingeleitetes p-Xylol: 66 %
  • Beispiel 7 Herstellung von Terephthalaldehydtetramethylacetal (I) aus p-Xylol
  • Eine Elektrolytlösung aus 300 g (2,8 mol) p-Xylol, 2 700 g Methanol und 60 g Natriumbenzolsulfonat wurde bei 50°C und bei einer Stromdichte von 3,4 A/dm² anodisch oxidiert. Dabei wurde pro Mol p-Xylol eine Ladungsmenge von 5,5 F aufgewandt. Danach wurden pro Stunde 5 g (47 mmol) p-Xylol eingeleitet. Insgesamt wurden über einen Zeitraum von 9 Stunden 45 g (0,42 mol) p-Xylol eingeleitet, wobei pro Mol p-Xylol eine Ladungsmenge von 10 F verbraucht wurde.
  • Die Aufarbeitung erfolgte entsprechend Beispiel 1. Neben 1 g p-Xylol, 1,7 g α-Methoxy-p-xylol (IIa) und 78 g IIc wurden folgende Verbindungen isoliert:
    60 g Terephthalaldehydtetramethylacetal (I); Ausbeute, bezogen auf p-Xylol 8 %
    305 g p-Tolylaldehyddimethylacetal (III), Ausbeute, bezogen auf p-Xylol: 57 %

Claims (5)

  1. Verfahren zur elektrochemischen Herstellung von Terephthalaldehydtetraalkylacetalen der Formel I
    Figure imgb0005
    in der die Reste R C₁-C₆-Alkylgruppen bedeuten, dadurch gekennzeichnet, daß man Verbindungen (II) oder deren Gemische, die bei der elektrochemischen Oxidation von p-Xylol neben I und p-Tolylaldehyddialkylacetal (III) in Gegenwart eines neutralen Leitsalzes oder einer Säure in alkanolischer Lösung entstehen, nach weitgehender Abtrennung von I und gewünschtenfalls eines Teiles der Oxidationsprodukte II und III der weiteren elektrochemischen Oxidation unterwirft.
  2. Verfahren zur elektrochemischen Herstellung von Terephthalaldehydtetraalkylacetalen (I), dadurch gekennzeichnet, daß man die Verbindungen (II) oder deren Gemische mit III in die Stufe der elektrochemischen Oxidation von p-Xylol zurückführt.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man bei kontinuierlicher Fahrweise die erhaltene Reaktionslösung außerhalb der Elektrolysezelle auf einen Druck entspannt, der 10 mbar bis 10 bar geringer ist als der Druck in der Elektrolysezelle, einen Teil der Reaktionslösung auf das Produkt aufarbeitet, den verbleibenden Teil der Reaktionslösung mit einer dem entnommenen Teil entsprechenden Menge der ursprünglich eingesetzten Reaktionslösung versetzt, in die Elektrolysezelle zurückführt, elektrolysiert und entspannt.
  4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man bei diskontinuierlicher Oxidation des p-Xylols 70 bis 90 Gew.-% des umzusetzenden p-Xylols in der Elektrolysezelle vorlegt und die restliche Menge während der Elektrolyse zugibt.
  5. Verfahren nach den Ansprüchen 1, 2 oder 4, dadurch gekennzeichnet, daß man bei diskontinuierlicher Fahrweise die erhaltene Reaktionslösung außerhalb der Elektrolysezelle auf einen Druck entspannt, der 10 mbar bis 10 bar geringer ist als der Druck in der Elektrolysezelle, das beim Entspannen freigesetzte Gas von der Reaktionslösung abtrennt, die Reaktionslösung mindestens einmal in die Elektrolysezelle zurückführt, elektrolysiert, entspannt und von freigesetztem Gas abtrennt und anschließend auf das Produkt aufarbeitet.
EP19940103543 1993-03-19 1994-03-09 Verfahren zur Herstellung von Terephthalaldehydtetraalkylacetalen. Withdrawn EP0621352A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4308846 1993-03-19
DE4308846A DE4308846A1 (de) 1993-03-19 1993-03-19 Verfahren zur Herstellung von Terephthalaldehydtetraalkylacetalen

Publications (2)

Publication Number Publication Date
EP0621352A2 true EP0621352A2 (de) 1994-10-26
EP0621352A3 EP0621352A3 (de) 1994-12-07

Family

ID=6483258

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19940103543 Withdrawn EP0621352A3 (de) 1993-03-19 1994-03-09 Verfahren zur Herstellung von Terephthalaldehydtetraalkylacetalen.

Country Status (2)

Country Link
EP (1) EP0621352A3 (de)
DE (1) DE4308846A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2719585T3 (es) * 2010-02-12 2019-07-11 Basf Se Procedimiento para la preparación de 4-isopropilciclohexilmetanol

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0164705A2 (de) * 1984-06-14 1985-12-18 BASF Aktiengesellschaft Verfahren zur Herstellung von Phthalaldehydacetalen
EP0522312A1 (de) * 1991-07-05 1993-01-13 BASF Aktiengesellschaft o-Phthaldialdehydtetraalkylacetale, ihre Herstellung und ihre Verwendung als Depotverbindung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0164705A2 (de) * 1984-06-14 1985-12-18 BASF Aktiengesellschaft Verfahren zur Herstellung von Phthalaldehydacetalen
EP0522312A1 (de) * 1991-07-05 1993-01-13 BASF Aktiengesellschaft o-Phthaldialdehydtetraalkylacetale, ihre Herstellung und ihre Verwendung als Depotverbindung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ELECTROCHIMICA ACTA, Bd.29, Nr.12, 1984, OXFORD GB Seiten 1639 - 11641 F. BARBA 'Electrochemical Methoxylations of Side -Chain Methoxylated p-Xylene Derivatives' *

Also Published As

Publication number Publication date
EP0621352A3 (de) 1994-12-07
DE4308846A1 (de) 1994-09-22

Similar Documents

Publication Publication Date Title
EP0012215B1 (de) 2-Hydroxybutansulfonsaures Cholin und dessen Verwendung als Leitsalz
EP0131001B1 (de) Verfahren zur herstellung eines aldehyds
EP1619273B1 (de) Verfahren zur Herstellung von 2-Alkin-1-acetalen
EP2411564B1 (de) Elektrochemisches verfahern zur herstellung von 3-tert.-butylbenzaldehyd-dimethylacetal
WO2006100289A1 (de) Verfahren zur herstellung von alkoxylierten 2,5-dihydrofuran- oder tetra-1,1,4,4-alkoxylierten but-2-enderivaten
EP2041336B1 (de) Elektrochemische herstellung sterisch gehinderter amine
DE2855508A1 (de) Verfahren zur herstellung von benzaldehyden
EP0638665B1 (de) Verfahren zur Herstellung von Bezaldehyddialkylacetalen
EP0287954A2 (de) Neue Benzaldehyddialkylacetale, ihre Herstellung und Verwendung
DE3322399A1 (de) Verfahren zur herstellung von benz aldehyddialkylacetalen
EP0029995B1 (de) Verfahren zur Herstellung von 4-tert. Butylbenzaldehyd
EP0621352A2 (de) Verfahren zur Herstellung von Terephthalaldehydtetraalkylacetalen
EP0502372B1 (de) 4-tert-Alkyl-2-Methylbenzaldehyddialkylacetale
DE4407986A1 (de) Verfahren zur Herstellung von o-Phthalaldehydtetraalkylacetalen
EP0152801B1 (de) Verfahren zur Herstellung von Benzaldehyddialkylacetalen
DE2403446C2 (de) Verfahren zur Herstellung hydrierter Indole
WO2007014932A1 (de) Verfahren zur herstellung von 1,1,4,4-tetraalkoxy-but-2-enderivaten
EP1017688B1 (de) Verfahren zur herstellung von phthaliden
EP0554564A1 (de) Verfahren zur Herstellung von Benzaldehydacetalen
EP0009697A2 (de) Verfahren zur Herstellung von N-(Alpha-Methoxy-alkyl)-urethanen und neue N-(Alpha-methoxy-alkyl)-urethane
EP0100498B1 (de) Verfahren zur Herstellung von Dichlormilchsäure oder dem Nitril oder Amid der Dichlormilchsäure
EP0164705A2 (de) Verfahren zur Herstellung von Phthalaldehydacetalen
DE2812508B2 (de) Verfahren zur Herstellung von NJS&#39;dialkylsubstituierten Tetrahydro-4,4&#39;bipyridylen
EP0069918B1 (de) Verfahren zur Herstellung von Cyclopentadecanolid
DE10207238B4 (de) Verfahren zur elektroorganischen Synthese an Kohlenstoffelektroden

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE CH DE ES FR GB LI NL

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE CH DE ES FR GB LI NL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19941205

R18W Application withdrawn (corrected)

Effective date: 19941205