EP2300146B1 - Process for preparing polyurea microcapsules - Google Patents

Process for preparing polyurea microcapsules Download PDF

Info

Publication number
EP2300146B1
EP2300146B1 EP09766232.4A EP09766232A EP2300146B1 EP 2300146 B1 EP2300146 B1 EP 2300146B1 EP 09766232 A EP09766232 A EP 09766232A EP 2300146 B1 EP2300146 B1 EP 2300146B1
Authority
EP
European Patent Office
Prior art keywords
perfume
origin
group
weight
perfuming ingredients
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09766232.4A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2300146A1 (en
Inventor
Lahoussine Ouali
Arnaud Struillou
Estelle Rassat
Marlène JACQUEMOND
Otto GRÄTHER
Claudie Bellouard Drevet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Firmenich SA
Original Assignee
Firmenich SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Firmenich SA filed Critical Firmenich SA
Publication of EP2300146A1 publication Critical patent/EP2300146A1/en
Application granted granted Critical
Publication of EP2300146B1 publication Critical patent/EP2300146B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/16Interfacial polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/20After-treatment of capsule walls, e.g. hardening
    • B01J13/22Coating

Definitions

  • the present invention relates to a process for producing perfume-containing microcapsules with a polyurea wall that can be used in home or personal care products, as well as to the microcapsules themselves and consumer products comprising these microcapsules.
  • the process of the invention uses a particular colloidal stabilizer in the form of an aqueous solution comprising defined proportions of particular polymers.
  • Polyurea capsules formed by polymerisation between a polyisocanate and a polyamine, are well known in the art.
  • delivery systems may suffer from stability problems, in particular when incorporated into surfactant based products such as detergents, which are strongly aggressive towards said delivery systems.
  • WO 01/41915 discloses a process for the preparation of capsules carrying cationic charges. Such a process is allegedly applicable to a large variety of microcapsules, in particular polyurethane-polyurea microcapsules are mentioned.
  • the capsules are placed in a medium which is favourable for the treatment with cationic polymers.
  • the treatment with cationic polymers is carried out after purification of the basic capsule slurry, in order to eliminate anionic or neutral polymers which were not incorporated in the capsule wall during formation thereof, and other free electrically charged compounds involved in the encapsulation process.
  • the capsules are diluted, isolated and then resuspended in water, or even washed to further eliminate anionic compounds.
  • the capsules are agitated vigorously and the cationic polymers are added.
  • Partially quaternized copolymers of polyvinylpyrrolidones are cited to this purpose, among many other suitable polymers.
  • the described process comprises several steps following the capsule formation, said process being therefore time consuming and not economically profitable.
  • US 2006/0216509 also discloses a process for the cationization of polyurea capsules. This process involves the addition, during the wall formation, of polyamines, the capsules thus bearing latent charges, depending on the pH of the medium. Once formed, the capsules are subsequently cationized by acid action or alkylation to bear permanent positive charges. The cationic compounds therefore react with the capsule wall, chemically changing the latter.
  • polyurea microcapsules are not cationic.
  • US 5,225,118 discloses polyurea microcapsules comprising a colloidal stabilizer in the form of an aqueous solution of polyvinyl alcohol and polyvinyl pyrrolidone but this stabilizer is not cationic and thus the microcapsules do not bear any positive charge.
  • the microcapsules of the invention show a better deposition on the surface on which they are applied and further show a better dispersion in product bases.
  • microcapsules of the invention have the surprising and advantageous effect of being better dispersed in product bases, especially in unstructured liquid detergents.
  • the present invention provides a new simplified process for the preparation of polyurea microcapsules. It advantageously solves the problem of providing a single-step process for preparing polyurea microcapsules bearing permanent positive charges, the capsules being stable, well dispersed in product bases and well deposited on the substrate on which the perfumed product is applied.
  • a single-step process we mean a process that does not involve any further step, after the capsule formation, unlike what is the case in the prior art.
  • the present invention relates to a process for preparing cationic polyurea microcapsules encapsulating a perfume.
  • the invention concerns the capsules themselves as well as perfuming compositions and perfumed articles containing them.
  • One object of the present invention is a process for the preparation of polyurea microcapsules comprising
  • the perfume in which the polyisocyanate is dissolved in step a) can be a perfuming ingredient alone or a mixture of ingredients, in the form of a perfuming composition.
  • perfuming ingredients may be found in the current literature, for example in Perfume and Flavour Chemicals, 1969 (and later editions), by S. Arctander, Montclair N.J. (USA ), as well as in the vast patent and other literature related to the perfume industry. They are well known to the skilled person in the art of perfuming consumer products, that is, of imparting a pleasant odour to a consumer product.
  • the perfuming ingredients may be dissolved in a solvent of current use in the perfume industry.
  • the solvent is preferably not an alcohol.
  • solvents are diethyl phthalate, isopropyl myristate, Abalyn ® , benzyl benzoate, ethyl citrate, limonene or other terpenes, or isoparaffins.
  • the solvent is very hydrophobic and highly sterically hindered, like for example Abalyn ® .
  • the perfume comprises less than 30% of solvent. More preferably the perfume comprises less than 20% and even more preferably less than 10% of solvent, all these percentages being defined by weight relative to the total weight of the perfume. Most preferably, the perfume is essentially free of solvent.
  • Preferred ingredients are those having a high steric hindrance and in particular those from one of the following groups:
  • the perfume in which the polyisocyanate is dissolved comprises at least 30%, preferably at least 50%, more preferably at least 60% of ingredients selected from Groups 1 to 7, as defined above. More preferably said perfuming composition comprises at least 30%, preferably at least 50% of ingredients from Groups 3 to 7, as defined above. Most preferably said composition comprises at least 30%, preferably at least 50% of ingredients from Groups 3, 4, 6 or 7, as defined above.
  • the perfume comprises at least 30%, preferably at least 50%, more preferably at least 60% of ingredients having a logP above 3, preferably above 3.5 and even more preferably above 3.75.
  • the perfume used in the process of the invention contains less than 5% of its own weight of primary alcohols, less than 10% of its own weight of secondary alcohols and less than 15% of its own weight of tertiary alcohols.
  • the perfume used in the process of the invention does not contain any primary alcohols and contains less than 10% of secondary and tertiary alcohols.
  • an amount of between 28 and 60% of perfume in the process of the invention there is used an amount of between 28 and 60% of perfume in the process of the invention, these percentages being defined by weight relative to the total weight of the microcapsules.
  • the polyisocyanate used in the process of the invention comprises at least two isocyanate groups. Preferably it contains at least three isocyanate groups. Following these numbers of functional groups, an optimal reticulation or network of the capsules wall is achieved, providing thus microcapsules exhibiting a surprising prolonged slow release of fragrances, as well as a surprising improved stability in the consumer product.
  • the polyisocyanate is preferably selected from the group consisting of a trimer of hexamethylene diisocyanate, a trimer of isophorone diisocyanate or a Biuret of hexamethylene diisocyanate, among which a Biuret of hexamethylene diisocyanate is even more preferred.
  • the polyisocyanate is added in an amount comprised between 2 and 20% by weight, relative to the total weight of the solution.
  • the colloidal stabilizer added in step b) comprises polyvinyl alcohol as stabilizer and a cationic copolymer of vinylpyrrolidone and of a quaternized vinylimidazol, which is very efficient in dispersing the capsules in surfactant-based consumer products.
  • the colloidal stabilizer is in the form of an aqueous solution of
  • polymers must be added in the concentrations defined above in order to obtain a stable emulsion, which does not phase separate.
  • using higher concentrations of polyvinyl alcohol induces a phase separation when the capsules are added to a surfactant-based consumer product.
  • the colloidal stabilizer is easily prepared by dissolving both polymers in water.
  • the cationic copolymer of vinylpyrrolidone and of a quaternized vinylimidazol is one of those sold under the trade name Luviquat ® , in particular Luviquat ® Ultra Care or Luviquat ® FC 550 (origin BASF), these product being defined as copolymers of vinylpyrrolidone (VP) and quaternized vinylimidazol (QVI) with a range of charge densities, in aqueous solution.
  • step c) of the process of the invention a reactant selected from the group of water soluble guanidine salts and guanidine is added.
  • water soluble guanidine salt it is meant a salt soluble in water and resulting from the reaction of guanidine with an acid.
  • guanidine carbonate is one example of such salts.
  • the polyurea wall of the microcapsules is the result of the interfacial polymerisation between the polyisocyanate dissolved in step a) and the reactant added in step c).
  • step c for each mole of isocyanate group dissolved in the perfume in step a), 1 to 3, preferably 1.2 to 2 moles of guanidine or guanidine salt are added in step c). Accordingly there is added an excess of said reactant.
  • the reaction starts immediately after adding said reactant. Preferably the reaction is maintained for 2 to 15 hours, more preferably for 4 to 10 hours.
  • the specific composition of the polyurea wall is key in obtaining microcapsules that are at the fine balance between release and retention so as to achieve satisfactory slow and constant release of fragrances over time, once the capsules are placed on textiles or hair, while showing the desired stability in the product base (e.g. counteracts efficiently the extraction of the perfume by the surfactants of the consumer product). Therefore the selection of the guanidine or guanidine salt and of the polyisocyanate, among the ones mentioned above, enables the fine tuning of the properties and stability of the capsules.
  • the dispersion may be prepared by high shear mixing and adjusted to the desired droplet size. Droplet size may be checked with light scattering measurements or microscopy.
  • a dispersion is characterized by the stabilization of the oil droplets by a colloidal stabilizer, in contrast to an emulsion, wherein the oil droplets are stabilized by emulsifiers.
  • microcapsules obtained by the process of any of the above-described embodiments are also one object of the present invention. Therefore, microcapsules comprising
  • microcapsules obtained have a mean diameter comprised between 1 and 50 ⁇ m and preferably comprised between 5 and 20 ⁇ m.
  • mean diameter refers to the arithmetic mean. The present inventors found that with microcapsules of this size, optimal deposition and/or adherence of microcapsules to the targeted surface, e.g. textile, hair or skin, is obtained.
  • microcapsules are also preferably characterised by a Zeta potential comprised between 20 and 60 mV, preferably between 25 and 45 mV.
  • the polyurea wall composition, the polyisocyanate, the perfume, the colloidal stabilizer and the guanidine or the water-soluble guanidine salt are as defined above, in relation to the process of preparation of the microcapsules.
  • microcapsules of the invention can be advantageously used for the controlled release of the encapsulated perfume. It is therefore particularly appreciated to include these microcapsules as perfuming ingredients in a perfumed consumer product. This result is highly surprising since said consumer products may contain high amounts (typically more than 10% of their own weight) of specific types of surfactant/tensioactive/solvents and which are known to significantly diminish the stability and the performance of said capsules. In other words, the use of the invention's microcapsules in the consumer products provides unexpected advantages over the same use of other similar prior art capsules.
  • the cationic polyurea microcapsules obtained by the process of the invention provide improved deposition of the perfume on the treated surface together with an improved stability in a chemically aggressive environment and thus a good retention of the perfume, especially in detergents and fabric softeners.
  • the cationic polyurea microcapsules are also well dispersed in the consumer product bases, so that no phase separation is induced upon addition of the capsules to the base and during a sufficient storage period.
  • the microcapsules of the invention provide a controlled release of the encapsulated perfume, said perfume being slowly released from the microcapsules, thus considerably improving the perfume long-lastingness and intensity.
  • a perfumed consumer product comprising the microcapsules of the invention are therefore also objects of the present invention.
  • the consumer product may be in the form of a home- or personal-care product.
  • it is in the form of a liquid shampoo, hair conditioner, shower gel, detergent, all-purpose cleaner or fabric softener or in the form of a powder or tablet detergent.
  • the consumer product is in the form of a liquid, powder or tablet detergent, or in the form of a fabric softener.
  • detergents we include here products such as detergent compositions or cleaning products for washing up or for cleaning various surfaces, for example intended for the treatment of textiles, dishes or hard surfaces (floors, tiles, stone-floors, etc).
  • the surface is a textile.
  • the reaction mixture obtained in the process of the invention may be used as such to perfume the consumer products.
  • the reaction mixture may be directly added to a liquid fabric softener at a rate of 0.1 to 30% by weight relative to the total weight of the softener.
  • the microcapsules obtained in the process of the invention may be isolated from the reaction mixture before being incorporated into a consumer product.
  • the reaction mixture comprising the microcapsules of the invention may be sprayed onto a dry, powdered product, such as a washing powder or powdered detergent or the microcapsules may be dried and added to these products in solid form.
  • the consumer product comprises from 0.01 to 4.5%, more preferably from 0.01 to 4% of the microcapsules of the present invention, these percentages being defined by weight relative to the total weight of the consumer product.
  • concentrations may be adapted according to the olfactive effect desired in each product.
  • Formulations of consumer product bases in which the microcapsules of the invention can be incorporated can be found in the abundant literature relative to such products. These formulations do not warrant a detailed description here, which would in any case not be exhaustive. The person skilled in the art of formulating such consumer products is perfectly able to select the suitable components on the basis of his general knowledge and of the available literature.
  • Polyurea capsules were prepared in a one litre glass double-jacketed reactor equipped with a scrapped stirrer and with an Ystral-rotor/stator system (500-1800 rpm).
  • the aqueous stabilizer solution was prepared by dissolving the polyvinyl alcohol (Mowiol ® 18-88, origin: Fluka) and the cationic copolymer Luviquat ® Ultra Care (polyquaternium-44, origin: BASF) in deionised water.
  • the final concentration of the polyvinyl alcohol was 0.25% while the concentration of Luviquat ® Ultra Care was 0.75%, these percentages being relative to the total weight of the stabilizer solution.
  • the stabilizer solution was introduced into the reactor at room temperature in an amount of 582.50 g.
  • the scrapped stirrer was stopped and then a pre-emulsion was prepared by dispersing the perfume phase in the aqueous phase with the rotor/stator system. During this step, the temperature was maintained at 10°C. The time and the speed of stirring were adjusted to reach the desired size distribution of the emulsion. Once the emulsion was prepared, the stirring was continued with the scrapped stirrer at 200 rpm till the end of the process.
  • the perfume content in the capsules suspension was around 28%, relative to the total weight of the suspension.
  • the size distribution of the capsules was controlled by Optical Microscopy and Light Scattering (Mastersizer S, Malvern) while the surface charge was controlled by Zeta potential measurements (Nanosizer, Malvern).
  • the synthesis was repeated several times and the value of the Zeta potential measured for the obtained capsules were comprised between +8 and +20 mV, thus indicating that the capsules were cationically charged.
  • Polyurea capsules were prepared in a one litre glass double-jacketed reactor equipped with a scrapped stirrer and with an Ystral-rotor/stator system (500-1800 rpm).
  • the aqueous stabilizer solution was prepared by dissolving the polyvinyl alcohol (Mowiol ® 18-88, origin: Fluka) and the cationic copolymer Luviquat ® Ultra Care (polyquaternium-44, origin: BASF) in deionised water.
  • the final concentration of the polyvinyl alcohol was 0.25% while the concentration of Luviquat ® Ultra Care was 0.75%, these percentages being relative to the total weight of the stabilizer solution.
  • the stabilizer solution was introduced in an amount of 570.70 g into the reactor at room temperature.
  • the scrapped stirrer was stopped and then a pre-emulsion was prepared by dispersing the perfume phase in the aqueous phase with the rotor/stator system. During this step, the temperature was maintained at 10°C. The time and the speed of stirring were adjusted to reach the desired size distribution of the emulsion. Once the emulsion was prepared, the stirring was continued with the scrapped stirrer at 200 rpm till the end of the process.
  • the perfume content in the capsules suspension was around 40%, relative to the total weight of the suspension.
  • the size distribution of the capsules was controlled by Optical Microscopy and Light Scattering (Mastersizer S, Malvern) while the surface charge was controlled by Zeta potential measurements (Nanosizer, Malvern).
  • the synthesis was repeated several times and the value of the Zeta potential measured for the obtained capsules were comprised between +8 and +20 mV, thus indicating that the capsules were cationically charged.
  • Polyurea capsules were prepared in a one litre glass double-jacketed reactor equipped with a scrapped stirrer and with an Ystral-rotor/stator system (500-1800 rpm).
  • the aqueous stabilizer solution was prepared by dissolving the polyvinyl alcohol (Mowiol ® 18-88, origin: Fluka) and the cationic copolymer Luviquat ® Ultra Care (polyquaternium-44, origin: BASF) in deionised water.
  • the final concentration of the polyvinyl alcohol was 0.25% while the concentration of Luviquat ® Ultra Care was 1%, these percentages being relative to the total weight of the stabilizer solution.
  • the stabilizer solution was introduced into the reactor at room temperature in an amount of 582.50 g.
  • the scrapped stirrer was stopped and then a pre-emulsion was prepared by dispersing the perfume phase in the aqueous phase with the rotor/stator system. During this step, the temperature was maintained at 10°C. The time and the speed of stirring were adjusted to reach the desired size distribution of the emulsion. Once the emulsion was prepared, the stirring was continued with the scrapped stirrer at 200 rpm till the end of the process.
  • the perfume content in the capsules suspension was around 28%, relative to the total weight of the suspension.
  • the size distribution of the capsules was controlled by Optical Microscopy and Light Scattering (Mastersizer S, Malvern) while the surface charge was controlled by Zeta potential measurements (Nanosizer, Malvern). A positive value of the Zeta potential indicated that the capsules were cationically charged.
  • Polyurea capsules were prepared in a one litre glass double-jacketed reactor equipped with a scrapped stirrer and with an Ystral-rotor/stator system (500-1800 rpm).
  • the aqueous stabilizer solution was prepared by dissolving the polyvinyl alcohol (Mowiol ® 18-88, origin: Fluka) and the cationic copolymer Luviquat ® Ultra Care (polyquaternium-44, origin: BASF) in deionised water.
  • the final concentration of the polyvinyl alcohol was 0.25% while the concentration of Luviquat ® Ultra Care was 1%, these percentages being relative to the total weight of the stabilizer solution.
  • the stabilizer solution was introduced in an amount of 570.70 g into the reactor at room temperature.
  • the scrapped stirrer was stopped and then a pre-emulsion was prepared by dispersing the perfume phase in the aqueous phase with the rotor/stator system. During this step, the temperature was maintained at 10°C. The time and the speed of stirring were adjusted to reach the desired size distribution of the emulsion. Once the emulsion was prepared, the stirring was continued with the scrapped stirrer at 200 rpm till the end of the process.
  • the perfume content in the capsules suspension was around 40%, relative to the total weight of the suspension.
  • the size distribution of the capsules was controlled by Optical Microscopy and Light Scattering (Mastersizer S, Malvern) while the surface charge was controlled by Zeta potential measurements (Nanosizer, Malvern). A value of the Zeta potential of +5mV indicated that the capsules were cationically charged.
  • Polyurea capsules were prepared in a one litre glass double-jacketed reactor equipped with a scrapped stirrer and with an Ystral-rotor/stator system (500-1800 rpm).
  • the aqueous stabilizer solution was prepared by dissolving the polyvinyl alcohol (Mowiol ® 18-88, origin: Fluka) and the cationic copolymer Luviquat ® FC 550 (polyquaternium-16, origin: BASF) in deionised water.
  • the final concentration of the polyvinyl alcohol was 0.25% while the concentration of Luviquat ® FC 550 was 0.75%, these percentages being relative to the total weight of the stabilizer solution.
  • the stabilizer solution was introduced in an amount of 549 g into the reactor at room temperature.
  • the scrapped stirrer was stopped and then a pre-emulsion was prepared by dispersing the perfume phase in the aqueous phase with the rotor/stator system at room temperature. The time and the speed of stirring were adjusted to reach the desired size distribution of the emulsion. Once the emulsion was prepared, the stirring was continued with the scrapped stirrer at 200 rpm till the end of the process.
  • the perfume content in the capsules suspension was around 40%, relative to the total weight of the suspension.
  • the size distribution of the capsules was controlled by Optical Microscopy and Light Scattering (Mastersizer S, Malvern) while the surface charge was controlled by Zeta potential measurements (Nanosizer, Malvern).
  • the synthesis was repeated several times and the value of the Zeta potential measured for the obtained capsules were comprised between +35 and +45 mV, thus indicating that the capsules were cationically charged.
  • a perfuming composition was prepared by admixing the ingredients listed in Table 1, in the amounts indicated. The percentages are defined by weight relative to the total weight of the perfuming composition.
  • Table 1 Composition of the perfume Ingredients % LogP Steric Hindrance Group 1,8-Cineole 5.00 3.13 1 Verdylate 15.00 3.76 4 ⁇ -Damascone 3.00 4.13 3 Lilial ®1) 12.00 4.36 7 Dihydroterpenyl acetate 6.00 4.42 1 ⁇ -Ionone 2.00 4.42 3 Lorysia ®2) 6.50 4.42 3 Iso E super ®3) 10.00 4.71 4 Cetalox ®4) 2.00 4.76 4 Habanolide ®5) 82.00 4.88 6 1-Methyl-4-(4-methyl-3-pentenyl)-3-cyclohexene-1-carbaldehyde 1.00 5.19 3 Polysantol ®6) 2.00 5.39 2 Patchouli essential oil 3.00 5.5 4 Octalynol 0.
  • the logP distribution of the ingredients present in the perfuming composition is summarized in Table 2 and the proportions of the perfuming composition consisting of ingredients from each of high steric hindrance Groups 1 to 7, as described above, is summarized in Table 3. The percentages are defined by weight relative to the total weight of the perfuming composition.
  • Table 2 Composition of the perfume by logP of ingredients LogP % logP > 5 10.00 4.5 ⁇ logP ⁇ 5 37.50 4 ⁇ logP ⁇ 4.5 32.50 3.5 ⁇ logP ⁇ 4 15.00 3 ⁇ logP ⁇ 3.5 5.00 Total 100.00
  • Table 3 Composition of the perfume by high steric hindrance group High steric hindrance group % Group 1 11.00 Group 2 2.00 Group 3 35.30 Group 4 30.50 Group 5 0.00 Group 6 8.20 Group 7 12.00 Total concentration of ingredients in Groups 1 to 7 99.00 Total concentration of Groups 3, 4, 6 and 7 ingredients 86.00
  • This perfuming composition was encapsulated following the process described in Example 2 and added to either a concentrated fabric-softener or a concentrated liquid detergent.
  • the concentrated liquid detergent base was a commercially available Tide ® 2x Concentrated HE Free of perfume & dye (trademark of Procter and Gamble, USA).
  • the concentrated fabric softener base was prepared by admixing the ingredients listed in Table 4, in the amounts indicated. The percentages are defined by weight relative to the total weight of the unperfumed fabric softener base.
  • Table 4 Formulation of the concentrated fabric softener base Ingredient % Stepantex VL90 A Diester Quat 10) 16.50 Proxel GXL 11) 0.04 CaCl 2 (10% aqueous solution) 0.20 Water 83.26 10) Origin:Stepan 11) Origin:Avecia
  • Capsules were mixed at 1.25% into the unperfumed softener or liquid detergent and both products were stored for one month in ovens at either 22°C or 37°C before analyzing by GC-MS the amount of perfume having leaked out of the capsules during the month storage.
  • Olfactive performance of the microcapsules on dry fabrics when delivered from a consumer product of the softener type
  • a perfuming composition as prepared in Example 6 was encapsulated following the process described in Example 2. Capsules were mixed at 1.25% into the unperfumed fabric-softener base described in Example 6. The final concentration of perfume in the softener base was 0.5%. A reference was prepared by mixing at 0.5% the free perfuming composition described in Example 6 with the unperfumed softener base described in the same example.
  • the olfactive performance is clearly increased for dry fabrics treated with the encapsulated perfuming composition when compared to those treated with the free perfuming composition.
  • the olfactive performance of the towels treated with the softener comprising the encapsulated perfume is already good before rubbing, but the odor intensity is further increased after rubbing, thus showing that release of the perfume from the capsules is enhanced by rubbing the towels.
  • a perfuming composition as prepared in Example 6 was encapsulated following the process described in Example 2. Capsules were mixed at 0.75% into the commercially available unperfumed Tide ® 2X HE Free of perfume & dye (trademark of Procter and Gamble, USA) concentrated liquid detergent. The final concentration of perfume in the detergent base is 0.3%. A reference is prepared by mixing at 0.3% the free perfuming composition described in Example 3 with the unperfumed Tide ® 2X HE Free detergent base.
  • Example 4 After 1, 3 and 7 days dry, the perfume impact on dry fabrics washed with the encapsulated perfuming composition was perceived stronger than on the dry fabrics washed with the free perfuming composition. As already pointed out in Example 4, the effect is even stronger after rubbing. Indeed, a very significant increase in perfume intensity is observed upon rubbing of fabrics treated with capsules, whereas rubbing has no impact for fabrics washed with the detergent comprising the free perfuming composition.
  • a perfuming composition was prepared by admixing the ingredients listed in Table 9, in the amounts indicated. The percentages being defined by weight relative to the total weight of the perfuming composition.
  • Table 9 Composition of the perfume Ingredients % LogP Steric Hindrance Group Cyclogalbanate 12) 1.13 2.72 1 Ethyl 2-methyl-pentanoate 13) 1.62 2.76 2,4-Dimethyl-3-cyclohexene-1-carbaldehyde 14) 1.25 2.85 1 Verdyl Acetate 6.25 2.85 4 ⁇ -Undecalactone 1.88 3.06 Yara yara 15) 1.87 3.25 Verdyl propionate 3.75 3.34 4 Dihydroterpineol 0.50 3.42 1 Rose oxide 0.25 3.58 1 Allyl heptanoate 0.63 3.67 Isobornyl acetate 2.50 3.86 5 ⁇ -Damascone 1.00 4.13 3 Terpenyl acetate 7.50 4.34 1 Lilial ® 16) 12.50 4.36 7
  • the logP distribution of the ingredients present in the perfuming composition is summarized in Table 10 and the proportions of the perfuming composition consisting of ingredients from each of high steric hindrance Groups 1 to 7, as described above, is summarized in Table 11. The percentages are defined by weight, relative to the total weight of the perfuming composition.
  • Table 10 Composition of the perfume by logP of ingredients LogP % logP > 5 5.50 4.5 ⁇ logP ⁇ 5 13.12 4 ⁇ logP ⁇ 4.5 59.75 3.5 ⁇ logP ⁇ 4 3.38 3 ⁇ logP ⁇ 3.5 8.00 2.5 ⁇ logP ⁇ 3 10.25 Total 100.00
  • Table 11 Composition of the perfume by high steric hindrance group High steric hindrance group % Group 1 13.13 Group 2 0.00 Group 3 32.25 Group 4 17.50 Group 5 2.50 Group 6 0.62 Group 7 12.50 Total concentration of ingredients in Groups 1 to 7 78.5 Total concentration of Groups 3, 4, 6 and 7 ingredients 62.87
  • This perfuming composition was encapsulated following the process described in Example 2 and added to either a concentrated fabric-softener or a concentrated liquid detergent.
  • the concentrated liquid detergent base was the commercially available Tide ® 2x Concentrated HE Free of perfume & dye (trademark of Procter and Gamble, USA).
  • the concentrated fabric softener base was prepared as in Example 6 Capsules were mixed at 1.25% into the unperfumed softener or liquid detergent and both bases were stored for one month in ovens at either 22°C or 37°C before analyzing by GC-MS the amount of perfume having leaked out of the capsule during the month storage.
  • Olfactive performance of the microcapsules on dry fabrics when delivered from a consumer product of the softener type
  • a perfuming composition as prepared in Example 9 was encapsulated following the process described in Example 2. Capsules were mixed at 1.25% into the unperfumed softener fabric-softener base described in Example 6. The final concentration of perfume in the softener base was 0.5%. A reference was prepared by mixing at 0.5% the free perfuming composition described in Example 9 with the unperfumed softener base.
  • the panel was asked to rate the odor intensity of the towels treated with the fabric softener comprising the capsules, respectively with the fabric softener comprising the free perfume, on a scale from 0 to 7, 0 corresponding to odorless and 7 corresponding to a very strong odor.
  • Table 13 Odor intensity of the cotton towels Fresh samples After 1 month 1 day dry 1 day dry Sample Before rubbing After rubbing Before rubbing After rubbing Free perfume 2.0 2.2 1.8 2.0 Encapsulated perfume 3.5 6.8 2.0 5.1
  • the olfactive performance is clearly increased for dry fabrics treated with the softener comprising the encapsulated perfuming composition when compared to those treated with the softener comprising the free perfuming composition.
  • the olfactive performance of the towels treated with the softener comprising the encapsulated perfume is already good before rubbing, but the odor intensity is further increased after rubbing, thus showing that release of the perfume from the capsules is enhanced by rubbing the towels.
  • a clear benefit can still be observed with a fabric softener stored for one month, mostly after rubbing of the fabric.
  • a perfuming composition as prepared in Example 9 was encapsulated following the process described in Example 2. Capsules were mixed at 0.75% into the commercially available unperfumed Tide ® 2X HE Free of perfume & dye (trademark of Procter and Gamble, USA) concentrated liquid detergent. The final concentration of perfume in the detergent base was 0.3%. A reference was prepared by mixing at 0.3% the free perfuming composition described in Example 9 with the unperfumed Tide ® 2X HE Free of perfume & dye detergent base.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fats And Perfumes (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Cosmetics (AREA)
  • Detergent Compositions (AREA)
EP09766232.4A 2008-06-16 2009-06-08 Process for preparing polyurea microcapsules Active EP2300146B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IB2008052368 2008-06-16
PCT/IB2009/052414 WO2009153695A1 (en) 2008-06-16 2009-06-08 Process for preparing polyurea microcapsules

Publications (2)

Publication Number Publication Date
EP2300146A1 EP2300146A1 (en) 2011-03-30
EP2300146B1 true EP2300146B1 (en) 2017-03-29

Family

ID=40380688

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09766232.4A Active EP2300146B1 (en) 2008-06-16 2009-06-08 Process for preparing polyurea microcapsules

Country Status (9)

Country Link
US (1) US8426353B2 (pt)
EP (1) EP2300146B1 (pt)
JP (1) JP5713892B2 (pt)
CN (1) CN102056656B (pt)
BR (1) BRPI0915228B1 (pt)
ES (1) ES2628202T3 (pt)
MX (1) MX2010013244A (pt)
WO (1) WO2009153695A1 (pt)
ZA (1) ZA201008586B (pt)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10632443B2 (en) 2015-06-30 2020-04-28 Firmenich Sa Delivery system with improved deposition
US10894934B2 (en) 2016-10-18 2021-01-19 Firmenich Sa Ringing gel composition
US10918579B2 (en) 2016-12-22 2021-02-16 Firmenich Sa Density balanced high impact perfume microcapsules
US11034920B2 (en) 2017-03-24 2021-06-15 Firmenich Sa Solid scent booster composition
US11135561B2 (en) 2016-12-22 2021-10-05 Firmenich Sa Microcapsules having a mineral layer
US11260001B2 (en) 2017-12-14 2022-03-01 Firmenich Sa Process for preparing a powdered composition
US11291969B2 (en) 2017-06-27 2022-04-05 Firmenich Sa Process for preparing microcapsules
US11491086B2 (en) 2017-12-14 2022-11-08 Firmenich Sa Process for releasing an active ingredient
US11857659B2 (en) 2017-06-15 2024-01-02 Firmenich Sa Rinse-off conditioner compositions comprising microcapsules

Families Citing this family (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9816059B2 (en) 2009-09-18 2017-11-14 International Flavors & Fragrances Stabilized capsule compositions
CN102120167B (zh) * 2009-09-18 2014-10-29 国际香料和香精公司 胶囊封装的活性材料
US11311467B2 (en) 2009-09-18 2022-04-26 International Flavors & Fragrances Inc. Polyurea capsules prepared with a polyisocyanate and cross-linking agent
US9687424B2 (en) 2009-09-18 2017-06-27 International Flavors & Fragrances Polyurea capsules prepared with aliphatic isocyanates and amines
US10085925B2 (en) 2009-09-18 2018-10-02 International Flavors & Fragrances Inc. Polyurea capsule compositions
US20160166480A1 (en) * 2009-09-18 2016-06-16 International Flavors & Fragrances Inc. Microcapsule compositions
US10226405B2 (en) 2009-09-18 2019-03-12 International Flavors & Fragrances Inc. Purified polyurea capsules, methods of preparation, and products containing the same
ES2597980T5 (es) * 2010-06-15 2020-03-24 Takasago Perfumery Co Ltd Microcápsulas de núcleo-corteza que contienen fragancia
GB201011905D0 (en) * 2010-07-15 2010-09-01 Unilever Plc Benefit delivery particle,process for preparing said particle,compositions comprising said particles and a method for treating substrates
US11717471B2 (en) 2010-12-01 2023-08-08 Isp Investments Llc Hydrogel microcapsules
WO2012107323A1 (en) * 2011-02-07 2012-08-16 Firmenich Sa Polyurea microcapsules
US8907134B2 (en) * 2011-02-17 2014-12-09 Firmenich Sa Perfuming ingredient of the galbanum family
BR112013031135A2 (pt) 2011-06-28 2017-04-25 Firmenich & Cie processo para preparação de microcápsulas de poliureia
BR112014009551B1 (pt) * 2011-10-19 2019-02-05 Rohm And Haas Company método para encapsular um ativo de cuidado pessoal
CN103958047B (zh) * 2011-11-29 2017-03-01 弗门尼舍有限公司 微胶囊及其用途
JP6214553B2 (ja) * 2011-12-22 2017-10-18 フイルメニツヒ ソシエテ アノニムFirmenich Sa ポリウレアマイクロカプセルの製造方法
US20150284660A1 (en) 2012-08-21 2015-10-08 Firmenich Sa Method to improve the performance of encapsulated fragrances
IN2015KN00664A (pt) * 2012-09-24 2015-07-17 Firmenich & Cie
US10188589B2 (en) 2013-02-21 2019-01-29 Dow Global Technologies Llc Deposition of hydrophobic actives in the presence of surfactants
MX361658B (es) 2013-08-15 2018-12-13 Int Flavors & Fragrances Inc Capsulas de poliurea o poliuretano.
KR102063027B1 (ko) * 2013-10-31 2020-01-07 (주)아모레퍼시픽 캡슐화된 향기를 포함하는 조성물
EP3137206B1 (en) * 2014-04-29 2019-11-27 Basf Se Process for producing microcapsules
BR112016028661A2 (pt) 2014-06-13 2017-08-22 Firmenich & Cie processo para preparar microcápsulas de poliureia com deposição melhorada
US9963661B2 (en) 2014-06-27 2018-05-08 Firmenich Sa Hybrid perfume microcapsules
US10398632B2 (en) 2014-11-07 2019-09-03 Givaudan S.A. Capsule composition
EP3034064A1 (en) * 2014-12-16 2016-06-22 Givaudan Schweiz AG Perfume composition
SG11201705114YA (en) 2015-01-23 2017-08-30 Firmenich & Cie Process for the preparation of microcapsules free from melamine-formaldehyde
EP3280525B1 (en) * 2015-04-07 2019-07-10 Firmenich SA Process for preparing polyurea microcapsules
CN104789355B (zh) * 2015-04-15 2018-05-11 上海爱文斯顿新材料科技有限公司 一种表面带有正电荷的聚脲外壳香精微胶囊及其制备方法
EP3302404B1 (en) 2015-06-05 2022-09-28 Firmenich SA Microcapsules with high deposition on surfaces
GB201510940D0 (en) 2015-06-22 2015-08-05 Givaudan Sa Improvements in or relating to organic compounds
GB201510942D0 (en) * 2015-06-22 2015-08-05 Givaudan Sa Improvements in or relating to organic compounds
WO2017066400A1 (en) 2015-10-13 2017-04-20 The Sun Products Corporation Multi-stage benefit agent delivery system
CA2996668C (en) 2015-10-27 2023-09-26 Encapsys, Llc Encapsulation
EP3377035A1 (en) 2015-11-18 2018-09-26 Basf Se Improvements in or relating to organic compounds
WO2017102812A1 (en) 2015-12-15 2017-06-22 Firmenich Sa Process for preparing polyurea microcapsules with improved deposition
CN108778730B (zh) 2016-01-14 2021-02-09 Isp投资有限公司 易碎的外壳微胶囊、其制备方法和其使用方法
BR112018015347B1 (pt) 2016-02-02 2021-10-26 Firmenich S.A. Processo para secar uma suspensão à temperatura ambiente
CN108697591B (zh) * 2016-02-18 2022-06-17 国际香料和香精公司 聚脲胶囊组合物
JP6956753B2 (ja) * 2016-06-30 2021-11-02 フイルメニツヒ ソシエテ アノニムFirmenich Sa コア−複合シェルマイクロカプセル
US10066190B2 (en) 2016-07-18 2018-09-04 Henkel IP & Holding GmbH Mild liquid detergent formulations
GB201615905D0 (en) * 2016-09-19 2016-11-02 Givaudan Sa Improvements in or relating to organic compounds
EP3295929A1 (en) 2016-09-19 2018-03-21 S.P.C.M. Sa Use of an ampholyte copolymer as colloidal stabilizer in a process of encapsulating fragrance
US20180085291A1 (en) 2016-09-28 2018-03-29 International Flavors & Fragrances Inc. Microcapsule compositions containing amino silicone
US10752868B2 (en) 2016-11-09 2020-08-25 Henkel IP & Holding GmbH Unit dose detergent composition
WO2018115330A1 (en) 2016-12-22 2018-06-28 Firmenich Sa Microcapsules having a mineral layer
EP3574079B1 (en) 2017-01-27 2024-05-01 Henkel AG & Co. KGaA Stable unit dose compositions with high water content and structured surfactants
WO2018172514A1 (en) 2017-03-24 2018-09-27 Firmenich Sa Solid scent booster composition
EP3625323A4 (en) 2017-05-17 2021-03-31 Henkel IP & Holding GmbH STABLE UNIT DOSE COMPOSITIONS
WO2019039385A1 (ja) * 2017-08-21 2019-02-28 富士フイルム株式会社 マイクロカプセル、組成物及び化粧用シート
US11331639B2 (en) 2017-10-19 2022-05-17 Firmenich Sa Hydrogel beads
US10597604B2 (en) 2017-11-10 2020-03-24 Henkel IP & Holding GmbH Stable encapsulated fragrance compositions
EP3668602A1 (en) 2017-11-15 2020-06-24 Firmenich SA Microcapsules with improved deposition
MX2020005259A (es) 2018-01-26 2020-08-24 Firmenich & Cie Composicion colorante para cabello que comprende microcapsulas.
BR112020010986A2 (pt) 2018-03-05 2020-11-17 Firmenich S.A. composição em pó que compreende um agente à prova de fogo
MX2020006260A (es) 2018-03-19 2020-09-07 Firmenich & Cie Proceso para la preparacion de microcapsulas.
EP3774016A1 (en) * 2018-03-30 2021-02-17 Firmenich SA Process for preparing microcapsules with improved deposition
US20210363461A1 (en) 2018-06-21 2021-11-25 FlRMENICH SA Compounds for providing a long-lasting strawberry odor
EP3758668B1 (en) 2018-07-25 2022-02-23 Firmenich SA Process for preparing microcapsules
US11666881B2 (en) 2018-09-19 2023-06-06 Firmenich Sa Process for preparing polysuccinimide derivatives-based microcapsules
SG11202010339YA (en) 2018-09-26 2020-11-27 Firmenich & Cie Powder detergent composition
CN113164896B (zh) 2018-12-03 2023-02-03 爱克发-格法特公司 胶囊的水性分散体
CN109569455B (zh) * 2018-12-18 2021-06-01 河北科技大学 一种柠檬香型微胶囊的制备方法
EP3897956A1 (en) 2018-12-19 2021-10-27 Firmenich SA Polyamide microcapsules
BR112021011438A2 (pt) 2018-12-19 2021-08-31 Firmenich Sa Processo para preparar microcápsulas de poliamida
JP2022515001A (ja) 2018-12-20 2022-02-17 フイルメニツヒ ソシエテ アノニム アルキルエノールエーテル香料前駆体
SG11202104228QA (en) 2019-01-17 2021-05-28 Firmenich & Cie Antiperspirant or deodorant composition
JP2022532971A (ja) 2019-05-21 2022-07-21 フイルメニツヒ ソシエテ アノニム マイクロカプセルの製造方法
SG11202106936TA (en) * 2019-05-21 2021-07-29 Firmenich & Cie Poly(ester urea) microcapsules
US11098271B2 (en) 2019-06-12 2021-08-24 Henkel IP & Holding GmbH Salt-free structured unit dose systems
JP2022539003A (ja) 2019-06-27 2022-09-07 フイルメニツヒ ソシエテ アノニム 賦香された消費者製品
CN113557082A (zh) 2019-07-30 2021-10-26 弗门尼舍有限公司 复合微胶囊
EP3921075B1 (en) 2019-08-05 2024-06-12 Firmenich SA Cleavable multi-alcohol-based microcapsules
WO2021023647A1 (en) 2019-08-05 2021-02-11 Firmenich Sa Poly(amide-ester) microcapsules
WO2021023670A1 (en) 2019-08-08 2021-02-11 Firmenich Sa Compounds for providing a long-lasting mint odor
US11186804B2 (en) 2019-11-27 2021-11-30 Henkel IP & Holding GmbH Structured liquid detergent composition for a unit dose detergent pack having improved structuring properties and suspension stability
US11046922B1 (en) 2019-12-17 2021-06-29 Henkel IP & Holding GmbH 2-in-1 unit dose providing softening and detergency
EP3999491A1 (en) 2019-12-19 2022-05-25 Firmenich SA Compounds for providing a long-lasting floral and fruity odor
US11427794B2 (en) 2019-12-19 2022-08-30 Henkel Ag & Co. Kgaa Low density unit dose detergents based on butyl cellosolve with encapsulated fragrance
DE202020005910U1 (de) * 2019-12-19 2023-03-16 Firmenich Sa Parfümformulierung für Abgabesystem
US11214761B2 (en) 2019-12-31 2022-01-04 Henkel IP & Holding GmbH Solid perfume composition delivering fabric care
US11220657B2 (en) 2019-12-31 2022-01-11 Henkel IP & Holding GmbH Solid perfume composition delivering softening
US11492574B2 (en) 2020-01-30 2022-11-08 Henkel Ag & Co. Kgaa Unit dose detergent pack including a liquid detergent composition comprising an alkyl polyglycoside surfactant
JP2023514011A (ja) 2020-02-24 2023-04-05 フイルメニツヒ ソシエテ アノニム カプセル封入された香料組成物を含むシートおよびその製造方法
US20230134756A1 (en) 2020-03-16 2023-05-04 Firmenich Sa Microcapsules coated with a polysuccinimide derivative
US11535819B2 (en) 2020-04-01 2022-12-27 Henkel Ag & Co. Kgaa Unit dose detergent pack including a liquid detergent composition with improved color stability
JP2023523515A (ja) 2020-04-14 2023-06-06 フイルメニツヒ ソシエテ アノニム 長持ちする香りを提供するための化合物
ES2948614T3 (es) 2020-04-21 2023-09-14 Takasago Perfumery Co Ltd Composición de fragancia encapsulada
EP3900697B1 (en) 2020-04-21 2023-03-15 Takasago International Corporation Fragrance composition
EP4084769A1 (en) 2020-04-24 2022-11-09 Firmenich SA Perfume system for perfumed consumer product
IL298585B1 (en) 2020-06-12 2024-05-01 Firmenich & Cie Pro-perfume enol ether
JP2023529517A (ja) 2020-06-16 2023-07-11 フイルメニツヒ ソシエテ アノニム ポリアミドマイクロカプセル
BR112022022693A2 (pt) 2020-07-22 2023-02-28 Firmenich & Cie Composição de sabão
CN116406251A (zh) 2020-09-25 2023-07-07 弗门尼舍有限公司 免洗型组合物
IL301992A (en) 2020-10-21 2023-06-01 Firmenich & Cie Improved preparations for imparting freshness
WO2022136007A1 (en) 2020-12-21 2022-06-30 Firmenich Sa Process for preparing polyester microcapsules
WO2022136008A1 (en) 2020-12-21 2022-06-30 Firmenich Sa Process for preparing polyester microcapsules
JP2024500204A (ja) 2020-12-23 2024-01-05 フイルメニツヒ ソシエテ アノニム マイクロカプセルを調製するための方法
JP2024513408A (ja) 2021-03-30 2024-03-25 フイルメニツヒ ソシエテ アノニム 架橋コア-シェルマイクロカプセル
JP2024514511A (ja) 2021-03-31 2024-04-02 フイルメニツヒ ソシエテ アノニム コーティングされたコア-シェルマイクロカプセル
WO2022207526A1 (en) 2021-03-31 2022-10-06 Firmenich Sa Functionalized chitosan preparation
MX2023013597A (es) 2021-06-28 2023-11-30 Firmenich Sa Microcapsulas a base de poliamida.
EP4308287A1 (en) 2021-06-28 2024-01-24 Firmenich SA Polyamide-based microcapsules
WO2023275053A1 (en) 2021-06-30 2023-01-05 Firmenich Sa Delivery systems
WO2023006532A1 (en) 2021-07-28 2023-02-02 Firmenich Sa Polyamide-based microcapsules
EP4351772A1 (en) 2021-07-29 2024-04-17 Firmenich SA Microcapsules having a mineral layer
EP4376996A1 (en) 2021-10-04 2024-06-05 Firmenich SA Plant protein-based microcapsules
WO2023078909A1 (en) 2021-11-03 2023-05-11 Firmenich Sa Cyclic acetals and ketals for the light-induced release of active aldehydes and ketones
WO2023111006A1 (en) 2021-12-14 2023-06-22 Firmenich Sa Enol ether properfume
WO2023209139A1 (en) 2022-04-29 2023-11-02 Firmenich Sa Musky odorant
WO2023217589A1 (en) 2022-05-09 2023-11-16 Firmenich Sa Polyamide microcapsules
WO2023217590A1 (en) 2022-05-09 2023-11-16 Firmenich Sa Polyamide microcapsules
WO2024008583A1 (en) 2022-07-04 2024-01-11 Firmenich Sa Hybrid microcapsules
WO2024018014A1 (en) 2022-07-21 2024-01-25 Firmenich Sa Composite microcapsules
WO2024068907A1 (en) 2022-09-29 2024-04-04 Firmenich Sa Lily of the valley odorant

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225118A (en) * 1990-08-15 1993-07-06 Boise Cascade Corporation Process for manufacturing polyurea microcapsules and product therefrom
DE19607632A1 (de) * 1996-02-29 1997-09-04 Bayer Ag Mikrokapseln mit Wänden aus Umsetzungsprodukten von Biuret-Polyisocyanaten und Guanidinen
FR2761912B1 (fr) * 1997-04-14 1999-07-02 Capsulis Procede destine a faire adherer un produit sur une surface
FR2801811B1 (fr) * 1999-12-06 2002-05-03 Gerard Habar Procede de fabrication de microcapsules portant des charges cationiques
JP2001202037A (ja) * 2000-01-20 2001-07-27 Mitsubishi Paper Mills Ltd 画像表示媒体及びその製造方法
ES2253147T3 (es) * 2000-03-04 2006-06-01 Cognis Ip Management Gmbh Microcapsulas.
EP1151789A1 (de) * 2000-05-03 2001-11-07 Bayer Ag Mikrokapseln erhältlich unter Verwendung von Eiweisshydrolysaten als Emulgator
DK1292386T3 (da) * 2000-06-05 2006-03-27 Syngenta Ltd Hidtil ukendte mikrokapsler
DE10117671A1 (de) * 2001-04-09 2002-10-10 Bayer Ag Mit duftstoffhaltigen Mikrokapseln ausgerüstetes Leder
JP2003001100A (ja) * 2001-06-04 2003-01-07 Microcapsules Technologies 陽イオン性マイクロカプセルを製造する方法
US6620777B2 (en) * 2001-06-27 2003-09-16 Colgate-Palmolive Co. Fabric care composition comprising fabric or skin beneficiating ingredient
CA2512771A1 (en) * 2003-01-08 2004-07-29 Johnson & Johnson Gmbh Products comprising a sheet and a wax dispersion
FR2858766B1 (fr) * 2003-08-11 2005-11-11 Oreal Composition cosmetique comprenant des particules metalliques stabilisees, eventuellement enrobees
WO2005054422A1 (en) 2003-11-28 2005-06-16 Unilever Plc Detergent compositions with improved malodour properties and process to make them
DE102004007312A1 (de) * 2004-02-14 2005-09-01 Henkel Kgaa Mikroemulsionen
US20050226900A1 (en) * 2004-04-13 2005-10-13 Winton Brooks Clint D Skin and hair treatment composition and process for using same resulting in controllably-releasable fragrance and/or malodour counteractant evolution
US20070207174A1 (en) 2005-05-06 2007-09-06 Pluyter Johan G L Encapsulated fragrance materials and methods for making same
US20080206291A1 (en) 2005-06-30 2008-08-28 Firmenich Sa Polyurethane and Polyurea Microcapsules
GB0513803D0 (en) 2005-07-06 2005-08-10 Unilever Plc Fabric care composition
GB0524665D0 (en) 2005-12-02 2006-01-11 Unilever Plc Laundry composition
GB2432850A (en) 2005-12-02 2007-06-06 Unilever Plc Polymeric particle comprising perfume and benefit agent, in particular a laundry composition
GB2432852A (en) 2005-12-02 2007-06-06 Unilever Plc Laundry composition including polymer particles containing perfume and a cationic deposition aid
GB0524659D0 (en) 2005-12-02 2006-01-11 Unilever Plc Improvements relating to fabric treatment compositions
GB2432851A (en) 2005-12-02 2007-06-06 Unilever Plc Laundry composition including polymer particles containing perfume and a non-ionic deposition aid
GB2432843A (en) 2005-12-02 2007-06-06 Unilever Plc Perfume carrying polymeric particle
EP1989283A2 (en) * 2006-02-28 2008-11-12 The Procter and Gamble Company Compositions comprising benefit agent containing delivery particles
JP5629432B2 (ja) * 2006-04-10 2014-11-19 Jx日鉱日石エネルギー株式会社 連続乳化方法およびそのための乳化装置
CA2656326A1 (en) 2006-06-30 2008-01-10 Colgate-Palmolive Company Cationic polymer stabilized microcapsule composition
ATE491433T1 (de) 2006-08-01 2011-01-15 Procter & Gamble Pflegemittel mit freisetzungspartikel
EP2094828B1 (en) * 2006-11-22 2013-01-02 Appleton Papers Inc. Benefit agent containing delivery particle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10632443B2 (en) 2015-06-30 2020-04-28 Firmenich Sa Delivery system with improved deposition
US10894934B2 (en) 2016-10-18 2021-01-19 Firmenich Sa Ringing gel composition
US10918579B2 (en) 2016-12-22 2021-02-16 Firmenich Sa Density balanced high impact perfume microcapsules
US11135561B2 (en) 2016-12-22 2021-10-05 Firmenich Sa Microcapsules having a mineral layer
US11034920B2 (en) 2017-03-24 2021-06-15 Firmenich Sa Solid scent booster composition
US11857659B2 (en) 2017-06-15 2024-01-02 Firmenich Sa Rinse-off conditioner compositions comprising microcapsules
US11291969B2 (en) 2017-06-27 2022-04-05 Firmenich Sa Process for preparing microcapsules
US11260001B2 (en) 2017-12-14 2022-03-01 Firmenich Sa Process for preparing a powdered composition
US11491086B2 (en) 2017-12-14 2022-11-08 Firmenich Sa Process for releasing an active ingredient

Also Published As

Publication number Publication date
CN102056656A (zh) 2011-05-11
CN102056656B (zh) 2014-01-29
BRPI0915228B1 (pt) 2018-07-10
JP5713892B2 (ja) 2015-05-07
ES2628202T3 (es) 2017-08-02
ZA201008586B (en) 2012-01-25
BRPI0915228A2 (pt) 2017-08-22
EP2300146A1 (en) 2011-03-30
JP2011524805A (ja) 2011-09-08
US20110077188A1 (en) 2011-03-31
US8426353B2 (en) 2013-04-23
WO2009153695A1 (en) 2009-12-23
MX2010013244A (es) 2010-12-21

Similar Documents

Publication Publication Date Title
EP2300146B1 (en) Process for preparing polyurea microcapsules
EP2579976B1 (en) Process for preparing polyurea microcapsules
US9499769B2 (en) Process for preparing polyurea microcapsules
JP6797139B2 (ja) 表面上に高度の沈着物を有するマイクロカプセル
EP2379047B1 (en) Microcapsules and uses thereof
EP2794839B1 (en) Process for preparing polyurea microcapsules
EP2673078B1 (en) Polyurea microcapsules
JP2023518238A (ja) ポリスクシンイミド誘導体でコーティングしたマイクロカプセル
EP3280525B1 (en) Process for preparing polyurea microcapsules
US20220151902A1 (en) Encapsulated composition

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160205

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161102

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 879219

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009045091

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170629

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170630

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2628202

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170802

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 879219

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170629

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170731

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170729

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009045091

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180103

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170608

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170608

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170608

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20181123

Year of fee payment: 13

Ref country code: IT

Payment date: 20180625

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190608

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602009045091

Country of ref document: DE

Owner name: FIRMENICH SA, CH

Free format text: FORMER OWNER: FIRMENICH S.A., GENEVA, CH

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: 7, RUE DE LA BERGERE, 1242 SATIGNY (CH)

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20201028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190609

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210527

Year of fee payment: 13

Ref country code: NL

Payment date: 20210615

Year of fee payment: 13

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20220701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230518

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230425

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230427

Year of fee payment: 15

Ref country code: CH

Payment date: 20230701

Year of fee payment: 15