EP2279219B1 - Verwendung eines cyclohexandiolgemisches zur herstellung von polymeren - Google Patents

Verwendung eines cyclohexandiolgemisches zur herstellung von polymeren Download PDF

Info

Publication number
EP2279219B1
EP2279219B1 EP09745719.6A EP09745719A EP2279219B1 EP 2279219 B1 EP2279219 B1 EP 2279219B1 EP 09745719 A EP09745719 A EP 09745719A EP 2279219 B1 EP2279219 B1 EP 2279219B1
Authority
EP
European Patent Office
Prior art keywords
mixture
weight
diols
polymer
powder coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09745719.6A
Other languages
English (en)
French (fr)
Other versions
EP2279219A1 (de
Inventor
Darijo Mijolovic
Sebastien Garnier
Qiang MIAO
Maria Guixa Guardia
Gerd-Dieter Tebben
Dag Wiebelhaus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP09745719.6A priority Critical patent/EP2279219B1/de
Publication of EP2279219A1 publication Critical patent/EP2279219A1/de
Application granted granted Critical
Publication of EP2279219B1 publication Critical patent/EP2279219B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/199Acids or hydroxy compounds containing cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/423Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing cycloaliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4263Polycondensates having carboxylic or carbonic ester groups in the main chain containing carboxylic acid groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates
    • C08G64/0208Aliphatic polycarbonates saturated
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters

Definitions

  • the invention relates to a powder coating, comprising a polymer, characterized in that the polymer is obtainable by polycondensation or polyadduct formation of monomeric compounds, wherein as monomeric compound is a mixture of hydroxymethyl-cyclohexanpropanol or its alkoxylated derivatives and hydroxymethyl-cyclohexanisopropanol or its alkoxylated derivatives (im Hereinafter abbreviated to C1 / C3-cyclohexanediol mixture) is also used.
  • Diols are needed for the preparation of polymers, eg polyesters or polyurethanes.
  • EP-A 562 578 describes the use of various cyclohexanediols such as 1,4-cyclohexanedimethanol or 1,4-cyclohexanediethanol for the preparation of polyesters.
  • DE-A 31 19 380 also the use of hydroxymethylhydroxypropylcyclohexane for polyester is known.
  • Mixtures of different hydroxymethylhydroxypropylcyclohexanes are obtainable by hydroformylation of vinylcyclohexene followed by hydrogenation; such a method is eg in DE-A 1032 241 described.
  • the viscosity is important, be it as melt viscosity (100% systems) or as solution viscosity (polymer solutions).
  • the coatings produced are said to have good mechanical properties for coating applications, such as impact resistance and elasticity, high scratch and impact resistance, good resistance to water, solvents, grease and chemicals and environmental influences, and to have a high gloss.
  • the object of the present invention was to provide such powder coatings.
  • a mixture which consists of hydroxymethyl-cyclohexanopropanol and hydroxymethyl-cyclohexanisopropanol; the above diols may also be in the form of their alkoxylated derivatives and used in this form (hereinafter abbreviated as C1 / C3-cyclohexanediol mixture).
  • the diols of the C1 / C3 mixture mentioned should always include the alkoxylated derivatives.
  • the diols may in particular be alkoxylated with ethylene oxide or propylene oxide or else mixtures thereof;
  • the alcohol groups can e.g. be alkoxylated with 1 to 20, especially 1 to 10 Alkyoxygrupen.
  • the diols of the inventive C1 / C3 mixture are not alkoxylated.
  • the hydroxymethyl cyclohexane propanol may be 3-hydroxymethyl-cyclohexanopropanol of the formula I. or 4-hydroxymethyl-cyclohexanopropanol of the formula II act.
  • 3-hydroxymethylcyclohexanepropanol can be present in two diastereomeric or 4 enantiomeric forms (two stereocenters: RR, SS, RS and SR) or as any desired mixture of these forms.
  • 4-hydroxymethylcyclohexanepropanol can be present in two diastereomeric forms (no stereocenter, two stereoisomers: cis and trans) or as a mixture of these forms.
  • the hydroxymethyl cyclohexanisopropanol may be 3-hydroxymethyl-cyclohexanisopropanol of the formula III or 4-hydroxymethyl-cyclohexanisopropanol of the formula IV act.
  • 3-hydroxymethylcyclohexanisopropanol can be present in four diastereomeric or eight enantiomeric forms (3 stereocenters: RRR, SSS, RRS, SSR, RSR, SRS, RSS and SRR) or as any desired mixture of these forms.
  • 4-hydroxymethylcyclohexanisopropanol can be present in two diastereomeric or 4 enantiomeric forms (a stereocenter: R-trans, S-trans, R-cis and S-cis) or as any desired mixture of these forms.
  • the C1 / C3 cyclohexanediol mixture preferably contains 5 to 95 wt .-%, particularly preferably 10 to 90 wt .-% and most preferably 20 to 80 wt .-% hydroxymethyl-cyclohexanopropanol (3-hydroxymethyl-cyclohexanopropanol or 4-hydroxymethyl-cyclohexanopropanol or mixtures thereof) and 5 to 95 wt .-%, particularly preferably 10 to 90 wt .-% and most preferably 20 to 80 wt .-% hydroxymethyl-cyclohexanisopropanol (3-hydroxymethyl-cyclohexanisopropanol or 4-hydroxymethyl-cyclohexanisopropanol or mixtures thereof), wherein the weight percent relate to the sum of the weight of said diols.
  • the C1 / C3 cyclohexanediol mixture contains all four of the above diols; these are 3-hydroxymethylcyclohexanepropanol, 4-hydroxymethylcyclohexanepropanol, 3-hydroxymethylcyclohexanisopropanol and 4-hydroxymethylcyclohexanisopropanol.
  • the C1 / C3-cyclohexanediol mixture particularly preferably contains From 5 to 85% by weight, in particular from 10 to 40% by weight, of 3-hydroxymethylcyclohexanepropanol, From 5 to 85% by weight, in particular from 10 to 40% by weight, of 4-hydroxymethylcyclohexanepropanol, 5 to 85 wt .-%, in particular 10 to 40 wt .-% of 3-hydroxymethyl-cyclohexanisopropanol and 5 to 85 wt .-%, in particular 10 to 40 wt .-% 4-hydroxymethyl-cyclohexanisopropanol wherein the percentages by weight refer to the sum by weight of the four diols.
  • the diols of the C1 / C3 cyclohexane mixture can also be used separately in the preparation of the polymer in any desired form. It is essential that the polymer contains the corresponding diols.
  • the C1 / C3 cyclohexanediol mixture is prepared in advance and used as a mixture for the preparation of the polymer.
  • the C1 / C3 cyclohexanediol mixture can be prepared in any desired manner.
  • the monomeric compounds can be synthesized individually, for example, and then mixed in the desired ratios.
  • the C1 / C3-cyclohexanediol mixture is obtainable in particular by hydroformylation of 4-vinylcyclohexene and subsequent hydrogenation; It is then particularly preferred to use the mixture thus obtained for the preparation of the polymers.
  • the resulting C1 / C3-cyclohexanediol mixture may optionally contain further constituents, in particular other cyclohexane derivatives with hydroxyl groups.
  • the mixture obtained in the hydroformylation is generally at least 90% by weight of the C1 / C3-cyclohexanediol mixture used according to the invention and can be used in this form.
  • the hydroformylation can be carried out in particular with modified and / or unmodified rhodium catalysts.
  • the hydroformylation can be carried out according to the prior art, as described for example in US Pat EP-A 0213639 . EP-A 0214622 . WO 2004/020380 or WO 2004/024661 is described. After separation of the catalyst by extraction, absorption or distillation, hydrogenation under the conditions described above to give the corresponding alcohols.
  • nickel, copper, copper / nickel, copper / chromium, copper / chromium / nickel, zinc / chromium, nickel / molybdenum catalysts can be used for the hydrogenation.
  • the catalysts can be carrier-free, or the hydrogenation-active substances or their precursors can be applied to carriers, for example SiO 2 or Al 2 O 3 .
  • the hydrogenation is carried out as liquid-phase hydrogenation at a pressure of 0.5-50 MPa.
  • the reaction temperatures in the range of 100-220 ° C preferably at 140-180 ° C. Examples of such hydrogenations are, for example, in DE-A 19842369 and DE-A 19842370 described.
  • the process can be carried out batchwise or, preferably, continuously.
  • the polymers are obtainable by polycondensation or polyadduct formation of monomeric compounds with concomitant use of the C1 / C3 cyclohexanediol mixture; the polymers may, if desired, be chemically modified by other or further reactions, e.g. functionalized or networked.
  • polyesters which are obtainable by reacting di- or polyols with di- or polycarboxylic acids, which can also be used in the form of reactive derivatives, such as anhydrides or esters.
  • polyester is to be understood below as meaning a polymer which contains more than 50% by weight, more preferably more than 70% by weight and in particular more than 90% by weight, of synthesis components selected from among diols, polyols , Dicarboxylic acids and polycarboxylic acids.
  • polycarbonate diols which are obtainable by reaction of dialkyl carbonates with diols with elimination of alcohols.
  • Polyurethane in particular is called polyadduct.
  • polyadduct obtainable by ring-opening polymerization of lactones or lactams.
  • polyurethane is to be understood in the following to mean a polymer which contains more than 50% by weight, more preferably more than 70% by weight and in particular more than 90% by weight, of synthesis components selected from diisocyanates, polyisocyanates , Diols and polyols.
  • All these polymers have in common that they are composed essentially of diols and compounds reactive with these diols, such as di- or polycarboxylic acids (polyesters) or di- or polyisocyanates (polyurethanes).
  • Preferred polymers are polyesters and polyurethanes, particularly preferred are polyesters.
  • the polymers preferably have the following content of the C1 / C3 cyclohexanediol mixture; the following weights for the content of the C1 / C3-Cyclohexandiolgemisches in the polymer refer to the units of the polymer derived from the C1 / C3-Cyclohexandiolgemisch. In the case of polyadducts, the weight of these units corresponds unchanged to the C1 / C3-cyclohexanediol mixture; in the case of polycondensates, the weight of these units is reduced by the hydrogen atoms of the hydroxyl groups.
  • Preferred polymers consist of at least 0.5, more preferably at least 2, most preferably at least 5 and in particular at least 10% by weight and in a particular embodiment at least 20% by weight of the C1 / C3-cyclohexanediol mixture. Since the concomitant use of other reactive with the diols compounds is mandatory, the polymers are generally not more than 70 wt .-%, in particular not more than 60 wt .-% or not more than 50 wt .-% of the C1 / C3 cyclohexanediol mixture.
  • the polymers may also contain other diols or polyols as structural components.
  • at least 10% by weight, more preferably at least 25% by weight and most preferably at least 50% by weight, of the diols and polyols of which the polymers are made are C1 / C3 cyclohexanediol mixture.
  • At least 70% by weight or at least 90% by weight of the diols and polyols of which the polymers consist can be the C1 / C3 cyclohexanediol mixture.
  • At 100 weight percent of all diols and polyols that make up the polymers may be the C1 / C3 cyclohexanediol mixture.
  • polyesters may contain further diols or polyols as synthesis components.
  • suitable diols are ethylene glycol, propylene glycol, and their more highly condensed representatives, for example diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, etc., butanediol, pentanediol, hexanediol, neopentyl glycol, alkoxylated phenolic compounds, such as ethoxylated or propoxylated bisphenols, cyclohexanedimethanol;
  • Polyols suitable as further synthesis components are trifunctional and higher functional Alcohols such as glycerol, trimethylolpropane, butanetriol, trimethylolethane, pentaerythritol, neopentyl glycol, ditrimethylolpropane, dipentaerythritol, sorbitol, mannitol.
  • the above diols or polyols may be alkoxylated, in particular ethoxy- and propoxylated.
  • the alkoxylation products are obtainable in a known manner by reacting the above alcohols with alkylene oxides, in particular ethylene oxide or propylene oxide.
  • the degree of alkoxylation per hydroxyl group is 0 to 10, i. 1 mol of hydroxyl group may preferably be alkoxylated with up to 10 mol of alkylene oxides.
  • the polyesters also contain dicarboxylic acids or polycarboxylic acids as synthesis components.
  • Dicarboxylic acids or polycarboxylic acids may also be used in the preparation of the polyesters in the form of their reactive derivatives, e.g. be used as anhydrides or esters.
  • Suitable dicarboxylic acids are succinic, glutaric, adipic, sebacic, isophthalic, terephthalic, isomers and hydrogenation products, such as tetrahydrophthalic acid.
  • maleic acid and fumaric acid for unsaturated polyesters.
  • Polyesters may also contain monoalcohols or monocarboxylic acids as a constituent; By concomitant use of such compounds, the molecular weight can be adjusted or limited.
  • the polyesters may contain special functional groups.
  • Water-soluble or water-dispersible polyesters contain the necessary amount of hydrophilic groups, e.g. Carboxyl groups or carboxylate groups to achieve a water solubility or water dispersibility.
  • Crosslinkable polyesters e.g. for powder coatings contain functional groups which undergo a crosslinking reaction with the crosslinking agent used. They may also be carboxylic acid groups if crosslinking with hydroxyl-containing compounds, e.g. Hydroxyalkylamiden is intended.
  • the functional groups may also be ethylenically unsaturated groups, e.g. by modification of the polyester with unsaturated dicarboxylic acids (maleic acid) or reaction with (meth) acrylic acid; Such polyesters are radiation-curable.
  • Polyurethanes contain diisocyanates or polyisocyanates as essential constituent components.
  • diisocyanates X (NCO) 2 wherein X is an aliphatic hydrocarbon radical having 4 to 15 carbon atoms, a cycloaliphatic or aromatic hydrocarbon radical having 6 to 15 carbon atoms or an araliphatic hydrocarbon radical having 7 to 15 carbon atoms.
  • diisocyanates examples include tetramethylene diisocyanate, hexamethylene diisocyanate, dodecamethylene diisocyanate, 1,4-diisocyanatocyclohexane, 1-isocyanato-3,5,5-trimethyl-5-isocyanatomethylcyclohexane (IPDI), 2,2-bis (4-isocyanatocyclohexyl) -propane, trimethylhexane diisocyanate , 1,4-diisocyanatobenzene, 2,4-diisocyanatotoluene, 2,6-diisocyanatotoluene, 4,4'-diisocyanato-diphenylmethane, 2,4'-diisocyanato-diphenylmethane, p-xylylene diisocyanate, tetramethylxylylene diisocyanate (TMXDI), the isomers of bis - (4-
  • Such diisocyanates are available commercially.
  • mixtures of these isocyanates are the mixtures of the respective structural isomers of diisocyanatotoluene and diisocyanato-diphenylmethane; in particular, the mixture of 80 mol% of 2,4-diisocyanatotoluene and 20 mol% of 2,6-diisocyanatotoluene is suitable.
  • mixtures of aromatic isocyanates such as 2,4-diisocyanatotoluene and / or 2,6-diisocyanatotoluene with aliphatic or cycloaliphatic isocyanates such as hexamethylene diisocyanate or IPDI are particularly advantageous, wherein the preferred mixing ratio of aliphatic to aromatic isocyanates 4: 1 to 1: 4 ,
  • the C1 / C3 cyclohexanediol mixture is used alone or in admixture with other diols or polyols.
  • polyester diols are obtained in advance by reacting di- or polyols with di- or polycarboxylic acids (see above description of the polyesters).
  • the C1 / C3 cyclohexanediol mixture may be included in the polyurethanes in the form of such polyester diols.
  • polyols are the above-mentioned into consideration, be it as synthesis components which are reacted directly with the di- or polyisocyanates, be it as part of the polyester diols.
  • Suitable dicarboxylic acids or polycarboxylic acids for the polyester diols are also those mentioned above.
  • the polyurethanes may also contain monoalcohols or monoisocyanates as constituents; By concomitant use of such compounds, the molecular weight can be adjusted or limited.
  • the polyurethanes may contain special functional groups.
  • Water-soluble or water-dispersible polyurethanes contain the necessary amount of hydrophilic groups, eg carboxyl groups or carboxylate groups, for water solubility or water dispersibility to reach.
  • hydrophilic groups eg carboxyl groups or carboxylate groups
  • dimethylol propionic acid may be mentioned.
  • Crosslinkable polyurethanes contain functional groups which undergo a crosslinking reaction with the crosslinking agent used.
  • the polyurethanes may in particular also contain other functional groups, for example urea groups, which are formed by reaction of the di- or polyisocyanates with amino compounds.
  • the polymers may, if desired, be added to, or in particular at a later time, e.g. in use, chemically modified by other or further reactions, e.g. functionalized or networked.
  • the polymers may contain crosslinking groups which, once the necessary conditions are present, undergo a crosslinking reaction.
  • the polymers can also be used in particular in admixture with crosslinkers which undergo a crosslinking reaction with the polymer at the desired time under the necessary conditions (in particular at elevated temperature).
  • the crosslinker is added just before the later use
  • the crosslinker can be added to the system early (latent crosslinker), the crosslinking occurs only at the later set conditions, e.g. in the removal of solvent and / or temperature increase.
  • Typical crosslinkers are e.g. Isocyanates, epoxides, acid anhydrides or in the case of polymers having free-radically polymerizable ethylenically unsaturated groups, also ethylenically unsaturated monomers such as styrene.
  • the powder coatings preferably contain the polymers as binders. They may contain further binders and other additives, e.g. Antioxidants, stabilizers, dyes, pigments, flow control agents, thickeners or wetting aids.
  • binders e.g. Antioxidants, stabilizers, dyes, pigments, flow control agents, thickeners or wetting aids.
  • polyesters are used as powder coating, which are crosslinkable.
  • the powder coating is prepared by mixing and melting the polyester, crosslinking agent and other additives, for example pigments and leveling agents at high temperatures. The mixture can be powdered by subsequent extrusion and processing of the extrudate.
  • the powder coating may be applied in a conventional manner, e.g. also electrostatically, on the desired substrates; e.g. be coated with metal, plastic or wood surfaces.
  • the polymers have a low viscosity, both low melt viscosity (100% systems) or low solution viscosity (polymer solutions).
  • the low viscosity allows easy handling, good coating properties and allows higher solids content in solutions or dispersions or lower binder content in pigment-containing masses.
  • the powder coatings have a high impact strength, good elasticity and a good gloss.
  • the molecular weight determinations are carried out with GPC.
  • Stationary phase highly cross-linked porous polystyrene-divinylbenzene, commercially available as PL-GEL from Polymer Laboratories.
  • Eluent THF.
  • Flow 0.3 ml / min.
  • the acid number of the polyester is determined according to the DIN standard method 53169.
  • the determination of the melt viscosity ⁇ 1 of the polyester is carried out with a cone and plate viscometer at 200 ° C in the rotation mode and with a shear rate of 3400 s -1 .
  • the determination of the solution viscosity ⁇ 2 of the polyester is carried out with a cone-plate viscometer at room temperature in a rotary mode.
  • the solutions consist of 70% polyester and 30% solvent (mixture Solvesso 100 TM / Solvenon PM TM 5/1).
  • the Tg of the polyester is determined by DSC according to ASTM D3418. Preparation of powdered polyesters with COOH groups
  • the oligomer synthesized above is cooled to 180 ° C before 101.4 g of IPS (0.61 mol) are added. The temperature is raised to 230 ° C, and it is further condensed under these conditions until the polymer has an SZ of 30 to 40 mg KOH / g. The water resulting from the polymerization can be drawn at the end of the reaction by a slight vacuum to reach the desired SZ.
  • P1 has a glass transition temperature T g of 69 ° C. and a melt viscosity ⁇ 1 of 14.0 Pa.s at 200 ° C.
  • the inventive polymer P 6 has a significantly lower melt viscosity and a significantly lower solution viscosity than the comparative polymer P6.
  • the oligomer synthesized above is cooled to 160 ° C before 49.1 g of TMSA (0.41 mol) are added. The temperature is raised to 230 ° C, and it is further condensed under these conditions until the polymer has an SZ of 42 to 48 mg KOH / g. The water resulting from the polymerization can be drawn at the end of the reaction by a slight vacuum to reach the desired SZ.
  • P8 has a glass transition temperature Tg of 49 ° C and a melt viscosity ⁇ 1 of 7.7 Pa.s at 200 ° C.
  • a 20% aqueous colloidal solution of P8 is prepared, brought to pH 8 with N, N-dimethylethanolamine and stored at 45 ° C. The time interval until the colloidal solution precipitates is taken as a measure of the hydrolysis resistance of the polyester (see Table 4).
  • the polyester resin Uralac® P-862 T g 58.0 ° C, SZ 35 mg KOH / g of DSM Resins BV is used.
  • a reference binder the polyester resin Uralac® P-862 (T g 58.0 ° C, SZ 35 mg KOH / g) of DSM Resins BV is used.
  • 570.0 g of powder polyester P3, P4, P5 or REF are each treated with 30.0 g of commercial primer Primid® XL-552 (hydroxylalkylamide from DSM), 300.0 g Kronos® 2160 (Kronos) titanium dioxide pigment, 9.0 g of Resiflow® PV5 leveling agent (Worlée Chemie GmbH) and 2.5 g of degassing agent benzoin are mixed in a universal laboratory mixer (MIT Mischtechnik GmbH), melted and then melted in a twin-screw extruder (MP 19, APV) at 80 - 100 ° C extruded.
  • MIT Mischtechnik GmbH
  • the powder coatings are then electrostatically applied to steel test panels (Q-Panel R-36) and baked at 160 ° C. for 10 minutes. In this case, layer thicknesses of 60 microns to 80 microns are desired.
  • Test parameters Test method appearance visual assessment of the surfaces shine DIN EN ISO 2813 impact strength EN ISO 6272 impact sensitivity ASTM D 2794 elasticity EN ISO 1520 Weather stability Fast weathering test (QUV-A) DIN EN ISO 11507
  • the powder coatings of the invention PL3 and PL4 show a very good property profile.
  • the flow properties are as good as the powder coating PL5 based on NPG.
  • PL3 and PL4 have excellent mechanical properties, impact resistance, impact sensitivity and elasticity are very good compared to PL 5.
  • the lower polyester melt viscosity is advantageous in PL3 and PL4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Paints Or Removers (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

  • Die Erfindung betrifft einen Pulverlack, enthaltend ein Polymer , dadurch gekennzeichnet, dass das Polymer erhältlich ist durch Polykondensation oder Polyadduktbildung von monomeren Verbindungen, wobei als monomere Verbindung ein Gemisch aus Hydroxymethyl-cyclohexanpropanol oder dessen alkoxylierte Derivate und Hydroxymethyl-cyclohexanisopropanol oder dessen alkoxylierte Derivate (im Nachfolgenden kurz C1/C3-Cyclohexandiolgemisch genannt) mitverwendet wird.
  • Diole werden für die Herstellung von Polymeren, z.B. Polyestern oder Polyurethanen, benötigt. In EP-A 562 578 wird die Verwendung verschiedener Cyclohexandiole wie 1,4-Cyclohexandimethanol oder 1,4-Cyclohexandiethanol zur Herstellung von Polyestern beschrieben. Aus DE-A 31 19 380 ist auch die Verwendung von Hydroxymethylhydroxypropylcyclohexan für Polyester bekannt.
  • Gemische unterschiedlicher Hydroxymethylhydroxypropylcyclohexane sind durch Hydroformylierung von Vinylcyclohexen und anschließende Hydrierung erhältlich; ein derartiges Verfahren ist z.B. in DE-A 1032 241 beschrieben.
  • Grundsätzlich ist gewünscht, die anwendungstechnischen Eigenschaften von Polymeren bei ihren unterschiedlichen Verwendungen zu verbessern.
  • Bei einer Verwendung der Polymeren als Bindemittel in Beschichtungsmassen, Klebstoffen oder Dichtungsmassen ist insbesondere die Viskosität von Bedeutung sei es als Schmelzeviskosität (100% Systeme) oder als Lösungsviskosität (Polymerlösungen). Die hergestellten Beschichtungen sollen für Lackanwendungen gute mechanische Eigenschaften, wie Schlagzähigkeit und Elastizität, eine hohe Kratz- und Stoßfestigkeit, gute Beständigkeiten gegen Wasser, Lösmittel, Fett und Chemikalien und Umwelteinflüsse haben, sowie einen hohen Glanz aufweisen.
  • Aufgabe der vorliegenden Erfindung war, derartige Pulverlacke zur Verfügung zu stellen.
  • Demgemäß wurde der eingangs definierte Pulverlack gefunden.
  • Zum C1/C3-Cyclohexandiolgemisch
  • Zur Herstellung des Polymeren wird, neben anderen monomeren Verbindungen, eine Gemisch verwendet, welches aus Hydroxymethyl-cyclohexanpropanol und Hydroxymethyl-cyclohexanisopropanol besteht; die vorstehenden Diole können auch in Form ihrer alkoxylierten Derivate vorliegen und in dieser Form verwendet werden (im Nachfolgenden zusammenfassend kurz C1/C3-Cyclohexandiolgemisch genannt).
  • Im Nachfolgenden sollen bei allen genannten Diolen des C1/C3 Gemisches immer auch die alkoxylierten Derivate umfasst sein. Die Diole können insbesondere mit Ethylenoxid oder Propylenoxid oder auch deren Gemische alkoxyliert sein; Die Alkoholgruppen können z.B. mit 1 bis 20, insbesondere 1 bis 10 Alkyoxygrupen alkoxyliert sein.
  • In einer bevorzugten Ausführungsform sind die Diole des erfindungsgemäßen C1/C3 Gemisches nicht alkoxyliert.
  • Bei dem Hydroxymethyl-cyclohexanpropanol kann es sich um
    3-Hydroxymethyl-cyclohexanpropanol der Formel I
    Figure imgb0001
    oder
    4-Hydroxymethyl-cyclohexanpropanol der Formel II
    Figure imgb0002
    handeln.
  • 3-Hydroxymethyl-cyclohexanpropanol kann dabei in zwei diastereomeren bzw 4 enatiomeren Formen (zwei Stereozentren : RR, SS, RS und SR) oder als beliebiges Gemisch dieser Formen vorliegen.
  • 4-Hydroxymethyl-cyclohexanpropanol kann dabei in zwei diastereomeren Formen (kein Stereozentrum, zwei Stereoisomere: cis und trans) oder als Gemisch dieser Formen vorliegen.
  • Bei dem Hydroxymethyl-cyclohexanisopropanol kann es sich um
    3-Hydroxymethyl-cyclohexanisopropanol der Formel III
    Figure imgb0003
    oder um 4-Hydroxymethyl-cyclohexanisopropanol der Formel IV
    Figure imgb0004
    handeln.
  • 3-Hydroxymethyl-cyclohexanisopropanol kann dabei in vier diastereomeren bzw. acht enatiomeren Formen (3 Stereozentren: RRR, SSS, RRS, SSR, RSR, SRS, RSS und SRR) oder als beliebiges Gemisch dieser Formen vorliegen.
  • 4-Hydroxymethyl-cyclohexanisopropanol kann dabei in zwei diastereomeren bzw. 4 enantiomeren Formen (ein Stereozentrum: R-trans, S-trans, R-cis und S-cis) oder als beliebiges Gemisch dieser Formen vorliegen.
  • Das C1/C3-Cyclohexandiolgemisch enthält vorzugsweise
    5 bis 95 Gew.-%, besonders bevorzugt 10 bis 90 Gew.-% und ganz besonders bevorzugt 20 bis 80 Gew.-% Hydroxymethyl-cyclohexanpropanol (3-Hydroxymethyl-cyclohexanpropanol oder 4-Hydroxymethyl-cyclohexanpropanol oder deren Gemische) und
    5 bis 95 Gew.-%, besonders bevorzugt 10 bis 90 Gew.-% und ganz besonders bevorzugt 20 bis 80 Gew.-% Hydroxymethyl-cyclohexanisopropanol (3-Hydroxymethyl-cyclohexanisopropanol oder 4-Hydroxymethyl-cyclohexanisopropanol oder deren Gemische), wobei sich die Gewichtsprozente auf die Gewichtssumme der genannten Diole beziehen.
  • Bevorzugt enthält das C1/C3 Cyclohexandiolgemisch alle vier obigen Diole; das sind 3-Hydroxymethyl-cyclohexanpropanol, 4-Hydroxymethyl-cyclohexanpropanol, 3-Hydroxymethyl-cyclohexanisopropanol und 4-Hydroxymethyl-cyclohexanisopropanol.
  • Besonders bevorzugt enthält das C1/C3-Cyclohexandiolgemisch
    5 bis 85 Gew.-%, insbesondere 10 bis 40 Gew.-% 3-Hydroxymethyl-cyclohexanpropanol,
    5 bis 85 Gew.-%" insbesondere 10 bis 40 Gew.-% 4-Hydroxymethyl-cyclohexanpropanol,
    5 bis 85 Gew.-%, insbesondere 10 bis 40 Gew.-% 3-Hydroxymethyl-cyclohexanisopropanol und
    5 bis 85 Gew.-% , insbesondere 10 bis 40 Gew.-% 4-Hydroxymethyl-cyclohexanisopropanol
    wobei sich die Gewichtsprozente auf die Gewichtssumme der vier Diole beziehen.
  • Zur Herstellung des C1/C3-Cyclohexandiolgemisch
  • Die Diole des C1/C3-Cyclohexangemisches können bei der Herstellung des Polymeren in beliebiger Form, auch separat verwendet werden. Wesentlich ist, dass das Polymer die entsprechenden Diole enthält.
  • Vorzugsweise wird das C1/C3-Cyclohexandiolgemisch vorab hergestellt und als Gemisch für die Herstellung des Polymeren verwendet.
  • Das C1/C3-Cyclohexandiolgemisch kann in beliebiger Weise hergestellt werden. Die monomeren Verbindungen können z.B. einzeln synthetisiert und anschließend in den gewünschten Verhältnissen gemischt werden.
  • Das C1/C3-Cyclohexandiolgemisch ist insbesondere durch Hydroformylierung von 4-Vinyl-cyclohexen und anschließende Hydrierung erhältlich; besonders bevorzugt wird dann das so erhaltene Gemisch für die Herstellung der Polymeren verwendet.
  • Durch Anlagerung von Kohlenmonoxid (CO) und Wasserstoff (H2) an beide Doppelbindungen des 4-Vinylcyclohexen (Hydroformylierung) und anschließende Hydrierung wird ein Gemisch erhalten, welches die obigen 4 Verbindungen der Formeln I bis IV enthält.
  • Das so erhaltene C1/C3-Cyclohexandiolgemisch kann gegebenenfalls noch weitere Bestandteile, insbesondere andere Cyclohexanderivate mit Hydroxylgruppen, enthalten.
  • Das bei der Hydroformylierung erhaltene Gemisch besteht im Allgemeinen zu mindestens 90 Gew.-% aus dem erfindungsgemäß verwendeten C1/C3-Cyclohexandiolgemisch und kann in dieser Form verwendet werden.
  • Verfahren zur Herstellung von Alkoholen über Hydroformylierung und Hydrierung von Olefinen sind in der Literatur in großer Zahl beschrieben.
    Die Wahl des Katalysatorsystems und der optimalen Reaktionsbedingungen sind von der Reaktivität der eingesetzten ungesättigten Verbindung abhängig.
    Der Einfluss der Struktur des eingesetzten Olefins auf dessen Reaktivität in der Hydroformylierung ist z.B. von J. Falbe, "New Syntheses with Carbon Monoxide", Springer Verlag, 1980, Berlin, Heidelberg, New York beschrieben.
  • Die Hydroformylierung kann insbesondere mit modifizierten und/oder unmodifizierten Rhodiumkatalysatoren durchgeführt werden. Die Hydrofomylierung kann gemäß dem Stand der Technik erfolgen, wie diese z.B. in EP-A 0213639 , EP-A 0214622 ,
    WO 2004/020380 oder WO 2004/024661 beschrieben ist. Nach Abtrennung des Katalysators durch Extraktion, Absorption oder Destillation kann eine Hydrierung unter den oben beschriebenen Bedingungen zu den entsprechenden Alkoholen erfolgen.
  • Zur Hydrierung können z.B. Nickel-, Kupfer-, Kupfer/Nickel-, Kupfer/Chrom-, Kupfer/Chrom/Nickel-, Zink/Chrom-, Nickel/Molybdän-Katalysatoren verwendet werden. Die Katalysatoren können trägerfrei sein, oder die hydrieraktiven Stoffe bzw. ihre Vorläufer können auf Trägern, wie beispielsweise SiO2 oder Al2O3, aufgebracht sein. Die Hydrierung wird als Flüssigphasenhydrierung bei einem Druck von 0,5-50 MPa durchgeführt. Die Reaktionstemperaturen im Bereich von 100-220°C bevorzugt bei 140-180°C. Beispiel für solche Hydrierungen sind z.B. in DE-A 19842369 und DE-A 19842370 beschrieben.
  • Das Verfahren kann diskontinuierlich oder bevorzugt kontinuierlich durchgeführt werden.
  • Zu den Polymeren
  • Die Polymer sind erhältlich durch Polykondensation oder Polyadduktbildung von monomeren Verbindungen unter Mitverwendung des C1/C3 Cyclohexandiolgemisches; die Polymeren können, wenn gewünscht, durch andere oder weitere Umsetzungen chemisch modifiziert, z.B. funktionalisiert oder vernetzt werden.
  • Bei einer Polykondensation von monomeren Verbindungen kommt es zu einer Abspaltung von Wasser oder Alkohol, bei einer Polyadduktbildung kommt es nicht zu einer Abspaltung.
  • Bevorzugte Polykondensate sind Polyester, welche durch Umsetzung von Di- oder Polyolen mit Di- oder Polycarbonsäuren, welche auch in Form reaktiver Derivate, wie Anhydride oder Ester eingesetzt werden können, erhältlich sind.
    Unter dem Begriff Polyester soll im Folgenden ein Polymer verstanden werden, welches zu mehr als 50 Gew.-%, besonders bevorzugt zu mehr als 70 Gew.-% und insbesondere zu mehr als 90 Gew.-% aus Aufbaukomponenten, ausgewählt aus Diolen, Polyolen, Dicarbonsäuren und Polycarbonsäuren, besteht.
  • Genannt seien auch Polycarbonatdiole, welche durch Umsetzung von Dialkylcarbonaten mit Diolen unter Abspaltung von Alkoholen erhältlich sind.
  • Als Polyaddukt sei insbesondere Polyurethan genannt. In Betracht kommen z.B. auch-Polyaddukte, die durch ringöffnende Polymerisation von Lactonen oder Lactamen erhältlich sind.
  • Unter dem Begriff Polyurethan soll im Folgenden ein Polymer verstanden werden, welches zu mehr als 50 Gew.-%, besonders bevorzugt zu mehr als 70 Gew.-% uns insbesondere zu mehr als 90 Gew.-% aus Aufbaukomponenten, ausgewählt aus Diisocyanaten, Polyisocyanaten, Diolen und Polyolen, besteht.
  • All diesen Polymeren ist gemeinsam, dass sie im Wesentlichen aus Diolen und mit diesen Diolen reaktiven Verbindungen, wie Di- bzw. Polycarbonsäuren (Polyester) oder Di- bzw. Polyisocyanaten (Polyurethane) aufgebaut sind.
  • Bevorzugte Polymere sind Polyester und Polyurethane, besonders bevorzugt sind Polyester.
  • Die Polymere haben vorzugsweise den nachstehenden Gehalt des C1/C3-Cyclohexandiolgemisches; die nachstehenden Gewichtsangaben zum Gehalt des C1/C3-Cyclohexandiolgemisches im Polymer beziehen sich dabei auf die Einheiten des Polymeren, die sich vom C1/C3-Cyclohexandiolgemisch ableiten. Bei Polyaddukten entspricht das Gewicht dieser Einheiten unverändert dem C1/C3-Cyclohexandiolgemisch, bei Polykondensaten ist das Gewicht dieser Einheiten um die Wasserstoffatome der Hydroxylgruppen vermindert.
  • Bevorzugte Polymere bestehen mindestens zu 0,5 besonders bevorzugt mindestens zu 2, ganz besonders bevorzugt zu mindestens 5 und insbesondere zu mindestens 10 Gew % und in einer besonderen Ausführungsform zu mindestens 20 Gew.-% aus dem C1/C3-Cyclohexandiolgemisch. Da die Mitverwendung von anderen, mit den Diolen reaktiven Verbindungen zwingend ist, bestehen die Polymeren im Allgemeinen zu nicht mehr als 70 Gew.-% insbesondere zu nicht mehr als 60 Gew.-% bzw. zu nicht mehr als 50 Gew.-% aus dem C1/C3-Cyclohexandiolgemisch.
  • Neben dem C1/C3-Cyclohexandiolgemisch können die Polymeren auch andere Diole oder Polyole als Aufbaukomponenten enthalten. In einer bevorzugten Ausführungsform handelt es sich bei mindestens 10 Gew.-%, besonders bevorzugt bei mindestens 25 Gew.-% und ganz besonders bevorzugt bei mindestens 50 Gew.-% der Diole und Polyole, aus denen die Polymeren bestehen, um das C1/C3 Cyclohexandiolgemisch.
  • Insbesondere kann es sich bei mindestens 70 Gew.-% bzw. mindestens 90 Gew.-% der Diole und Polyole, aus denen die Polymeren bestehen, um das C1/C3 Cyclohexandiolgemisch handeln.
  • In einer besonderen Ausführungsform kann es sich bei 100 Gew.-% aller Diole und Poyole, aus denen die Polymeren bestehen, um das C1/C3 Cyclohexandiolgemisch handeln.
  • Zu weiteren Bestandteilen der Polyester
  • Polyester können neben dem C1/C3 Cyclohexandiolgemisch weitere Diole oder Polyole als Aufbaukomponenten enthalten.
  • Als Diole seien z.B. Ethylenglykol, Propylenglykol, und deren höher kondensierte Vertreter, z.B. wie Diethylenglykol, Triethylenglykol, Dipropylenglykol, Tripropylenglykol etc., Butandiol, Pentandiol, Hexandiol, Neopentylglykol, alkoxylierte phenolische Verbindungen, wie ethoxylierte bzw. propoxylierte Bisphenole, Cyclohexandimethanol genannt; als weitere Aufbaukomponente geeignete Polyole sind trifunktionelle und höherfunktionelle Alkohole, wie Glycerin, Trimethylolpropan, Butantriol, Trimethylolethan, Pentaerythrit, Neopentylglycol, Ditrimethylolpropan, Dipentaerythrit, Sorbit, Mannit.
  • Die vorstehenden Diole oder Polyole können alkoxyliert, insbesondere ethoxy- und propoxyliert sein. Die Alkoxylierungsprodukte sind in bekannter Weise durch Umsetzung der vorstehenden Alkohole mit Alkylenoxiden, insbesondere Ethylen- oder Propylenoxid, erhältlich. Vorzugsweise beträgt der Alkoxylierungsgrad je Hydroxylgruppe 0 bis 10, d.h. 1 mol Hydroxylgruppe kann vorzugsweise mit bis zu 10 mol Alkylenoxiden alkoxyliert sein.
  • Die Polyester enthalten weiterhin Dicarbonsäuren oder Polycarbonsäuren als Aufbaukomponenten. Dicarbonsäuren oder Polycarbonsäuren können bei der Herstellung der Polyester auch in Form ihrer reaktiven Derivate, z.B. als Anhydride oder Ester eingesetzt werden. Geeignete Dicarbonsäuren sind Bernsteinsäure, Glutarsäure, Adipinsäure, Sebacinsäure, Isophthalsäure, Terephthalsäure, deren Isomere und Hydrierungsprodukte, wie Tetrahydrophthalsäure. In Betracht kommen auch Maleinsäure und Fumarsäure für ungesättigte Polyester.
  • Polyester können auch Monoalkohole oder Monocarbonsäuren als Bestandteil enthalten; durch Mitverwendung derartiger Verbindungen kann das Molekulargewicht eingestellt, bzw. begrenzt werden.
  • Um besondere Eigenschaften zu erreichen werden, können die Polyester besondere funktionelle Gruppen enthalten. Wasserlösliche oder wasserdispergierbare Polyester enthalten die notwendige Menge an hydrophilen Gruppen, z.B. Carboxylgruppen oder Carboxylatgruppen um eine Wasserlöslichkeit oder Wasserdispergierbarkeit zu erreichen. Vernetzbare Polyester, z.B. für Pulverlacke, enthalten funktionelle Gruppen, welche mit dem verwendeten Vernetzungsmittel eine Vernetzungsreaktion eingehen. Es kann sich dabei ebenfalls um Carbonsäuregruppen handeln, wenn eine Vernetzung mit Hydroxylgruppen enthaltenden Verbindungen, z.B. Hydroxyalkylamiden beabsichtigt ist. Bei den funktionellen Gruppen kann es sich auch um ethylenisch ungesättigte Gruppen, z.B. durch Modifizierung des Polyester mit ungesättigten Dicarbonsäuren (Maleinsäure) oder Umsetzung mit (Meth)acrylsäure, handeln; derartige Polyester sind strahlungshärtbar.
  • Zu weiteren Bestandteilen der Polyurethane
  • Polyurethane enthalten als wesentliche Aufbaukomponente Di- oder Polyisocyanate.
  • Insbesondere zu nennen sind Diisocyanate X(NCO)2, wobei X für einen aliphatischen Kohlenwasserstoffrest mit 4 bis 15 Kohlenstoffatomen, einen cycloaliphatischen oder aromatischen Kohlenwasserstoffrest mit 6 bis 15 Kohlenstoffatomen oder einen araliphatischen Kohlenwasserstoffrest mit 7 bis 15 Kohlenstoffatomen steht. Beispiele derartiger Diisocyanate sind Tetramethylendiisocyanat, Hexamethylendiisocyanat, Dodecamethylendiisocyanat, 1,4-Diisocyanatocyclohexan, 1-Isocyanato-3,5,5-trimethyl-5-isocyanatomethylcyclohexan (IPDI), 2,2-Bis-(4-isocyanatocyclohexyl)-propan, Trimethylhexandiisocyanat, 1,4-Diisocyanatobenzol, 2,4-DÜsocyanatotoluol, 2,6-Diisocyanatotoluol, 4,4'-Diisocyanato-diphenylmethan, 2,4'-Diisocyanato-diphenylmethan, p-Xylylendiisocyanat, Tetramethylxylylendiisocyanat (TMXDI), die Isomeren des Bis-(4-isocyanatocyclohexyl)methans (HMDI) wie das trans/trans-, das cis/cis- und das cis/trans-Isomere sowie aus diesen Verbindungen bestehende Gemische.
  • Derartige Diisocyanate sind im Handel erhältlich.
  • Als Gemische dieser Isocyanate sind besonders die Mischungen der jeweiligen Strukturisomeren von Diisocyanatotoluol und Diisocyanato-diphenylmethan von Bedeutung, insbesondere ist die Mischung aus 80 mol-% 2,4-Diisocyanatotoluol und 20 mol-% 2,6-Diisocyanatotoluol geeignet. Weiterhin sind die Mischungen von aromatischen Isocyanaten wie 2,4-Diisocyanatotoluol und/oder 2,6-Diisocyanatotoluol mit aliphatischen oder cycloaliphatischen Isocyanaten wie Hexamethylendiisocyanat oder IPDI besonders vorteilhaft, wobei das bevorzugte Mischungsverhältnis der aliphatischen zu aromatischen Isocyanate 4 : 1 bis 1 : 4 beträgt.
  • Als Diole bzw. Polyole, welche mit den Di- oder Polyisocyanaten umgesetzt werden, wird erfindungsgemäß das C1/C3 Cyclohexandiolgemisch allein oder im Gemisch mit anderen Di- oder Polyolen verwendet.
    Bei Polyurethanen werden als Diole vorzugsweise auch Polyesterdiole eingesetzt. Derartige Polyesterdiole werden vorab durch Umsetzung von Di- oder Polyolen mit Di- oder Polycarbonsäuren erhalten (siehe obige Beschreibung der Polyester). Das C1/C3-Cyclohexandiolgemisch kann in den Polyurethanen in Form derartiger Polyesterdiole enthalten sein. Als weitere Diole, Polyole kommen die oben genanten in Betracht, sei es als Aufbaukomponenten welche direkt mit den Di- oder Polyisocyanaten umgesetzt werden, sei es als Bestandteil der Polyesterdiole. Als Dicarbonsäuren oder Polycarbonsäuren für die Polyesterdiole kommen ebenfalls die oben genannten in Betracht.
  • Die Polyurethane können auch Monoalkohole oder Monoisocyanate als Bestandteile enthalten; durch Mitverwendung derartiger Verbindungen kann das Molekulargewicht eingestellt, bzw. begrenzt werden.
  • Um besondere Eigenschaften zu erreichen werden, können die Polyurethane besondere funktionelle Gruppen enthalten. Wasserlösliche oder wasserdispergierbare Polyurethane enthalten die notwendige Menge an hydrophilen Gruppen, z.B. Carboxylgruppen oder Carboxylatgruppen um eine Wasserlöslichkeit oder Wasserdispergierbarkeit zu erreichen. Als geeignete Aufbaukomponente sei z.B. Dimethylolpropionsäure genannt. Vernetzbare Polyurethane, enthalten funktionelle Gruppen, welche mit dem verwendeten Vernetzungsmittel eine Vernetzungsreaktion eingehen. Die Polyurethane können neben Urethangruppen insbesondere auch andere funktionelle Gruppen, z.B. Harnstoffgruppen enthalten, welche durch Umsetzung der Di- oder Polyisocyanate mit Aminoverbindungen, entstehen.
  • Die Polymere können, wenn gewünscht, bei oder insbesondere auch zu einem späteren Zeitpunkt, z.B. bei der Verwendung, durch andere oder weitere Umsetzungen chemisch modifiziert, z.B. funktionalisiert oder vernetzt werden.
  • Insbesondere können die Polymeren vernetzende Gruppen enthalten, die, sobald die notwendigen Bedingungen vorliegen, eine Vernetzungsreaktion eingehen. Die Polymeren können insbesondere auch im Gemisch mit Vernetzern verwendet werden, die zum gewünschten Zeitpunkt unter den notwendigen Bedingungen (insbesondere bei erhöhter Temperatur) eine Vernetzungsreaktion mit dem Polymer eingehen.
  • Nach der Reaktivität der Vernetzer unterscheidet man zwischen einkomponentigen (1 K-) und zweikomponentigen (2K-) Systemen. Bei 2K-systemen wird der Vernetzer erst kurz vor der späteren Verwendung zugegeben, bei 1 K-Systemen kann der Vernetzer frühzeitig zum System gegeben werden (latenter Vernetzer), die Vernetzung tritt erst bei den später eingestellten Bedingungen auf, z.B. bei der Entfernung von Lösemittel und/oder Temperaturerhöhung.
  • Übliche Vernetzer sind z.B. Isocyanate, Epoxide, Säureanhydride oder bei Polymeren mit radikalisch polymersierbaren ethylenisch ungesättigten Gruppen, auch ethylenisch ungesättigte Monomere wie Styrol.
  • Zur Verwendung der Polymere
  • Die Pulverlacke enthalten die Polymere vorzugsweise als Bindemittel. Sie können weitere Bindemittel und sonstige Additive, z.B. Antioxidantien, Stabilisatoren, Farbstoffe, Pigmente, Verlaufshilfsmittel, Verdicker oder Benetzungshilfsmittel enthalten.
  • Es handelt sich um Massen, welche als Pulver vorliegen und erst bei erhöhten Temperaturen verarbeitet werden.
  • Die Verwendung im Rahmen der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Polymere als oder in Pulverlacken. Vorzugsweise werden Polyester als Pulverlack verwendet, welche vernetzbar sind.
    In einer bevorzugten Ausführungsform wird der Pulverlack durch Mischen und Aufschmelzen des Polyesters, Vernetzers und weiterer Additive, z.B. Pigmente und Verlaufsmittel bei hohen Temperaturen hergestellt. Das Gemisch kann durch anschließende Extrusion und entsprechende Verarbeitung des Extrudats in Pulverform gebracht werden.
  • Der Pulverlack kann in üblicher Weise, z.B. auch elektrostatisch, auf die gewünschten Substrate; z.B. solche mit Metall-, Kunststoff- oder Holzoberflächen, beschichtet werden.
  • Die Polymere haben eine geringe Viskosität, sowohl eine geringe Schmelzviskosität (100 % Systeme) oder eine geringe Lösungsviskosität (Polymerlösungen). Die geringe Viskosität erlaubt eine einfache Handhabung, bewirkt gute Beschichtungseigenschaften und erlaubt höhere Feststoffanteile in Lösungen oder Dispersionen oder geringere Bindemittelanteile in pigmenthaltigen Massen.
  • Die Pulverlacke haben eine hohe Schlagzähigkeit, gute Elastizität und einen guten Glanz.
  • Beispiele Herstellung des C1/C3 Cyclohexandiolgemisches
  • 1 kg Mischung von Vinylcyclohexen/Toluol (1:1) werden mit 10 ppm Rh(acac)(CO)2 versetzt und in einem gerührten Autoklaven auf 120°C erwärmt. Es wird ein Synthesegasdruck (CO/H2 1:1) von 600 bar eingestellt. Die Reaktionsmischung wurde nach 10 h abgekühlt und entspannt.
    Der Rohaustrag wurde im Anschluss bei 170°C und 280 bar Wasserstoffdruck an einem 1:1 Gemisch eines Ni/Mo-haltigen und eines Co/Cu/Mo-haltigen Festbettkatalysators in Rieselfahrweise hydriert. Das erhaltene C1/C3-Cyclohexandiolgemisch enthielt die nachstehenden vier Diole in den angegebenen Mengen.
    Figure imgb0005
  • Herstellung der Polymeren Abkürzungen
  • ADS:
    Adipinsäure
    D:
    Polydispersitätsindex (Mw/Mn)
    DPG:
    Dipropylenglykol
    DBZO:
    Dibutylzinoxid
    CHA:
    C1/C3 Cyclohexandiolgemisch aus Herstellungsbeispiel
    DSC:
    Differential-Scanning-Kalorimetrie
    GPC:
    Gelpermeationschromatographie
    IPS:
    Isophtalsäure
    Mn:
    zahlenmittleres Molekulargewicht in [g/mol]
    Mw:
    gewichtsmittleres Molekulargewicht in [g/mol]
    nFA:
    nicht-flüchtige Anteile
    NPG:
    Neopentylglykol
    OHZ:
    OH-Zahl
    SZ:
    Säurezahl
    Tg:
    Glasübergangstemperatur
    TMP:
    Trimethylolpropan
    TMSA:
    Trimellithsäureanhydrid
    TPS:
    Terephtalsäure
    η1:
    Schmelzviskosität
    η2:
    Lösungsviskosität
    Polymercharakterisierungsmethoden
  • Die Molekulargewichtsbestimmungen werden mit GPC durchgeführt. Stationäre Phase: hochvernetztes poröses Polystyrol-Divinylbenzol, kommerziell erhältlich als PL-GEL von Fa. Polymer Laboratories. Laufmittel: THF. Fluss: 0,3 ml/min. Kalibrierung mit Polyethylenglykol 28700 bis 194 Dalton der Fa. PSS.
    Die Säurezahl der Polyester wird nach der DIN-Norm-Methode 53169 bestimmt.
    Die Bestimmung der Schmelzviskosität η1 der Polyester wird mit einem Kegel-Platte-Viskosimeter bei 200°C im Rotationsmodus und mit einer Scherrrate von 3400 s-1 durchgeführt. Die Bestimmung der Lösungsviskosität η2 der Polyester wird mit einem Kegel-Platte-Viskosimeter bei Raumtemperatur im Rotationsmodus durchgeführt. Die Lösungen bestehen aus 70% Polyester und 30% Lösemittel (Mischung Solvesso 100™/Solvenon PM™ 5/1).
    Die Tg der Polyester wird mittels DSC nach ASTM D3418 bestimmt.
    Herstellung Pulverpolyester mit COOH-Gruppen
  • Polyester P1 Stufe 1 - Herstellung des OH-Gruppen-haltigen Oligomers
  • 210,1 g CHA (1,22 Mol), 139,8 g NPG (1,34 Mol), 40,9 g TMP (0,31 Mol), 405,6 g TPS (2,44 Mol), und 0,5 g Katalysator DBZO werden in einem mit Thermometer, Schutzgaseinleitung, Rührer und Rückflusskühler ausgerüsteten 2L-Vierhalskolben vorgelegt. Unter Durchleiten eines Stickstoffstromes und unter Rückfluss wird die Reaktantenmischung auf 180°C zügig aufgeheizt. Wasser wird kontinuierlich abdestilliert. Anschließend wird das Reaktionsgemisch stufenweise auf 230°C innerhalb von 3 bis 5 St. unter Rühren und Stickstofffluss aufgeheizt, und bei 230°C weitergerührt, bis das Oligomer eine SZ von 10 bis 15 mg KOH/g aufweist. Die SZ des Oligomers beträgt 11 mg KOH/g.
  • Stufe II - Herstellung des COOH-Gruppen-haltigen Polymers P1
  • Das oben synthetisierte Oligomer wird auf 180°C abgekühlt, bevor 101,4 g IPS (0,61 Mol) zugegeben werden. Die Temperatur wird auf 230°C erhöht, und es wird unter diesen Bedingungen weiterkondensiert, bis das Polymer eine SZ von 30 bis 40 mg KOH/g aufweist. Das aus der Polymerisation entstehende Wasser kann am Ende der Reaktion durch schwaches Vakuum gezogen werden, um die erwünschte SZ zu erreichen. Man erhält einen verzweigten COOH-Gruppen-haltigen Pulverpolyester P1, dessen SZ 32 mg KOH/g beträgt. P1 weist eine Glasüberganstemperatur Tg von 69°C und eine Schmelzviskosität η1 von 14,0 Pa.s bei 200°C auf. Die GPC-Analyse liefert folgende Werte: Mn= 2970 g/Mol ; D = 11,0 (siehe Tabelle 1).
  • Polyester P2 bis P5
  • Es wird wie bei der Herstellung von P1 verfahren, mit den in Tabelle 1 zusammengefassten Zusammensetzungen. Man erhält verzweigte COOH-Gruppen-haltige Pulverpolyester, deren Kenndaten SZ, Mn, D, T9 und η1 in Tabelle 1 aufgelistet sind. Tabelle 1
    Zusammensetzung Polyesterkenndaten
    Polyester CHA [g] NPG [g] TMP [g] TPS [g] IPS [g] SZ [mg KOH/g] Mn [g/mol] D Tg [°C] η1 [Pa.s]
    P1 210,1 139,8 40,9 405,6 101,4 32 2970 11,0 69 14,0
    P2 0 374,9 57,5 570,0 142,5 36 2430 76,1 76 38,9
    P3 142,4 287,2 16,0 481,1 206,2 77 1680 2,9 62 1,9
    P4 142,4 287,2 16,0 481,1 206,2 47 2455 4,9 70 15,1
    P5 0 396,0 17,0 510,3 218,7 57 1890 3,6 69 4,4
  • Herstellung amorpher Polyester mit OH-Gruppen Polyester P6
  • 193,75 g CHA (1,13 Mol), 185,88 g NPG (1,79 Mol), 150,94 g TMP (1,13 Mol), 436,60 g IPS (2,63 Mol), 164,46 g ADS (1,13 Mol) und 0,5 g Katalysator DBZO werden in einem mit Thermometer, Schutzgaseinleitung, Rührer und Rückflusskühler ausgerüsteten 2L-Vierhalskolben vorgelegt. Unter Durchleiten eines Stickstoffstromes und unter Rückfluss wird die Reaktantenmischung auf 160°C zügig aufgeheizt. Wasser wird kontinuierlich abdestilliert. Anschließend wird das Reaktionsgemisch stufenweise auf 230°C innerhalb von 3 bis 5 St. unter Rühren und Stickstofffluss aufgeheizt, und bei 230°C weitergerührt, bis das Polyester P6 eine SZ von 10 bis 15 mg KOH/g aufweist. Man erhält einen verzweigten amorphen OH-Gruppen-haltigen Polyester P6, dessen SZ 15 mg KOH/g beträgt. P6 weist eine OHZ von 100 mg KOH/g und eine Glasüberganstemperatur Tg von 23°C auf. Die GPC-Analyse liefert folgende Werte:
    • Mn= 2162 g/Mol ; D = 7,2. P6 weist eine Schmelzviskosität η1 von 2,8 Pa.s bei 200°C auf. Die Lösungsviskosität η2 des Polyesters P6 bei Raumtemperatur (P6-Lösung mit 70% nFA und einer Mischung Solvesso 100 / Solvenon PM 5/1 als Lösemittel) beträgt 27,5 Pa.s (siehe Tabelle 2).
    Polyester P7
  • Es wird wie bei der Herstellung von P6 verfahren, mit der in Tabelle 2 zusammengefassten Zusammensetzung. Die Kenndaten des Polyesters P7 sind in der Tabelle 2 aufgelistet. Tabelle 2
    Zusammensetzung Polyesterkenndaten
    Polyester CHA [g] NPG [g] TMP [g] IPS [g] ADS [g] SZ [mg KOH/g] OHZ [mg KOH/g] Mn [g/mol] D Tg [°C] η1 [Pa.s] η2 [Pa.s]
    P6 193,8 185,9 150,9 436,3 164,5 15 100 2160 7,2 23 2,8 27,5
    P7 0 326,6 163,9 473,9 178,6 15 108 2195 16, 8 25 6,3 41,6
  • Das erfindungsgemäße Polymer P 6 hat eine deutlich geringere Schmelzviskosität und eine deutlich geringere Lösungsviskosität als das Vergleichspolymer P6.
  • Herstellung wasserverdünnbarer Polyester Polyester Stufe I - Herstellung des OH-Gruppen-haltigen Oligomers
  • 113,4 g CHA (0,66 Mol), 154,3 g NPG (1,48 Mol), 205,3 g IPS (1,24 Mol) und 0,3 g Katalysator DBZO werden in einem mit Thermometer, Schutzgaseinleitung, Rührer und Rückflusskühler ausgerüsteten 2L-Vierhalskolben vorgelegt. Unter Durchleiten eines Stickstoffstromes und unter Rückfluss wird die Reaktantenmischung auf 160°C zügig aufgeheizt. Wasser wird kontinuierlich abdestilliert. Anschließend wird das Reaktionsgemisch stufenweise auf 220°C innerhalb von 3 bis 5 St. unter Rühren und Stickstofffluss aufgeheizt, und bei 220°C weitergerührt, bis das Reaktionsgemisch eine SZ von 10 bis 15 mg KOH/g aufweist. Die SZ des Oligomers beträgt 12 mg KOH/g.
  • Stufe II - Herstellung des Polymers P8
  • Das oben synthetisierte Oligomer wird auf 160°C abgekühlt, bevor 49,1 g TMSA (0,41 Mol) zugegeben werden. Die Temperatur wird auf 230°C erhöht, und es wird unter diesen Bedingungen weiterkondensiert, bis das Polymer eine SZ von 42 bis 48 mg KOH/g aufweist. Das aus der Polymerisation entstehende Wasser kann am Ende der Reaktion durch schwaches Vakuum gezogen werden, um die erwünschte SZ zu erreichen. Man erhält einen linearen wasserverdünnbaren Polyester P8, dessen SZ 46 mg KOH/g beträgt. P8 weist eine Glasüberganstemperatur Tg von 49 °C und eine Schmelzviskosität η1 von 7,7 Pa.s bei 200°C auf. Die GPC-Analyse liefert folgende Werte: Mn= 1370 g/Mol ; D = 3,4 (siehe Tabelle 3).
  • Beurteilung der Hydrolysenbeständigkeit von P8
  • Eine 20%-ige wässrige kolloidale Lösung von P8 wird hergestellt, auf pH 8 mit N,N-Dimethylethanolamin gebracht und bei 45°C gelagert. Das Zeitintervall bis die kolloidale Lösung ausfällt wird als Maß für die Hydrolysenbeständigkeit des Polyesters genommen (siehe Tabelle 4).
  • Polyester P9
  • Es wird wie bei der Herstellung von P8 verfahren, mit der in Tabelle 3 zusammengefassten Zusammensetzung. Die Kenndaten des Polyesters P9 sind in der Tabelle 3 aufgelistet. Tabelle 3
    Zusammensetzung Polyesterkenndaten
    Polyester CHA [g] NPG [g] IPS [g] TMSA [g] SZ [mg KOH/g] OHZ [mg KOH/g] Mn [g/mol] D Tg [°C] η1 [Pa.s]
    P8 113,4 154,3 205,3 79,1 46 58 1380 3,4 49 4,4
    P9 0 490,4 451,6 174,1 47 58 1250 2,3 51 7,7
    Tabelle 4
    Polyester Zeit bis Ausfallen der wässrigen Lösung (Tage)
    P8 > 30 Tage
    P9 17 Tage
  • Herstellung Pulverlacke
  • Als Referenzbindemittel (REF) wird das Polyesterharz Uralac® P-862 (Tg 58,0°C, SZ 35 mg KOH / g) von DSM Resins B.V. benutzt. Zur Herstellung der Pulverlacke PL3, PL4, PL5 und PLR werden entsprechend 570,0 g Pulverpolyester P3, P4, P5 oder REF jeweils mit 30,0 g kommerziellem Härter Primid® XL-552 (Hydroxylalkylamid der Fa. DSM), 300,0 g Titandioxidpigment Kronos® 2160 (Fa. Kronos), 9,0 g Verlaufmittel Resiflow® PV5 (Fa. Worlée Chemie GmbH) und 2,5 g Entgasungsmittel Benzoin in einem Labor-Universalmischer (Fa. MIT Mischtechnik GmbH) vermischt, geschmolzen und anschließend in einem Doppelschnecken-Extruder (MP 19, Fa. APV) bei 80 - 100°C extrudiert. Das erhaltene Extrudat wird dann grob gebrochen, gemahlen und gesiebt. Die so erhaltenen Pulverlacke PL3, PL4 und PL5 werden folgende Prüfungen unterzogen:
    Prüfparameter Prüfmethode
    Fliesseigenschaften Fluidisierbarkeit DIN ISO 8130-5
    Tablettenablauf DIN ISO 8130-11
    Gelzeit DIN ISO8130-6
  • Im Anschluss werden die Pulverlacke auf Stahlprüfbleche (Q-Panel R-36) elektrostatisch appliziert und bei 160°C 10 Min. lang eingebrannt. Dabei werden Schichtdicken von 60 µm bis 80 µm angestrebt. Den resultierenden Beschichtungen werden folgende Prüfungen unterzogen:
    Prüfparameter Prüfmethode
    Erscheinungsbild visuelle Beurteilung der Oberflächen
    Glanz DIN EN ISO 2813
    Schlagzähigkeit EN ISO 6272
    Schlagempfindlichkeit ASTM D 2794
    Elastizität EN ISO 1520
    Wetterstabilität Schnellbewitterungsprüfung (QUV-A) DIN EN ISO 11507
  • Die Ergebnisse der Lackprüfungen sind in der Tabelle 5 zusammengefasst. PL3 und PL4 (auf Basis von Polyester P3 und P4) sind erfindungsgemäß, PL5 und PLR auf Basis des Polyester P5 bzw. des Referenzbindemittels Ref. sind Vergleichsbeispiele. Tabelle 5
    Prüfparameter Prüfverfahren PL3 PL4 PL5 PLR
    Pulverlack Fliesseigenschaften Fluidisierbarkeit 158,2 159,7 160,4 124,6
    Tablettenablauf @ 180°C [mm] 21,5 14,5 13,5 30,5
    Gelzeit Gelzeit @ 180°C [s] 201 136 154 173
    Prüfbleche Erscheinungsbild Visuelle Beurteilung 2* 2 2 2
    Glanz Glanzmessung bei 20° 78 66 75 63
    Schlagzähigkeit Reverse Impact [kg*cm] 200 200 50 200
    Schlagempfindlichkeit Impact [kg*cm] 200 200 80 200
    Elastizität Erichsentiefung [mm] 9,4 10,5 10,1 10,6
    Wetterstabilität Restglanz nach 500 h QUV-A [%] 71 93 98 93
    * 2 = orange peel, pinholes
  • Die erfindungsgemäßen Pulverlacke PL3 und PL4 zeigen ein sehr gutes Eigenschaftsprofil. Die Fliesseigenschaften sind so gut wie beim Pulverlack PL5 auf Basis von NPG. PL3 und PL4 haben hervorragende mechanische Eigenschaften, die Schlagzähigkeit, Schlagempfindlichkeit und Elastizität sind im vergleich zu PL 5 sehr gut.
    Im Vergleich zu PL5 ist bei PL3 und PL4 die niedrigere Polyesterschmelzviskosität vorteilhaft.

Claims (10)

  1. Pulverlack, enthaltend ein Polymer, dadurch gekennzeichnet, dass das Polymer erhältlich ist durch Polykondensation oder Polyadduktbildung von monomeren Verbindungen, wobei als monomere Verbindung ein Gemisch aus Hydroxymethyl-cyclohexanpropanol oder dessen alkoxylierte Derivate und Hydroxymethyl-cyclohexanisopropanol oder dessen alkoxylierte Derivate (im Nachfolgenden kurz C1/C3-Cyclohexandiolgemisch genannt) mitverwendet wird.
  2. Pulverlack gemäß Anspruch 1, dadurch gekennzeichnet, dass das C1/C3-Cyclohexandiolgemisch
    5 bis 95 Gew.-% Hydroxymethyl-cyclohexanpropanol (3-Hydroxymethyl-cyclohexanpropanol oder 4-Hydroxymethyl-cyclohexanpropanol oder deren Gemisch) oder dessen alkoxylierten Derivate und
    5 bis 95 Gew.-% Hydroxymethyl-cyclohexanisopropanol (3-Hydroxymethyl-cyclohexanisopropanol oder 4-Hydroxymethyl-cyclohexanisopropanol oder deren Gemisch) oder dessen alkoxylierten Derivate
    enthält, wobei sich die Gewichtsprozente auf die Gewichtssumme der genannten Diole beziehen.
  3. Pulverlack gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass das C1/C3-Cyclohexandiolgemisch aus
    3-Hydroxymethyl-cyclohexanpropanol,
    4-Hydroxymethyl-cyclohexanpropanol,
    3-Hydroxymethyl-cyclohexanisopropanol und 4-Hydroxymethyl-cyclohexanisopropanol
    besteht, wobei die Diole auch in Form von alkoxylierten Derivaten vorliegen können.
  4. Pulverlack gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das C1/C3-Cyclohexandiolgemisch aus
    5 bis 85 Gew.-% 3-Hydroxymethyl-cyclohexanpropanol
    5 bis 85 Gew.-% 4-Hydroxymethyl-cyclohexanpropanol,
    5 bis 85 Gew.-% 3-Hydroxymethyl-cyclohexanisopropanol und
    5 bis 85 Gew.-% 4-Hydroxymethyl-cyclohexanisopropanol
    besteht, wobei die Diole auch in Form von alkoxylierten Derivaten vorliegen können und sich die Gewichtsprozente auf die Gewichtssumme der vier Diole beziehen
  5. Pulverlack gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das C1/C3-Cyclohexandiolgemisch durch Hydroformylierung von 4-Vinyl-cyclohexen und anschließende Hydrierung erhältlich ist.
  6. Pulverlack gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Polymer zu 0,5 bis 70 Gew.-% aus dem C1/C3-Cyclohexandiolgemisch besteht.
  7. Pulverlack gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass es sich bei dem Polymer um ein Polyester handelt.
  8. Pulverlack gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass es sich bei dem Polymer um ein Polycarbonatdiol (erhältlich durch Umsetzung von Dialkylcarbonaten mit Diolen unter Abspaltung von Alkohol) handelt.
  9. Pulverlack gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass es sich bei dem Polymer um ein Polyurethan handelt.
  10. Pulverlack gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass es sich beim Polymer um ein Polyaddukt erhältlich durch ringöffnende Polymerisation von Lactonen oder Lactamen handelt.
EP09745719.6A 2008-05-14 2009-05-12 Verwendung eines cyclohexandiolgemisches zur herstellung von polymeren Not-in-force EP2279219B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09745719.6A EP2279219B1 (de) 2008-05-14 2009-05-12 Verwendung eines cyclohexandiolgemisches zur herstellung von polymeren

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08156169 2008-05-14
EP09745719.6A EP2279219B1 (de) 2008-05-14 2009-05-12 Verwendung eines cyclohexandiolgemisches zur herstellung von polymeren
PCT/EP2009/055688 WO2009138387A1 (de) 2008-05-14 2009-05-12 Verwendung eines cyclohexandiolgemisches zur herstellung von polymeren

Publications (2)

Publication Number Publication Date
EP2279219A1 EP2279219A1 (de) 2011-02-02
EP2279219B1 true EP2279219B1 (de) 2013-04-17

Family

ID=40933553

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09745719.6A Not-in-force EP2279219B1 (de) 2008-05-14 2009-05-12 Verwendung eines cyclohexandiolgemisches zur herstellung von polymeren

Country Status (6)

Country Link
US (1) US20110040030A1 (de)
EP (1) EP2279219B1 (de)
JP (1) JP2011521038A (de)
KR (1) KR20110021880A (de)
CN (1) CN102027038B (de)
WO (1) WO2009138387A1 (de)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1147933A (ja) * 1997-07-28 1999-02-23 Hitachi Constr Mach Co Ltd 溶接ワイヤ送給装置
JP2000035932A (ja) * 1998-07-16 2000-02-02 Mitsubishi Electric Corp 情報提供システム
CN102143988B (zh) * 2008-09-04 2013-01-16 巴斯夫欧洲公司 取代的2-芳基-2-烷基-1,3-丙二醇或取代的2-环己基-2-烷基-1,3-丙二醇在制造聚合物中的用途
DE102011080722A1 (de) 2010-08-12 2012-03-22 Basf Se Verwendung von Methylbernsteinsäure in Pulverlacken
KR102067651B1 (ko) * 2012-10-15 2020-01-17 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 신규 지환식 디카르본산에스테르 화합물, 및 그의 제조방법
CN104781224B (zh) * 2012-10-15 2018-04-03 三菱瓦斯化学株式会社 新型脂环式二醇化合物及其制造方法
MX2015013672A (es) 2013-03-28 2016-02-16 Procter & Gamble Composiciones de limpieza que contiene una polieteramina, un polimero para el desprendimiento de la suciedad y una carboximetilcelulosa.
MX2015013806A (es) 2013-03-28 2016-06-02 Basf Se Polieteraminas a base de 1,3-dialcoholes.
DE102013208386A1 (de) 2013-05-07 2014-11-13 Evonik Industries Ag Biobasierte Polyesterpolyole aus Limonenderivaten
RU2016141981A (ru) 2014-03-27 2018-04-27 Басф Се Простые эфирамины на основе диспиртов
US9719052B2 (en) 2014-03-27 2017-08-01 The Procter & Gamble Company Cleaning compositions containing a polyetheramine
JP6418621B2 (ja) 2014-03-27 2018-11-07 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ジアルコールをベースとするエーテルアミン
WO2015148361A1 (en) 2014-03-27 2015-10-01 The Procter & Gamble Company Cleaning compositions containing a polyetheramine
EP2940117B1 (de) 2014-04-30 2020-08-19 The Procter and Gamble Company Reinigungszusammensetzung enthaltend ein Polyetheramin
EP2940116B1 (de) 2014-04-30 2018-10-17 The Procter and Gamble Company Reinigungsmittel
US9974985B2 (en) 2014-05-15 2018-05-22 Basf Se Etheramines based on 1,2-dialcohols
US10280237B2 (en) 2014-09-15 2019-05-07 Basf Se Salts of etheramines and polymeric acid
US9617502B2 (en) 2014-09-15 2017-04-11 The Procter & Gamble Company Detergent compositions containing salts of polyetheramines and polymeric acid
JP6430632B2 (ja) 2014-09-25 2018-11-28 ザ プロクター アンド ギャンブル カンパニー ポリエーテルアミンを含有する布地ケア組成物
EP3197988B1 (de) 2014-09-25 2018-08-01 The Procter & Gamble Company Reinigungszusammensetzungen mit einem polyetheramin
US9631163B2 (en) 2014-09-25 2017-04-25 The Procter & Gamble Company Liquid laundry detergent composition
KR20170060079A (ko) 2014-09-25 2017-05-31 바스프 에스이 1,3-디알코올 기재의 폴리에테르아민
ES2689048T3 (es) 2015-10-29 2018-11-08 The Procter & Gamble Company Composición detergente líquida
EP3162880A1 (de) 2015-10-29 2017-05-03 The Procter and Gamble Company Flüssige reinigungsmittelzusammensetzung
US20170275565A1 (en) 2016-03-24 2017-09-28 The Procter & Gamble Company Compositions containing an etheramine
EP3257924A1 (de) 2016-06-17 2017-12-20 The Procter and Gamble Company Flüssige reinigungsmittelzusammensetzung
EP3279301A1 (de) 2016-08-04 2018-02-07 The Procter & Gamble Company Artikel mit wasserlöslicher einheitsdosis mit einem reinigungsamin

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1032241B (de) 1956-09-01 1958-06-19 Chemische Verwertungsgesellsch Verfahren zur Durchfuehrung der Oxosynthese
JPS5090623A (de) * 1973-12-14 1975-07-19
DE2814400C3 (de) * 1978-04-04 1982-08-26 Chemische Werke Hüls AG, 4370 Marl Verwendung von Di-(cyclohexylethylmethylol)- oder Di-(ethylcyclohexylmethylol)-phthalaten als Weichmacher für Polyvinylchlorid
DE3119380A1 (de) 1981-05-15 1982-12-09 Chemische Werke Hüls AG, 4370 Marl Fluessige ueberzugsmittel
JPH072659B2 (ja) * 1986-05-29 1995-01-18 三井石油化学工業株式会社 新規なビスシクロヘキサノール類
JPS63162718A (ja) * 1986-12-26 1988-07-06 Hitachi Ltd 熱硬化性樹脂組成物
US5138101A (en) * 1991-07-19 1992-08-11 Eastman Kodak Company Recovery of high-boiling aldehydes from rhodium-catalyzed hydroformylation processes
AU670570B2 (en) * 1992-03-24 1996-07-25 Nippon Paint Co., Ltd. Polyfunctional polycarbonate polyol
CA2092248A1 (en) 1992-03-24 1993-09-25 Kenji Kushi Polyester resin for a dye receptive layer of a recording medium for sublimation type heat-sensitive transfer recording process, and a recording medium using the polyester resin
DE4216536A1 (de) * 1992-05-19 1993-11-25 Bayer Ag Wasserverdünnbare Polyesterpolyole und ihre Verwendung
US5633340A (en) * 1995-09-21 1997-05-27 Eastman Chemical Company Polyester molding compositions
DE19810793A1 (de) * 1998-03-12 1999-09-16 Basf Ag Härtbares Polyurethanpolymerisat, Dispersion auf Basis dieses Polymerisats, Verfahren zu ihrer Herstellung und ihre Verwendung
WO2000044819A1 (en) * 1999-01-28 2000-08-03 Eastman Chemical Company Photocurable coatings for polyester articles
US6310139B1 (en) * 1999-08-31 2001-10-30 Reichhold, Inc. Burnish resistant powder coating compositions
JP4145039B2 (ja) * 2000-11-16 2008-09-03 Dic株式会社 ポリエステルポリオールおよびポリウレタン、およびそれらの製造方法
WO2003064497A1 (fr) * 2002-01-30 2003-08-07 Kyowa Hakko Chemical Co., Ltd. Polyester
CN100469799C (zh) * 2006-10-09 2009-03-18 中国科学技术大学 一种氟硅改性核壳结构聚氨酯-丙烯酸酯乳液的制备方法

Also Published As

Publication number Publication date
JP2011521038A (ja) 2011-07-21
US20110040030A1 (en) 2011-02-17
KR20110021880A (ko) 2011-03-04
EP2279219A1 (de) 2011-02-02
WO2009138387A1 (de) 2009-11-19
CN102027038A (zh) 2011-04-20
CN102027038B (zh) 2013-07-24

Similar Documents

Publication Publication Date Title
EP2279219B1 (de) Verwendung eines cyclohexandiolgemisches zur herstellung von polymeren
EP2291432B1 (de) Verwendung eines c11-diols oder c11-diolgemisches zur herstellung von polymeren
EP2331601B1 (de) Verwendung von substituierten 2-aryl-2-alkyl-1,3-propandiolen oder substituierten 2-cyclohexyl-2-alkyl-1,3-propandiolen zur herstellung von polymeren
EP2307472A1 (de) Verwendung von 2-isopropyl-2-alkyl-1,3-propandiolen zur herstellung von polymeren
EP2321242A1 (de) Verwendung von 1,1-dimethylolcycloalkanen oder 1,1-dimethylolcycloalkenen zur herstellung von polymeren
EP0708788B1 (de) Überzugsmittel auf der basis von polyurethanharzen und ihre verwendung
EP0740674B1 (de) Polyurethanharze, verfahren zu ihrer herstellung sowie ihre verwendung in wasserverdünnbaren überzugsmitteln
EP0234362B1 (de) Dispersionen von vernetzten Polymermikroteilchen in wässrigen Medien, Verfahren zur Herstellung dieser Dispersionen und Beschichtungszusammensetzungen, die diese Dispersionen enthalten
EP2148895B1 (de) Aufgesäuerte polyesterpolyurethan-dispersionen
EP0583728B1 (de) Wasserverdünnbare Zweikomponenten-Überzugsmasse
WO2008068068A1 (de) Lagerstabile pulverlackzusammensetzungen basierend auf säuregruppenhaltigen polyestern, ihre herstellung und ihre verwendung für trübungsarme und flexible pulverlacke
EP0720996A2 (de) Polyesterpolyole und ihre Verwendung in Zweikomponenten-Polyurethanlacken
DE3328131C2 (de) Pulverlacke auf der Basis teilblockierter IPDI-Isocyanurate und hydroxylgruppenhaltiger Polyester sowie ein Verfahren zur Herstellung matter Überzüge
AT413984B (de) Hitzehärtbare pulverlackzusammensetzung sowie zu ihrer herstellung verwendbares polyesterharz
EP2848637A1 (de) Wässrige, hydroxylgruppenhaltige Polyurethandispersionen, ein Verfahren zu deren Herstellung und deren Verwendung in Beschichtungsmitteln
EP0705858B1 (de) Neue Polyesterpolyole und ihre Verwendung als Polyolkomponente in Zweikomponenten-Polyurethanlacken
EP1055686B1 (de) Wässrige Korrosionsschutzgrundierungen auf Basis von Polyvinylbutyral
EP3110865B1 (de) Polymer in farb- und/oder effektgebenden mehrschichtigen lackierungen
EP0321502A1 (de) Lufttrocknende alkydharzbindemittel, verfahren zu ihrer herstellung, überzugsmittel auf der basis der alkydharzbindemittel sowie deren verwendung als bautenanstrichmittel
EP3039052B1 (de) Dimerfettsäure-polyesterdiol-reaktionsprodukt und dessen einsatz in beschichtungsmitteln
EP1382623B1 (de) Wässrige Bindemittel
DE102011080722A1 (de) Verwendung von Methylbernsteinsäure in Pulverlacken
DE2726900A1 (de) Oxidativ vernetzende bindemittel
DE19924195A1 (de) Gesättigte Polyester, zur Herstellung von wärmehärtbaren Pulverlacken
DE1957483B (de) Pulverförmige Überzugsmittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120217

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MIJOLOVIC, DARIJO

Inventor name: WIEBELHAUS, DAG

Inventor name: GUIXA GUARDIA, MARIA

Inventor name: TEBBEN, GERD-DIETER

Inventor name: GARNIER, SEBASTIEN

Inventor name: MIAO, QIANG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 607285

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009006882

Country of ref document: DE

Effective date: 20130613

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130531

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20130524

Year of fee payment: 5

Ref country code: FR

Payment date: 20130621

Year of fee payment: 5

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20130626

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130817

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130819

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130728

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130718

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130731

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

26N No opposition filed

Effective date: 20140120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130512

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009006882

Country of ref document: DE

Effective date: 20140120

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009006882

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20141201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140512

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009006882

Country of ref document: DE

Effective date: 20141202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140602

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 607285

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130512

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531