EP2321242A1 - Verwendung von 1,1-dimethylolcycloalkanen oder 1,1-dimethylolcycloalkenen zur herstellung von polymeren - Google Patents

Verwendung von 1,1-dimethylolcycloalkanen oder 1,1-dimethylolcycloalkenen zur herstellung von polymeren

Info

Publication number
EP2321242A1
EP2321242A1 EP09781833A EP09781833A EP2321242A1 EP 2321242 A1 EP2321242 A1 EP 2321242A1 EP 09781833 A EP09781833 A EP 09781833A EP 09781833 A EP09781833 A EP 09781833A EP 2321242 A1 EP2321242 A1 EP 2321242A1
Authority
EP
European Patent Office
Prior art keywords
formula
polymer according
compounds
preparation
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09781833A
Other languages
English (en)
French (fr)
Inventor
Darijo Mijolovic
Sebastien Garnier
Qiang MIAO
Maria Guixa Guardia
Gerd-Dieter Tebben
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP09781833A priority Critical patent/EP2321242A1/de
Publication of EP2321242A1 publication Critical patent/EP2321242A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/16Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxo-reaction combined with reduction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/27Polyhydroxylic alcohols containing saturated rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/27Polyhydroxylic alcohols containing saturated rings
    • C07C31/272Monocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4263Polycondensates having carboxylic or carbonic ester groups in the main chain containing carboxylic acid groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/199Acids or hydroxy compounds containing cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/52Polycarboxylic acids or polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation
    • C08G63/54Polycarboxylic acids or polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/553Acids or hydroxy compounds containing cycloaliphatic rings, e.g. Diels-Alder adducts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates
    • C08G64/0208Aliphatic polycarbonates saturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates
    • C08G64/0291Aliphatic polycarbonates unsaturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/14Lactams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/06Unsaturated polyesters having carbon-to-carbon unsaturation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D169/00Coating compositions based on polycarbonates; Coating compositions based on derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D177/00Coating compositions based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D177/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J177/00Adhesives based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Adhesives based on derivatives of such polymers
    • C09J177/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/18Systems containing only non-condensed rings with a ring being at least seven-membered
    • C07C2601/20Systems containing only non-condensed rings with a ring being at least seven-membered the ring being twelve-membered
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2150/00Compositions for coatings
    • C08G2150/20Compositions for powder coatings

Definitions

  • the invention relates to a polymer which is obtainable by polycondensation or polyadduct formation of monomeric compounds, wherein as a monomeric compound
  • DE-A 922648 describes a process for the preparation of cycloalkane-1, 1-dicarboxylic acids, during which time the 1, 1-dimethylolcycloalkanes are also formed during the preparation. The use of these 1, 1-dimethylolcycloalkanes for the preparation of polymers is not disclosed.
  • DE-A 1468065 describes a process for preparing a mixture of cyclododecane derivatives containing mainly monoxymethylcyclododecane.
  • the starting point is cyclododecatriene, which is subjected to hydroformylation by the addition of carbon monoxide and hydrogen. Subsequently, the resulting aldehyde is subjected to a further hydrogenation to the corresponding alcohol.
  • this production method however, only one methylol group is introduced per double bond. A preparation of a dimethylol derivative with both methylol groups on the same carbon atom is not described. 1, 1-Dimethylolcyclodecan and its use for the preparation of polymers is not described.
  • the viscosity is important, be it as melt viscosity (100% systems) or as solution viscosity (polymer solutions).
  • the coatings produced are said to have good mechanical properties for coating applications, such as impact resistance and elasticity, high scratch and impact resistance, good resistance to water, solvents, grease and chemicals and environmental influences, and to have a high gloss.
  • the polymers should have a high weather stability and a lower tendency to yellowing.
  • the object of the present invention was to provide such polymers.
  • This object is achieved by a polymer obtainable by polycondensation or polyadduct formation of monomeric compounds, characterized in that as a monomeric compound
  • n, X and R are the same as above, are obtainable in a Cannizzaro reaction with formaldehyde.
  • the polymer according to the invention is characterized in that it is a polyester.
  • the polymer according to the invention is characterized in that it is a polycarbonate diol (obtainable by reaction of dialkyl carbonates or cyclic carbonates with diols with elimination of alcohol).
  • the polymer according to the invention is advantageously characterized in that it is a polyurethane.
  • Another object of the invention is the use of the polymer according to the invention for the preparation of a thermoplastic composition.
  • thermoplastic composition comprising a polymer according to the invention and / or repeat units of a polymer according to the invention.
  • Another object of the invention is the use of the thermoplastic compositions according to the invention for the production of moldings.
  • Another object of the invention is the use of the polymer according to the invention for the preparation of coating compositions, sealants or adhesives.
  • Another object of the invention are coating compositions, sealants or adhesives containing repeating units of a polymer according to the invention.
  • the coating compositions, sealants or adhesives of the invention characterized in that they are aqueous compositions.
  • Another object of the invention is the use of the polymer according to the invention for the preparation of powder coatings.
  • Another object of the invention are powder coating, containing repeating units of a polymer of the invention.
  • Another object of the invention is the use of the polymer according to the invention for the preparation of radiation-curable coating compositions.
  • Another object of the invention are radiation-curable coating compositions containing repeating units of a polymer of the invention.
  • Another object of the invention is 1, 1-dimethylolcyclododecane.
  • Another object of the invention is a process for the preparation of 1, 1-dimethylolcyclododecane, wherein cyclododecene is subjected to hydroformylation with hydrogen and carbon monoxide, the resulting aldehyde is reacted by means of formaldehyde to 1, 1 -dimethylolcyclododecane.
  • Another object of the invention is a mixture containing 1, 1-dimethylol-cyclooct-3-ene, 1, 1-dimethylolcyclooct-2-ene and 1, 1-dimethylolocycloct-4-ene.
  • the invention further provides a process for preparing the mixture comprising 1, 1-dimethylolcyclooct-3-ene, 1, 1-dimethylolcyclooct-2-ene and 1, 1-dimethylolcyclooct-4-ene, where 1, 5 Cyclooctadiene is subjected to a hydroformylation with hydrogen and carbon monoxide, the resulting aldehydes is reacted by means of formaldehyde to the mixture according to the invention.
  • compounds of the formula I or of the formula Ia or the alkoxylated derivatives of the formula I or of the formula Ia are used in which n is a whole natural number selected from the group of 1, 2, 4 to 9.
  • the alkoxylated derivatives of the compound of the general formula I or of the formula Ia are products of the reaction with one or a mixture of alkylene oxides.
  • alkylene oxides are ethylene, propylene, n-butylene, isobutylene, styrene or cyclohexene oxide.
  • the above diols are ethoxylated and propoxylated.
  • the alkoxylation products are obtainable in a known manner by reacting the above alcohols with alkylene oxides, in particular ethylene oxide or propylene oxide.
  • the degree of alkoxylation per hydroxyl group is 0 to 20, especially 0 to 10, i. 1 mol of hydroxyl group may preferably be alkoxylated with up to 20 mol, in particular 10 mol of alkylene oxides.
  • the compounds of the formula I or of the formula Ia are not alkoxylated.
  • the compounds of the formula I or of the formula Ia are obtained by a Cannizzaro reaction of the corresponding aldehydes of the formula II or of the formula IIa with formaldehyde.
  • the process for the preparation of 1, 1-dimethylolcycloalkanes is already known and described in US 2993912 or DE 922648.
  • compounds of the formal I or formal Ia can be obtained by aldol reaction of the corresponding aldehydes of the formula II or of the formula IIa with formaldehyde followed by hydrogenation.
  • the aldol reaction is described, for example, in WO 01/51438, WO 97/17313 or WO 98/29374.
  • the hydrogenation can be carried out analogously to the disclosure of EP-A 44412 or EP-A 44444.
  • the polymers are obtainable by polycondensation or polyadduct formation of monomeric compounds with concomitant use of one or more compounds of formula I or formula Ia; the polymers may, if desired, be chemically modified by other or further reactions, e.g. functionalized or networked.
  • Preferred polycondensates are polyesters, which are obtainable by reacting di- or polyols with di- or polycarboxylic acids, which can also be used in the form of reactive derivatives, such as anhydrides or esters.
  • polyester is to be understood below as meaning a polymer which contains more than 50% by weight, more preferably more than 70% by weight and in particular more than 90% by weight, of synthesis components selected from among diols, polyols , Dicarboxylic acids and polycarboxylic acids.
  • polycarbonate diols which are obtainable by reacting dialkyl carbonates or cyclic carbonates with diols with elimination of alcohols.
  • polyurethane is to be understood in the following to mean a polymer which contains more than 50% by weight, more preferably more than 70% by weight, in particular more than 90% by weight, of synthesis components selected from diisocyanates , Polyisocyanates, diols and polyols.
  • All these polymers have in common that they are composed essentially of diols and compounds reactive with these diols, such as di- or polycarboxylic acids (polyesters) or di- or polyisocyanates (polyurethanes).
  • Preferred polymers are polyesters and polyurethanes, particularly preferred are polyesters.
  • the polymers according to the invention preferably have the following content of the monomer building blocks of the compounds of the formula I or of the formula Ia or its alkoxylated derivatives.
  • the following weights for the content of the compounds of the formula I or of the formula Ia or its alkoxylated derivatives in the polymer refer to the units of the polymer which are derived from compounds of the formula I or the formula Ia or their alkoxylated compounds.
  • the weight of these units corresponds unchanged to the compound of the formula I or of the formula Ia or their alkoxylated derivatives, in the case of polycondensates the weight of these units is reduced by the hydrogen atoms of the hydroxyl groups.
  • Preferred polymers are at least 0.5, particularly preferably at least 2, very preferably at least 5 and in particular at least 10% by weight and in a particular embodiment at least 20% by weight of compounds of the formula I or of the formula Ia or their alkoxylated derivatives. Since the concomitant use of other reactive with the diols compounds is mandatory, the polymers are generally not more than 90 wt .-%, in particular not more than 60 wt .-% or not more than 50 wt .-% of the compounds of the formula I or the formula Ia or their alkoxylated derivatives.
  • the polymers may also contain other diols or polyols as synthesis components. In a preferred embodiment, it is at least 10 wt .-%, more preferably at least 25 wt .-% and most preferably at least 50 wt .-% of the diols and polyols, of which the polymers are made to the compounds of Formula I or Formula Ia or their alkoxylated derivatives.
  • At least 70% by weight or at least 90% by weight of the diols and polyols of which the polymers consist can be the compounds of the formula I or of the formula Ia or their alkoxylated derivatives.
  • it may be at 100 wt .-% of all diols and polyols that make up the polymers to a single compound of formula I or formula Ia or a mixture of compounds of formula I or formula Ia or their alkoxylated derivatives.
  • polyesters may contain further diols or polyols as synthesis components.
  • further diols are ethylene glycol, propylene glycol and their more highly condensed representatives, for example diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, etc., 2-methyl-1,3-propanediol, butanediol, pentanediol, hexanediol, neopentyl glycol, alkoxylated phenolic acid Compounds, such as ethoxylated or propoxylated bisphenols, called cyclohexanedimethanol.
  • polystyrene resin examples include glycerol, trimethylolpropane, butanetriol, trimethylolethane, pentaerythritol, ditrimethylolpropane, dipentaerythritol, sorbitol, mannitol.
  • glycerol trimethylolpropane
  • butanetriol trimethylolethane
  • pentaerythritol ditrimethylolpropane
  • dipentaerythritol dipentaerythritol
  • sorbitol mannitol
  • Preferred mixtures of the compounds of formula I or formula Ia with a diol and a triol are mixtures of the unsubstituted and bearing as X CH 2 group 5-, 8-, 10- and 12-rings with neopentyl glycol and trimethylolpropane.
  • the above diols or polyols may be alkoxylated, in particular ethoxy- and propoxylated.
  • the alkoxylation products can be obtained in a known manner by reacting the above alcohols with alkylene oxides, in particular ethylene oxide or propylene oxide.
  • the degree of alkoxylation per hydroxyl group is 0 to 20, i. 1 mol of hydroxyl group may preferably be alkoxylated with up to 20 mol of alkylene oxides.
  • the polyesters also contain dicarboxylic acids or polycarboxylic acids as synthesis components.
  • Dicarboxylic acids or polycarboxylic acids may also be used in the preparation of the polyesters in the form of their reactive derivatives, e.g. be used as anhydrides or esters.
  • Suitable dicarboxylic acids are succinic acid, glutaric acid, adipic acid, sebacic acid, isophthalic acid, terephthalic acid, their isomers and hydrogenation products, such as tetrahydrophthalic acid.
  • maleic acid and fumaric acid for unsaturated polyesters.
  • Polyesters may also contain monoalcohols or monocarboxylic acids as a constituent; By concomitant use of such compounds, the molecular weight can be adjusted or limited.
  • the polyesters may contain special functional groups.
  • Water-soluble or water-dispersible polyesters contain the necessary amount of hydrophilic groups, for example carboxyl groups or carboxylate groups, in order to achieve water solubility or water dispersibility.
  • Crosslinkable polyesters for example for powder coatings, contain functional groups which undergo a crosslinking reaction with the crosslinking agent used. These may likewise be carboxylic acid groups if it is intended to crosslink with hydroxyl-containing compounds, for example hydroxyalkylamides.
  • the functional groups may also be ethylenically unsaturated groups, for example by modification of the polyester with unsaturated dicarboxylic acids (maleic acid). or reaction with (meth) acrylic acid.
  • Such polyesters are thermally or chemically crosslinkable or radiation-curable.
  • Unsaturated polyesters can be 0 alkyl acrylates, Dialkylacrylaten, z with simple or multi-ethylenically un- saturated, free-radically polymerizable compounds such as styrene, C r Ci. B. the diacrylate of ethanediol or butanediol are copolymerized.
  • the unsaturated polyester may be used in admixture with the ethylenically unsaturated monomers, such as. As described in WO 00/23495 and EP 1 131372.
  • the above ethylenically unsaturated compounds simultaneously serve as solvents (reactive diluents), so that the mixture is preferably present as a solution of the polyesters in these compounds.
  • the mixture may, for. B. as a coating or impregnating agent, in particular for the production of laminates.
  • the curing can be effected thermally or photochemically, in both cases optionally also with the addition of an initiator.
  • Such compounds which can be hardened chemically, thermally or by UV irradiation, are special thermoplastics, which are also called thermosets.
  • unsaturated compounds of the formula I or of the formula Ia are suitable for UPR (unsaturated polyester resins).
  • Polyurethanes contain diisocyanates or polyisocyanates as essential constituent components.
  • diisocyanates Y (NCO) 2 wherein Y is an aliphatic hydrocarbon radical having 4 to 15 carbon atoms, a cycloaliphatic or aromatic hydrocarbon radical having 6 to 15 carbon atoms or an arabiphatic hydrocarbon radical having 7 to 15 carbon atoms.
  • diisocyanates examples include tetramethylene diisocyanate, hexamethylene diisocyanate, dodecamethylene diisocyanate, 1,4-diisocyanatocyclohexane, 1-isocyanato-3,5,5-trimethyl-5-isocyanatomethylcyclohexane (IPDI), 2,2-bis (4-isocyanatocyclohexyl) propane , Trimethylhexane diisocyanate, 1,4-diisocyanatobenzene, 2,4-diisocyanatotoluene, 2,6-diisocyanatotoluene, 4,4'-diisocyanatodiphenylmethane, 2,4'-diisocyanatodiphenylmethane, p-xylylene diisocyanate, tetramethylxylylene diisocyanate (TMXDI ), the isomers of bis (4-isocyanatocyclo
  • Such diisocyanates are available commercially.
  • mixtures of these isocyanates especially the mixtures of the respective structural isomers of diisocyanatotoluene and diisocyanatodiphenylmethane are of importance, in particular the mixture of 80 mol% 2,4-diisocyanatotoluene and 20 mol% 2,6- Diisocyanatotoluol suitable.
  • mixtures of aromatic isocyanates such as 2,4-diisocyanatotoluene and / or 2,6-diisocyanatotoluene with aliphatic or cycloaliphatic isocyanates such as hexamethylene diisocyanate or IPDI are particularly advantageous, the preferred mixing ratio of the aliphatic to aromatic isocyanates 4: 1 to 1: 4.
  • compounds of the general formula I or of the formula Ia are used as pure substances or as mixtures of compounds of the general formula I or of the formula Ia or mixed with other diols. or polyols used.
  • polymers of the invention it is also possible to use polymers of the invention as diols or polyols.
  • polyester diols or polyols are preferably also used as diols or polyols.
  • polyesterols are obtained beforehand by reacting di- or polyols with di- or polycarboxylic acids (see above description of the polyesters).
  • the compounds of the general formula I or of the formula Ia or mixtures of compounds of the general formula I or of the formula Ia can be contained in the polyurethanes in the form of such polyesterols.
  • diols, polyols the above genierenden come into consideration, either as structural components which are reacted directly with the di- or polyisocyanates, either as part of the polyesterols.
  • Suitable dicarboxylic acids or polycarboxylic acids for the polyesterols are also those mentioned above.
  • the polyurethanes may also contain monoalcohols or monoisocyanates as constituents; By concomitant use of such compounds, the molecular weight can be adjusted or limited.
  • the polyurethanes may contain special functional groups.
  • Water-soluble or water-dispersible polyurethanes contain the necessary amount of hydrophilic groups, e.g. Carboxyl groups or carboxylate groups to achieve a water solubility or water dispersibility.
  • As a suitable building component e.g. Called dimethylolpropionic acid.
  • Crosslinkable polyurethanes contain functional groups which undergo a crosslinking reaction with the crosslinking agent used.
  • the polyurethanes may also contain other functional groups, e.g. Contain urea groups, which are formed by reaction of the di- or polyisocyanates with amino compounds.
  • the polymers may also be chemically modified, for example functionalized or crosslinked, at or in particular at a later time, for example during use, by other or further reactions.
  • the polymers can contain crosslinking groups which, as soon as the necessary conditions are present, undergo a crosslinking reaction and thus act as a thermoset.
  • the polymers can also be used in particular in admixture with crosslinkers which undergo a crosslinking reaction with the polymer at the desired time under the necessary conditions (in particular at elevated temperature).
  • the crosslinker is added just before the later use
  • the crosslinker can be added to the system early (latent crosslinker), the crosslinking occurs only at the later set conditions, e.g. in the removal of solvent and / or temperature increase.
  • Typical crosslinkers are e.g. Isocyanates, epoxides, acid anhydrides or in the case of polymers having free-radically polymerizable ethylenically unsaturated groups, also ethylenically unsaturated monomers such as styrene.
  • the polymers are useful as a component of thermoplastic compositions.
  • the polymers e.g. Polyesters or polyurethanes preferably have a sufficiently high molecular weight to have thermoplastic properties.
  • Thermoplastic compositions are generally used to make molded articles using conventional methods such as injection molding, extrusion or blow molding.
  • the polymers are suitable as a constituent of coating compositions, sealants or adhesives.
  • the coating compositions, sealants or adhesives preferably contain the polymers according to the invention as binders. They may contain other binders and other additives, e.g. Antioxidants, stabilizers, dyes, pigments, flow control agents, thickeners or wetting aids.
  • the coating compositions, sealants or adhesives may be aqueous or solvent-containing compositions. Preference is given to aqueous compositions.
  • Such compositions preferably contain the binders according to the invention in the form of solutions or dispersions in water or organic solvents or mixtures thereof. If necessary, the polymers contain additional functional groups. which cause solubility or dispersibility in water or organic solvents, preferably in water (see above).
  • the coating compositions, sealants or adhesives may also be masses which are substantially free of water or organic solvents (so-called 100% systems).
  • Such compositions generally contain less than 10 parts by weight of water or other organic solvents (boiling point less than 150 0 C, at 1 bar), per 100 parts by weight of the masses. More preferably, they contain less than 2 parts by weight, most preferably less than 1 part by weight, or less than 0.5 parts by weight of water or other organic solvents (boiling point less than 150 0 C, at 1 bar), to 100 parts by weight of the masses.
  • These may be masses which are still free-flowing at room temperature or masses containing e.g. present as a powder and are processed only at elevated temperatures.
  • compositions in particular coating compositions, may be radiation-curable or used as radiation-curable compositions or coating compositions, which are referred to as thermosets.
  • they preferably contain a radiation-curable polymer according to the invention, in particular a radiation-curable polyester (see above).
  • Radiation curing can be performed with high energy radiation, e.g. Electron radiation or UV light; when using UV light, a photoinitiator may preferably be added to the polymers.
  • a preferred use in the context of the present invention is the use of the polymers according to the invention as or in powder coatings.
  • polyesters are used as powder coating, which are crosslinkable.
  • the powder coating is prepared by mixing and melting the polyester, crosslinking agent and other additives, e.g. Pigments and dispersants produced at high temperatures. The mixture can be powdered by subsequent extrusion and processing of the extrudate.
  • the powder coating may be in the usual manner, e.g. also electrostatically, on the desired substrates; e.g. be coated with metal, plastic or wood surfaces.
  • the polymers according to the invention When used in coating compositions, sealants and adhesives, the polymers according to the invention have good mechanical properties; in particular the coating compositions, e.g. Powder Coatings; have a high impact resistance, good elasticity and a good shine.
  • the coating compositions e.g. Powder Coatings
  • ADS adipic acid
  • D polydispersity index (Mw / Mn)
  • M n number average molecular weight in [g / mol]
  • M w weight average molecular weight in [g / mol]
  • nFA non-volatile components
  • NPG neopentyl glycol
  • the acid number of the polyester is determined according to the DIN standard method 53169.
  • the determination of the melt viscosity ⁇ i of the polyester is carried out with a cone and plate viscometer at 160 0 C in the oscillatory mode and at an angular velocity of 0.1 rad / s.
  • the determination of the solution viscosity r 2 of the polyesters is carried out with a cone-plate viscometer at room temperature in a rotary mode.
  • the solutions consist of 70% polyester and 30% solvent (mixture SoIvesso 100 TM / Solvenon PM TM 5/1).
  • the Tg of the polyester is determined by DSC according to ASTM D3418.
  • the reaction mixture is gradually heated to 230 0 C within 3 to 5 h with stirring and nitrogen flow, and stirred at 230 0 C until the oligomer has an SZ of 10 to 15 mg KOH / g.
  • the SZ of the oligomer is 10 mg KOH / g.
  • Step II Preparation of COOH Group-Containing Polymer P1
  • the oligomer synthesized above is cooled to 180 ° C before adding 187.7 g of IPS (1.13 mol).
  • the temperature is raised to 230 ° C, and it is further condensed under these conditions until the polymer has an SZ of 50 ⁇ 2 mg KOH / g.
  • the water resulting from the polymerization can be drawn at the end of the reaction by a slight vacuum to reach the desired SZ. This gives a branched COOH-containing powder polyester P1 whose SZ is 49 mg KOH / g.
  • P1 has a glass transition temperature T 9 of 74 ° C and a melt viscosity ⁇ i of 41, 9 Pa * s at 160 0 C.
  • Polyester P2 to P4
  • the polymers P2 and P3 according to the invention have a significantly higher glass transition temperature than the corresponding comparative polymer P4, which represents an advantage for powder coating.
  • Step I Preparation of OH group-containing oligomer 181, 7 g DMCP (1.40 mol), 327.0 g NPG (3.14 mol), 435.0 g IPS (2.6 mol), and 0.6 Catalyst DBZO are placed in a 2L four-necked flask equipped with thermometer, inert gas inlet, stirrer and reflux condenser. By passing a nitrogen stream and under reflux, the reactant mixture is heated to 160 0 C quickly. Water is distilled off continuously. Subsequently, the reaction mixture is gradually heated to 220 0 C within 3 to 5 h with stirring and nitrogen flow, and stirred at 220 0 C until the reaction mixture has an SZ of 10 to 15 mg KOH / g. The SZ of the oligomer is 11 mg KOH / g.
  • the reference binder (REF) used is the polyester resin Uralac® P-862 (T 9 .70 0 C, SZ 35 mg KOH / g) from DSM Resins BV.
  • the powder coatings PL1, PL4 and PLR 570.0 g of powder polyester P1, P4 or REF are each treated with 30.0 g of commercial primer Primid® XL-552 (hydroxylalkylamide from EMS), 300.0 g of Kronos® 2160 titanium dioxide pigment (Kronos Co.), 9.0 g of leveling agent Resiflow® PV5 (Worlee Chemie GmbH) and 2.5 g of benzoin are mixed in a laboratory universal mixer (MIT MIT Mischtechnik GmbH), melted and then dried in a twin-screw extruder ( MP 19, Fa. APV) at 80 - 100 0 C extruded. The resulting extrudate is then roughly crushed, ground and sieved.
  • the powder coatings PL1, PL4 and PLR thus obtained are subject
  • the powder coatings are applied to Gradientenofenbleche and in a gradient oven (BYK-Gardner GmbH) 10 min. baked at 160 0 C.
  • the cured coatings are examined for their visual properties (yellowing). The yellow value is determined with the help of the colorimeter spectrocolor (from Hach Lange GmbH).
  • the powder coatings are applied electrostatically to steel test panels (Q-Panel R-36) and at 160 0 C for 10 min. long burned. In this case, layer thicknesses of 60 microns to 80 microns are desired.
  • the resulting coatings are subjected to the following tests:
  • the DMCP paint system has a very low tendency to yellowing, which is a great advantage compared to the reference (PLR) which contains phosphite additives against yellowing (PL1 not according to the invention).
  • the high-solids paints 1K-PL5 and 1K-PL6 according to the invention have very good mechanical properties and high hydrolysis resistance.

Abstract

Polymer, erhältlich durch Polykondensation oder Polyadduktbildung von monomeren Verbindungen, dadurch gekennzeichnet, dass als monomere Verbindung 1,1-Dimethylolcycloalkane der Formel (I) oder 1,1-Dimethylolcycloalkene der Formel (Ia) oder dessen alkoxylierte Derivate mitverwendet wird.

Description

Verwendung von 1 ,1-Dimethylolcycloalkanen oder 1 ,1-Dimethylolcycloalkenen zur Herstellung von Polymeren
Beschreibung
Die Erfindung betrifft ein Polymer, welches erhältlich ist durch Polykondensation oder Polyadduktbildung von monomeren Verbindungen, wobei als monomere Verbindung
1 ,1-Dimethylolcycloalkane der Formel I oder 1 ,1-Dimethylolcycloalkene der Formel Ia
oder die alkoxylierten Derivate der Verbindungen der Formel I und Ia mitverwendet wird.
Diole werden für die Herstellung von Polymeren, z.B. Polyestern oder Polyurethanen, benötigt. In EP-A 562 578 wird z. B. die Verwendung verschiedener Cyclohexandiole wie 1 ,4-Cyclohexandimethanol oder 1 ,4-Cyclohexandiethanol zur Herstellung von Polyestern beschrieben. In Ullmanns Encyclopedia of Industrial Chemistry „Alcohols, Po- lyhydric" von Peter Werle et al. Seite 4-6 wird anstatt 1 ,4-Cyclohexandimethanol der Einsatz von Neopentylglycol beschrieben.
Die Verwendung von 2-Pentyl-2-propyl-1 ,3 propandiol für die Herstellung von Polyestern ist aus JP HEI 03-161452 bekannt.
In DE-A 922648 wird ein Verfahren zur Herstellung von Cycloalkan-1 ,1-dicarbonsäuren beschrieben, wobei während der Herstellung zwischenzeitlich auch die 1 ,1- Dimethylolcycloalkane entstehen. Die Verwendung dieser 1 ,1-Dimethylolcycloalkane zur Herstellung von Polymeren wird nicht offenbart.
DE-A 1468065 beschreibt ein Verfahren zur Herstellung eines hauptsächlich Mono- oxymethylcyclododecan enthaltenden Gemisches von Cyclododecanderivaten. Dabei wird vom Cyclododecatrien ausgegangen, das durch Zugabe von Kohlenmonoxid und Wasserstoff einer Hydroformylierung unterzogen wird. Anschließend wird der entstan- dene Aldehyd einer weiteren Hydrierung zum entsprechenden Alkohol unterzogen. Nach dieser Herstellungsmethode wird jedoch pro Doppelbindung nur eine Methy- lolgruppe eingeführt. Eine Herstellung eines Dimethylolderivats mit beiden Methy- lolgruppen am selben C-Atom wird nicht beschrieben. 1 ,1-Dimethylolcyclodecan sowie seine Verwendung zur Herstellung von Polymeren wird nicht beschrieben. US-A 2,993,912 beschreibt die Herstellung von 2,2-bis(Hydroxymethyl)furfural aus Formaldehyd und Furfural, wobei das Diol in Gegenwart einer Base wie NaOH hergestellt wird. Die Verwendung eines solchen 1 ,1-Diols zur Herstellung von Polymeren wird nicht beschrieben.
Grundsätzlich ist gewünscht, die anwendungstechnischen Eigenschaften von Polymeren bei ihren unterschiedlichen Verwendungen zu verbessern.
Bei einer Verwendung der Polymeren als Bindemittel in Beschichtungsmassen, Kleb- Stoffen oder Dichtungsmassen ist insbesondere die Viskosität von Bedeutung sei es als Schmelzeviskosität (100% Systeme) oder als Lösungsviskosität (Polymerlösungen). Die hergestellten Beschichtungen sollen für Lackanwendungen gute mechanische Eigenschaften, wie Schlagzähigkeit und Elastizität, eine hohe Kratz- und Stoßfestigkeit, gute Beständigkeiten gegen Wasser, Lösemittel, Fett und Chemikalien und Umwelteinflüsse haben, sowie einen hohen Glanz aufweisen. Des Weitern sollen die Polymeren eine hohe Wetterstabilität und eine geringere Neigung zum Vergilben aufweisen.
Aufgabe der vorliegenden Erfindung war, derartige Polymere zur Verfügung zu stellen.
Diese Aufgabe wird gelöst durch ein Polymer, erhältlich durch Polykondensation oder Polyadduktbildung von monomeren Verbindungen, dadurch gekennzeichnet, dass als monomere Verbindung
1 ,1-Dimethylolcycloalkane der Formel I oder 1 ,1 ,-Dimethylolcycloalkene der Formel Ia
oder die alkoxylierten Derivate der Verbindungen der Formel I und Ia eingesetzt wer- den, wobei n= 1 ,2,4 - 9 ist,
X = -CH2- oder -O- ist und
R Wasserstoff oder eine lineare oder verzweigte Alkylgruppe mit 1 bis 10 C-Atomen und für die Verbindungen der Formel Ia, wenn n > 2 ist auch mehr als eine Doppelbin- düng vorhanden sein kann, darstellt.
Vorteilhaft ist das erfindungsgemäße Polymer dadurch gekennzeichnet, dass als monomere Verbindung oder dessen alkoxylierte Derivate der Formel I oder der Formel Ia solche eingesetzt werden, bei denen n = 2, 5 oder 9, X = -CH2- ist und R ausgewählt ist aus der Gruppe von Wasserstoff, Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, iso-Butyl und n-Pentyl.
Vorteilhaft ist das erfindungsgemäße Polymer dadurch gekennzeichnet, dass als monomere Verbindung oder dessen alkoxylierte Derivate der Formel I oder der Formel Ia solche eingesetzt werden, bei denen n = 2, X = -CH2- und R = Wasserstoff ist.
Vorteilhaft ist das erfindungsgemäße Polymer dadurch gekennzeichnet, dass die Ver- bindungen der Formel I oder der Formel Ia durch Umsetzung von Aldehyden der Formel Il oder der Formel IIa
wobei n, X und R die vorhergehende Bedeutung haben, in einer Cannizzaro-Reaktion mit Formaldehyd erhältlich sind.
Vorteilhaft ist das erfindungsgemäße Polymer dadurch gekennzeichnet, dass es sich um ein Polyester handelt.
Vorteilhaft ist das erfindungsgemäße Polymer dadurch gekennzeichnet, dass es sich um ein Polycarbonatdiol (erhältlich durch Umsetzung von Dialkylcarbonaten oder cycli- schen Carbonaten mit Diolen unter Abspaltung von Alkohol) handelt.
Vorteilhaft ist das erfindungsgemäße Polymer dadurch gekennzeichnet, dass es sich um ein Polyurethan handelt.
Vorteilhaft ist das erfindungsgemäße Polymer dadurch gekennzeichnet, dass es um ein Polyaddukt handelt, welches durch ringöffnende Polymerisation von Lactonen oder Lactamen erhältlich ist
Ein weiterer Gegenstand der Erfindung ist die Verwendung des erfindungsgemäßen Polymers zur Herstellung einer thermoplastischen Zusammensetzung.
Ein weiterer Gegenstand der Erfindung ist eine thermoplastische Zusammensetzungen, enthaltend ein erfindungsgemäßes Polymer und/oder Wiederholungseinheiten eines erfindungsgemäßen Polymers. Ein weiterer Gegenstand der Erfindung ist die Verwendung der erfindungsgemäßen thermoplastischen Zusammensetzungen zur Herstellung von Formkörpern.
Ein weiterer Gegenstand der Erfindung ist die Verwendung des erfindungsgemäßen Polymers zur Herstellung von Beschichtungsmassen, Dichtungsmassen oder Klebstoffen.
Ein weiterer Gegenstand der Erfindung sind Beschichtungsmassen, Dichtungsmassen oder Klebstoffe, enthaltend Wiederholungseinheiten eines erfindungsgemäßen PoIy- mers.
Vorteilhaft sind die erfindungsgemäßen Beschichtungsmassen, Dichtungsmassen oder Klebstoffe, dadurch gekennzeichnet, dass es sich um wässrige Massen handelt.
Ein weiterer Gegenstand der Erfindung ist die Verwendung des erfindungsgemäßen Polymers zur Herstellung von Pulverlacken.
Ein weiterer Gegenstand der Erfindung sind Pulverlack, enthaltend Wiederholungseinheiten eines erfindungsgemäßen Polymers.
Ein weiterer Gegenstand der Erfindung ist die Verwendung des erfindungsgemäßen Polymers zur Herstellung von strahlungshärtbaren Beschichtungsmassen.
Ein weiterer Gegenstand der Erfindung sind strahlungshärtbare Beschichtungsmassen, enthaltend Wiederholungseinheiten eines erfindungsgemäßen Polymers.
Ein weiterer Gegenstand der Erfindung ist 1 ,1-Dimethylolcyclododecan.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung von 1 ,1- Dimethylolcyclododecan, wobei Cyclododecen mit Wasserstoff und Kohlenmonoxid einer Hydroformylierung unterzogen wird, der entstandene Aldehyd mittels Formaldehyd zum 1 ,1 -Dimethylolcyclododecan umgesetzt wird.
Ein weiterer Gegenstand der Erfindung ist eine Mischung enthaltend 1 ,1-Dimethylol- cyclooct-3-en, 1 ,1-Dimethylolcyclooct-2-en und 1 ,1-Dimethylolocycloct-4-en.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung der Mischung enthaltend 1 ,1-Dimethylolcyclooct-3-en, 1 ,1-Dimethylolcylooct-2-en und 1 ,1-Dimethyl- olcyclooct-4-en, wobei 1 ,5-Cyclooctadien mit Wasserstoff und Kohlenmonoxid einer Hydroformylierung unterzogen wird, die entstandenen Aldehyde mittels Formaldehyd zu der erfindungsgemäßen Mischung umgesetzt wird. Zur Herstellung der erfindungsgemäßen Polymere werden Verbindungen der Formel I oder der Formel Ia oder die alkoxylierte Derivate der Formel I oder der Formel Ia ein- gesetzt, bei denen n eine ganze natürliche Zahl ausgewählt aus der Gruppe von 1 ,2, 4 bis 9 ist. Besonders bevorzugt ist n = 2, 5 oder 9, ganz besonders bevorzugt ist n = 2. Der Rest R ist ausgewählt aus der Gruppe von Wasserstoff oder einer linearen oder verzweigten Alkylgruppe mit 1 bis 10 C-Atomen, besonders bevorzugt ist R ausgewählt aus der Gruppe von Wasserstoff, Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, iso-Butyl und n-Pentyl, ganz besonders bevorzugt ist R Wasserstoff. In dem Zyklus der Verbindungen der Formel I oder der Formel Ia steht X entweder für eine CH2- Gruppe oder für Sauerstoff. Besonders bevorzugt stellt X eine CH2-Gruppe dar. Besonders bevorzugt sind Verbindungen der Formel I oder der Formel Ia bei denen n = 2, 5 oder 9, R Wasserstoff oder Methyl ist und X eine CH2-Gruppe darstellt. Ganz besonders bevorzugt ist 1 ,1-Dimethylolcyclopentan als Verbindungen der Formel I und Dimethylolcyclopenten der Formel Ia.
Die alkoxylierten Derivate der Verbindung der allgemeinen Formel I oder der Formel Ia sind Produkte der Umsetzung mit einem oder einem Gemisch aus Alkylenoxiden. Bei- spiele für Alkylenoxide sind Ethylen-, Propylen-, n-Butylen-, iso-Butylen-, Styrol- oder Cyclohexenoxid. Insbesondere sind die vorstehenden Diole ethoxy- und propoxyliert. Die Alkoxylierungsprodukte sind in bekannter Weise durch Umsetzung der vorstehenden Alkohole mit Alkylenoxiden, insbesondere Ethylen- oder Propylenoxid, erhältlich. Vorzugsweise beträgt der Alkoxylierungsgrad je Hydroxylgruppe 0 bis 20, insbesonde- re 0 bis 10, d.h. 1 mol Hydroxylgruppe kann vorzugsweise mit bis zu 20 mol, insbesondere 10 mol Alkylenoxiden alkoxyliert sein.
In einer bevorzugten Ausführungsform sind die Verbindungen der Formel I oder der Formel Ia nicht alkoxyliert.
Die Verbindungen der Formel I oder der Formel Ia werden durch eine Cannizzaro- Reaktion der entsprechenden Aldehyde der Formel Il oder der Formel IIa mit Formaldehyd erhalten. Das Verfahren zur Herstellung von 1 ,1-Dimethylolcycloalkane ist bereits bekannt und in US 2993912 oder DE 922648 beschrieben. Weiterhin können Ver- bindungen der Formal I oder Formal Ia durch Aldolreaktion der entsprechenden Aldehyde der Formel Il oder der Formel IIa mit Formaldehyd gefolgt einer Hydrierung erhalten werden. Die Aldolreaktion ist beispielsweise in WO 01/51438, WO 97/17313 oder WO 98/29374 beschrieben. Die Hydrierung kann analog der Offenbarung von EP-A 44412 oder EP-A 44444 durchgeführt werden. Zu den Polymeren
Die Polymere sind erhältlich durch Polykondensation oder Polyadduktbildung von monomeren Verbindungen unter Mitverwendung einer oder mehrerer Verbindungen der Formel I oder der Formel Ia; die Polymeren können, wenn gewünscht, durch andere oder weitere Umsetzungen chemisch modifiziert, z.B. funktionalisiert oder vernetzt werden.
Bei einer Polykondensation von monomeren Verbindungen kommt es zu einer Abspal- tung von Wasser oder Alkohol, bei einer Polyadduktbildung kommt es zu keiner Abspaltung.
Bevorzugte Polykondensate sind Polyester, welche durch Umsetzung von Di- oder Polyolen mit Di- oder Polycarbonsäuren, welche auch in Form reaktiver Derivate, wie Anhydride oder Ester eingesetzt werden können, erhältlich sind.
Unter dem Begriff Polyester soll im Folgenden ein Polymer verstanden werden, welches zu mehr als 50 Gew.-%, besonders bevorzugt zu mehr als 70 Gew.-% und insbesondere zu mehr als 90 Gew.-% aus Aufbaukomponenten, ausgewählt aus Diolen, Polyolen, Dicarbonsäuren und Polycarbonsäuren, besteht.
Genannt seien auch Polycarbonatdiole, welche durch Umsetzung von Dialkylcarbona- ten oder cyclischen Carbonaten mit Diolen unter Abspaltung von Alkoholen erhältlich sind.
Als Polyaddukt sei insbesondere Polyurethan genannt. Insbesondere können Polyurethane auch Wiederholungseinheiten von erfindungsgemäßen Polymeren enthalten.
In Betracht kommen z.B. auch Polyaddukte, die durch ringöffnende Polymerisation von Lactonen oder Lactamen erhältlich sind.
Unter dem Begriff Polyurethan soll im Folgenden ein Polymer verstanden werden, welches zu mehr als 50 Gew.-%, besonders bevorzugt zu mehr als 70 Gew.-% uns insbesondere zu mehr als 90 Gew.-% aus Aufbaukomponenten, ausgewählt aus Diisocya- naten, Polyisocyanaten, Diolen und Polyolen, besteht.
All diesen Polymeren ist gemeinsam, dass sie im Wesentlichen aus Diolen und mit diesen Diolen reaktiven Verbindungen, wie Di- bzw. Polycarbonsäuren (Polyester) oder Di- bzw. Polyisocyanaten (Polyurethane) aufgebaut sind.
Bevorzugte Polymere sind Polyester und Polyurethane, besonders bevorzugt sind Polyester. Die erfindungsgemäßen Polymere haben vorzugsweise den nachstehenden Gehalt der Monomerbausteine der Verbindungen der Formel I oder der Formel Ia oder dessen alkoxylierten Derivaten. Die nachstehenden Gewichtsangaben zum Gehalt der Verbindungen der Formel I oder der Formel Ia oder dessen alkoxylierten Derivaten im PoIy- mer beziehen sich dabei auf die Einheiten des Polymeren, die sich von Verbindungen der Formel I oder der Formel Ia oder deren alkoxylierten Verbindungen ableiten. Bei Polyaddukten entspricht das Gewicht dieser Einheiten unverändert der Verbindung der Formel I oder der Formel Ia oder deren alkoxylierten Derivaten, bei Polykondensaten ist das Gewicht dieser Einheiten um die Wasserstoffatome der Hydroxylgruppen ver- mindert.
Bevorzugte Polymere bestehen mindestens zu 0,5 besonders bevorzugt mindestens zu 2, ganz besonders bevorzugt zu mindestens 5 und insbesondere zu mindestens 10 Gew.- % und in einer besonderen Ausführungsform zu mindestens 20 Gew.-% aus Verbindungen der Formel I oder der Formel Ia oder deren alkoxylierten Derivaten. Da die Mitverwendung von anderen, mit den Diolen reaktiven Verbindungen zwingend ist, bestehen die Polymeren im Allgemeinen zu nicht mehr als 90 Gew.-% insbesondere zu nicht mehr als 60 Gew.-% bzw. zu nicht mehr als 50 Gew.-% aus den Verbindungen der Formel I oder der Formel Ia oder deren alkoxylierten Derivaten. Neben den Verbindungen der Formel I oder der Formel Ia oder deren alkoxylierten Derivaten können die Polymeren auch andere Diole oder Polyole als Aufbaukomponenten enthalten. In einer bevorzugten Ausführungsform handelt es sich bei mindestens 10 Gew.-%, besonders bevorzugt bei mindestens 25 Gew.-% und ganz besonders bevorzugt bei mindestens 50 Gew.-% der Diole und Polyole, aus denen die Polymeren bestehen, um die Verbindungen der Formel I oder der Formel Ia oder deren alkoxylierten Derivaten.
Insbesondere kann es sich bei mindestens 70 Gew.-% bzw. mindestens 90 Gew.-% der Diole und Polyole, aus denen die Polymeren bestehen, um die Verbindungen der Formel I oder der Formel Ia oder deren alkoxylierten Derivaten handeln.
In einer besonderen Ausführungsform kann es sich bei 100 Gew.-% aller Diole und Polyole, aus denen die Polymeren bestehen, um eine einzelne Verbindung der Formel I oder der Formel Ia oder um eine Mischung von Verbindungen der Formel I oder der Formel Ia oder deren alkoxylierten Derivaten handeln.
Zu weiteren Bestandteilen der Polyester
Polyester können neben den Verbindungen der Formel I oder der Formel Ia oder deren alkoxylierten Derivaten weitere Diole oder Polyole als Aufbaukomponenten enthalten. Als weitere Diole seien z.B. Ethylenglykol, Propylenglykol und deren höher kondensierte Vertreter, z.B. wie Diethylenglykol, Triethylenglykol, Dipropylenglykol, Tripropy- lenglykol etc., 2-Methyl-1 ,3-propandiol, Butandiol, Pentandiol, Hexandiol, Neopen- tylglykol, alkoxylierte phenolische Verbindungen, wie ethoxylierte bzw. propoxylierte Bisphenole, Cyclohexandimethanol genannt. Als weitere geeignete Polyole sind trifunk- tionelle und höherfunktionelle Alkohole, wie Glycerin, Trimethylolpropan, Butantriol, Trimethylolethan, Pentaerythrit, Ditrimethylolpropan, Dipentaerythrit, Sorbit, Mannit genannt.
Bevorzugte Mischungen der Verbindungen der Formel I oder der Formel Ia mit einem Diol und einem Triol sind Mischungen der unsubstituierten und als X CH2-Gruppe tragenden 5-, 8-, 10- und 12-Ringe mit Neopentylglycol und Trimethylolpropan.
Die vorstehenden Diole oder Polyole können alkoxyliert, insbesondere ethoxy- und propoxyliert sein. Die Alkoxylierungsprodukte sind in bekannter Weise durch Umsetzung der vorstehenden Alkohole mit Alkylenoxiden, insbesondere Ethylen- oder Propy- lenoxid, erhältlich. Vorzugsweise beträgt der Alkoxylierungsgrad je Hydroxylgruppe 0 bis 20, d.h. 1 mol Hydroxylgruppe kann vorzugsweise mit bis zu 20 mol Alkylenoxiden alkoxyliert sein.
Die Polyester enthalten weiterhin Dicarbonsäuren oder Polycarbonsäuren als Aufbaukomponenten. Dicarbonsäuren oder Polycarbonsäuren können bei der Herstellung der Polyester auch in Form ihrer reaktiven Derivate, z.B. als Anhydride oder Ester eingesetzt werden. Geeignete Dicarbonsäuren sind Bernsteinsäure, Glutarsäure, Adipinsäu- re, Sebacinsäure, Isophthalsäure, Terephthalsäure, deren Isomere und Hydrierungsprodukte, wie Tetrahydrophthalsäure. In Betracht kommen auch Maleinsäure und Fu- marsäure für ungesättigte Polyester.
Polyester können auch Monoalkohole oder Monocarbonsäuren als Bestandteil enthalten; durch Mitverwendung derartiger Verbindungen kann das Molekulargewicht einge- stellt, bzw. begrenzt werden.
Um besondere Eigenschaften zu erreichen, können die Polyester besondere funktionelle Gruppen enthalten. Wasserlösliche oder wasserdispergierbare Polyester enthalten die notwendige Menge an hydrophilen Gruppen, z.B. Carboxylgruppen oder Car- boxylatgruppen um eine Wasserlöslichkeit oder Wasserdispergierbarkeit zu erreichen. Vernetzbare Polyester, z.B. für Pulverlacke, enthalten funktionelle Gruppen, welche mit dem verwendeten Vernetzungsmittel eine Vernetzungsreaktion eingehen. Es kann sich dabei ebenfalls um Carbonsäuregruppen handeln, wenn eine Vernetzung mit Hydroxylgruppen enthaltenden Verbindungen, z.B. Hydroxyalkylamiden beabsichtigt ist. Bei den funktionellen Gruppen kann es sich auch um ethylenisch ungesättigte Gruppen, z.B. durch Modifizierung des Polyesters mit ungesättigten Dicarbonsäuren (Maleinsäu- re) oder Umsetzung mit (Meth)acrylsäure, handeln. Derartige Polyester sind thermisch oder chemisch vernetzbar oder strahlungshärtbar.
Ungesättigte Polyester können auch mit einfach oder auch mehrfach ethylenisch unge- sättigten, radikalisch polymerisierbaren Verbindungen, wie Styrol, CrCi0 Alkylacryla- ten, Dialkylacrylaten, z. B. das Diacrylat von Ethandiol oder Butandiol copolymerisiert werden. Der ungesättigte Polyester kann dazu im Gemisch mit den ethylenisch ungesättigten Monomeren verwendet werden, wie z. B. in WO 00/23495 und EP 1 131372 beschrieben ist. Die vorstehenden ethylenisch ungesättigten Verbindungen dienen dabei gleichzeitig als Lösemittel (Reaktivverdünner), so dass das Gemisch vorzugsweise als Lösung der Polyester in diesen Verbindungen vorliegt. Das Gemisch kann z. B. als Beschichtungs - oder Imprägnierungsmittel, insbesondere auch zur Herstellung von Laminaten verwendet werden. Die Härtung kann thermisch oder photochemisch, in beiden Fällen gegebenenfalls auch unter Zusatz eines Initiators erfolgen. Solche Ver- bindungen, die sich chemisch, thermisch oder durch UV-Bestrahlung aushärten lassen sind spezielle Thermoplasten, die auch Thermoset genannt werden.
Insbesondere eignen sich dann ungesättigte Verbindungen der Formel I oder der Formel Ia für UPR (unsaturated polyester resins)
Zu weiteren Bestandteilen der Polyurethane
Polyurethane enthalten als wesentliche Aufbaukomponente Di- oder Polyisocyanate.
Insbesondere zu nennen sind Diisocyanate Y(NCO)2, wobei Y für einen aliphatischen Kohlenwasserstoffrest mit 4 bis 15 Kohlenstoffatomen, einen cycloaliphatischen oder aromatischen Kohlenwasserstoffrest mit 6 bis 15 Kohlenstoffatomen oder einen ara- liphatischen Kohlenwasserstoffrest mit 7 bis 15 Kohlenstoffatomen steht. Beispiele derartiger Diisocyanate sind Tetramethylendiisocyanat, Hexamethylendiisocyanat, Do- decamethylendiisocyanat, 1 ,4-Diisocyanatocyclohexan, 1-lsocyanato-3,5,5-trimethyl-5- isocyanatomethylcyclohexan (IPDI), 2,2-Bis-(4-isocyanatocyclohexyl)-propan, Tri- methylhexandiisocyanat, 1 ,4-Diisocyanatobenzol, 2,4-Diisocyanatotoluol, 2,6-Diiso- cyanatotoluol, 4,4'-Diisocyanato-diphenylmethan, 2,4'-Diisocyanato-diphenylmethan, p-Xylylendiisocyanat, Tetramethylxylylendiisocyanat (TMXDI), die Isomeren des Bis-(4- isocyanatocyclohexyl)methans (HMDI) wie das trans/trans-, das cis/cis- und das cis/trans-lsomere sowie aus diesen Verbindungen bestehende Gemische.
Derartige Diisocyanate sind im Handel erhältlich.
Als Gemische dieser Isocyanate sind besonders die Mischungen der jeweiligen Strukturisomeren von Diisocyanatotoluol und Diisocyanatodiphenylmethan von Bedeutung, insbesondere ist die Mischung aus 80 mol-% 2,4-Diisocyanatotoluol und 20 mol-% 2,6- Diisocyanatotoluol geeignet. Weiterhin sind die Mischungen von aromatischen Isocya- naten wie 2,4-Diisocyanatotoluol und/oder 2, 6-Diisocyanatotoluol mit aliphatischen oder cycloaliphatischen Isocyanaten wie Hexamethylendiisocyanat oder IPDI besonders vorteilhaft, wobei das bevorzugte Mischungsverhältnis der aliphatischen zu aro- matischen Isocyanate 4 : 1 bis 1 : 4 beträgt.
Als Diole bzw. Polyole, welche mit den Di- oder Polyisocyanaten umgesetzt werden, werden erfindungsgemäß Verbindungen der allgemeinen Formel I oder der Formel Ia als reine Stoffe oder als Gemische von Verbindungen der allgemeinen Formel I oder der Formel Ia oder im Gemisch mit anderen Di- oder Polyolen verwendet. Insbesondere können als Diole bzw. Polyole auch erfindungsgemäße Polymere eingesetzt werden.
Bei Polyurethanen werden als Diole bzw. Polyole vorzugsweise auch Polyesterdi- bzw. -polyole eingesetzt. Im folgendem allgemein als Polyesterole bezeichnet. Derartige Polyesterole werden vorab durch Umsetzung von Di- oder Polyolen mit Di- oder PoIy- carbonsäuren erhalten (siehe obige Beschreibung der Polyester). Die Verbindungen der allgemeinen Formel I oder der Formel Ia oder Gemische von Verbindungen der allgemeinen Formel I oder der Formel Ia können in den Polyurethanen in Form derartiger Polyesterole enthalten sein. Als weitere Diole, Polyole kommen die oben genanten in Betracht, sei es als Aufbaukomponenten welche direkt mit den Di- oder Polyisocyanaten umgesetzt werden, sei es als Bestandteil der Polyesterole. Als Dicarbonsäuren oder Polycarbonsäuren für die Polyesterole kommen ebenfalls die oben genannten in Betracht.
Die Polyurethane können auch Monoalkohole oder Monoisocyanate als Bestandteile enthalten; durch Mitverwendung derartiger Verbindungen kann das Molekulargewicht eingestellt, bzw. begrenzt werden.
Um besondere Eigenschaften zu erreichen, können die Polyurethane besondere funk- tionelle Gruppen enthalten. Wasserlösliche oder wasserdispergierbare Polyurethane enthalten die notwendige Menge an hydrophilen Gruppen, z.B. Carboxylgruppen oder Carboxylatgruppen um eine Wasserlöslichkeit oder Wasserdispergierbarkeit zu erreichen. Als geeignete Aufbaukomponente sei z.B. Dimethylolpropionsäure genannt. Vernetzbare Polyurethane, enthalten funktionelle Gruppen, welche mit dem verwendeten Vernetzungsmittel eine Vernetzungsreaktion eingehen. Die Polyurethane können neben Urethangruppen insbesondere auch andere funktionelle Gruppen, z.B. Harnstoffgruppen enthalten, welche durch Umsetzung der Di- oder Polyisocyanate mit Amino- verbindungen, entstehen.
Die Polymere können, wenn gewünscht, bei oder insbesondere auch zu einem späte- ren Zeitpunkt, z.B. bei der Verwendung, durch andere oder weitere Umsetzungen chemisch modifiziert, z.B. funktionalisiert oder vernetzt werden. Insbesondere können die Polymeren vernetzende Gruppen enthalten, die, sobald die notwendigen Bedingungen vorliegen, eine Vernetzungsreaktion eingehen und somit als Thermoset wirken. Die Polymeren können insbesondere auch im Gemisch mit Vernetzern verwendet werden, die zum gewünschten Zeitpunkt unter den notwendigen Be- dingungen (insbesondere bei erhöhter Temperatur) eine Vernetzungsreaktion mit dem Polymer eingehen.
Nach der Reaktivität der Vernetzer unterscheidet man zwischen einkomponentigen (1 K-) und zweikomponentigen (2K-) Systemen. Bei 2K-systemen wird der Vernetzer erst kurz vor der späteren Verwendung zugegeben, bei 1 K-Systemen kann der Vernetzer frühzeitig zum System gegeben werden (latenter Vernetzer), die Vernetzung tritt erst bei den später eingestellten Bedingungen auf, z.B. bei der Entfernung von Lösemittel und/oder Temperaturerhöhung.
Übliche Vernetzer sind z.B. Isocyanate, Epoxide, Säureanhydride oder bei Polymeren mit radikalisch polymersierbaren ethylenisch ungesättigten Gruppen, auch ethylenisch ungesättigte Monomere wie Styrol.
Zur Verwendung der Polymere
Die Polymeren eignen sich als Bestandteil von thermoplastischen Zusammensetzungen. Die Polymeren, z.B. Polyester oder Polyurethane haben dazu vorzugsweise ein ausreichend hohes Molekulargewicht, damit sie thermoplastische Eigenschaften haben.
Thermoplastische Zusammensetzungen werden im Allgemeinen zur Herstellung von Formkörpern verwendet, wobei übliche Verfahren wie Spritzguss, Extrusion oder Blasformen zur Anwendung kommen können.
Insbesondere eignen sich die Polymeren als Bestandteil von Beschichtungsmassen, Dichtungsmassen oder Klebstoffen.
Die Beschichtungsmassen, Dichtungsmassen oder Klebstoffe enthalten die erfindungsgemäßen Polymere vorzugsweise als Bindemittel. Sie können weitere Bindemit- tel und sonstige Additive, z.B. Antioxidantien, Stabilisatoren, Farbstoffe, Pigmente, Verlaufshilfsmittel, Verdicker oder Benetzungshilfsmittel enthalten.
Bei den Beschichtungsmassen, Dichtungsmassen oder Klebstoffe kann es sich um wässrige oder lösemittelhaltige Massen handeln. Bevorzugt sind wässrige Massen. Derartige Massen enthalten die erfindungsgemäßen Bindemittel vorzugsweise in Form von Lösungen oder Dispersionen in Wasser oder organischen Lösemitteln oder deren Gemische. Soweit erforderlich, enthalten die Polymeren zusätzliche funktionelle Grup- pen, die eine Löslichkeit oder Dispergierbarkeit in Wasser oder organischen Lösemitteln, bevorzugt in Wasser, bewirken (siehe oben).
Bei den Beschichtungsmassen, Dichtungsmassen oder Klebstoffe kann es sich auch um Massen handeln, die weitgehend frei sind von Wasser oder organischen Lösemitteln (sogenannte 100 % Systeme). Derartige Massen enthalten im Allgemeinen weniger als 10 Gew.-Teile Wasser oder sonstige organische Lösemittel (Siedepunkt kleiner 1500C, bei 1 bar), auf 100 Gew.-Teile der Massen. Besonders bevorzugt enthalten sie weniger als 2 Gew.-Teile, ganz besonders bevorzugt weniger als 1 Gew. Teil, bzw. weniger als 0,5 Gew.-Teile Wasser oder sonstige organische Lösemittel (Siedepunkt kleiner 1500C, bei 1 bar), auf 100 Gew.-Teile der Massen.
Es kann sich dabei Massen handeln, welche bei Raumtemperatur noch fließfähig sind oder um Massen, welche z.B. als Pulver vorliegen und erst bei erhöhten Temperaturen verarbeitet werden.
Die Massen, insbesondere Beschichtungsmassen, können strahlungshärtbar sein bzw. als strahlungshärtbare Massen bzw. Beschichtungsmassen verwendet werden, die als Thermoset bezeichnet werden. Vorzugsweise enthalten sie dazu ein strahlungshärtba- res erfindungsgemäßes Polymer, insbesondere einen strahlungshärtbaren Polyester (siehe oben). Die Strahlungshärtung kann mit energiereicher Strahlung, z.B. Elektronenstrahlung oder UV Licht erfolgen; bei Verwendung von UV Licht kann den Polymeren vorzugsweise ein Photoinitiator zugesetzt werden.
Eine bevorzugte Verwendung im Rahmen der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Polymere als oder in Pulverlacken. Vorzugsweise werden Polyester als Pulverlack verwendet, welche vernetzbar sind. In einer bevorzugten Ausführungsform wird der Pulverlack durch Mischen und Aufschmelzen des Polyesters, Vernetzers und weiterer Additive, z.B. Pigmente und Ver- laufsmittel bei hohen Temperaturen hergestellt. Das Gemisch kann durch anschließende Extrusion und entsprechende Verarbeitung des Extrudats in Pulverform gebracht werden.
Der Pulverlack kann in üblicher weise, z.B. auch elektrostatisch, auf die gewünschten Substrate; z.B. solche mit Metall-, Kunststoff- oder Holzoberflächen, beschichtet werden.
Die erfindungsgemäßen Polymere haben eine geringe Viskosität, sowohl eine geringe Schmelzviskosität (100 % Systeme) oder eine geringe Lösungsviskosität (Polymerlö- sungen). Des Weiteren weisen sie eine hohe Witterungsstabilität und eine sehr gute Hydrolysebeständigkeit auf. Die geringe Viskosität erlaubt eine einfache Handhabung, bewirkt gute Beschichtungseigenschaften und erlaubt höhere Feststoffanteile in Lö- sungen oder Dispersionen oder geringere Bindemittelanteile in pigmenthaltigen Massen. Die erfindungsgemäßen Polymere sind insbesondere auch sehr hydrolysebeständig.
Die erfindungsgemäßen Polymere bewirken bei ihrer Verwendung in Beschichtungs- massen, Dichtungsmassen und Klebstoffen gute mechanische Eigenschaften; insbesondere die Beschichtungsmassen, z.B. Pulverlacke; haben eine hohe Schlagzähigkeit, gute Elastizität und einen guten Glanz.
Beispiele
Abkürzungen
ADS: Adipinsäure D: Polydispersitätsindex (Mw/Mn)
DPG: Dipropylenglykol
DBZO: Dibutylzinnoxid
DMCD: 1 ,1-Dimethylolcyclododecan (Formel I, n = 9, X = CH2)
DMCO: 1 ,1-Dimethylolcyclooctan (Formel I, n = 5, X = CH2) DMCP: 1 ,1-Dimethylolcyclopentan (Formel I, n = 2, X = CH2)
DSC: Differential-Scanning-Calorimetry
GPC: Gelpermeationschromatographie
IPS: Isophthalsäure
Mn: zahlenmittleres Molekulargewicht in [g/mol] Mw: gewichtsmittleres Molekulargewicht in [g/mol] nFA: nicht-flüchtige Anteile
NPG: Neopentylglykol
OHZ: OH-Zahl
SZ: Säurezahl T9: Glasübergangstemperatur
TMP: Trimethylolpropan
TMSA: Trimellithsäureanhydrid
TPS: Terephthalsäure ηi: Schmelzviskosität η2: Lösungsviskosität Polymercharakterisierungsmethoden
Die Molekulargewichtsbestimmungen werden mit GPC durchgeführt. Stationäre Phase: hochvernetztes poröses Polystyrol-Divinylbenzol, kommerziell erhältlich als PL-GEL von Fa. Polymer Laboratories. Laufmittel: THF. Fluss: 0,3 ml/min. Kalibrierung mit Po- lyethylenglykol 28700 bis 194 Dalton der Fa. PSS.
Die Säurezahl der Polyester wird nach der DIN-Norm-Methode 53169 bestimmt. Die Bestimmung der Schmelzviskosität ηi der Polyester wird mit einem Kegel-Platte- Viskosimeter bei 1600C im Oszillationsmodus und mit einer Winkelgeschwindigkeit von 0,1 rad/s durchgeführt. Die Bestimmung der Lösungsviskosität r|2der Polyester wird mit einem Kegel-Platte-Viskosimeter bei Raumtemperatur im Rotationsmodus durchgeführt. Die Lösungen bestehen aus 70% Polyester und 30% Lösemittel (Mischung SoI- vesso 100™ / Solvenon PM™ 5/1). Die Tg der Polyester wird mittels DSC nach ASTM D3418 bestimmt.
HERSTELLUNG PULVERPOLYESTER MIT COOH-GRUPPEN
Polyester P1
Stufe I - Herstellung des OH-Gruppen-haltigen Oligomers
98 g DMCP (0,75 mol), 261 ,4 g NPG (2,51 mol), 14,6 g TMP (0,11 mol), 437,9 g TPS (2,64 mol), und 0,4 g Katalysator DBZO werden in einem mit Thermometer, Schutzgaseinleitung, Rührer und Rückflusskühler ausgerüsteten 2L-Vierhalskolben vorgelegt. Unter Durchleiten eines Stickstoffstromes und unter Rückfluss wird die Reaktantenmi- schung auf 180 0C zügig aufgeheizt. Wasser wird kontinuierlich abdestilliert. Anschließend wird das Reaktionsgemisch stufenweise auf 2300C innerhalb von 3 bis 5 h unter Rühren und Stickstofffluss aufgeheizt, und bei 2300C weitergerührt, bis das Oligomer eine SZ von 10 bis 15 mg KOH/g aufweist. Die SZ des Oligomers beträgt 10 mg KOH/g.
Stufe Il - Herstellung des COOH-Gruppen-haltigen Polymers P1 Das oben synthetisierte Oligomer wird auf 180°C abgekühlt, bevor 187,7 g IPS (1 ,13 mol) zugegeben werden. Die Temperatur wird auf 230°C erhöht, und es wird unter diesen Bedingungen weiterkondensiert, bis das Polymer eine SZ von 50 ± 2 mg KOH/g aufweist. Das aus der Polymerisation entstehende Wasser kann am Ende der Reaktion durch schwaches Vakuum gezogen werden, um die erwünschte SZ zu erreichen. Man erhält einen verzweigten COOH-Gruppen-haltigen Pulverpolyester P1 , dessen SZ 49 mg KOH/g beträgt. P1 weist eine Glasüberganstemperatur T9 von 74°C und eine Schmelzviskosität ηi von 41 ,9 Pa*s bei 160 0C auf. Die GPC-Analyse liefert fol- gende Werte: Mn= 2090 g/mol; D = 2,9 (siehe Tabelle 1). Polyester P2 bis P4
Es wird wie bei der Herstellung von P1 verfahren, mit den in Tabelle 1 zusammenge- fassten Zusammensetzungen. Man erhält verzweigte COOH-Gruppen-haltige Pulverpolyester, deren Kenndaten SZ, Mn, D, T9 und ηi in Tabelle 1 aufgelistet sind.
P1 Beispiel 1 P2 Beispiel 2 P3 Beispiel 3 P4 Vergleichsbeispiel 4
Tabelle 1
Die erfindungsgemäßen Polymere P2 und P3 haben eine deutlich höhere Glasübergangstemperatur als das entsprechende Vergleichspolymer P4, was einen Vorteil für Pulverlack darstellt.
HERSTELLUNG AMORPHER POLYESTER MIT OH-GRUPPEN
Polyester P5
153,7 g DMCP (1 ,18 mol), 195,1 g NPG (1 ,88 mol), 158,5 g TMP (1 ,18 mol), 458,1 g IPS (2,76 mol), 172,7 g ADS (1 ,18 mol) und 0,6 g Katalysator DBZO werden in einem mit Thermometer, Schutzgaseinleitung, Rührer und Rückflusskühler ausgerüsteten 2L- Vierhalskolben vorgelegt. Unter Durchleiten eines Stickstoffstromes und unter Rück- fluss wird die Reaktantenmischung auf 1600C zügig aufgeheizt. Wasser wird kontinuierlich abdestilliert. Anschließend wird das Reaktionsgemisch stufenweise auf 2300C innerhalb von 3 bis 5 h unter Rühren und Stickstofffluss aufgeheizt, und bei 2300C weitergerührt, bis der Polyester P5 eine SZ von 10 bis 15 mg KOH/g aufweist. Man erhält einen verzweigten amorphen OH-Gruppen-haltigen Polyester P5, dessen SZ 15 mg KOH/g beträgt. P5 weist eine OHZ von 109 mg KOH/g und eine Glasüberganstempe- ratur T9 von 23°C auf. Die GPC-Analyse liefert folgende Werte: Mn= 1940 g/mol; D = 9,7. P5 weist eine Schmelzviskosität ηi von 2,2 Pa*s bei 1600C auf. Die Lösungsviskosität n,2 des Polyesters P5 bei Raumtemperatur (P3-Lösung mit 70 % nFA und einer Mischung Solvesso 100™ / Solvenon PM™ 5/1 als Lösemittel) beträgt 16,3 Pa*s (siehe Tabelle 2).
Polyester P6 und P7
Es wird wie bei der Herstellung von P5 verfahren, mit der in Tabelle 2 zusammenge- fassten Zusammensetzung. Die Kenndaten der Polyester P6 und P7 sind in der Tabelle 2 aufgelistet.
P5 Beispiel 5 P6 Beispiel 6 P7 Vergleichsbeispiel 7
Tabelle 2
HERSTELLUNG WASSERVERDÜNNBARER POLYESTER
Polyester P8
Stufe I - Herstellung des OH-Gruppen-haltigen Oligomers 181 ,7 g DMCP (1 ,40 mol), 327,0 g NPG (3,14 mol), 435,0 g IPS (2,6 mol) und 0,6 g Katalysator DBZO werden in einem mit Thermometer, Schutzgaseinleitung, Rührer und Rückflusskühler ausgerüsteten 2L-Vierhalskolben vorgelegt. Unter Durchleiten eines Stickstoffstromes und unter Rückfluss wird die Reaktantenmischung auf 1600C zügig aufgeheizt. Wasser wird kontinuierlich abdestilliert. Anschließend wird das Reaktions- gemisch stufenweise auf 2200C innerhalb von 3 bis 5 h unter Rühren und Stickstoff- fluss aufgeheizt, und bei 2200C weitergerührt, bis das Reaktionsgemisch eine SZ von 10 bis 15 mg KOH/g aufweist. Die SZ des Oligomers beträgt 1 1 mg KOH/g.
Stufe Il - Herstellung des Polymers P8 Das oben synthetisierte Oligomer wird auf 1600C abgekühlt, bevor 167,7 g TMSA
(0,87 mol) zugegeben werden. Die Temperatur wird auf 2300C erhöht, und es wird unter diesen Bedingungen weiterkondensiert, bis das Polymer eine SZ von 42 bis 48 mg KOH/g aufweist. Das aus der Polymerisation entstehende Wasser kann am Ende der Reaktion durch schwaches Vakuum gezogen werden, um die erwünschte SZ zu errei- chen. Man erhält einen linearen wasserverdünnbaren Polyester P8, dessen SZ 42 mg KOH/g beträgt. P8 weist eine Glasüberganstemperatur T9 von 53°C und eine Schmelzviskosität ηi von 6,0 Pa*s bei 160°C auf. Die GPC-Analyse liefert folgende Werte: Mn= 1200 g/mol; D = 2,4 (siehe Tabelle 3). Beurteilung der Hydrolysenbeständigkeit von P8 Eine 20 %-ige wässrige kolloidale Lösung von P8 wird hergestellt, auf pH 8 mit N, N- Dimethylethanolamin gebracht und bei 45°C gelagert. Das Zeitintervall bis die kolloidale Lösung ausfällt wird als Maß für die Hydrolysenbeständigkeit des Polyesters genommen (siehe Tabelle 4).
Polyester P9
Es wird wie bei der Herstellung von P8 verfahren, mit der in Tabelle 3 zusammenge- fassten Zusammensetzung. Die Kenndaten des Polyesters P9 sind in der Tabelle 3 aufgelistet.
Tabelle 3
Tabelle 4
Die vorstehende Tabelle zeigt, dass die Polyester aus DMCP eine besonders hohe
Hydrolysenbeständigkeit aufweisen.
HERSTELLUNG PULVERLACKE
Als Referenzbindemittel (REF) wird das Polyesterharz Uralac® P-862 (T9 58,00C, SZ 35 mg KOH/g) von DSM Resins B.V. benutzt. Zur Herstellung der Pulverlacke PL1 , PL4 und PLR werden entsprechend 570,0 g Pulverpolyester P1 , P4 oder REF jeweils mit 30,0 g kommerziellem Härter Primid® XL-552 (Hydroxylalkylamid der Fa. EMS), 300,0 g Titandioxidpigment Kronos® 2160 (Fa. Kronos), 9,0 g Verlaufmittel Resiflow® PV5 (Fa. Worlee Chemie GmbH) und 2,5 g Benzoin in einem Labor-Universalmischer (Fa. MIT Mischtechnik GmbH) vermischt, geschmolzen und anschließend in einem Doppelschnecken-Extruder (MP 19, Fa. APV) bei 80 - 1000C extrudiert. Das erhaltene Extrudat wird dann grob gebrochen, gemahlen und gesiebt. Die so erhaltenen Pulverlacke PL1 , PL4 und PLR werden folgende Prüfungen unterzogen:
Im Anschluss werden die Pulverlacke auf Gradientenofenbleche appliziert und in einem Gradientenofen (Fa. BYK-Gardner GmbH) 10 min. bei 1600C eingebrannt. Die Ausgehärteten Beschichtungen werden hinsichtlich ihrer visuellen Eigenschaften (Vergilbung) untersucht. Der Gelbwert wird mit Hilfe des Farbmessgeräts spectrocolor (Fa. Hach Lange GmbH).
Anschließend werden die Pulverlacke auf Stahlprüfbleche (Q-Panel R-36) elektrostatisch appliziert und bei 1600C 10 min. lang eingebrannt. Dabei werden Schichtdicken von 60 μm bis 80 μm angestrebt. Den resultierenden Beschichtungen werden folgende Prüfungen unterzogen:
Die Ergebnisse der Lackprüfungen sind in der Tabelle 5 zusammengefasst.
Tabelle 5
* 2 = orange peel, pinholes Somit kann abschließend gezeigt werden, dass
• das Lacksystem aus DMCP eine sehr niedrige Neigung zur Vergilbung aufweist was einen großen Vorteil, im Vergleich zur Referenz (PLR), die Phosphitadditive gegen die Vergilbung enthält (erfindungsgemäßes PL1 nicht!) bedeutet.
• DMCP hervorragende und deutlich bessere mechanische Eigenschaften liefert als NPG.
Herstellung festkörperreicher 1 Komponent-Lacke (1 K)
Zur Herstellung der festkörperreichen 1 K-Lacke 1 K-PL5, 1 K-PL6 und 1 K-PL7 werden entsprechend 70%-ige Lösungen der Polyester P5, P6 und P7 in Butylacetat hergestellt. 80 g der 70%-igen Polyesterlösungen werden jeweils mit 14 g kommerziellem Härter Luwipal® 066 (Melaminkondensat der Fa. BASF), 4 g n-Butanol, und 2 g Katalysator p-Toluolsulfonsäure vermischt. Die resultierenden Lösungen (nFA 70%) werden auf Glasplatten und Stahlprüfbleche mit Hilfe von Kastenrakel appliziert. Dabei werden Schichtdicken von 40 μm bis 50 μm angestrebt. Im Anschluss werden die beschichteten Prüfbleche bei 1400C 30 Min. lang eingebrannt. Den resultierenden Beschichtun- gen werden folgende Prüfungen unterzogen:
Die Ergebnisse der Lackprüfungen sind in der Tabelle 6 zusammengefasst. 1 K-PL5 und 1 K-PL6 sind erfindungsgemäß, 1 K-PL7 gilt als Vergleichsbeispiel.
Tabelle 6
Die erfindungsgemäßen festkörperreichen Lacke 1 K-PL5 und 1 K-PL6 zeigen sehr gute mechanische Eigenschaften und eine hohe Hydrolysenbeständigkeit.

Claims

Patentansprüche
Polymer, erhältlich durch Polykondensation oder Polyadduktbildung von monomeren Verbindungen, dadurch gekennzeichnet, dass als monomere Verbindung
1 ,1-Dimethylolcycloalkane der Formel I oder 1 ,1-Dimethylolcycloalkene der Formel Ia
oder die alkoxylierte Derivate der Formel I oder der Formel Ia eingesetzt wird, wobei n= 1 ,2,4 - 9 ist,
X = -CH2- oder -O- ist und
R Wasserstoff oder eine lineare oder verzweigte Alkylgruppe mit 1 bis 10 C-
Atomen und für die Verbindungen der Formel Ia, wenn n > 2 ist auch mehr als eine Doppelbindung vorhanden sein kann darstellt.
Polymer gemäß Anspruch 1 , dadurch gekennzeichnet, dass als monomere Verbindung oder dessen alkoxylierte Derivate der Formel I oder der Formel Ia solche eingesetzt werden, bei denen n = 2, 5 oder 9, X = -CH2- ist und R ausgewählt ist aus der Gruppe von Wasserstoff, Methyl, Ethyl, n-Propyl, i-Propyl, n- Butyl, iso-Butyl und n-Pentyl.
Polymer gemäß einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass als monomere Verbindung oder dessen alkoxylierte Derivate der Formel I oder der Formel Ia solche eingesetzt werden, bei denen n = 2, X = -CH2- und R = Wasserstoff ist.
4. Polymer gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Verbindungen der Formel I oder der Formel Ia durch Umsetzung von Aldehyden der Formel Il oder der Formel IIa
IIa wobei n, X und R die vorhergehende Bedeutung haben, in einer Cannizzaro- Reaktion mit Formaldehyd erhältlich sind.
5. Polymer gemäß einem der Ansprüche 1 bis 4 dadurch gekennzeichnet, dass es sich um ein Polyester handelt.
6. Polymer gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass es sich um ein Polycarbonatdiol (erhältlich durch Umsetzung von Dialkylcarbonaten oder cyclischen Carbonaten mit Diolen unter Abspaltung von Alkohol) handelt.
7. Polymer gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass es sich um ein Polyurethan handelt.
8. Polymer gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass es um ein Polyaddukt handelt, welches durch ringöffnende Polymerisation von Lac- tonen oder Lactamen erhältlich ist
9. Verwendung des Polymers gemäß einem der Ansprüche 1 bis 8 zur Herstellung einer thermoplastischen Zusammensetzung.
10. Thermoplastische Zusammensetzungen, enthaltend ein Polymer und/oder Wiederholungseinheiten eines Polymers gemäß einem der Ansprüche 1 bis 8.
1 1. Verwendung der thermoplastischen Zusammensetzungen gemäß Anspruch 10 zur Herstellung von Formkörpern.
12. Verwendung des Polymers gemäß einem der Ansprüche 1 bis 8 zur Herstellung von Beschichtungsmassen, Dichtungsmassen oder Klebstoffen.
13. Beschichtungsmassen, Dichtungsmassen oder Klebstoffe, enthaltend Wiederholungseinheiten eines Polymers gemäß einem der Ansprüche 1 bis 8.
14. Beschichtungsmassen, Dichtungsmassen oder Klebstoffe gemäß Anspruch 13, dadurch gekennzeichnet, dass es sich um wässrige Massen handelt.
15. Verwendung des Polymers gemäß einem der Ansprüche 1 bis 8 zur Herstellung von Pulverlacken.
16. Pulverlack, enthaltend Wiederholungseinheiten eines Polymers gemäß einem der Ansprüche 1 bis 8
17. Verwendung des Polymers gemäß einem der Ansprüche 1 bis 8 zur Herstellung von strahlungshärtbaren Beschichtungsmassen.
18. Strahlungshärtbare Beschichtungsmassen, enthaltend Wiederholungseinheiten eines Polymers gemäß einem der Ansprüche 1 bis 8.
19. 1 ,1-Dimethylolcyclododecan
20. Verfahren zur Herstellung von 1 ,1-Dimethylolcyclododecan, wobei Cyclododecen mit Wasserstoff und Kohlenmonoxid einer Hydroformylierung unterzogen wird, der entstandene Aldehyd mittels Formaldehyd zum 1 ,1 ,Dimethylolcyclododecan umgesetzt wird.
21. Mischung enthaltend I J-Dimethylolcyclooct-S-en, 1 ,1-Dimethylolcyclooct-2-en und 1 ,1-Dimethylolcycloct-4-en.
22. Verfahren zur Herstellung der Mischung von Anspruch 21 , wobei 1 ,5- Cyclooctadien mit Wasserstoff und Kohlenmonoxid einer Hydroformylierung unterzogen wird, die entstandenen Aldehyde mittels Formaldehyd zu der Mischung von Anspruch 21 umgesetzt werden
EP09781833A 2008-08-26 2009-08-14 Verwendung von 1,1-dimethylolcycloalkanen oder 1,1-dimethylolcycloalkenen zur herstellung von polymeren Withdrawn EP2321242A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09781833A EP2321242A1 (de) 2008-08-26 2009-08-14 Verwendung von 1,1-dimethylolcycloalkanen oder 1,1-dimethylolcycloalkenen zur herstellung von polymeren

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP08162960 2008-08-26
EP08163024 2008-08-27
PCT/EP2009/060529 WO2010026030A1 (de) 2008-08-26 2009-08-14 Verwendung von 1,1-dimethylolcycloalkanen oder 1,1-dimethylolcycloalkenen zur herstellung von polymeren
EP09781833A EP2321242A1 (de) 2008-08-26 2009-08-14 Verwendung von 1,1-dimethylolcycloalkanen oder 1,1-dimethylolcycloalkenen zur herstellung von polymeren

Publications (1)

Publication Number Publication Date
EP2321242A1 true EP2321242A1 (de) 2011-05-18

Family

ID=41139077

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09781833A Withdrawn EP2321242A1 (de) 2008-08-26 2009-08-14 Verwendung von 1,1-dimethylolcycloalkanen oder 1,1-dimethylolcycloalkenen zur herstellung von polymeren

Country Status (6)

Country Link
US (1) US20110144259A1 (de)
EP (1) EP2321242A1 (de)
JP (1) JP2012500874A (de)
KR (1) KR20110069026A (de)
CN (1) CN102131755A (de)
WO (1) WO2010026030A1 (de)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9394212B2 (en) 2010-06-15 2016-07-19 Basf Se Process for the cooligomerization of olefins
MX2015013806A (es) 2013-03-28 2016-06-02 Basf Se Polieteraminas a base de 1,3-dialcoholes.
PL2978830T3 (pl) 2013-03-28 2019-08-30 The Procter & Gamble Company Kompozycje czyszczące zawierające polieteroaminę
WO2015148360A1 (en) 2014-03-27 2015-10-01 The Procter & Gamble Company Cleaning compositions containing a polyetheramine
EP3122717B1 (de) 2014-03-27 2019-02-06 Basf Se Etheramine basierend auf 1,2-dialkoholen
WO2015148361A1 (en) 2014-03-27 2015-10-01 The Procter & Gamble Company Cleaning compositions containing a polyetheramine
JP2017517560A (ja) 2014-03-27 2017-06-29 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ジアルコールをベースとするエーテルアミン
EP2940117B1 (de) 2014-04-30 2020-08-19 The Procter and Gamble Company Reinigungszusammensetzung enthaltend ein Polyetheramin
EP2940116B1 (de) 2014-04-30 2018-10-17 The Procter and Gamble Company Reinigungsmittel
US9974985B2 (en) 2014-05-15 2018-05-22 Basf Se Etheramines based on 1,2-dialcohols
US10280237B2 (en) 2014-09-15 2019-05-07 Basf Se Salts of etheramines and polymeric acid
US9617502B2 (en) 2014-09-15 2017-04-11 The Procter & Gamble Company Detergent compositions containing salts of polyetheramines and polymeric acid
US9850452B2 (en) 2014-09-25 2017-12-26 The Procter & Gamble Company Fabric care compositions containing a polyetheramine
BR112017005767A2 (pt) 2014-09-25 2017-12-12 Procter & Gamble composições de limpeza contendo uma polieteramina
US9631163B2 (en) 2014-09-25 2017-04-25 The Procter & Gamble Company Liquid laundry detergent composition
US10414856B2 (en) 2014-09-25 2019-09-17 Basf Se Polyetheramines based on 1,3-dialcohols
JP2016150909A (ja) * 2015-02-17 2016-08-22 株式会社クラレ ジオールの製造方法
EP3162879B1 (de) 2015-10-29 2018-07-18 The Procter and Gamble Company Flüssige reinigungsmittelzusammensetzung
EP3162880A1 (de) 2015-10-29 2017-05-03 The Procter and Gamble Company Flüssige reinigungsmittelzusammensetzung
US20170275565A1 (en) 2016-03-24 2017-09-28 The Procter & Gamble Company Compositions containing an etheramine
EP3257924A1 (de) 2016-06-17 2017-12-20 The Procter and Gamble Company Flüssige reinigungsmittelzusammensetzung
EP3279301A1 (de) 2016-08-04 2018-02-07 The Procter & Gamble Company Artikel mit wasserlöslicher einheitsdosis mit einem reinigungsamin

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2993912A (en) * 1961-07-25 Process for the production of
DE1059904B (de) * 1957-10-24 1959-06-25 Studiengesellschaft Kohle Mbh Verfahren zur Herstellung von Cyclododecanderivaten
US3067240A (en) * 1960-02-18 1962-12-04 Cassenne Lab Sa New dicarbamate and process of preparing same
US3236774A (en) * 1962-08-10 1966-02-22 Eastman Kodak Co Antioxidant composition and synthetic lubricant containing it
JPS51113850A (en) * 1975-03-29 1976-10-07 Toho Iyaku Kenkyusho:Kk A process for preparing dicarbamate derivatives
US4659747A (en) * 1986-05-15 1987-04-21 The Dow Chemical Company Cyclohexanedimethanol/diamine mixtures as RIM extenders
DE19538061C2 (de) * 1995-10-13 2001-01-04 Basf Coatings Ag Wasserverdünnbarer Polyester
JP3763310B2 (ja) * 1998-06-25 2006-04-05 富士ゼロックス株式会社 高分子量ポリカーボネートおよびその製造方法
US6454965B1 (en) * 1999-03-24 2002-09-24 Chevron Phillips Chemical Company Lp Oxygen scavenging polymers in rigid polyethylene terephthalate beverage and food containers
JP2001048967A (ja) * 1999-08-11 2001-02-20 Fuji Xerox Co Ltd ポリエステル重合体、及びその製造方法
JP5068159B2 (ja) * 2005-02-18 2012-11-07 旭化成ケミカルズ株式会社 ポリカーボネートジオール
SE0502284L (sv) * 2005-10-14 2006-12-27 Perstorp Specialty Chem Ab Polyurethane elastomer
US7868090B2 (en) * 2006-12-28 2011-01-11 Sabic Innovative Plastics Ip B.V. Polyester molding compositions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010026030A1 *

Also Published As

Publication number Publication date
KR20110069026A (ko) 2011-06-22
JP2012500874A (ja) 2012-01-12
CN102131755A (zh) 2011-07-20
WO2010026030A1 (de) 2010-03-11
US20110144259A1 (en) 2011-06-16

Similar Documents

Publication Publication Date Title
EP2321242A1 (de) Verwendung von 1,1-dimethylolcycloalkanen oder 1,1-dimethylolcycloalkenen zur herstellung von polymeren
EP2331601B1 (de) Verwendung von substituierten 2-aryl-2-alkyl-1,3-propandiolen oder substituierten 2-cyclohexyl-2-alkyl-1,3-propandiolen zur herstellung von polymeren
EP2291432B1 (de) Verwendung eines c11-diols oder c11-diolgemisches zur herstellung von polymeren
WO2010010075A1 (de) Verwendung von 2-isopropyl-2-alkyl-1,3-propandiolen zur herstellung von polymeren
EP2279219B1 (de) Verwendung eines cyclohexandiolgemisches zur herstellung von polymeren
EP0583728B1 (de) Wasserverdünnbare Zweikomponenten-Überzugsmasse
EP2853551B1 (de) Flüssiger haftungsverbessernder Zusatz und Verfahren zu dessen Herstellung
WO2008068068A1 (de) Lagerstabile pulverlackzusammensetzungen basierend auf säuregruppenhaltigen polyestern, ihre herstellung und ihre verwendung für trübungsarme und flexible pulverlacke
AT408658B (de) Wässriges überzugsmittel
DE102007034866A1 (de) Ungesättigte Polyester
DE4305990A1 (de) Sauer modifizierte Polyester und deren Verwendung in Einbrennlacken
AT413984B (de) Hitzehärtbare pulverlackzusammensetzung sowie zu ihrer herstellung verwendbares polyesterharz
EP0883640B1 (de) Neue polyesterpolyole und ihre verwendung als polyolkomponente in zweikomponenten-polyurethanlacken
EP0548728B1 (de) Wässrige Füllerzusammensetzung
AT409632B (de) Wasserverdünnbare lackbindemittel mit hohem festkörpergehalt
EP0301300B1 (de) Verfahren zur Herstellung eines mehrschichtigen, schützenden und/oder dekorativen Überzugs und wasserverdünnbare Beschichtungszusammensetzungen
EP0321502A1 (de) Lufttrocknende alkydharzbindemittel, verfahren zu ihrer herstellung, überzugsmittel auf der basis der alkydharzbindemittel sowie deren verwendung als bautenanstrichmittel
EP0865471B1 (de) Verfahren zur herstellung wässriger strahlenhärtbarer lacke
DE2707018A1 (de) Waermehaertbare beschichtungsmischung
DE102011080722A1 (de) Verwendung von Methylbernsteinsäure in Pulverlacken
DE2407791A1 (de) Umweltfreundliche einbrennlacksysteme auf der basis von monoalkoholen einkondensiert enthaltenden alkydharzen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110328

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: GUIXA GUARDIA, MARIA

Inventor name: MIAO, QIANG

Inventor name: GARNIER, SEBASTIEN

Inventor name: TEBBEN, GERD-DIETER

Inventor name: MIJOLOVIC, DARIJO

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

17Q First examination report despatched

Effective date: 20141002

18W Application withdrawn

Effective date: 20141015