EP2260508A1 - Auto-assemblage de puces sur un substrat - Google Patents

Auto-assemblage de puces sur un substrat

Info

Publication number
EP2260508A1
EP2260508A1 EP09731239A EP09731239A EP2260508A1 EP 2260508 A1 EP2260508 A1 EP 2260508A1 EP 09731239 A EP09731239 A EP 09731239A EP 09731239 A EP09731239 A EP 09731239A EP 2260508 A1 EP2260508 A1 EP 2260508A1
Authority
EP
European Patent Office
Prior art keywords
substrate
chip
zone
component
amorphous carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09731239A
Other languages
German (de)
English (en)
Inventor
Léa Di Cioccio
François GROSSI
Pierric Gueguen
Laurent Vandroux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2260508A1 publication Critical patent/EP2260508A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L24/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/90Methods for connecting semiconductor or solid state bodies using means for bonding not being attached to, or not being formed on, the body surface to be connected, e.g. pressure contacts using springs or clips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • H01L2224/081Disposition
    • H01L2224/0812Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/08151Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/08221Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/08225Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/08235Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bonding area connecting to a via metallisation of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16235Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a via metallisation of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/2401Structure
    • H01L2224/24011Deposited, e.g. MCM-D type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/24221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/24225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/24226Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the HDI interconnect connecting to the same level of the item at which the semiconductor or solid-state body is mounted, e.g. the item being planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/80003Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding involving a temporary auxiliary member not forming part of the bonding apparatus
    • H01L2224/80004Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding involving a temporary auxiliary member not forming part of the bonding apparatus being a removable or sacrificial coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/8012Aligning
    • H01L2224/80143Passive alignment, i.e. self alignment, e.g. using surface energy, chemical reactions, thermal equilibrium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8112Aligning
    • H01L2224/81136Aligning involving guiding structures, e.g. spacers or supporting members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8112Aligning
    • H01L2224/81143Passive alignment, i.e. self alignment, e.g. using surface energy, chemical reactions, thermal equilibrium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81894Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector involving a temporary auxiliary member not forming part of the bonding apparatus
    • H01L2224/83002Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector involving a temporary auxiliary member not forming part of the bonding apparatus being a removable or sacrificial coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8312Aligning
    • H01L2224/83136Aligning involving guiding structures, e.g. spacers or supporting members
    • H01L2224/83138Aligning involving guiding structures, e.g. spacers or supporting members the guiding structures being at least partially left in the finished device
    • H01L2224/83141Guiding structures both on and outside the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8312Aligning
    • H01L2224/83143Passive alignment, i.e. self alignment, e.g. using surface energy, chemical reactions, thermal equilibrium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83894Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/9202Forming additional connectors after the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/95053Bonding environment
    • H01L2224/95085Bonding environment being a liquid, e.g. for fluidic self-assembly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/9512Aligning the plurality of semiconductor or solid-state bodies
    • H01L2224/95143Passive alignment, i.e. self alignment, e.g. using surface energy, chemical reactions, thermal equilibrium
    • H01L2224/95146Passive alignment, i.e. self alignment, e.g. using surface energy, chemical reactions, thermal equilibrium by surface tension
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • H01L2225/06562Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking at least one device in the stack being rotated or offset
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10156Shape being other than a cuboid at the periphery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10157Shape being other than a cuboid at the active surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15192Resurf arrangement of the internal vias

Definitions

  • the invention relates to the assembly of chips or components or of MEMS or integrated circuits on a substrate, in particular in the field of microelectronics.
  • This invention applies to the 3D integration of these components or chips or MEMS or integrated circuits, as well as the design of integrated micro systems.
  • Self-assembly techniques are increasingly being considered as alternatives or in addition to robotics. Such a technique is for example that described by T. Fukushima et al. In the article entitled “New three dimensional integration technology using self assembly technique", IEEE, 2005. The advantage of this type of technique is that it allows parallel processing of a large number of chips and is therefore less expensive, especially those of the "pick and place” type. But the current methods of self-assembly are mostly implemented fluidic means, in aqueous environment, alignment with shape recognition and bonding by adding material (organic glue). The localization of the area on which the chip will be hybridized is by local adsorption of SAM-type molecules.
  • the invention proposes a novel method of forming, at the surface of a substrate, a zone for the purpose of aligning or self-assembling a component or a chip, as well as a technique for assembly of this component or this chip.
  • a method of forming, at the surface of a substrate, at least one hydrophilic attachment zone for self-assembly of a component or chip comprises providing a hydrophobic zone which delimits or defines said hydrophilic attachment zone.
  • Obtaining two zones, one hydrophobic and the other hydrophilic (attachment zone) results from the use, on the surface of the substrate, of at least two materials having different wettability properties, which results, either of the very nature of these materials or of a specific treatment of these materials.
  • Different wettability results, for a zone, a hydrophilic character, which allows it to constitute a zone of attachment, and for the other a hydrophobic character, which allows him to delimit the zone of attachment.
  • a plurality of hydrophilic attachment zones can be made.
  • the treatment of a surface according to the invention may be local. It is thus easy to locate an attachment zone.
  • a zone of attachment and its hydrophobic zone which delimits it can be carried out on any substrate, for example plastic.
  • a method according to the invention may comprise a deposition step, at least in the hydrophilic attachment zone, of a bonding layer, or a bonding layer, of a component or a chip.
  • the surface of the attachment zone can be transformed to be made hydrophilic, for example by the formation of an oxide or nitride layer (associated with a treatment rendering it hydrophilic).
  • the surface of the substrate may be initially homogeneous, or heterogeneous.
  • the substrate may further comprise layers of electrical connection and / or optical and / or thermal.
  • a substrate according to the invention it is possible to align, on the hydrophilic zone, and then to stick on this same zone, for example by direct bonding or molecular adhesion or thermocompression, a chip or a component on the zone d self-assembly, having the desired localized wettability contrast.
  • a method of assembling a component or a chip according to the invention may therefore comprise the following steps: a) preparation of a substrate according to the invention, as explained above, b) self-alignment of the chip on the prepared attachment zone, using the differences in wettability between the hydrophobic zones of the substrate and the other zones, hydrophilic, c) assembly, by molecular bonding or thermocompression, of the chip aligned with the prepared site.
  • a method of assembling a component or a chip according to the invention does not require and does not implement a pattern recognition technique to position a component near its attachment zone.
  • a method of assembling a component or a chip according to the invention can be realized in the air.
  • the alignment step may be carried out using a drop of a liquid, for example water, deposited on the hydrophilic zone.
  • a liquid for example water
  • the component or the chip may comprise one or more pads and / or vias and / or contacts and / or one or more layers of low-temperature melting material.
  • the method may further comprise a step of increasing the temperature to achieve a melting of said low temperature melting material.
  • a contact or bond of low-temperature melt material may be formed between the component or chip and the surface of the substrate, for example by the technique mentioned above.
  • a method according to the invention may further comprise, before alignment of the component or the chip, a step of preparing the surface to be assembled of this component or chip, such as polishing and / or oxygen plasma treatment and / or UV-ozone treatment.
  • a hydrophobic zone is made of amorphous carbon, for example in the form of a thin layer.
  • Amorphous carbon can be doped to be conductive.
  • a substrate layer of amorphous carbon is deposited on the substrate and a hydrophilic zone is prepared.
  • the attachment zone may be delimited by etching of the hydrophobic amorphous carbon layer. It is therefore possible to deposit on the substrate, having possibly undergone one of the treatments explained above, an amorphous carbon support layer and a hydrophilic zone delimited by an amorphous carbon zone is prepared. After step c) above, the carbon layer may be removed.
  • the amorphous carbon may be partially removed to leave an amorphous carbon bond between at least one pad of the component and the surface of the substrate.
  • a new flat surface at the side of the component or chip that is not assembled on the substrate, or above that face.
  • This new flat surface can form the surface of a substrate, and it is possible to form, on this surface, at least one hydrophilic attachment zone according to the invention. It is possible to perform a new assembly step of a component according to the invention, on this new surface.
  • a device obtained by a method according to the invention can therefore be produced on another device, also obtained by a method according to the invention.
  • a surface is made where the assembly is possible again, for example to assemble a chip on top of the other.
  • a hydrophobic zone is made of a metallic material, for example a conductor material already present on the surface of the substrate, or one or portions of a metal antenna.
  • the metallic material may constitute patterns which form one or more reliefs with respect to the surface of the substrate.
  • the conductive material may be silver or copper or gold or aluminum or tungsten. More generally, it may be any conductive material available for making electrical contacts for microelectronics or micro-systems.
  • the hydrophobic zones thus make it possible, here again, to delimit a zone of attachment of a chip or of a component. The latter may be brought and then fixed on the hydrophilic zone by one of the techniques already described above in the context of the invention.
  • FIGS. 1A to 1C represent components assembled on substrates according to the invention
  • FIGS. 2A-2E show substrates for implementing the invention
  • FIGS. 3A-3C represent substrates for implementing the invention, possibly with amorphous carbon deposition; to locate one or more assembly sites,
  • FIGS. 4A-4C represent the location of a chip with a substrate according to
  • FIGS. 5A-5C represent assemblies of a chip with a substrate according to the invention
  • FIGS. 6A-6C represent assemblies of a chip with a substrate according to the invention, after at least partial withdrawal of the layer; amorphous carbon,
  • FIGS. 7A-7E represent assemblies of a chip with a substrate according to the invention, after a resumption of amorphous carbon or a deposit of dielectric material on the amorphous carbon layer
  • FIGS. 8A and 8B show the location of a chip with a substrate according to the invention, with metallic hydrophobic zones
  • FIGS. 9A and 10A represent substrates in plan view, each with an attachment zone located by a metal outline
  • FIGS. 9B and 10B represent the substrates FIGS. 9A and 10A, in plan view, with a chip located in the attachment zone delimited by a metal outline,
  • FIGS. HA and HB represent stacks of component stages according to the invention.
  • FIGS. 1A-1G Examples of devices made according to the invention are illustrated in FIGS. 1A-1G.
  • the device comprises a support substrate 2 with which, or on whose surface, a chip 3 is assembled.
  • a support substrate 2 with which, or on whose surface, a chip 3 is assembled.
  • it is a support layer on a substrate 1.
  • the latter can then be of any material, for example plastic, semiconductor or not.
  • the substrate 2, or the support layer is made of a non-functional, dielectric or semi- driver, for example from the list below. More particularly, the invention uses a hydrophilic portion of the surface of this substrate 2 or the support layer; in the following, this hydrophilic portion is for example a dielectric or semiconductor material, for example Si, or Ge or GaAs or InP or GaN, or SiO2, or amorphous Si, or silicon nitride, or SiOC, or conductive ITO oxides.
  • the hydrophilic nature can be created and / or reinforced by appropriate treatment, for example by adding a layer or by plasma treatment (CARO, plasma O2, thermal oxidation).
  • this substrate 2 or its surface may be heterogeneous. It can then in particular present means such as one or more pads and / or vias and / or contacts providing one or more electrical and / or optical and / or thermal functions. It can also include components, for example CMOS. In figures IB and IE, is illustrated the case of vias 4, 6.
  • one or more layers 7, 9, 7 ', 9' may also perform one or more of these functions.
  • the layers 7, 7 ' provide an electrical connection between the pads 4, 6 and the pads 4', 6 ', the layers 9, 9' ensuring the isolation of this connection.
  • the pads or vias, or contacts or layers can be made of different materials of the material of the remainder of the substrate or layer 2, for example copper or SiO2.
  • reference numeral 20 denotes an amorphous carbon layer. This layer delimits the zone 12 where the postponement of a component or a chip 3 has been realized.
  • the zones 120 comprise a shoulder. But it is also possible, as in Figures IF and IG, that these areas have no shoulder.
  • FIG. 1G represents the case of a hybridization at the contact zone between the chip 3 and the zones 120.
  • the chip 3 then has the metal studs making it possible to connect these zones 120.
  • FIGS. 1A-1G may have undergone one or more treatments in order to functionalize it (ie to prepare it for alignment and gluing), to achieve the alignment of a component or a chip 3 , with a self-assembly zone, then the assembly by gluing, component or chip 3 on this area. This last one is shown in the assembled position in Figures 1A-1G.
  • the surface 2 'of the substrate may include an additional layer 8 making it easier to glue a component or a chip and / or to reinforce the wettability contrast between the zone 12 and the layer 20.
  • a thin-oxide bonding layer 8 (not visible in FIGS. 1A-1G, but visible in FIGS. 2A-2E) is produced by surface oxygen plasma 2 '.
  • FIGS. 1A-1G is produced by surface oxygen plasma 2 '.
  • the chip 3 for example a processed silicon chip, has pads 14, 16 of contacts, in order to make contact with the pads 4, 6 of the substrate 2 which are flush with the zone 12 of attachment.
  • the chip of Figures ID and IE has contact zones with the metallic hydrophobic zones.
  • FIGS. 1A and 1B there may be, after assembly of the chip 3, a residual thickness of carbon.
  • the assembly of FIGS. 1A and 1B may undergo an additional step of removing layer 20.
  • Such partial or complete shrinkage can be achieved by an oxygen plasma or containing a sufficient portion of oxygen. This results in a structure such as that of FIGS. 6A-6C.
  • FIG. 1C represents another assembly according to the invention, but with two stages, one whose elements are identical or similar to those already described above and are therefore designated by identical references, the other which comprises a layer 200 of amorphous carbon stacked on the first, and a component or a chip 300 located in an opening of this layer 200.
  • the second stage one uses again a localization of the component by wettability contrast, between a hydrophobic zone comprising a depositing 200 of amorphous carbon and a hydrophilic zone, made in FIG. 1C, partly above the component 3 and partly above the amorphous layer 20 of the lower stage.
  • This hydrophilic zone can be obtained by forming a hydrophilic layer on the first stage - as explained below - and delimiting the attachment zone by etching the layer 300 of amorphous carbon.
  • This embodiment is also possible with the structures of FIGS. ID and IE: an amorphous carbon layer is deposited on these structures, which is then planarized in order to postpone a new component on this face.
  • the number of floors thus stacked can be any.
  • FIGS. 2A-2E show basic substrates 2 from which a support substrate according to the invention will be able to be produced.
  • the substrate of Figure 2A is homogeneous, a semiconductor material, or other, as already indicated above.
  • the surface 2 ' is uniform and has no topology.
  • the substrate of FIG. 2D is also homogeneous, in a semiconductor material, or the like, as already indicated above. But its 2 'surface is not uniform and has a topology due to metal portions or conductors 120.
  • the substrates of FIGS. 2B, 2C and 2E are heterogeneous.
  • the substrate of FIG. 2B comprises studs 4, 6 whose function and nature have also already been explained above.
  • the substrate of each of FIGS. 2C and 2E comprises, in addition to the first pads 4, 6, another series of pads 4 ', 6' of connection with one or the other of the particular functions (optical, electrical, etc.) already explained above. These pads make it possible to position one or more chips with interconnections. In addition to the pads, one or more layers or layers of layers 7, 9, 7 ', 9' can be made in the substrate, for example between pads 4, 4 'and 6, 6'.
  • each of the substrates of FIGS. 2B, 2C and 2E is heterogeneous. It is first of all in terms of materials: such a substrate is for example a dielectric material, or semiconductor, which surrounds pads 4, 6 of conductive metal (SiOC layer and Cu). It is also heterogeneous in terms of surface condition, the areas where appear pads having a different surface state than areas of dielectric material. One or more surface treatments (especially polishing) makes it possible to standardize this surface state.
  • the surface 2 'of each of these structures is hydrophilic, for example by the choice of materials used for the substrate 2 and possibly for the pads 4, 6, 4 ', 6'; or it is made hydrophilic, by one of the treatments already mentioned above, before assembly of the component or the chip 3. It is likewise sought that this surface, at least in these same areas, intended to receive a chip or component, has the characteristics required for the type of bonding (preferably direct bonding) that will be used. This surface can be prepared (by polishing and / or cleaning) so as to allow direct bonding (as described in the book by Tong cited above) or thermo-compression bonding.
  • the materials which constitute it are preferably chosen so that these characteristics can be obtained, at the surface 2 ', by an appropriate treatment, for example by polishing and / or cleaning.
  • a material selection criterion is the polishing speed of the materials in question.
  • FIG. 2D shows the case of a substrate comprising, on the surface, metal zones 120, for example portions of conductors or portions of antennas.
  • the substrate itself can be homogeneous (Figure 2D) or heterogeneous ( Figure 2E).
  • the zones 120 can also do not have shoulders and have the shape that extends to the broken lines.
  • FIGS. 2C and 2E can be used in stacks such as that of FIG. HB: two stages of components 3, 300 are superimposed on a substrate 2.
  • the connections between the substrate 2 and the most distant component (here: the component 300) of this substrate are made via zones which coat the component or components of the first and second stages. Repetitions of contact 301 make it possible to connect the component or components of the last stage to the connections of the intermediate stages.
  • n> 2 of stages can be provided: it is therefore possible to make connections between the substrate 2 and the component farthest from this substrate (that of the stage n) either via the n-1 component (s) of the n-1 first stages or via zones which encase the components of the n-1 first stages.
  • a method for producing the substrate structures, with a layer of amorphous carbon hydrophobic material, will be described in connection with FIGS. 3A to 3C, from the structures of FIGS. 2A-2C.
  • Figure 3A shows a single attachment zone 12, but there may be several 12, 12 'for a single stage, as illustrated in Figure 3B. These figures are based on an initial substrate of the type of FIG. 2A, but it is also possible to coat the substrates of FIGS. 2B and 2C of a layer of hydrophobic material, and then forming in this layer one or more attachment zones.
  • FIG. 1B is also a representation of a substrate with a component fixed in the hydrophilic zone, but with a substrate of the type of FIG. 2B.
  • a deposit of a thin layer of amorphous carbon is produced.
  • the attachment zone is defined by a pattern, which can be obtained by etching this thin layer.
  • strips 20 ', 21' may be defined by etching of this layer (the carbon deposit having been produced on a hydrophilic surface, any etching which allows the elimination of carbon by an oxidation mechanism (For example a localized plasma or a UV treatment ...) will make it possible to release the zones of fasteners without altering the hydrophilic character of the zones thus laid bare, no further processing will therefore be necessary to ensure the subsequent self-assembly ).
  • the amorphous carbon coating which corresponds to each of the attachment zones 12, 12 ', is limited to a small portion of the surface 2'.
  • the attachment zone 12, 12 ' is the zone not covered or not masked by amorphous C, but surrounded by this material or delimited by this material (on which hybridization or component attachment will not occur).
  • each attachment zone 12, 12 'and its strips 20', 21 ' present on the surface of the substrate 2 a limited lateral extension L. Making such sets of limited width allows to form several assembly areas. This is the case of Figure 3B, where a second assembly zone 12 'is formed, by forming other bands 21' of amorphous carbon.
  • Such a limited lateral extension may also be desirable when the support layer or substrate 2 has a satisfactory surface state only over a limited extension or area comparable to (but greater than) that of the chip to be located in zone 12. .
  • the hydrophobic layer here made of amorphous carbon, induces, in relation to the rest of the surface of the substrate 2, a contrast in surface tension - therefore in wettability - which allows the implementation of a self-assembly of the chips or components to to assemble.
  • a complementary treatment of the surface of each of the substrates 2 may be implemented, in order to accentuate the location of the chips or components by difference in surface energy and / or wettability.
  • a surface oxide layer 15 of the material of the substrate 2 can be produced by means of an oxygen plasma. This treatment causes a slight superficial etching of the amorphous carbon layer but does not affect its hydrophobic properties. It is also an advantageous aspect of the amorphous carbon for the present invention, not to form an oxide on its surface after exposure to a plasma comprising oxygen. After this treatment, a surface comprising amorphous carbon and a hydrophilic material present a significant wettability contrast to achieve a self-alignment.
  • the difference between the contact angles of a drop of a liquid positioned on the amorphous carbon layer and that of a drop of the same liquid positioned on the hydrophilic material is at least about 40 ° (for example for a droplet).
  • FIGS. 4A-4C represent steps for aligning a component or a chip on the zone, prepared as explained above, of a substrate according to the invention.
  • FIGS. 4A-4C are based on an initial substrate of the type of FIG. 2A, but an alignment can be made in the same way from one of the substrates of FIGS. 2B and 2C, provided with one or more zones of FIG. fastener, each being delimited by a hydrophobic layer.
  • This alignment is achieved thanks to the wettability contrast obtained by the previously described treatment of the substrate.
  • the component is brought close to the substrate by a so-called "pick and place” technique, or more generally by any mechanical means.
  • This component or this chip 3 to be assembled has, moreover, characteristics adapted to the type of assembly or bonding envisaged on the substrate 2, for example a correct flatness on the entire surface 3 'to be assembled and a particulate contamination, the lowest possible, of this surface. If this is not the case, a preparation of the surface 3 ', for example by polishing and then cleaning, makes it possible to obtain the desired characteristics.
  • Another possible treatment, with a view to a hydrophilic molecular bonding, is a treatment of the oxygen plasma type, or under UV / ozone.
  • the chip receives only a minimum of treatment, for example only a surface treatment. This is particularly the case when it is desired to assemble numerous chip standards with different topologies and to adapt the substrate by virtue of the shape of the amorphous carbon layer.
  • the above remarks concerning the preparation of the chip will also apply in the case of the embodiment with metallic hydrophobic zone, described later in connection with FIGS. 8A-8B.
  • the chip 3 is approached from the assembly site 12. It is therefore possible to implement an alignment or a coarse positioning of the chip by a method such as a random method, which makes it possible to perform a fast distribution but not very precise.
  • a drop 13 of an interface liquid, preferably water, present on the attachment zone allows the chip 3 to be precisely aligned with the pattern 12.
  • FIGS. 4B and 4C represent the same step, but for a chip 3 with pads 5 interconnections for bonding to the substrate via the material of layer 20.
  • the chip also has, on the surface of the interconnect pads, a thin layer 5 'made of a low-temperature fusion metal, which will make it possible to make interconnections for a connection with the substrate, for example by thermo-compression.
  • these pads are indium or copper balls. These pads may also be only connection pads or contact and no fixing, the latter being provided by the portion of the chip facing the assembly area 12.
  • the drop 13 of interface liquid may be used to promote the realization of this alignment step.
  • FIGS. 5A-5C show, for each of the situations illustrated in FIGS. 4A-4C, assemblies thus obtained, of a chip with a substrate.
  • the component or the chip 3 is located in the attachment zone 12 created previously.
  • a molecular bonding assembly is preferably produced.
  • the optional oxide layer 15 promotes such bonding.
  • the realization of connections 5, 5 'of the chip can be obtained by a different method (for example: use of balls or copper connections).
  • thermo-compression for example by a metal bonding with copper in particular.
  • This Thermo-compression bonding can take place in the hydrophilic zone, or not. In the latter case, there is a difference between, on the one hand, the contact zones, for example of the electric type, and, on the other hand, the mechanical fixing zones (by thermo-compression).
  • At least partial removal of the hydrophobic layer 20, 20 ', 21' can then be carried out. This results in the structures of FIGS. 6A-6C, respectively for each of the assemblies of FIGS. 5A-5C. Again, there may be several chips or components on one floor.
  • any connections between the component or chip (or components or chips) and the substrate can then be established.
  • a chemical treatment is for example a treatment with oxygen plasma or containing a sufficient proportion of oxygen.
  • FIG. 6B shows the case of partial removal of this layer 20, also by chemical surface treatment leaving the assembly unchanged. Portions 20i of the layer 20 are maintained, to make a bond or a functional link between the pads 5 and the surface 2 'of the substrate 2, and more particularly its pads 4, 6. In order to ensure such a function, the carbon can have been doped, for example to be a driver.
  • FIG. 6C after complete removal of the layer 20, the temperature is brought to a level allowing the low temperature melting of the metal 5 ', in order to make the connection or the functional link 5''between the pads 5 and the surface 2 of the substrate 2, and more particularly its pads 4, 6.
  • FIG. 7A a recovery 2Oi of deposition of the amorphous carbon on the assembly obtained in FIG. 6A is carried out.
  • this layer of amorphous carbon it is also possible not to eliminate this layer of amorphous carbon (thus leaving the structure of Figure 5A in the state), which makes it possible not to make a recovery then.
  • FIGS. 7B and 7C show cases of deposition of a layer 2 0 2 of dielectric material on the layer 2 0 1 of amorphous carbon to return to a flat non-conductive surface outside the attachment zone.
  • Figure 7C it's the same technique, but it is the chip described in Figure 4B which is implemented.
  • a deposit 20 of a material other than amorphous carbon may be produced directly on the substrate 2 after removal of the amorphous carbon layer 20.
  • the material of this layer 2O2 can be modified so that a functional link can cross it.
  • vias 4-2 and 6-2 have been made in the layer 20-2 to reach the substrate 2 through the latter.
  • the formation of vias is also feasible with the structures of Figures 7B and 7C.
  • a new plane can be formed at the upper face of the chip 3 integrated on the substrate 2 (or of the non-assembled face with the substrate), or above this upper face, for a new integration step, by depositing a material such as a dielectric, or Amorphous Carbon, followed by polishing type CMP.
  • a material such as a dielectric, or Amorphous Carbon, followed by polishing type CMP.
  • the steps described above can be performed: formation of a hydrophilic zone delimited by a hydrophobic zone, then alignment and assembly of a chip or a component on the hydrophilic zone.
  • a structure such as that of FIG. 1C is thus obtained.
  • a method for producing the substrate structures, with a layer of hydrophobic material, here in a metallic material, will be described in connection with FIGS. 8A-8B, from the structures of FIGS. 2D and 2E, and thus substrate structures possibly with pads and possibly again with layers 7, 9, 7 ', 9' which provide electrical and / or optical and / or thermal.
  • the homogeneous or heterogeneous surface 2 'of the substrate or of the layer 2 may have undergone one or more treatments in order to prepare it for alignment and gluing, to achieve alignment a component or a chip 3, with a self-assembly zone, then the assembly by gluing, of the component or the chip 3 on this zone,
  • the surface 2 'of the substrate may comprise an additional layer making it easier to glue a component or a chip and / or to reinforce the wettability contrast between the zone 12 and its periphery.
  • the surface 2 'of the substrate 2 has, here again, variations in wettability on the surface, because of the presence on this surface of two different materials (one of which is metallic), whose wettability properties are different, which results from either the nature of these materials or a specific treatment of all or part of the surface.
  • the metallic material 120 may be that of a conductor, provided on the surface of the substrate to achieve a specific electrical function. By for example, it may be the definition of the shape of an antenna on the surface of the substrate 2.
  • the surface may be PET, and be provided with a metal antenna; or it is a silicon oxide surface with metal areas.
  • component 3 will be located in the attachment zone , hydrophilic 12, which is delimited by the metallic and hydrophobic part 120, which surrounds it.
  • the component or the chip 3 to be assembled has characteristics adapted to the type of assembly or bonding envisaged on the substrate 2, possibly this results from a preparation of the surface 3 'which makes it possible to obtain the desired characteristics.
  • a drop of an interface liquid preferably water
  • an interface liquid can be arranged by manual or robotic means on the attachment zone or in his neighborhood.
  • the drop of fluid deposited on the zone of attachment or in its vicinity locates itself in this zone.
  • the volume of fluid deposited can induce a thickness of water which exceeds that of a possible topology due for example to metallic patterns which delimit the hydrophilic zone 12.
  • the drop 13 disposed and correctly located acts as a restoring force by minimizing the surface energy of the drop.
  • a chip 3 can then be brought manually or by a robotic device or by a so-called "pick and place” technique, or more generally by any mechanical means. Or, it implements a alignment or a coarse positioning of the chip by a method such as a random process, which allows for a fast distribution but not accurate.
  • FIGS. 8A and 8B show this step, in the case of a substrate and a chip respectively of the type of FIG ID or IE.
  • the alignment of the chip 3 vis-à-vis the zone 12 depends on the quality of the confinement, so the difference in wettability between the two materials. After the chip has been placed on the drop of water, it corrects the misalignment induced by a restoring force.
  • This force is the motor of the final alignment of the component 3 and the alignment zone 12 and depends on the wettability contrast between the attachment zone 12 and its hydrophobic periphery, that this contrast is natural or induced by a possible surface treatment.
  • the interface liquid is then removed.
  • a component or a chip can also be glued by thermo-compression (for example by a metallic bonding with copper).
  • Figures 9A and 10A each represent, in top view, an attachment zone 12 and its hydrophobic zone 120, 120 'which delimits it.
  • the zones 120 are connected to other conductors 121.
  • FIGS. 9B and 10B each represent the same area as, respectively, FIGS. 9A and 10A, but with a component 3 positioned and fixed on the hydrophilic zone.
  • a fluid 13 that aids self-assembly in the context of the present invention is hydrophilic. We then put a very small volume, a few microdrops. In US6507989, on the contrary, the assembly is done in liquid (with liquid bathing all surfaces): a bonding of the type used in the context of the present invention (molecular bonding or thermocompression ) is not possible. In the article by FUKUSHIMA T AND AL: "New three-dimensional integration technology using self- technical assembly ", Electron devices meeting, December 5, 2005, pages 348-351, the assembly does not take place by molecular bonding at the level of the attachment stud.As illustrated in FIG.
  • first zones at the level of first zones ("microbumps") and then the assembly is done by injection of an adhesive substance (see Figure 4d for example and the description of Figure 9 in particular) which spreads everywhere except at these first areas
  • an adhesive substance see Figure 4d for example and the description of Figure 9 in particular
  • the assembly is therefore not, as in the present invention, carried out by molecular bonding or thermocompression at the level of the alignment zones
  • the glues used are, moreover, sources of pollution. and do not allow the achievement of subsequent technological steps at high temperatures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Micromachines (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Wire Bonding (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

L' invention concerne un procédé de formation, en surface d'un substrat (2), d'au moins une zone d'attache hydrophile (12) en vue d'un auto-assemblage d'un composant ou d'une puce (3), dans lequel on réalise une zone hydrophobe (20), qui délimite ladite zone d'attache hydrophile.

Description

AUTO-ASSEMBLAGE DE PUCES SUR UN SUBSTRAT
DESCRIPTION
DOMAINE TECHNIQUE ET ART ANTÉRIEUR L'invention concerne l'assemblage de puces ou de composants ou de MEMS ou de circuits intégrés sur un substrat, en particulier dans le domaine de la microélectronique .
Cette invention s'applique à l'intégration 3D de ces composants ou puces ou MEMS ou circuits intégrés, ainsi qu'à la conception de micro systèmes intégrés .
Le positionnement d'une puce (on utilise par la suite, dans toute la description et les revendications, ce terme ou le terme « composant » pour l'ensemble des dispositifs mentionnés ci-dessus, y compris MEMS ou circuits intégrés) sur un substrat est usuellement effectué par des moyens robotiques de type « pick and place ». Du fait de la baisse des dimensions en intégration 3D, ainsi que des exigences de vitesse de réalisation, cette technique devient de moins en moins adaptée. En outre, sa mise en oeuvre implique l'utilisation de machines coûteuses et complexes. Enfin, cette technique est sérielle, donc coûteuse en terme de temps.
Les techniques d'auto-assemblage sont de plus en plus envisagées comme alternatives ou en complément à la robotique. Une telle technique est par exemple celle décrite par T. Fukushima et al. Dans l'article intitulé «New three dimensional intégration technology using self assembly technique », IEEE, 2005. L'avantage de ce type de technique est qu'elle permet de traiter en parallèle un grand nombre de puces et qu'elle est donc moins coûteuse, en particulier que celles de type « pick and place ». Mais les méthodes actuelles d'auto- assemblage mettent pour la plupart en œuvre des moyens fluidiques, en environnement aqueux, avec alignement par reconnaissance de forme et collage par ajout de matière (colle organique) . La localisation de la zone sur laquelle la puce sera hybridée se fait par adsorption locale de molécules de type SAM
(alkanethiol) , c'est-à-dire qu'une molécule se fixe préférentiellement sur une partie du substrat en créant une zone avec un état de surface différent. Le problème de telles méthodes est que le substrat d' attache doit être composé en surface de matériaux spécifiques d'accroché tels que de l'or ou qu'il doit être creusé pour favoriser l'assemblage, comme dans le document US 6 623 579. En outre, certains matériaux, qui servent de lien entre la puce et le substrat sont organiques, et sont donc une source de pollution. Dans tous les cas, les applications possibles sont limitées du fait de la limitation en température. Par exemple, réaliser un contact fonctionnel (optique, électrique, thermique) est plus complexe si la puce et le substrat sont liés par des molécules organiques.
Un problème est donc de trouver un procédé ne présentant pas les limitations ci-dessus et permettant notamment de réaliser un assemblage rapide et précis. EXPOSE DE L'INVENTION
L' invention propose une nouvelle méthode de formation, en surface d'un substrat, d'une zone en vue de l'alignement ou de l'auto-assemblage d'un composant ou d'une puce, ainsi qu'une technique d'assemblage de ce composant ou de cette puce.
Tout d'abord, selon l'invention, un procédé de formation, en surface d'un substrat, d'au moins une zone d'attache hydrophile en vue d'un auto-assemblage d'un composant ou d'une puce, comporte la réalisation d'une zone hydrophobe, qui délimite ou définit ladite zone d'attache hydrophile.
L'obtention de deux zones, l'une hydrophobe et l'autre hydrophile (zone d'attache) résulte de l'utilisation, en surface du substrat, d'au moins deux matériaux présentant des propriétés de mouillabilité différentes, ce qui résulte, soit de la nature même de ces matériaux soit d'un traitement spécifique de ces matériaux. De la mouillabilité différente résulte, pour une zone, un caractère hydrophile, qui lui permet de constituer une zone d'attache, et pour l'autre un caractère hydrophobe, qui lui permet de délimiter la zone d'attache.
On peut réaliser une pluralité de zones d'attache hydrophiles.
Le traitement d'une surface selon l'invention peut être local. On peut ainsi localiser aisément une zone d'attache.
Une telle zone d'attache et sa zone hydrophobe qui la délimite, peut être réalisée sur tout substrat, par exemple en plastique. Un procédé selon l'invention peut comporter une étape de dépôt, au moins dans la zone d'attache hydrophile, d'une couche de collage, ou d'assistance au collage, d'un composant ou d'une puce. La surface de la zone d' attache peut être transformée pour être rendue hydrophile, par exemple par la formation d'une couche d'oxyde ou de nitrure (associé à un traitement le rendant hydrophile) .
La surface du substrat peut être initialement homogène, ou hétérogène.
Dans ce dernier cas, elle peut comporter au moins un plot et/ou un via et/ou un contact affleurant la surface du substrat et assurant une connexion électrique et/ou optique et/ou thermique. Au moins l'un des plots et/ou vias et/ou contacts est localisé dans la zone d'attache. Le substrat peut comporter en outre des couches de connexion électrique et/ou optique et/ou thermique .
Une fois un substrat selon l'invention réalisé, il est possible d'aligner, sur la zone hydrophile, puis de coller sur cette même zone, par exemple par collage direct ou adhésion moléculaire ou thermocompression, une puce ou un composant sur la zone d'auto-assemblage, présentant le contraste de mouillabilité localisé souhaité.
Un procédé d'assemblage d'un composant ou d'une puce selon l'invention peut donc comporter les étapes suivantes : a) préparation d'un substrat selon l'invention, telle qu'expliqué ci-dessus, b) auto-alignement de la puce sur la zone d'attache préparée, utilisant les différences de mouillabilité entre les zones hydrophobes du substrat et les autres zones, hydrophiles, c) assemblage, par collage moléculaire ou thermocompression, de la puce alignée sur le site préparé .
Un procédé d'assemblage d'un composant ou d'une puce selon l'invention ne nécessite pas et ne met pas en oeuvre de technique de reconnaissance de forme pour positionner un composant à proximité de sa zone d' attache .
Un procédé d'assemblage d'un composant ou d'une puce selon l'invention peut être réalisé dans l'air.
L'étape d'alignement peut être réalisée à l'aide d'une goutte d'un liquide, par exemple de l'eau, déposée sur la zone hydrophile.
Le composant ou la puce peut comporter un ou plusieurs plots et/ou vias et/ou contacts et/ou une ou plusieurs couches en matériau à fusion à basse température. Dans ce dernier cas, le procédé peut comporter en outre une étape d'accroissement de la température pour réaliser une fusion dudit matériau à fusion à basse température.
Un contact ou une liaison en matériau à fusion à basse température peut être formé entre le composant ou la puce et la surface du substrat, par exemple par la technique mentionnée ci dessus. Un procédé selon l'invention peut en outre comporter, avant alignement du composant ou de la puce, une étape de préparation de la surface à assembler de ce composant ou cette puce, telle qu'un polissage et/ou un traitement par plasma oxygène et/ou un traitement UV - ozone. Selon un mode particulier de réalisation de l'invention, une zone hydrophobe est réalisée en carbone amorphe, par exemple sous forme de couche mince. Le carbone amorphe peut être dopé pour être conducteur . On dépose sur le substrat une couche support de carbone amorphe et on prépare une zone hydrophile .
La zone d'attache peut être délimitée par gravure de la couche hydrophobe en carbone amorphe. On peut donc déposer sur le substrat, ayant éventuellement subi l'un des traitements expliqués ci- dessus, une couche support de carbone amorphe et on prépare une zone hydrophile délimitée par une zone en carbone amorphe. Après l'étape c) ci-dessus, la couche de carbone peut être retirée.
En variante, le carbone amorphe peut être éliminé partiellement, pour laisser subsister une liaison en carbone amorphe entre au moins un plot du composant et la surface du substrat.
Après élimination au moins partielle du carbone amorphe, il est possible de former, par dépôt d'une couche de matériau diélectrique ou en carbone amorphe, une nouvelle surface plane au niveau de la face du composant ou de la puce qui n'est pas assemblée sur le substrat, ou au-dessus de cette face. Cette nouvelle surface plane peut former la surface d'un substrat, puis il est possible de former, sur cette surface, au moins une zone d'attache hydrophile selon l'invention. II est possible de réaliser une nouvelle étape d'assemblage d'un composant selon l'invention, sur cette nouvelle surface.
Un dispositif obtenu par un procédé selon l'invention peut donc être réalisé sur un autre dispositif, lui aussi obtenu par un procédé selon l'invention. A cette fin, on réalise, au niveau de la surface supérieure d'un ou plusieurs composants déjà assemblés sur le substrat, une surface où l'assemblage est possible de nouveau, par exemple pour assembler une puce par-dessus l'autre.
Selon un autre mode particulier de réalisation de l'invention, une zone hydrophobe est réalisée en un matériau métallique, par exemple un matériau de conducteurs déjà présents en surface du substrat, ou une ou des portions d'une antenne métallique. Le matériau métallique peut constituer des motifs qui forment un ou des reliefs par rapport à la surface du substrat.
Le matériau conducteur peut être de l'argent ou du cuivre ou de l'or ou de l'aluminium ou du tungstène. Plus généralement, il peut s'agir de tout matériau conducteur disponible pour la réalisation de contacts électriques pour la micro-électronique ou les micro-systèmes . Les zones hydrophobes permettent donc, là encore, de délimiter une zone d'attache d'une puce ou d'un composant. Ce dernier pourra être amené puis fixé sur la zone hydrophile par l'une des techniques déjà décrites ci-dessus dans le cadre de l'invention.
BRÈVE DESCRIPTION DES DESSINS
- Les figures IA à IG représentent des composants assemblés sur des substrats selon 1' invention,
- les figures 2A-2E représentent des substrats en vue d'une mise en œuvre de l'invention, - les figures 3A-3C représentent des substrats en vue d'une mise en œuvre de l'invention, éventuellement avec dépôt de carbone amorphe pour localiser un ou plusieurs sites d'assemblage,
- les figures 4A-4C représentent la localisation d'une puce avec un substrat selon
1' invention,
- les figures 5A-5C représentent des assemblages d'une puce avec un substrat selon 1' invention, - les figures 6A-6C représentent des assemblages d'une puce avec un substrat selon l'invention, après retrait au moins partiel de la couche de carbone amorphe,
- les figures 7A-7E représentent des assemblages d'une puce avec un substrat selon l'invention, après une reprise de carbone amorphe ou un dépôt de matériau diélectrique sur la couche de carbone amorphe, - les figures 8A et 8B représentent la localisation d'une puce avec un substrat selon l'invention, avec zones hydrophobes métalliques,
- les figures 9A et 1OA représentent des substrats en vue de dessus, avec chacun une zone d'attache localisée par un contour métallique,
- les figures 9B et 1OB représentent les substrats les figures 9A et 1OA, en vue de dessus, avec une puce localisée dans la zone d'attache délimitée par un contour métallique,
- les figures HA et HB représentent des empilements d'étages de composants selon l'invention.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
II sera fait mention ci-dessous de la mise en oeuvre d'une technique de collage par adhésion moléculaire. Une telle technique est par exemple décrite dans Q. Y. Tong, U. Gδsele, Semiconductor wafer bonding, John Wiley and Sons, pp 57-67, 1999.
Des exemples de dispositifs réalisés conformément à l'invention sont illustrés en figures IA-IG.
Dans chaque cas, le dispositif comporte un substrat support 2 avec lequel, ou à la surface duquel, une puce 3 est assemblée. En variante, il s'agit d'une couche support sur un substrat 1. Ce dernier peut alors être en un matériau quelconque, par exemple en plastique, semiconducteur ou non.
Le substrat 2, ou la couche support, est en un matériau non fonctionnel, diélectrique ou semi- conducteur, par exemple de la liste ci-dessous. Plus particulièrement, l'invention met en oeuvre une portion hydrophile de la surface de ce substrat 2 ou la couche support; dans la suite, cette portion hydrophile est par exemple en un matériau diélectrique ou semiconducteur, par exemple en Si, ou Ge ou GaAs ou InP ou GaN, ou en SiO2, ou en Si amorphe, ou en Nitrure de Silicium, ou en SiOC, ou en Oxydes d' ITO conducteurs. Le caractère hydrophile peut être créé et/ou renforcé par un traitement approprié, par exemple par adjonction d'une couche ou par traitement plasma (CARO, plasma 02, oxydation thermique) .
Dans le cas des figures IA, ID, IF et IG ce substrat 2 et sa surface sont homogènes. Selon les variantes illustrées en figures
IB et IE, ce substrat 2 ou sa surface peut être hétérogène. Il peut alors notamment présenter des moyens tels qu'un ou plusieurs plots et/ou vias et/ou contacts assurant une ou plusieurs fonctions électrique et/ou optique et/ou thermique. Il peut également comporter des composants, par exemple CMOS. En figures IB et IE, est illustré le cas de vias 4, 6.
Comme illustré en figure 2C, une ou plusieurs couches 7, 9, 7', 9' peuvent aussi assurer une ou plusieurs de ces fonctions. Dans l'exemple de la figure 2C, les couches 7, 7' assurent une connexion électrique entre les plots 4, 6 et les plots 4', 6', les couches 9, 9' assurant l'isolation de cette connexion . Les plots ou vias, ou contacts ou couches peuvent être en matériaux différents du matériau du reste du substrat ou de la couche 2, par exemple en cuivre ou en SiO2.
Sur les figures IA - IC, la référence 20 désigne une couche de carbone amorphe. Cette couche délimite la zone 12 où le report d'un composant ou d'une puce 3 a été réalisé.
Sur les deux figures ID à IG, la référence
120 désigne une ou des zones hydrophobes métalliques, qui délimitent la zone 12 où le report d'un composant ou d'une puce 3 a été réalisé. Ces zones hydrophobes métalliques forment un ou des reliefs par rapport à la surface 2' du substrat 2.
Sur les figures ID et IE, les zones 120 comportent un épaulement. Mais il est également possible, comme sur les figures IF et IG, que ces zones n'aient pas d' épaulement .
En outre la figure IG représente le cas d'une hybridation au niveau de la zone de contact entre la puce 3 et les zones 120. La puce 3 a alors les plots métalliques permettant d'assurer la connexion avec ces zones 120.
Quelle que soit sa nature, homogène ou hétérogène, et quelle que soit la nature de la zone hydrophobe (en carbone amorphe ou métallique) la surface 2' du substrat ou de la couche 2 (voir figures
2A-2E) peut avoir subi un ou des traitements afin de la fonctionnaliser (c'est à dire de la préparer en vue de l'alignement et du collage), de réaliser l'alignement d'un composant ou d'une puce 3, avec une zone d' auto- assemblage, puis l'assemblage par collage, du composant ou de la puce 3 sur cette zone. Ce dernier est représenté en position assemblée sur les figures 1A-1G. Il est également possible que la surface 2' du substrat comporte une couche 8 supplémentaire permettant de faciliter le collage d'un composant ou d'une puce et/ou de renforcer le contraste de mouillabilité entre la zone 12 et la couche 20. Par exemple, une couche de collage 8 en oxyde fin (pas visible sur les figures IA- IG, mais visible sur les figures 2A-2E) est réalisée par plasma oxygène en surface 2' . Dans le mode de réalisation des figures IB,
IC et IE, la puce 3, par exemple une puce de Silicium processée, présente des plots 14, 16 de contacts, afin de réaliser un contact avec les plots 4, 6 du substrat 2 qui affleurent la zone 12 d'attache. La puce des figures ID et IE présente des zones de contact avec les zones hydrophobes métalliques.
Dans le cas d'une zone hydrophobe en carbone amorphe, et comme illustré sur les figures IA et IB, il peut y avoir, après assemblage de la puce 3, une épaisseur 20 résiduelle de carbone. L'assemblage des figures IA et IB peut subir une étape supplémentaire d'élimination de la couche 20. Un tel retrait, partiel ou complet, peut être réalisé par un plasma Oxygène ou contenant une portion suffisante d'oxygène. Il en résulte une structure telle que celle des figures 6A-6C.
La figure IC représente un autre assemblage selon l'invention, mais avec deux étages, l'un dont les éléments sont identiques ou similaires à ceux déjà décrits ci-dessus et sont donc désignés par des références identiques, l'autre qui comporte une couche 200 de carbone amorphe empilée sur la première, et un composant ou une puce 300 localisé dans une ouverture de cette couche 200. Pour réaliser ce deuxième étage, on utilise là encore une localisation du composant par contraste de mouillabilité, entre une zone hydrophobe comportant un dépôt 200 de carbone amorphe et une zone hydrophile, réalisée, sur la figure IC, en partie au- dessus du composant 3 et en partie au-dessus de la couche amorphe 20 de l'étage inférieur. Cette zone hydrophile peut être obtenue par formation d'une couche hydrophile sur le premier étage - comme expliqué plus loin - et délimitation de la zone d'attache par gravure de la couche 300 de carbone amorphe. Ce mode de réalisation est également possible avec les structures des figures ID et IE : on dépose sur ces structures une couche de carbone amorphe que l'on vient ensuite planariser pour pouvoir reporter un nouveau composant sur cette face.
Le nombre d'étages ainsi empilés peut être quelconque.
Les figures 2A-2E représentent des substrats 2 de base à partir desquels un substrat support selon l'invention va pouvoir être réalisé.
Le substrat de la figure 2A est homogène, en un matériau semi-conducteur, ou autre, comme déjà indiqué ci-dessus. La surface 2' est uniforme et ne présente pas de topologie.
Le substrat de la figure 2D est également homogène, en un matériau semi-conducteur, ou autre, comme déjà indiqué ci-dessus. Mais sa surface 2' n'est pas uniforme et présente une topologie due aux portions ou aux conducteurs métalliques 120.
Les substrats des figures 2B, 2C et 2E sont hétérogènes . Ainsi le substrat de la figure 2B comporte des plots 4, 6 dont la fonction et la nature ont aussi déjà été expliquées ci-dessus.
Le substrat de chacune des figures 2C et 2E comporte, outre les premiers plots 4, 6, une autre série de plots 4', 6' de connexion avec l'une ou l'autre des fonctions particulières (optiques, électriques ...) déjà expliquées ci-dessus. Ces plots permettent de positionner une ou des puces avec interconnexions. En plus des plots, une ou plusieurs couches ou empilements de couches 7, 9, 7', 9' peuvent être réalisées dans le substrat, par exemple entre des plots 4, 4' et 6, 6' .
La surface 2' de chacun des substrats des figures 2B, 2C et 2E est hétérogène. Elle l'est tout d'abord en termes de matériaux : un tel substrat est par exemple en un matériau diélectrique, ou semiconducteur, qui entoure des plots 4, 6 de métal conducteurs (couche SiOC et Cu) . Elle est également hétérogène en termes d'état de surface, les zones où apparaissent les plots présentant un état de surface différents de celui des zones en matériau diélectrique. Un ou des traitements de surface (notamment polissage) permet d'uniformiser cet état de surface.
Dans les zones destinées à recevoir une puce ou un composant, la surface 2' de chacune de ces structures est hydrophile, par exemple par le choix des matériaux utilisés pour le substrat 2 et éventuellement pour les plots 4, 6, 4', 6'; ou bien elle est rendue hydrophile, par l'un des traitements déjà mentionnés ci-dessus, avant assemblage du composant ou de la puce 3. On cherche de même à ce que cette surface, au moins dans ces mêmes zones, destinées à recevoir une puce ou un composant, possède les caractéristiques requises pour le type de collage (de préférence un collage direct) qui sera utilisé. Cette surface peut être préparée (par polissage et/ou nettoyage) de manière à permettre un collage direct (comme décrit dans l'ouvrage de Tong cité ci-dessus) ou le collage par thermo-compression.
Dans le cas d'un substrat ou d'une couche 2 hétérogène, les matériaux qui le constituent sont de préférence choisis pour que ces caractéristiques puissent être obtenues, en surface 2', par un traitement approprié, par exemple par polissage et/ou nettoyage. Un critère de sélection des matériaux est la vitesse de polissage des matériaux en question.
A partir d'une de ces structures, un revêtement hydrophobe va permettre de localiser ou délimiter une ou des zones 12 d'attache ou d'assemblage d'un ou de plusieurs composants. La figure 2D représente le cas d'un substrat comportant, en surface, des zones métalliques 120 par exemple des portions de conducteurs ou des portions d'antennes. Le substrat lui-même peut être homogène (figure 2D) ou hétérogène (figure 2E) . Comme indiqué sur la figure 2D, les zones 120 peuvent aussi ne pas comporter d' épaulement et avoir la forme qui s'étend jusqu'aux traits interrompus.
Les structures des figures 2C et 2E peuvent être utilisées dans des empilements tels que celui de la figure HB : deux étages de composants 3, 300 sont superposés sur un substrat 2. Les connexions entre le substrat 2 et le composant le plus éloigné (ici : le composant 300) de ce substrat sont faites via des zones qui enrobent le ou les composants du premier et du deuxième étage. Des reprises de contact 301 permettent de connecter le ou les composants du dernier étage aux connexions des étages intermédiaires.
Dans le cas de la figure HA, on a aussi deux étages superposés sur un substrat 2, mais via le ou les composant (s) 3 du premier étage.
Dans les deux cas (figures HA et HB), un nombre n>2 d'étages plus important peut être prévu : on peut donc réaliser des connexions entre le substrat 2 et le composant le plus éloigné de ce substrat (celui de l'étage n) soit via le ou les n-1 composants des n-1 premiers étages soit via des zones qui enrobent les composants des n-1 premiers étages. Un procédé de réalisation des structures de substrat, avec couche de matériau hydrophobe en carbone amorphe, va être décrit en liaison avec les figures 3A à 3C, à partir des structures des figures 2A - 2C.
La figure 3A représente une seule zone d'attache 12, mais il peut y en avoir plusieurs 12, 12' pour un seul étage, comme illustré en figure 3B. Ces figures sont basées sur un substrat initial du type de la figure 2A, mais on peut également revêtir les substrats des figures 2B et 2C d'une couche de matériau hydrophobe, puis former dans cette couche une ou plusieurs zones d'attache. La figure IB est d'ailleurs une représentation d'un substrat avec composant fixé dans la zone hydrophile, mais avec un substrat du type de la figure 2B.
Au cours de cette étape est par exemple réalisé un dépôt d'une couche mince 20 de carbone amorphe . La zone d'attache est définie par un motif, qui peut être obtenu par gravure de cette couche mince. De même, des bandes 20', 21' (figure 3B) peuvent être définies par gravure de cette couche (le dépôt de carbone ayant été réalisé sur une surface hydrophile, toute gravure qui permet l'élimination du carbone par un mécanisme d'oxydation (par exemple un plasma localisé ou un traitement UV...) va permettre de libérer les zones d' attaches sans altérer le caractère hydrophile des zones ainsi mises à nu; aucun traitement complémentaire ne sera donc nécessaire pour assurer l'auto-assemblage ultérieur) .
Le revêtement de carbone amorphe, qui correspond à chacune des zones d'attaches 12, 12', est limité à une faible portion de la surface 2' . La zone d'attache 12, 12' est la zone non couverte ou non masquée par du C amorphe, mais entourée de ce matériau ou délimitée par ce matériau (sur lequel l'hybridation ou l'attache de composant ne se fera pas) .
Dans le cas de la figure 3B, l'ensemble constitué par chaque zone d'attache 12, 12' et par ses bandes 20', 21' présente sur la surface du substrat 2 une extension latérale L limitée. Réaliser de tels ensembles de largeur limitée permet de former plusieurs zones d'assemblage. C'est le cas de la figure 3B, où une deuxième zone d'assemblage 12' est réalisée, par formation d'autres bandes 21' en carbone amorphe.
Une telle extension latérale limitée peut aussi être souhaitable lorsque la couche ou le substrat 2 de support ne présente un état de surface satisfaisant que sur une extension ou une surface limitée, comparable (mais supérieure) à celle de la puce à localiser dans la zone 12.
La couche hydrophobe, ici en Carbone amorphe, induit, par rapport au reste de la surface du substrat 2, un contraste en tension de surface - donc en mouillabilité - qui permet la mise en œuvre d'un auto-assemblage des puces ou composants à assembler.
Eventuellement un traitement complémentaire de la surface de chacun des substrats 2 peut être mis en œuvre, afin d'accentuer la localisation des puces ou composants par différence d'énergie de surface et/ou mouillabilité. On peut réaliser à cette fin une couche superficielle 15 d'oxyde du matériau du substrat 2, à l'aide d'un plasma à l'oxygène. Ce traitement entraîne une légère gravure superficielle de la couche de Carbone amorphe mais n'affecte pas ses propriétés hydrophobes. C'est d'ailleurs un aspect avantageux du Carbone amorphe pour la présente invention, que de ne pas former un oxyde à sa surface après exposition à un plasma comportant de l'oxygène. Après ce traitement, une surface comportant du carbone amorphe et un matériau hydrophile présente un contraste de mouillabilité important permettant de réaliser un auto-alignement. La différence entre les angles de contact d'une goutte d'un liquide positionnée sur la couche de carbone amorphe et celui d'une goutte du même liquide positionnée sur le matériau hydrophile est au minimum d'environ 40° (par exemple pour une goutte d'eau de 0,3μl d'eau, et des puces de 5x5 mm2 et d'épaisseur 525 μm) . Elle est par exemple de 80° pour une goutte d'eau de 1 μl sur un substrat de PDMS. On cherche ensuite à réaliser un assemblage d'un composant ou d'une puce, par un collage direct tel qu'un collage moléculaire.
Les figures 4A-4C représentent des étapes d'alignement d'un composant ou d'une puce sur la zone, préparée comme expliqué ci-dessus, d'un substrat selon l'invention. Les figures 4A-4C sont basées sur un substrat initial du type de la figure 2A, mais un alignement peut être réalisé de la même manière à partir de l'un des substrats des figures 2B et 2C, muni d'une ou plusieurs zones d'attache, chacune étant délimitée par une couche hydrophobe .
Cet alignement est réalisé grâce au contraste de mouillabilité obtenu par le traitement, décrit précédemment, du substrat. Le composant est amené à proximité du substrat par une technique dite de « pick and place », ou plus généralement par tout moyen mécanique .
Ce composant ou cette puce 3 à assembler possède, par ailleurs, des caractéristiques adaptées au type d'assemblage ou de collage envisagé sur le substrat 2, par exemple une planéité correcte sur l'ensemble de sa surface 3' à assembler et une contamination particulaire, la plus faible possible, de cette surface. Si ce n'est pas le cas, une préparation de la surface 3' , par exemple par polissage puis nettoyage, permet d'obtenir les caractéristiques souhaitées. Un autre traitement possible, en vue d'un collage moléculaire hydrophile, est un traitement de type plasma oxygène, ou sous UV/ozone.
Mais, de préférence la puce ne reçoit qu'un minimum de traitement, par exemple seulement un traitement de surface. C'est notamment le cas lorsque l'on souhaite assembler de nombreux standards de puces avec des topologies différentes et adapter le substrat grâce à la forme de la couche 20 de carbone amorphe. Les remarques ci-dessus concernant la préparation de la puce s'appliqueront également dans le cas du mode de réalisation avec zone hydrophobe métallique, décrit plus loin en liaison avec les figures 8A - 8B. Dans le cas de la figure 4A, on approche la puce 3 du site d'assemblage 12. On peut donc mettre en œuvre un alignement ou un positionnement grossier de la puce par un procédé tel qu'un procédé aléatoire, qui permet de réaliser une distribution rapide mais peu précise.
Eventuellement, une goutte 13 d'un liquide d'interface, de préférence de l'eau, présente sur la zone d'attache, permet d'aligner avec précision la puce 3 sur le motif 12. Les figures 4B et 4C représentent la même étape, mais pour une puce 3 comportant des plots 5 d' interconnexions pour une liaison avec le substrat via le matériau de la couche 20.
Dans le cas de la figure 4C, la puce présente en outre, sur la surface des plots 5 d'interconnexion, une fine couche 5' en un métal à fusion à basse température, qui va permettre de réaliser des interconnexions pour une liaison avec le substrat, par exemple par thermo-compression. En variante, ces plots sont des billes d' indium ou en cuivre. Ces plots peuvent aussi n'être que des plots de connexion ou de contact et pas de fixation, cette dernière étant assurée par la partie de la puce en regard de la zone 12 d'assemblage.
Comme déjà indiqué en liaison avec la figure 4A, la goutte 13 de liquide d'interface peut être utilisée pour favoriser la réalisation de cette étape d'alignement.
Les figures 5A-5C représentent, pour chacune des situations illustrées en figures 4A-4C des assemblages, ainsi obtenus, d'une puce avec un substrat. Le composant ou la puce 3 est localisé dans la zone d'attache 12 créée antérieurement. Comme déjà indiqué ci-dessus, on réalise de préférence un assemblage par collage moléculaire. L'éventuelle couche d'oxyde 15 favorise un tel collage. La réalisation des connexions 5, 5' de la puce peut être obtenue par une méthode différente (par exemple : utilisation de billes ou de connexions en cuivre) .
En variante un composant ou une puce peut être collé par thermo-compression (par exemple par un collage métallique avec du cuivre notamment) . Ce collage par thermo-compression peut avoir lieu dans la zone hydrophile, ou pas. Dans ce dernier cas, il y a une différence entre, d'une part, les zones de contact, par exemple de type électrique, et, d'autre part, les zones de fixation mécanique (par thermo-compression) .
Un retrait au moins partiel de la couche hydrophobe 20, 20', 21' peut ensuite être effectué. Il en résulte les structures des figures 6A-6C, respectivement pour chacun des assemblages des figures 5A-5C. Là encore, il peut y avoir plusieurs puces ou composants sur un seul étage.
D'éventuelles connexions entre le composant ou la puce (ou les composants ou les puces) et le substrat peuvent être alors établies. Dans le cas des figures 6A et 6C, c'est un retrait intégral de la couche 20 qui a été effectué, par traitement chimique de surface laissant l'assemblage composant 3-substrat 2 inchangé. Un tel traitement chimique est par exemple un traitement par plasma oxygène ou contenant une proportion suffisante d' oxygène .
La figure 6B représente le cas d'un retrait partiel de cette couche 20, également par traitement chimique de surface laissant l'assemblage inchangé. Des portions 2Oi de la couche 20 sont maintenues, pour réaliser une liaison ou un lien fonctionnel entre les plots 5 et la surface 2' du substrat 2, et plus particulièrement ses plots 4, 6. Afin d'assurer une telle fonction le carbone peut avoir été dopé, par exemple pour être conducteur. En figure 6C, après retrait intégral de la couche 20, la température est portée à un niveau permettant la fusion à basse température du métal 5' , afin de réaliser la liaison ou le lien fonctionnel 5'' entre les plots 5 et la surface 2' du substrat 2, et plus particulièrement ses plots 4, 6.
Quel que soit le mode de réalisation, on peut réaliser une deuxième étape d' intégration au dessus de la puce hybridée. On peut notamment réaliser un dépôt d'une nouvelle couche de matériau, dans les zones dans lesquelles le carbone amorphe a été retiré, permettant de retrouver une surface plane fonctionnalisable, à partir de laquelle il sera possible de former un nouvel empilement puce-substrat, le substrat étant cette fois celui obtenu après la reprise de matériau.
Ainsi, en figure 7A, est effectuée une reprise 2Oi de dépôt du Carbone amorphe sur l'ensemble obtenu en figure 6A. Dans certains cas, il est aussi possible de ne pas éliminer cette couche de carbone amorphe (donc de laisser en l'état la structure de la figure 5A) , ce qui permet de ne pas de faire une reprise ensuite. Après une étape de polissage de cette couche 20i, on retrouve une surface plane fonctionnalisable, sur laquelle un nouvel étage de l'empilement peut être réalisé.
Les figures 7B et 7C représentent des cas de dépôt d'une couche 2Û2 de matériau diélectrique sur la couche 2Oi de Carbone amorphe pour revenir à une surface plane non conductrice en dehors de la zone d'attache. En figure 7C, c'est la même technique, mais c'est la puce décrite en Figure 4B qui est mise en œuvre .
En variante, illustrée en figure 7D, un dépôt 2O2 d'un matériau autre que du carbone amorphe peut être réalisé directement sur le substrat 2, après retrait de la couche 20 de carbone amorphe. Le matériau de cette couche 2O2 peut être modifié pour qu'un lien fonctionnel puisse le traverser. Ainsi, en figure 7E, des vias 4-2 et 6-2 ont été réalisés dans la couche 20- 2 pour atteindre le substrat 2 à travers cette dernière. La formation de vias est également réalisable avec les structures des figures 7B et 7C.
Autrement dit, après assemblage de la puce (structure obtenue en figures 6A-6C) on peut former un nouveau plan au niveau de la face supérieure de la puce 3 intégrée sur le substrat 2 (ou de la face non assemblée avec le substrat) , ou au-dessus de cette face supérieure, en vue d'une nouvelle étape d'intégration, en effectuant un dépôt en un matériau tel qu'un diélectrique, ou en Carbone Amorphe, suivi de polissage type CMP. On se ramène ainsi à l'étape initiale, c'est- à-dire à un nouveau substrat support défini par la composant 3 entouré d'un matériau particulier (le diélectrique ou le carbone amorphe) . Sur ce nouveau substrat support, les étapes décrites ci-dessus peuvent être réalisées : formation d'une zone hydrophile délimitée par une zone hydrophobe, puis alignement et assemblage d'une puce ou d'un composant sur la zone hydrophile. On obtient ainsi une structure telle que celle de la figure IC. Un procédé de réalisation des structures de substrat, avec couche de matériau hydrophobe, ici en un matériau métallique, va être décrit en liaison avec les figures 8A-8B, à partir des structures des figures 2D et 2E, donc des structures de substrat éventuellement avec des plots et éventuellement encore avec des couches 7, 9, 7', 9' qui assurent des fonctions électriques et/ou optiques et/ou thermiques. Comme déjà expliqué ci-dessus : - la surface 2', homogène ou hétérogène, du substrat ou de la couche 2 peut avoir subi un ou des traitements afin de la préparer en vue de l'alignement et du collage, de réaliser l'alignement d'un composant ou d'une puce 3, avec une zone d'auto-assemblage, puis l'assemblage par collage, du composant ou de la puce 3 sur cette zone,
- la surface 2' du substrat peut comporter une couche supplémentaire permettant de faciliter le collage d'un composant ou d'une puce et/ou de renforcer le contraste de mouillabilité entre la zone 12 et son pourtour .
La surface 2' du substrat 2 présente, ici encore, des variations de mouillabilité en surface, du fait de la présence en cette surface de deux matériaux différents (dont l'un est métallique), dont les propriétés de mouillabilité sont différentes, ce qui résulte soit de la nature de ces matériaux, soit d'un traitement spécifique de tout ou partie de la surface.
Le matériau métallique 120 peut être celui d'un conducteur, prévu sur la surface du substrat afin de réaliser une fonction électrique spécifique. Par exemple, il peut s'agir de la définition de la forme d'une antenne en surface du substrat 2.
Par exemple la surface peut être en PET, et être munie d'une antenne métallique; ou bien il s'agit d'une surface en oxyde de Silicium avec des zones métalliques .
Dans ces deux cas la partie métallique qui entoure la zone cible, sur laquelle on va cherche à attacher un composant ou une puce, va pouvoir être exploitée pour faire de l'auto-assemblage : le composant 3 sera localisé dans la zone d'attache, hydrophile 12, qui est délimitée par la partie 120 métallique et hydrophobe, qui l'entoure.
Un exemple de dispositif réalisé conformément à l'invention a été décrit ci-dessus en liaison avec les figures ID à IG.
Comme déjà indiqué ci dessus, le composant ou la puce 3 à assembler possède des caractéristiques adaptées au type d'assemblage ou de collage envisagé sur le substrat 2, éventuellement ceci résulte d'une préparation de la surface 3' qui permet d'obtenir les caractéristiques souhaitées.
Pour réaliser l'alignement cherché de la puce 3 sur la zone d'attache, une goutte d'un liquide d'interface, de préférence de l'eau, peut être disposée par des moyens manuels ou robotiques sur la zone d'attache ou à son voisinage.
Du fait du contraste de mouillabilité la goutte de fluide déposée sur la zone d' attache ou à son voisinage se localise d'elle-même dans cette zone. Le volume de fluide déposé peut induire une épaisseur d'eau qui dépasse celle d'une éventuelle topologie due par exemple à des motifs métalliques qui délimitent la zone hydrophile 12.
Une fois exposé à l'air, l'application d'une force externe comme la gravité, ou résultant du passage d'un flux d'air ou de vibrations permet à la goutte 13 de fluide de se retrouver isolée dans la zone d'attache 12.
La goutte 13 disposée et correctement localisée agit telle une force de rappel par minimisation de l'énergie de surface de la goutte.
Une puce 3 peut ensuite être amenée manuellement ou par un dispositif robotique ou par une technique dite de « pick and place », ou plus généralement par tout moyen mécanique. Ou bien, on met en œuvre un alignement ou un positionnement grossier de la puce par un procédé tel qu'un procédé aléatoire, qui permet de réaliser une distribution rapide mais peu précise. Les figures 8A et 8B représentent cette étape, dans le cas d'un substrat et d'une puce respectivement du type de la figure ID ou IE.
L'alignement de la puce 3 vis-à-vis de la zone 12 dépend de la qualité du confinement, donc de la différence de mouillabilité entre les deux matériaux. Après que la puce ait été disposée sur la goutte d'eau, celle-ci corrige le désalignement induit grâce à une force de rappel. Cette force est le moteur de l'alignement final du composant 3 et de la zone d'alignement 12 et dépend du contraste de mouillabilité entre la zone d'attache 12 et son pourtour hydrophobe, que ce contraste soit naturel ou induit par un éventuel traitement de surface.
Le liquide d'interface est ensuite retiré.
On réalise de préférence un assemblage par collage moléculaire de la puce sur sa zone d'attache 12. Une éventuelle couche 15 d'oxyde dans la zone 12 d'attache favorise un tel collage.
Un composant ou une puce peut aussi être collé par thermo-compression (par exemple par un collage métallique avec du cuivre) .
On obtient ainsi des structures telles que celles des figures ID à IG.
Les figures 9A et 1OA représentent chacune, en vue de dessus, une zone d'attache 12 et sa zone hydrophobe 120, 120' qui la délimite. En figure 1OA, les zones 120 sont reliées à d'autres conducteurs 121.
Les figures 9B et 1OB représentent chacune la même zone que, respectivement, les figures 9A et 10A, mais avec un composant 3 positionné et fixé sur la zone hydrophile.
Un fluide 13 qui aide à l' autoassemblage dans le cadre de la présente invention est hydrophile. On en met alors un très faible volume, quelques microgouttes. Dans le document US6507989, au contraire, l'assemblage se fait dans du liquide (avec du liquide baignant l'ensemble des surfaces) : un collage du type de celui mis en œuvre dans le cadre de la présente invention (collage moléculaire ou par thermocompression) n'est alors pas possible. Dans l'article de FUKUSHIMA T ET AL: "New three-dimensional intégration technology using self- assembly technique", Electron devices meeting, 5 décembre 2005, pages 348-351, l'assemblage n'a pas lieu par collage moléculaire au niveau du plot d'attache. Comme illustré en figure 4c de ce document, l'alignement se fait au niveau de premières zones (les « microbumps ») puis l'assemblage se fait par injection d'une substance adhésive (voir figure 4d par exemple et la description de la figure 9 notamment) qui se répand partout sauf au niveau de ces premières zones. L'assemblage n'est donc pas, comme dans la présente invention, réalisé par collage moléculaire ou thermocompression au niveau des zones d'alignement. En outre, comme déjà décrit ci-dessus, les colles utilisées sont par ailleurs des sources de pollution et ne permettent pas la réalisation d'étapes technologiques subséquentes à haute température.

Claims

REVENDICATIONS
1. Procédé d'assemblage d'un ou de plusieurs composants ou puces (3, 300) et d'un substrat (2) , comportant : a) la formation, en surface (2') du substrat (2) , d'au moins une zone d'attache hydrophile (12, 12') en vue d'un auto-assemblage du ou des composants ou de la ou des puces (3, 300) , et d'une zone hydrophobe (20) , qui délimite la ou les zones d'attache hydrophile, b) l'alignement et l'assemblage du ou des composants ou de la ou des puces (3) sur la ou les zones d'attache (12, 12') , à l'aide d'une goutte (13) d'un liquide hydrophile, l'assemblage étant réalisé par collage moléculaire ou thermocompression.
2. Procédé selon la revendication 1, comportant un dépôt, au moins dans une zone d'attache hydrophile, d'une couche (8) de collage, ou d'assistance au collage, d'un composant ou d'une puce.
3. Procédé selon l'une des revendications 1 ou 2, comportant en outre une étape de formation d'une couche d'oxyde (15) dans la ou les zones d'attache (12) .
4. Procédé selon l'une des revendications 1 à 3, la surface (2') du substrat (2) étant initialement homogène ou initialement hétérogène.
5. Procédé selon l'une des revendications 1-3, la surface (2') du substrat (2) étant initialement hétérogène, au moins un plot (4, 6, 4', 6') et/ou un via et/ou un contact affleurant la surface (2') du substrat (2) et assurant une connexion électrique et/ou optique et/ou thermique, au moins l'un des plots (4, 6, 4', 6') et/ou vias et/ou contacts pouvant être localisé dans la zone d'attache (12) .
6. Procédé selon l'une des revendications
4 ou 5, le substrat comportant en outre une ou des couches (7, 9, 7', 9') de connexion électrique et/ou optique et/ou thermique.
7. Procédé selon l'une des revendications
1 à 6, la zone hydrophobe comportant au moins en partie une zone en carbone amorphe.
8 Procédé selon la revendication 7, ladite zone hydrophobe en carbone amorphe étant réalisée sous la forme d'une couche mince (20) .
9. Procédé selon la revendication 7 ou 8, la zone d'attache (12) étant délimitée par gravure de la zone hydrophobe (20) en carbone amorphe.
10. Procédé selon l'une des revendications 7 à 9, le carbone amorphe étant éliminé au moins partiellement, après assemblage d'un ou plusieurs composants ou puces.
11. Procédé selon la revendication 10, le carbone amorphe étant éliminé partiellement, pour laisser subsister une liaison (20-1) en carbone amorphe entre au moins un plot d'un composant et la surface d'un substrat.
12. Procédé selon la revendication 10 ou 11, comportant, après élimination au moins partielle du carbone amorphe, la formation, par dépôt d'une couche (20-2) de matériau diélectrique ou en carbone amorphe, d'une nouvelle surface plane au niveau de la face d'un composant ou d'une puce (3) qui n'est pas assemblée sur le substrat (2), ou au-dessus de cette face.
13. Procédé selon la revendication 12, ladite nouvelle surface plane formant la surface d'un substrat, comportant en outre la formation, sur cette surface, d'au moins une zone d'attache hydrophile (12, 12') et d'une zone hydrophobe (20), qui délimite la ou les zones d'attache hydrophile.
14. Procédé selon la revendication 13, ladite nouvelle surface plane formant la surface d'un substrat, comportant en outre la réalisation d'un procédé d'assemblage d'un composant, sur cette nouvelle surface .
15. Procédé selon l'une des revendications 1 à 14, la zone hydrophobe comportant au moins en partie une zone en un métal, par exemple choisi parmi Cu, Ag, Au, Al, W.
16. Procédé selon la revendication 15, le métal étant celui d'une ou plusieurs antennes formées en surface du substrat ou d'un ou plusieurs conducteurs formés en surface du substrat.
17 Procédé selon l'une des revendications 1 à 16, comportant, avant alignement d'un composant ou d'une puce (3), une étape de préparation de la surface à assembler de ce composant et/ou de cette puce, pouvant comporter un polissage et/ou un traitement par plasma oxygène et/ou sous UV et ozone.
18. Procédé selon l'une des revendications 1 à 17, le ou les composants et/ou la ou les puces comportant un ou plusieurs plots (5, 14, 16) et/ou vias et/ou contacts.
19. Procédé selon l'une des revendications 1 à 18, le ou les composants et/ou la ou les puces comportant une ou plusieurs couches (5' ) en matériau à fusion à basse température, et le procédé comportant en outre une étape de fusion à basse température dudit matériau .
20. Procédé selon la revendication 19, une liaison (5' ' ) en matériau à fusion à basse température étant réalisée entre au moins un plot du composant et la surface du substrat.
EP09731239A 2008-04-09 2009-04-07 Auto-assemblage de puces sur un substrat Withdrawn EP2260508A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0852370A FR2929864B1 (fr) 2008-04-09 2008-04-09 Auto-assemblage de puces sur un substrat
PCT/EP2009/054115 WO2009124921A1 (fr) 2008-04-09 2009-04-07 Auto-assemblage de puces sur un substrat

Publications (1)

Publication Number Publication Date
EP2260508A1 true EP2260508A1 (fr) 2010-12-15

Family

ID=40010852

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09731239A Withdrawn EP2260508A1 (fr) 2008-04-09 2009-04-07 Auto-assemblage de puces sur un substrat

Country Status (5)

Country Link
US (1) US8642391B2 (fr)
EP (1) EP2260508A1 (fr)
JP (1) JP5656825B2 (fr)
FR (1) FR2929864B1 (fr)
WO (1) WO2009124921A1 (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077739A1 (fr) * 2004-12-28 2006-07-27 Mitsumasa Koyanagi Méthode et appareil de fabrication de dispositif à circuit intégré utilisant une fonction d’auto-organisation
FR2929758B1 (fr) * 2008-04-07 2011-02-11 Commissariat Energie Atomique Procede de transfert a l'aide d'un substrat ferroelectrique
DE102009050703B3 (de) * 2009-10-26 2011-04-21 Evonik Goldschmidt Gmbh Verfahren zur Selbstassemblierung elektrischer, elektronischer oder mikromechanischer Bauelemente auf einem Substrat und damit hergestelltes Erzeugnis
JP5732652B2 (ja) * 2009-11-04 2015-06-10 ボンドテック株式会社 接合システムおよび接合方法
JP2011192663A (ja) * 2010-03-11 2011-09-29 Tokyo Electron Ltd 実装方法及び実装装置
TWI446420B (zh) * 2010-08-27 2014-07-21 Advanced Semiconductor Eng 用於半導體製程之載體分離方法
FR2993096B1 (fr) 2012-07-03 2015-03-27 Commissariat Energie Atomique Dispositif et procede de support individuel de composants
JP5963374B2 (ja) * 2012-09-23 2016-08-03 国立大学法人東北大学 チップ支持基板、チップ支持方法、三次元集積回路、アセンブリ装置及び三次元集積回路の製造方法
JP6044592B2 (ja) * 2014-05-29 2016-12-14 トヨタ自動車株式会社 多層配線基板及びその製造方法
KR101713818B1 (ko) 2014-11-18 2017-03-10 피에스아이 주식회사 초소형 led 소자를 포함하는 전극어셈블리 및 그 제조방법
KR101672781B1 (ko) 2014-11-18 2016-11-07 피에스아이 주식회사 수평배열 어셈블리용 초소형 led 소자, 이의 제조방법 및 이를 포함하는 수평배열 어셈블리
KR101730977B1 (ko) * 2016-01-14 2017-04-28 피에스아이 주식회사 초소형 led 전극어셈블리
US9947611B2 (en) * 2016-01-29 2018-04-17 Palo Alto Research Center Incorporated Through hole arrays for flexible layer interconnects
CN108780760B (zh) * 2016-03-17 2022-04-08 东京毅力科创株式会社 使用液体进行的芯片部件相对于基板的校准的方法
KR102608419B1 (ko) * 2016-07-12 2023-12-01 삼성디스플레이 주식회사 표시장치 및 표시장치의 제조방법
FR3063832B1 (fr) * 2017-03-08 2019-03-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede d'auto-assemblage de composants microelectroniques
FR3065321B1 (fr) * 2017-04-14 2019-06-21 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de fabrication d'un dispositif d'affichage emissif a led
KR102513267B1 (ko) 2017-10-13 2023-03-23 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
US10777527B1 (en) * 2019-07-10 2020-09-15 Mikro Mesa Technology Co., Ltd. Method for transferring micro device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6204079B1 (en) * 1998-07-30 2001-03-20 Commissariat A L'energie Atomique Selective transfer of elements from one support to another support
US20020009593A1 (en) * 1999-05-03 2002-01-24 Guardian Industries Corporation Hydrophobic coating including DLC on substrate
WO2006077739A1 (fr) * 2004-12-28 2006-07-27 Mitsumasa Koyanagi Méthode et appareil de fabrication de dispositif à circuit intégré utilisant une fonction d’auto-organisation

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10125571A (ja) * 1996-10-14 1998-05-15 Daewoo Electron Co Ltd パターン形成方法
KR100250637B1 (ko) * 1997-01-06 2000-04-01 윤종용 디하이드로피란에 의한 웨이퍼 프라임 방법
US6507989B1 (en) * 1997-03-13 2003-01-21 President And Fellows Of Harvard College Self-assembly of mesoscale objects
FR2783179B1 (fr) * 1998-09-16 2000-10-06 Commissariat Energie Atomique Dispositif d'analyse chimique ou biologique comprenant une pluralite de sites d'analyse sur un support, et son procede de fabrication
US6623579B1 (en) * 1999-11-02 2003-09-23 Alien Technology Corporation Methods and apparatus for fluidic self assembly
EP1358673A1 (fr) * 2001-02-08 2003-11-05 International Business Machines Corporation Procede et dispositif de transfert de puces
US20050014151A1 (en) * 2001-09-12 2005-01-20 Marcus Textor Device with chemical surface patterns
EP1517752A4 (fr) * 2002-05-03 2009-07-08 Univ California Electrolyse rapide de cellules et collecte rapide des contenus cellulaires par electrophorese capillaire rapide
KR100455293B1 (ko) * 2002-05-15 2004-11-06 삼성전자주식회사 친수성 영역과 소수성 영역으로 구성되는 생물분자용어레이 판의 제조방법
US6946322B2 (en) * 2002-07-25 2005-09-20 Hrl Laboratories, Llc Large area printing method for integrating device and circuit components
JP4484578B2 (ja) * 2004-05-11 2010-06-16 株式会社リコー パターン形状体及びその製造方法
JP2006259687A (ja) * 2005-02-17 2006-09-28 Seiko Epson Corp 膜パターンの形成方法及びデバイスの製造方法、電気光学装置及び電子機器
US7153765B2 (en) * 2005-03-31 2006-12-26 Intel Corporation Method of assembling soldered packages utilizing selective solder deposition by self-assembly of nano-sized solder particles
EP2342742B1 (fr) * 2008-09-26 2018-08-22 IMEC vzw Procédé pour réaliser un assemblage stochastique parallèle
US7898074B2 (en) * 2008-12-12 2011-03-01 Helmut Eckhardt Electronic devices including flexible electrical circuits and related methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6204079B1 (en) * 1998-07-30 2001-03-20 Commissariat A L'energie Atomique Selective transfer of elements from one support to another support
US20020009593A1 (en) * 1999-05-03 2002-01-24 Guardian Industries Corporation Hydrophobic coating including DLC on substrate
WO2006077739A1 (fr) * 2004-12-28 2006-07-27 Mitsumasa Koyanagi Méthode et appareil de fabrication de dispositif à circuit intégré utilisant une fonction d’auto-organisation
US20090023243A1 (en) * 2004-12-28 2009-01-22 Mitsumasa Koyanagi Method and apparatus for fabricating integrated circuit device using self-organizing function

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SCHULZ H ET AL: "Ultra hydrophobic wetting behaviour of amorphous carbon films", SURFACE AND COATINGS TECHNOLOGY, vol. 200, no. 1, 8 March 2005 (2005-03-08), pages 1123 - 1126, XP029229705, ISSN: 0257-8972, DOI: 10.1016/J.SURFCOAT.2005.02.019 *
See also references of WO2009124921A1 *

Also Published As

Publication number Publication date
US8642391B2 (en) 2014-02-04
FR2929864A1 (fr) 2009-10-16
WO2009124921A1 (fr) 2009-10-15
JP2011517104A (ja) 2011-05-26
JP5656825B2 (ja) 2015-01-21
US20110033976A1 (en) 2011-02-10
FR2929864B1 (fr) 2020-02-07

Similar Documents

Publication Publication Date Title
EP2260508A1 (fr) Auto-assemblage de puces sur un substrat
JP2024504035A (ja) 直接接合構造体
EP2162907B1 (fr) Dispositif comportant des composants encastrés dans des cavités d'une plaquette d'accueil et procédé correspondant
US7510907B2 (en) Through-wafer vias and surface metallization for coupling thereto
US7897428B2 (en) Three-dimensional integrated circuits and techniques for fabrication thereof
US7955887B2 (en) Techniques for three-dimensional circuit integration
TWI569408B (zh) 微型元件穩定結構
JP5095394B2 (ja) ウエハの移動方法
EP2148366B1 (fr) Dispositif multi composants intégrés dans une matrice
EP3702323B1 (fr) Dispositif comportant un canal fluidique muni d'au moins un systeme micro ou nanoelectronique et procede de realisation d'un tel dispositif
WO2008074688A1 (fr) Procede de fabrication de capteur d'image a haute densite d'integration
EP1321430A1 (fr) Circuit intégré comportant un composant auxiliaire, par example un composant passif ou un microsystème électromécanique, disposé au-dessus d'une puce électronique, et procédé de fabrication correspondant
WO2021099713A1 (fr) Procede de fabrication d'une puce fonctionnelle adaptee pour etre assemblee a des elements filaires
US7795113B2 (en) Method for bonding a die or substrate to a carrier
JP3535461B2 (ja) 半導体装置の製造方法及び半導体装置
JP2012178605A (ja) ポリマー膜上にエレクトロニクス構成部品を分子接合する方法
CN106252279A (zh) 半导体结构及其制造方法
EP1936678A2 (fr) Procédé de liason et de separation d'une puce ou d'un substrat sur/de un support et produit intermédiaire correspondant
EP3035378B1 (fr) Procédé de transformation d'un dispositif électronique utilisable dans un procédé de collage temporaire d'une plaque sur une poignée et dispositif électronique fabriqué par le procédé
WO2000077729A1 (fr) Dispositif et procede de fabrication de dispositifs electroniques comportant au moins une puce fixee sur un support
CN111834321B (zh) 形成电性贴附结构的方法
JP2013175786A (ja) スルーチップ接続を有するフロントエンドプロセス済ウェハ
KR20220161331A (ko) 가공된 템플릿들을 이용하여 금속 상호연결 층들을 형성하는 방법들 및 시스템들
EP4202981A1 (fr) Procede d'assemblage par collage direct de composants electroniques
FR2979167A1 (fr) Formation de structures semi-conductrices liées dans des processus d’intégration tridimensionnelle en utilisant des substrats récupérables

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101004

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160530

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01L 21/60 20060101ALI20190516BHEP

Ipc: H01L 23/488 20060101ALI20190516BHEP

Ipc: H01L 21/98 20060101ALI20190516BHEP

Ipc: H01L 23/485 20060101ALI20190516BHEP

Ipc: H01L 21/58 20060101AFI20190516BHEP

INTG Intention to grant announced

Effective date: 20190619

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200714

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DI CIOCCIO, LEA

Inventor name: GROSSI, FRANCOIS

Inventor name: VANDROUX, LAURENT

Inventor name: GUEGUEN, PIERRIC

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20201125