EP2256864B1 - Antenne destinée à la polarisation circulaire et dotée d'une surface de base conductrice - Google Patents

Antenne destinée à la polarisation circulaire et dotée d'une surface de base conductrice Download PDF

Info

Publication number
EP2256864B1
EP2256864B1 EP10005480.8A EP10005480A EP2256864B1 EP 2256864 B1 EP2256864 B1 EP 2256864B1 EP 10005480 A EP10005480 A EP 10005480A EP 2256864 B1 EP2256864 B1 EP 2256864B1
Authority
EP
European Patent Office
Prior art keywords
slot
radiator
antenna
electrically conductive
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10005480.8A
Other languages
German (de)
English (en)
Other versions
EP2256864A1 (fr
Inventor
Stefan Lindenmeier
Heinz Lindenmeier
Jochen Hopf
Leopold Reiter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delphi Deutschland GmbH
Original Assignee
Delphi Delco Electronics Europe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delphi Delco Electronics Europe GmbH filed Critical Delphi Delco Electronics Europe GmbH
Publication of EP2256864A1 publication Critical patent/EP2256864A1/fr
Application granted granted Critical
Publication of EP2256864B1 publication Critical patent/EP2256864B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction

Definitions

  • the invention relates to an antenna on the outer skin of a vehicle for the reception of circularly polarized satellite signals, in which a at a distance in front of the front of an electrically conductive ground plane 2 in the flat outer skin of a vehicle and oriented perpendicular to the electrically conductive ground plane symmetry plane SE running with essentially parallel to the electrically conductive ground plane 2 oriented electric dipole radiator 1 with dipole connection point 8 and connected to the latter and in the plane of symmetry SE to the electrically conductive ground plane extending feed line 6 and an antenna connection point 12 are present antennas for generating and receiving other types of polarization other than horizontal or vertical polarization are known from various publications.
  • US-A-4129871 is concerned with the task of modifying horizontally polarized radiating transmitting antennas so that they radiate circularly polarized signals in order to achieve a better television reception, especially in urban areas.
  • US-A-5021797 discloses an elliptically polarized radiating antenna for television signals having a plurality of slot antennas and parasitic dipoles
  • US-A-5272487 discloses an antenna with a conductive mast that can emit elliptically polarized signals, with an emphasis on optimizing the radiation pattern.
  • JP-A-2006-186880 is an antenna for a vehicle for receiving polarized signals, consisting of a slot radiator and a dipole.
  • an electric dipole radiator designed in the same way and extending in a further plane of symmetry oriented perpendicular to both the plane of symmetry SE and the electrically conductive base 2 is used. Both dipole radiators are connected together via a 90 ° phase shifter and the combined signal is conducted via the feed line 6 to the base.
  • Antennas of this type are known, for example from the DE 4008505 A1 , They are often used to receive satellite radio services such as Inmarsat, SDARS, Worldspace, etc.
  • satellite radio services such as Inmarsat, SDARS, Worldspace, etc.
  • An antenna is known in which a provided at a distance from the front of an electrically conductive ground plane in the flat outer skin of a vehicle and in a plane oriented perpendicular to the electrically conductive ground plane symmetry plane, provided with parallel to the electrically conductive ground plane oriented electric dipole radiator with dipole connection point is. At this a in the plane of symmetry to the electrically conductive ground plane extending dipole feed line and an antenna connection point is present.
  • a slot radiator In the electrically conductive ground plane, a slot radiator is designed with its longitudinal extent along the section line between the plane of symmetry and the electrically conductive ground plane with the slot radiator connection point, which is formed by mutually opposite slot connection points located on the longitudinal edges.
  • the slot radiator with the slot radiator connection point is as approximately rectangular slot with straight longitudinal edges and compared to the longitudinal extent of small slot width in the electrically conductive ground plane given by the line of intersection between the plane of symmetry and the electrically conductive ground plane, extending parallel to the longitudinal extent and through the center formed of the slot leading longitudinal symmetry line.
  • the electric dipole radiator and the course of the dipole feed line are designed symmetrically to the line of symmetry perpendicular to the electrically conductive ground plane and running through the center of the slot.
  • the electric dipole radiator with its dipole connection point is electrically symmetrically fed.
  • the electric dipole radiator and the slot radiator have a same resonant frequency.
  • the object of the invention is to provide an improved antenna for the reception of satellite signals with circular polarization.
  • Antennas according to the invention can be advantageously used in particular because of their aerodynamically favorable designability in connection with the low volume of construction outside the body of a vehicle or aircraft.
  • the circular polarization is generated in antennas according to the prior art in such a way that two linearly polarized and in their spatial longitudinal extent mutually perpendicular antennas are present, which in the far field of the antenna, the two spatially oriented perpendicular to each other and 90 ° to each other in the Phase shifted electromagnetic fields.
  • the present invention demonstrates a solution which allows two linearly polarized antennas to be combined but with a longitudinal extent substantially along a common line.
  • This solution consists in the advantageous combination of a slot radiator 3, which is designed in an electrically conductive base 2 along its longitudinal symmetry line SL and arranged in the dipole 14 above this electrically conductive base 2 and parallel to both the electrically conductive base 2 and the longitudinal symmetry line SL electrical Dipole radiator 1.
  • FIG. 1 shows the basic form of a circular polarization antenna according to the invention.
  • a slot radiator 3 in the conductive base 2 is a slot with its longitudinal extent 4 along the line of intersection between the plane of symmetry SE and the conductive base 2 with the slot radiator connection point 7, which by located on opposite longitudinal edges 18 and mutually adjacent slot connection points 19 is formed, formed.
  • the electric dipole radiator 1 with dipole connection point 8 is mounted at a distance from the front side of the electrically conductive base 2. This is oriented substantially parallel to the electrically conductive base 2 and extends in a direction perpendicular to the electrically conductive base 2 oriented plane, here called the plane of symmetry SE.
  • the electric dipole radiator 1 is connected with its dipole connection point 8 to the dipole feed line 6, which is guided in the plane of symmetry SE to the electrically conductive base 2 and extends substantially perpendicular to the electrically conductive base 2 out.
  • the circular polarization is formed by the electromagnetic radiation field of the introduced into the electrically conductive base 2 slot heater 3, the electric field is oriented in the far field perpendicular to its longitudinal extent 4.
  • the slot radiator 3 is therefore arranged with its longitudinal extent 4 along the line of intersection between the plane of symmetry SE and the electrically conductive base area 2, producing a perpendicularly oriented electric radiation field necessary for the circular polarization in a distant reference point to the radiation field of the electric dipole radiator 1.
  • the slot radiator connection point 7 is formed by slot connection points 19 located opposite one another and located on the longitudinal edges 18 of the slot radiator 3.
  • both the electric dipole radiator 1 and the slot radiator 3 are tuned at the frequency for which the antenna is designed, in each case to its resonant frequency, at which the antenna impedance is substantially real.
  • each half-wavelength resonance ( ⁇ / 2) of the two emitters is of particular importance.
  • the slot radiator 3 is introduced with the slot radiator connection point 7 as an elongated approximately rectangular slot with substantially straight longitudinal edges 18 in the electrically conductive base 2. Over the small slot width 5 compared to the longitudinal extent 4, the frequency bandwidth results at the resonance frequency of the slot determined by the longitudinal extent 4.
  • Round radiation properties of the antenna can be achieved according to the invention by observing symmetry conditions in a simple manner.
  • the slot radiator 3 is symmetrical to the longitudinal line SL of symmetry section line between the Symmetrieebene SE and the electrically conductive base 2 to make.
  • the further easy-to-follow symmetry condition is the symmetrical configuration of the electric dipole radiator 1 and its symmetrical feed to the symmetry line ZL perpendicular to the electrically conductive base 2 and passing through the center Z of the slot.
  • the symmetrical feeding at the dipole connection point 8 takes place via the dipole feed line 6 extending substantially symmetrically to the symmetry line ZL.
  • FIG. 2 is to support the radiation on the electric dipole radiator 1 facing the front of the electrically conductive base 2 by shielding against the radiation on the back of the slot radiator 3 on the back of the base 2 by a cavity resonator 15 covered.
  • the cavity resonator 15 is advantageously designed as a conductively bound cavity body, which completely covers the slot radiator 3 and which is electrically connected to the electrically conductive base 2, so that a perfect shield against the radiation of the electromagnetic fields of the slot radiator 3 in the on the back of the electrically conductive base 2 is given half space.
  • the reactive energy stored in the cavity influences - depending on the dimensions of the cavity - the resonance characteristics of the slot radiator 3.
  • the longitudinal extent 4 of the slot radiator 3 is selected about half a wavelength ( ⁇ / 2).
  • the expansion of the cavity body in the longitudinal direction of the slot is at least greater than half a wavelength ( ⁇ / 2) and its dimension in symmetrical mounting transversely to the longitudinal direction of the slot suitably greater than ( ⁇ / 4) selected.
  • the slot is disposed approximately at the level of the electrically conductive base 2 and the cavity body is below, for example, no stylistic disadvantages associated with the application to vehicles, because the housing covering the antennas are wider down to achieve sufficient strength .
  • Its dimension perpendicular to the electrically conductive base 2 is advantageously greater than ( ⁇ / 10) selected depending on the required bandwidth of the slot radiator 3.
  • the center of the cuboid cavity body is suitably chosen lying on the vertical symmetry line ZL.
  • the dipole spacing is 14 to form the circular polarization of the antenna from the electrically conductive base 2 about a quarter of the free space wavelength selected.
  • the phase difference in the interest of the shortest possible dipole feed line 6 for this elevation angle is advantageously 180 ° to choose.
  • the electrical length of the dipole feed line 6 is then approximately ⁇ / 2 and can be implemented to bridge the geometric distance of ⁇ / 4 between the slot connection points 19 and the dipole radiator connection point 8.
  • the required superimposition of the radiation fields of the two radiators at an electrical phase angle of + -90 ° is thus established via the path difference of the electromagnetic wave, which results from the distance of ⁇ / 4 of the electric dipole radiator 1 from the electrically conductive base 2.
  • the signal powers prevailing at the slot radiator connection point 7 and at the dipole connection point 8 must be set approximately the same.
  • the dipole connection point 8 due to the bundling of the radiation, which results together with the mirrored to the electrically conductive base 2 electric dipole radiator 1, set correspondingly lower than at the slot radiator junction 7. Accordingly, to achieve the circular polarization to select both the signal powers and the electrical phase angles at the two radiator connection points 7, 8 in accordance with the different magnitudes of the directional diagrams of the two radiators or their different phases relative to a distant reference point, at a certain predetermined elevation angle. Also, the distance 14 can be varied advantageously for adjusting the vertical directional diagram of the electric dipole radiator 1 and does not have to be selected exactly to ⁇ / 4.
  • This distribution network 13 is in Fig. 1 in a particularly simple embodiment via an asymmetrically designed with respect to the electrically conductive base 2 as a ground plane antenna line 11 to the antenna connection point 12 and in the vicinity of the Center Z formed.
  • one of the slot connection points 19 of the slot radiator connection point 7 is formed by the ground connection of the antenna line 11 on one of the two longitudinal edges 18.
  • the other of the slot connection points 19 is connected by connecting the voltage-carrying conductor of the antenna line 11 adjacent to the opposite longitudinal edge 18.
  • the dipole feed line 6 is designed as a symmetrical two-wire line. Their two conductors are connected with their feed line connection points 25 each with one of the slot connection points 19 of the slot radiator connection point 7. In this way, a conversion of the signals conducted asymmetrically polarized by the antenna line 11 into the signals conducted on the symmetrical two-wire line and symmetrically polarized relative to the electrically conductive base area 2 is achieved in a low-effort manner.
  • the slot connection points 19 of the slot radiator connection point 7 thus also form the feed line connection points 25.
  • the impedance at a slot radiator junction 7 mounted in the center Z of a slot radiator 3 is generally much higher than that of an elongated dipole radiator with values below 100 ohms, up to several kilo-ohms.
  • the chain circuit of several lines with different characteristic impedances and an electrical length of ⁇ / 4 can be used by way of example.
  • the large impedance of the slot radiator 3 compared to the characteristic impedance of the technically feasible lines is bridged into the impedance level of the electric dipole radiator 1 in two steps. For such an impedance transformation carried out in several steps, sufficiently low-impedance line characteristic impedances result, which can be realized on conventional electrical printed circuit boards.
  • antennas according to the invention it is therefore advantageous, for example, to design the dipole feed line 6 by two ⁇ / 4 transformers in chain connection.
  • a first transformation step first the extremely high impedance of the slot radiator 3 at the slot radiator connection point 7 by an electrically ⁇ / 4-long line with a technically feasible characteristic impedance transformed into an impedance which is less than the impedance of the electric dipole radiator 1.
  • the necessary characteristic impedance can be realized as a ribbon cable.
  • the further transformation - starting from this impedance level - in the higher resistance of the electric dipole radiator 1 can then take place in a second transformation step with an electrically ⁇ / 4-long line with a likewise readily realizable line impedance.
  • An exemplary embodiment of such an advantageous antenna according to the invention thus has an electrical length of ⁇ / 2 in the region of the dipole feed line 6.
  • another line piece can be supplemented to cause additional phase rotations.
  • this overall electrically ⁇ / 2-long dipole feed line 6 can be easily arranged by meandering, designed substantially symmetrically to the vertical line of symmetry ZL and running in the plane of symmetry SE wiring so that overall the geometric length of ⁇ / 4 is bridged.
  • ⁇ r of 4 the straight length of a ⁇ / 2 long line gives exactly a geometric length of ⁇ / 4.
  • the antenna may alternatively be used for left or right polarized signals.
  • the dipole and the dipole feed line 6 are printed on a printed circuit board.
  • This technology allows the design of the characteristic impedance and the transformation properties of the feed line 6 within wide limits.
  • inductive and capacitive blanking elements or concentrated dummy elements printed on the printed circuit board can be applied to the design of matching networks 10 and / or phase rotation elements 17.
  • transformation circuits with resonance character - for example, as a parallel resonant circuit with partial coupling - can be realized, which allow the adaptation of the low impedance of the electric dipole radiator 1 to the impedance level of the high-impedance slot radiator 3 to transform.
  • the dipole feed line 6 consists of a printed symmetrical two-wire line, which is connected at its one end to the electric dipole radiator 1 and at the other End is connected to a consisting of dummy elements transformation circuit with a resonant character, which causes the impedance matching to the high impedance level of the slot radiator 3.
  • the line length required for meeting the phase condition is again advantageously provided by a meander-shaped design of the feed line 6, which is guided substantially symmetrically to the vertical line of symmetry ZL and in the plane of symmetry SE.
  • phase-shift chain circuits of lumped reactive elements can be used which do not transform the impedance.
  • the distribution network 13 is formed from a substantially consisting of concentrated reactive elements circuit.
  • Fig. 2 is in a further advantageous embodiment of the invention, the distribution network 13 connected via a relation to the electrically conductive base 2 asymmetrically designed as a ground surface antenna line 11 to the antenna connection point 12 and in the vicinity of the center Z as in FIG. 1 formed by the one of the feeder line connection points 25 by the ground terminal of the antenna line 11 on one of the two longitudinal edges 18 and the other of the feeder line connection points 25 by connecting the voltage-carrying conductor of the antenna line 11 adjacent formed on the opposite longitudinal edge 18 and there also the dipole feed line 6 is connected with its feed line connection points 25.
  • the slot radiator connection point 7 is formed at a distance 16 from the center Z and connected via a parallel branching of the unbalanced antenna line 11 via slot connection points 19 formed in an analogous manner.
  • the antenna resistance of the slot radiator 3 at resonance is maximum in the center Z when the slot radiator connection point 7 is formed and is generally much larger than the characteristic resistance of conventional lines. It changes with increasing distance 16 from the center Z to smaller values. In the interest of better adaptation to such line structures, it is therefore advantageous according to the invention to choose the distance 16 accordingly.
  • the fulfillment of the phase and power conditions is carried out according to the invention in the part of the wiring between the parallel branching of the antenna line 11 and the slot radiator connection point 7 on the one hand and to the dipole connection point 8 on the other.
  • the antenna line 11 is designed to the slot radiator connection point 7 as an asymmetrical with respect to the electrically conductive base 2 as a ground surface stripline 20 whose strip conductor is coupled in known manner by radiation coupling to the slot of the slot radiator 3.
  • the strip conductor is guided in the region of the slot of the slot radiator 3 perpendicular to its longitudinal extent and at least partially over the slot.
  • the one of the slot connection points 19 is given by the ground point at the point where the strip conductor crosses the one of the longitudinal edges 18 in plan view.
  • the other of the slot connection points 19 is given by non-contact radiation coupling of the voltage-carrying stripline on the opposite longitudinal edge 18.
  • the dipole radiator connection point 8 is in the example of Fig. 5 is again arranged in the center Z of the slot radiator 3, wherein the two dipole feed line connection points 25 are again arranged on the two longitudinal edges 18. Due to the electrical dipole radiator 1 connected in the center of the slot radiator 3 is additionally damped, so that the distance 16 must be chosen correspondingly smaller than he would have to be chosen without this damping for the adjustment.
  • the slot radiator 3 is partially included in the distribution network 13 for dividing the signal power present at the antenna connection point 12 on the slot radiator 3 on the one hand and the electric dipole radiator 1 on the other.
  • the slot of the slot radiator 3 at its both ends is formed by substantially transverse to its longitudinal symmetry line SL oriented transverse slots 22.
  • these transverse slots 22 are advantageously designed at both ends to be similar and symmetrical to the longitudinal symmetry line SL, as shown in FIG FIG. 4 is shown.
  • the slot resonance frequency thus occurs at a smaller longitudinal extent 4 than half the free space wavelength ⁇ .
  • the length of the electric dipole radiator 1 can be shortened by the fact that it is loaded at its two ends in each case with a similar end capacity 21.
  • Such end capacities 21 may, for example, as in FIG. 4 be indicated, formed by substantially vertically oriented conductor structures.
  • Such conductor structures according to the invention are particularly advantageous because they do not increase the transverse dimension of the part of the antenna located above the electrically conductive base 2.
  • the electrically conductive base 2 is given by the outer surface of an electrically conductive and formed of sheet metal vehicle body itself, in which the slot radiator 3 is introduced into the sheet.
  • the surface of the electrically conductive body is then designed such that it substantially fills the recess of the electrically conductive vehicle body, and its outer surface is substantially complemented with its surface to a plane and in this way the electrically conductive base 2 is designed.
  • the recess to be introduced into the vehicle body can advantageously be chosen to be only slightly larger in the longitudinal and transverse dimensions than required by the dimensions of the slot.
  • the electrically conductive base 2 is designed as a conductive surface, preferably made of sheet metal and mounted under the vehicle skin.
  • the slot radiator 3 is introduced and it carries in an advantageous embodiment of the invention on its rear side Cavity resonator 15 and on its front side the electric dipole radiator 1 and the dipole feed line 6.
  • the mounting of the antenna can be done on the inside of the vehicle body.
  • the dimensions of the electrically conductive base 2 are two-dimensional sufficiently large to choose so that adjust approximately the radiation properties of the antenna, as they apply to an antenna of this type with extended electrically conductive base 2.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Claims (15)

  1. Antenne destinée à la réception de signaux satellites à polarisation circulaire, dans laquelle sont prévus un radiateur dipolaire électrique (1) qui s'étend à une distance du côté avant d'un plan de base électriquement conducteur (2) et dans un plan de symétrie (SE) orienté perpendiculairement au plan de base électriquement conducteur (2), et qui est orienté sensiblement parallèlement au plan de base électriquement conducteur (2) et qui comprend un emplacement de connexion de dipôle (8) et une ligne d'alimentation de dipôle (6) connectée à ce dernier et s'étendant dans le plan de symétrie SE vers le plan de base électriquement conducteur (2) ainsi qu'un emplacement de connexion d'antenne (12),
    dans laquelle
    - dans le plan de base électriquement conducteur (2), un radiateur à fente (3) ayant son extension longitudinale (4) le long de la ligne d'intersection entre le plan de symétrie SE et le plan de base électriquement conducteur (2) est réalisé avec l'emplacement de connexion (7) de radiateur à fente qui est formé par des points de connexion de fente (19) opposés l'un à l'autre et situés aux bords longitudinaux (18),
    - le radiateur dipolaire électrique (1) et le radiateur à fente (3) possèdent une même fréquence de résonance,
    - le radiateur à fente (3) pourvu de l'emplacement de connexion (7) de radiateur à fente est réalisé sous la forme d'une fente approximativement rectangulaire ayant des bords longitudinaux droits (18) et une largeur de fente (5) petite par comparaison à l'extension longitudinale (4) dans le plan de base électriquement conducteur (2) avec la ligne de symétrie longitudinale (SL) qui est définie par la ligne d'intersection entre le plan de symétrie (SE) et le plan de base électriquement conducteur (2) et qui s'étend parallèlement à l'extension longitudinale (4) et qui mène à travers le centre (Z) de la fente,
    - le radiateur dipolaire électrique (1) et le tracé de la ligne d'alimentation de dipôle (6) sont prévus symétriquement par rapport à la ligne de symétrie (ZL) qui est perpendiculaire au plan de base électriquement conducteur (2) et qui s'étend à travers le centre (Z) de la fente, et le radiateur dipolaire électrique (1) avec son emplacement de connexion de dipôle (8) est alimenté électriquement symétriquement,
    - le radiateur à fente (3) et le radiateur dipolaire électrique (1) avec la ligne d'alimentation de dipôle (6) sont connectés à l'emplacement de connexion d'antenne (12) via un réseau distributeur (13) en fonction de la valeur absolue et de la phase, de telle sorte que lors de la fréquence de résonance des deux radiateurs (1, 3), il existe une polarisation circulaire dans le champ lointain,
    caractérisé en ce que
    - le réseau distributeur (13) est connecté à l'emplacement de connexion d'antenne (12) par une ligne d'antenne (11) réalisée asymétrique par rapport au plan de base électriquement conducteur (2) à titre de plan de masse, et il est réalisé de telle sorte que ledit point de connexion de fente (19) de l'emplacement de connexion de fente (7) est formé par la connexion de masse de la ligne d'antenne (11) sur l'un des deux bords longitudinaux (18), et l'autre point de connexion de fente (19) est formé par connexion du conducteur sous tension de la ligne d'antenne (11) au voisinage sur le bord longitudinal opposé (18), et la ligne d'alimentation de dipôle (6) est réalisée sous la forme d'une ligne bifilaire symétrique dont les deux points de connexion de ligne d'alimentation de dipôle (25) sont agencés sur les deux bords longitudinaux (18).
  2. Antenne selon la revendication 1,
    caractérisée en ce que
    pour soutenir le rayonnement sur le côté avant tourné vers le radiateur dipolaire électrique (1) et pour faire écran à l'encontre du rayonnement sur le côté arrière du plan de base électriquement conducteur (2), le radiateur à fente (3) est recouvert sur la côté arrière du plan de base (2) par un résonateur à cavité (15) recouvrant le radiateur à fente (3).
  3. Antenne selon la revendication 1 ou 2,
    caractérisée en ce que
    l'extension longitudinale (4) du radiateur à fente (3) est approximativement la moitié d'une longueur d'onde, et en vue de réaliser la polarisation circulaire de l'antenne, la distance dipolaire (14) du plan de base électriquement conducteur (2) est choisie approximativement avec un quart de la longueur d'onde en espace libre, et la différence de phase des signaux à l'emplacement de connexion de dipôle (8) et à l'emplacement de connexion de fente (7) est de 0° ou un multiple entier de 180°, en fonction de la direction de rotation de la polarisation circulaire, et les puissances des signaux régnant aux deux emplacements de connexion de radiateur (7, 8) sont approximativement égales.
  4. Antenne selon la revendication 1, 2 ou 3,
    caractérisée en ce que
    le réseau distributeur (13) est réalisé à proximité du centre (Z) de telle sorte que ledit un point de connexion de ligne d'alimentation (25) est formé par la connexion de masse de la ligne d'antenne (11) sur l'un des deux bords longitudinaux (18), et l'autre point de connexion de ligne d'alimentation (25) est formé par connexion du conducteur sous la tension de la ligne d'antenne (11) au voisinage sur le bord longitudinal opposé (18), mais que pour réduire l'impédance du radiateur à fente (3), l'emplacement de connexion de fente (7) est réalisé à une distance (16) du centre (Z) et est connecté par une ramification parallèle de la ligne d'antenne asymétrique (11) par des points de connexion de fente (19) formés de façon analogue.
  5. Antenne selon l'une des revendications 1 à 4,
    caractérisée en ce que
    le dipôle et la ligne d'alimentation de dipôle (6) sont imprimés sur une carte à circuits imprimés, les conditions de phase et de puissance étant satisfaites par la configuration de l'impédance caractéristique et par la configuration de la longueur de ligne par un tracé de la ligne en forme de méandres sensiblement symétrique par rapport à la ligne de symétrie verticale (ZL).
  6. Antenne selon l'une des revendications 1 à 5,
    caractérisé en ce que
    le réseau distributeur (13) est formé par un circuit constitué par des éléments réactifs ayant les propriétés de transformation d'impédance et de rotation de phase nécessaires pour satisfaire les conditions de phase et de puissance.
  7. Antenne selon l'une des revendications 1 à 6,
    caractérisé en ce que
    pour raccourcir l'extension longitudinale (4) du radiateur à fente (3), ses deux extrémités sont configurées en fentes transversales (22) réalisées symétriquement à la ligne de symétrie longitudinale (SL) et orientées perpendiculairement à celle-ci et ayant la longueur de fente (23), suite à quoi, en fonction de la longueur de fente transversale (23) et de la largeur de fente transversale (24), la fréquence de résonance de fente se présente à une extension longitudinale (4) inférieure à la moitié de la longueur d'onde en espace libre λ.
  8. Antenne selon l'une des revendications 1 à 7,
    caractérisée en ce que
    pour raccourcir la longueur du radiateur dipolaire électrique (1), des capacités terminales (21) de même type sont connectées respectivement à ses deux extrémités.
  9. Antenne selon l'une des revendications 1 à 8,
    caractérisé en ce que
    le plan de base électriquement conducteur (2) est la surface extérieure d'une carrosserie de véhicule électriquement conductrice et réalisée en tôle, et le radiateur à fente (3) est intégré dans la tôle.
  10. Antenne selon l'une des revendications 1 à 8,
    caractérisée en ce que
    la ligne d'antenne (11) vers l'emplacement de connexion de radiateur à fente (7) est configurée comme une ligne à bande (20) asymétrique par rapport au plan de base électriquement conducteur (2) à titre de plan de masse, dont le conducteur à bande est mené, dans la zone de la fente du radiateur à fente (3), perpendiculairement à son extension longitudinale et est guidé au moins partiellement par la fente, ce pourquoi l'un des points de connexion de fente (19) est défini par le point sur le plan de base électriquement conducteur (2) à l'emplacement où le conducteur à bande croise l'un des bords longitudinaux (18), en vue de dessus, et l'autre point de connexion de fente (19) est défini sur le bord longitudinal opposé (18) par un couplage rayonnant sans contact physique du conducteur à bande sous tension.
  11. Antenne selon l'une des revendications 1 à 3 ou 5 à 11,
    caractérisée en ce que
    des parties du radiateur à fente (3) sont intégrées dans le réseau distributeur (13) de telle sorte que la puissance de signal qui se présente à l'emplacement de connexion d'antenne (25) et qu'il s'agit de subdiviser entre le radiateur à fente (3) et le radiateur dipolaire électrique (1) est injectée à un emplacement du radiateur à fente (3) à l'emplacement de connexion de radiateur à fente (7), et l'injection de la puissance de signal du radiateur dipolaire électrique (1) est assurée par la connexion des points de connexion de ligne d'alimentation (25) à un autre emplacement du radiateur à fente (3).
  12. Antenne selon l'une des revendications 1 à 11,
    caractérisée en ce que
    pour la transformation entre l'impédance du radiateur à fente (3), comparativement importante par rapport à l'impédance caractéristique de lignes réalisables sur le plan technique, vers le niveau d'impédance du radiateur dipolaire électrique (1) par la ligne d'alimentation de dipôle (6), cette transformation est réalisée à partir d'au moins deux tronçons de ligne électriques branchés en chaîne ayant chacun une longueur électrique de λ/4, et en vue d'obtenir une impédance caractéristique de ligne de valeur ohmique suffisamment faible et réalisable sur le plan technique, l'impédance du radiateur à fente (3) est transformée vers un niveau d'impédance inférieur à celui du radiateur dipolaire (1) par ce tronçon de ligne, et ce niveau d'impédance est transformé par l'autre tronçon de ligne branché en chaîne ayant une impédance caractéristique de ligne à faible valeur ohmique réalisable, pour obtenir l'impédance relativement supérieure du radiateur dipolaire électrique (1).
  13. Antenne selon l'une des revendications 1 à 12,
    caractérisée en ce que
    la ligne d'alimentation de dipôle comprend une ligne bifilaire symétrique imprimée sur une carte à circuits imprimés et connectée par une extrémité au radiateur dipolaire électrique (1), qui est connectée par son autre extrémité à un circuit de transformation à caractère résonnant constitué par des éléments réactifs, qui procure l'adaptation d'impédance au niveau d'impédance élevé du radiateur à fente (3), et en vue de satisfaire la condition de phase, il existe des chaînes de déphaseur constituées d'éléments réactifs concentrés.
  14. Carrosserie de véhicule électriquement conductrice dotée d'une antenne selon l'une des revendications 1 à 13,
    caractérisée en ce que
    un corps électriquement conducteur dans la surface extérieure duquel est réalisé le radiateur à fente (3) est intégré dans l'échancrure de la carrosserie de véhicule électriquement conductrice et est connecté de façon électriquement conductrice à celle-ci, de telle sorte que la surface extérieure du corps électriquement conducteur remplit sensiblement l'échancrure de la carrosserie de véhicule électriquement conductrice, et dont la surface extérieure est complétée par sa surface, ce qui réalise de cette manière le plan de base électriquement conducteur (2).
  15. Carrosserie de véhicule électriquement non conductrice dotée d'une antenne selon l'une des revendications 1 à 13,
    caractérisée en ce que
    le plan de base électriquement conducteur (2) est formé par une surface choisie suffisamment grande d'un corps électriquement conducteur, dans laquelle est intégré le radiateur à fente (3).
EP10005480.8A 2009-05-30 2010-05-27 Antenne destinée à la polarisation circulaire et dotée d'une surface de base conductrice Active EP2256864B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009023514A DE102009023514A1 (de) 2009-05-30 2009-05-30 Antenne für zirkulare Polarisation mit einer leitenden Grundfläche

Publications (2)

Publication Number Publication Date
EP2256864A1 EP2256864A1 (fr) 2010-12-01
EP2256864B1 true EP2256864B1 (fr) 2017-08-09

Family

ID=42320268

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10005480.8A Active EP2256864B1 (fr) 2009-05-30 2010-05-27 Antenne destinée à la polarisation circulaire et dotée d'une surface de base conductrice

Country Status (3)

Country Link
US (1) US8334814B2 (fr)
EP (1) EP2256864B1 (fr)
DE (1) DE102009023514A1 (fr)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100328142A1 (en) * 2008-03-20 2010-12-30 The Curators Of The University Of Missouri Microwave and millimeter wave resonant sensor having perpendicular feed, and imaging system
US20120013512A1 (en) * 2010-07-16 2012-01-19 Joymax Electronics Co., Ltd. Antenna device for vehicle remote control locking system
US20140062812A1 (en) * 2012-08-30 2014-03-06 Cambridge Silicon Radio Limited Multi-antenna isolation
WO2015157622A1 (fr) * 2014-04-11 2015-10-15 CommScope Technologies, LLC Procédé d'élimination de résonances dans des réseaux rayonnants multibandes
CN103984833B (zh) * 2014-05-28 2017-04-26 西安交通大学 一种简化的有向天线极化建模方法
EP3091610B1 (fr) * 2015-05-08 2021-06-23 TE Connectivity Germany GmbH Système d'antenne et module d'antenne à réduction d'interférences entre des motifs rayonnants
US10083888B2 (en) * 2015-11-19 2018-09-25 Advanced Semiconductor Engineering, Inc. Semiconductor device package
DE102016001327A1 (de) 2016-02-05 2017-08-10 Kathrein-Werke Kg Dual polarisierte Antenne
SG11202008308YA (en) * 2018-03-19 2020-09-29 Pivotal Commware Inc Communication of wireless signals through physical barriers
US10225760B1 (en) 2018-03-19 2019-03-05 Pivotal Commware, Inc. Employing correlation measurements to remotely evaluate beam forming antennas
US10862545B2 (en) 2018-07-30 2020-12-08 Pivotal Commware, Inc. Distributed antenna networks for wireless communication by wireless devices
US10326203B1 (en) 2018-09-19 2019-06-18 Pivotal Commware, Inc. Surface scattering antenna systems with reflector or lens
US10522897B1 (en) 2019-02-05 2019-12-31 Pivotal Commware, Inc. Thermal compensation for a holographic beam forming antenna
US10468767B1 (en) * 2019-02-20 2019-11-05 Pivotal Commware, Inc. Switchable patch antenna
CN113270710B (zh) * 2019-05-06 2022-07-12 华为技术有限公司 双模天线结构
US10734736B1 (en) 2020-01-03 2020-08-04 Pivotal Commware, Inc. Dual polarization patch antenna system
US11069975B1 (en) 2020-04-13 2021-07-20 Pivotal Commware, Inc. Aimable beam antenna system
JP2023527384A (ja) 2020-05-27 2023-06-28 ピヴォタル コムウェア インコーポレイテッド 5gワイヤレスネットワーク用rf信号リピータデバイスの管理方法
US11026055B1 (en) 2020-08-03 2021-06-01 Pivotal Commware, Inc. Wireless communication network management for user devices based on real time mapping
US11297606B2 (en) 2020-09-08 2022-04-05 Pivotal Commware, Inc. Installation and activation of RF communication devices for wireless networks
CN112688059B (zh) * 2020-12-14 2022-11-01 中国科学院国家空间科学中心 一种宽带圆极化微带阵列天线
EP4278645A1 (fr) 2021-01-15 2023-11-22 Pivotal Commware, Inc. Installation de répéteurs pour un réseau de communication à ondes millimétriques
JP2024505881A (ja) 2021-01-26 2024-02-08 ピヴォタル コムウェア インコーポレイテッド スマートリピータシステム
US11451287B1 (en) 2021-03-16 2022-09-20 Pivotal Commware, Inc. Multipath filtering for wireless RF signals
US20240170836A1 (en) * 2021-06-02 2024-05-23 Lg Electronics Inc. Antenna system mounted on vehicle
AU2022307056A1 (en) 2021-07-07 2024-02-15 Pivotal Commware, Inc. Multipath repeater systems
JP2023122834A (ja) * 2022-02-24 2023-09-05 株式会社デンソーテン スロットアンテナ
US11937199B2 (en) 2022-04-18 2024-03-19 Pivotal Commware, Inc. Time-division-duplex repeaters with global navigation satellite system timing recovery
KR102588753B1 (ko) * 2023-02-10 2023-10-16 한국지질자원연구원 선형 상보 구조를 갖는 원형 편파 센서 시스템 및 그 동작 방법

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3942119A (en) 1973-03-02 1976-03-02 Hans Kolbe & Co. Multiple-transmission-channel active antenna arrangement
DE2552002C3 (de) 1975-11-20 1979-07-19 Gerhard Prof. Dr.-Ing. 8012 Ottobrunn Flachenecker Funkentstörte Empfangsantenne in der Nähe der Heizleiter auf der Fensterscheibe eines Kraftfahrzeuges
DE2552049C3 (de) 1975-11-20 1979-01-04 Hans Heinrich Prof. Dr. 8035 Gauting Meinke Funkentstörte Empfangsantenne in der Nähe der Heizleiter auf der Fensterscheibe eines Kraftfahrzeuges
US4129871A (en) * 1977-09-12 1978-12-12 Rca Corporation Circularly polarized antenna using slotted cylinder and conductive rods
DE3315458A1 (de) 1983-04-28 1984-11-08 Gerhard Prof. Dr.-Ing. 8012 Ottobrunn Flachenecker Aktive windschutzscheibenantenne fuer alle polarisationsarten
DE3410415A1 (de) 1984-03-21 1985-09-26 Gerhard Prof. Dr.-Ing. 8012 Ottobrunn Flachenecker Aktive antenne in der heckscheibe eines kraftfahrzeugs
DE3517247A1 (de) 1985-05-13 1986-11-13 Gerhard Prof. Dr.-Ing. 8012 Ottobrunn Flachenecker Antennendiversity-empfangsanlage zur elimination von empfangsstoerungen
DE3618452C2 (de) 1986-06-02 1997-04-10 Lindenmeier Heinz Diversity-Antennenanordnung für den Empfang frequenzmodulierter Signale in der Heckscheibe eines Kraftfahrzeugs mit einem darin befindlichen Heizfeld
DE3820229C1 (fr) 1988-06-14 1989-11-30 Heinz Prof. Dr.-Ing. 8033 Planegg De Lindenmeier
DE3907493A1 (de) 1989-03-08 1990-09-20 Lindenmeier Heinz Scheibenantenne mit antennenverstaerker
DE3911178A1 (de) 1989-04-06 1990-10-11 Lindenmeier Heinz Scheibenantennensystem mit antennenverstaerker
DE3914424A1 (de) 1989-05-01 1990-12-13 Lindenmeier Heinz Antenne mit vertikaler struktur zur ausbildung einer ausgedehnten flaechenhaften kapazitaet
US5801663A (en) 1989-05-01 1998-09-01 Fuba Automotive Gmbh Pane antenna having at least one wire-like antenna conductor combined with a set of heating wires
US5266960A (en) 1989-05-01 1993-11-30 Fuba Hans Kolbe Co. Pane antenna having at least one wire-like antenna conductor combined with a set of heating wires
DE4008505A1 (de) 1990-03-16 1991-09-19 Lindenmeier Heinz Antenne fuer die mobile satellitenkommunikation
US5021797A (en) * 1990-05-09 1991-06-04 Andrew Corporation Antenna for transmitting elliptically polarized television signals
DE4101629C3 (de) 1991-01-21 2003-06-26 Fuba Automotive Gmbh Antennendiversity-Anlage mit mindestens zwei Antennen für den mobilen Empfang von Meter- und Dezimeterwellen
US5272487A (en) * 1991-09-30 1993-12-21 Harris Corporation Elliptically polarized antenna
DE4216377A1 (de) 1992-05-18 1993-11-25 Lindenmeier Heinz Funkantennenanordnung in der Nähe von Fahrzeugfensterscheiben
DE4318869C2 (de) 1993-06-07 1997-01-16 Lindenmeier Heinz Funkantennen-Anordnung auf der Fensterscheibe eines Kraftfahrzeugs und Verfahren zur Ermittlung ihrer Beschaltung
DE4441761A1 (de) 1994-11-23 1996-05-30 Lindenmeier Heinz Mehrantennen-Scanning-Diversitysystem für Fahrzeuge
DE19510236A1 (de) 1995-03-21 1996-09-26 Lindenmeier Heinz Flächige Antenne mit niedriger Bauhöhe
DE19607045A1 (de) 1996-02-24 1997-08-28 Lindenmeier Heinz Empfangsantennen-Scanningdiversitysystem für den Meterwellenbereich für Fahrzeuge
DE19612958A1 (de) 1996-04-01 1997-10-02 Fuba Automotive Gmbh Antennenverstärker auf einer Fensterscheibe
DE19614068A1 (de) 1996-04-09 1997-10-16 Fuba Automotive Gmbh Flachantenne
DE19618333A1 (de) 1996-05-07 1997-11-13 Lindenmeier Heinz Schaltungsanordnung zur Funktionsprüfung mobiler Rundfunkempfangsanlagen
US5926141A (en) 1996-08-16 1999-07-20 Fuba Automotive Gmbh Windowpane antenna with transparent conductive layer
DE19636125B4 (de) 1996-09-06 2007-12-06 Fuba Automotive Gmbh & Co. Kg Raumdiversity-Verfahren und -Schaltungsanordnung
DE19637327B4 (de) 1996-09-13 2009-04-09 Delphi Delco Electronics Europe Gmbh Frequenzdiversity-Anordnung
DE19740254A1 (de) 1996-10-16 1998-04-23 Lindenmeier Heinz Funkantennen-Anordnung und Patchantenne auf der Fensterscheibe eines Kraftfahrzeuges
DE19646100A1 (de) 1996-11-08 1998-05-14 Fuba Automotive Gmbh Flachantenne
DE59712744D1 (de) 1996-12-13 2006-11-23 Fuba Automotive Gmbh Leitungs-Steckverbindung
DE19806834A1 (de) 1997-03-22 1998-09-24 Lindenmeier Heinz Antennenanlage für den Hör- und Fernsehrundfunkempfang in Kraftfahrzeugen
US6130645A (en) 1998-01-14 2000-10-10 Fuba Automotive Gmbh & Co. Kg Combination wide band antenna and heating element on a window of a vehicle
DE19817573A1 (de) 1998-04-20 1999-10-21 Heinz Lindenmeier Antenne für mehrere Funkdienste
DE19834577B4 (de) 1998-07-31 2011-12-29 Delphi Technologies, Inc. Antennensystem
DE19847653A1 (de) 1998-10-15 2000-04-20 Heinz Lindenmeier Einrichtung zur Unterdrückung des Empfangs von fahrzeugemittierter Störstrahlung
DE19847887A1 (de) 1998-10-18 2000-04-20 Heinz Lindenmeier Scanning-Antennen-Diversity-System für Fahrzeuge
DE19854169A1 (de) 1998-11-24 2000-05-25 Heinz Lindenmeier Fensterscheibenantenne mit hochfrequent hochohmig angeschlossenem Heizfeld
DE19858465A1 (de) 1998-12-17 2000-06-21 Heinz Lindenmeier Scanning-Diversity-Antennensystem für Fahrzeuge
DE19916855A1 (de) 1999-04-14 2000-10-26 Heinz Lindenmeier Funktelefonanlage mit Gruppenantenne für Fahrzeuge
DE19930571B4 (de) 1999-07-02 2010-04-29 Delphi Delco Electronics Europe Gmbh Diagnosevorrichtung für eine Mehrantennenanordnung
DE10033336A1 (de) 1999-08-11 2001-04-12 Heinz Lindenmeier Diversityantenne für eine Diversityantennenanlage in einem Fahrzeug
DE10010226A1 (de) 1999-08-31 2001-03-01 Lindenmeier Heinz Antenne auf dem Fenster eines Kraftfahrzeugs
DE10102616A1 (de) 2000-02-17 2001-08-23 Heinz Lindenmeier Antennendiversityanlage mit phasengeregelter Summation von Antennensignalen
DE10100812B4 (de) 2001-01-10 2011-09-29 Heinz Lindenmeier Diversityantenne auf einer dielektrischen Fläche in einer Fahrzeugkarosserie
DE10163793A1 (de) 2001-02-23 2002-09-05 Heinz Lindenmeier Flachantenne für die mobile Satellitenkommunikation
DE50206435D1 (de) 2001-03-02 2006-05-24 Fuba Automotive Gmbh Diversity-Anlage zum Empfang digitaler terrestrischer und/oder Satelliten-Funksignale für Fahrzeuge
US6768457B2 (en) 2001-03-02 2004-07-27 Fuba Automotive Gmbh & Co. Kg Diversity systems for receiving digital terrestrial and/or satellite radio signals for motor vehicles
DE10114769B4 (de) 2001-03-26 2015-07-09 Heinz Lindenmeier Aktive Breitbandempfangsantenne
DE10305741A1 (de) 2002-02-22 2003-09-11 Daimler Chrysler Ag Verfahren und Anordnung zum Prüfen mindestens einer Antenne
DE10209060B4 (de) 2002-03-01 2012-08-16 Heinz Lindenmeier Empfangsantennenanordnung für Satelliten- und/oder terrestrische Funksignale auf Fahrzeugen
DE10245813A1 (de) 2002-10-01 2004-04-15 Lindenmeier, Heinz, Prof. Dr.-Ing. Aktive Breitbandempfangsantenne mit Empfangspegelregelung
DE10258367A1 (de) 2002-12-12 2004-07-08 Daimlerchrysler Ag Mehrzielfähiges Verfahren und mehrzielfähige Sensorvorrichtung für die Abstands- und Winkelortung von Zielobjekten im Nahbereich
DE10304431A1 (de) 2003-02-04 2004-08-05 Lindenmeier, Heinz, Prof. Dr.-Ing. Scanning-Antennen-Diversitysystem für den FM-Hörrundfunk für Fahrzeuge
DE10304909B4 (de) 2003-02-06 2014-10-09 Heinz Lindenmeier Antenne mit Monopolcharakter für mehrere Funkdienste
DE10304911B4 (de) 2003-02-06 2014-10-09 Heinz Lindenmeier Kombinationsantennenanordnung für mehrere Funkdienste für Fahrzeuge
US6927735B2 (en) 2003-02-25 2005-08-09 Fuba Automotive Gmbh & Co. Kg Antenna arrangement in the aperture of an electrically conductive vehicle chassis
JP2006186880A (ja) 2004-12-28 2006-07-13 Denso Corp 円偏波アンテナ
DE102006006266A1 (de) 2005-02-13 2006-08-24 Lindenmeier, Heinz, Prof. Dr. Ing. Anlage zum Empfang von digital modulierten Funksignalen zu einem Fahrzeug unter Verwendung von Antennendiversity
DE202005008338U1 (de) 2005-05-24 2005-12-22 Fuba Automotive Gmbh & Co. Kg Antennenkonfiguration für den Rundfunkempfang in Kfz
DE102006039357B4 (de) 2005-09-12 2018-06-28 Heinz Lindenmeier Antennendiversityanlage zum Funkempfang für Fahrzeuge
DE102006057520A1 (de) 2005-12-15 2007-06-21 Lindenmeier, Heinz, Prof. Dr. Ing. Empfangsanlage mit Gleichphasung von Antennensignalen
DE102007011636A1 (de) 2007-03-09 2008-09-11 Lindenmeier, Heinz, Prof. Dr. Ing. Antenne für den Rundfunk-Empfang mit Diversity-Funktion in einem Fahrzeug
EP1978647A3 (fr) 2007-04-05 2013-10-09 Delphi Delco Electronics Europe GmbH Système de réception à large bande
DE102007017478A1 (de) 2007-04-13 2008-10-16 Lindenmeier, Heinz, Prof. Dr. Ing. Empfangsanlage mit einer Schaltungsanordnung zur Unterdrückung von Umschaltstörungen bei Antennendiversity
EP2037593A3 (fr) 2007-07-10 2016-10-12 Delphi Delco Electronics Europe GmbH Installation de diversité d'antennes pour la réception radio à bande relativement large dans des véhicules
DE102007039914A1 (de) 2007-08-01 2009-02-05 Lindenmeier, Heinz, Prof. Dr. Ing. Antennendiversityanlage mit zwei Antennen für den Funkempfang in Fahrzeugen
DE102008003532A1 (de) 2007-09-06 2009-03-12 Lindenmeier, Heinz, Prof. Dr. Ing. Antenne für den Satellitenempfang
DE102008047937A1 (de) 2008-09-18 2010-03-25 Delphi Delco Electronics Europe Gmbh Rundfunk-Empfangssystem

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AZADEGAN R ET AL: "A novel approach for miniaturization of slot antennas", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 51, no. 3, 1 March 2003 (2003-03-01), pages 421 - 429, XP011096793, ISSN: 0018-926X, DOI: 10.1109/TAP.2003.809853 *
FILIPOVIC D S ET AL: "A thin broadband cavity-backed slot spiral antenna for automotive applications", IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM. 2001 DIGEST. APS. BOSTON, MA, JULY 8 - 13, 2001; [IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM], NEW YORK, NY : IEEE, US, 8 July 2001 (2001-07-08), pages 414 - 417vol.1, XP032405022, ISBN: 978-0-7803-7070-8, DOI: 10.1109/APS.2001.958879 *
PANTSIOS F A: "NEW ELEMENTS THAT PROVIDE PATTERN VERSATILITY IN COAX AND WAVESTAR ANTENNAS", IEEE TRANSACTIONS ON BROADCASTING, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 36, no. 3, 1 September 1990 (1990-09-01), pages 219 - 225, XP000161664, ISSN: 0018-9316, DOI: 10.1109/11.59848 *
R. COX ET AL: "Circularly polarized phased array antenna element", IRE TRANSACTIONS ON ANTENNAS AND PROPAGATION, vol. 18, no. 6, 1 November 1970 (1970-11-01), USA, pages 804 - 807, XP055254617, ISSN: 0096-1973, DOI: 10.1109/TAP.1970.1139801 *

Also Published As

Publication number Publication date
DE102009023514A1 (de) 2010-12-02
US20100302112A1 (en) 2010-12-02
US8334814B2 (en) 2012-12-18
EP2256864A1 (fr) 2010-12-01

Similar Documents

Publication Publication Date Title
EP2256864B1 (fr) Antenne destinée à la polarisation circulaire et dotée d'une surface de base conductrice
DE69608132T2 (de) Schlitzspiralantenne mit integrierter symmetriereinrichtung und integrierter zuleitung
EP2664025B1 (fr) Antenne de réception multibande pour la réception combinée de signaux satellites et de signaux radiophoniques à émission terrestre
DE69604583T2 (de) Gedruckte mehrband-monopolantenne
DE102010035932B4 (de) Antenne für den Empfang zirkular polarisierter Satellitenfunksignale
DE69732975T2 (de) Kleine antenne für tragbares funkgerät
DE68909072T2 (de) Breitbandige Antenne für bewegliche Funkverbindungen.
EP3411921B1 (fr) Antenne à double polarisation
DE102005060648B4 (de) Antennenvorrichtung mit für Ultrabreitband-Kommunikation geeigneten Strahlungseigenschaften
DE102016207434B4 (de) Antennenvorrichtung
DE102008003532A1 (de) Antenne für den Satellitenempfang
EP2424036B1 (fr) Antenne de réception pour signaux radio par satellite polarisés circulaires
DE202021106120U1 (de) Strahlerelemente mit abgewinkelten Einspeiseschäften und Basisstationsantennen einschließlich derselben
EP2693565B1 (fr) Emetteur électrique pour signaux radio polarisés verticalement
EP3178129B1 (fr) Antenne unipolaire à bande large à structure multiple pour deux bandes de fréquence séparées par un espace blanc dans la plage d'ondes décimétriques, destinée à des véhicules
DE3931752A1 (de) Koaxialschlitzantenne des wanderwellenleitungstyps
EP2830156A1 (fr) Émetteur de rayonnement à conducteur creux, émetteur de rayonnement de réseaux d'antennes et émetteur de rayonnement de radar à ouverture synthétique
DE102007055327B4 (de) Externes mehrbandiges Funkantennenmodul
DE19729664C2 (de) Planare Breitbandantenne
EP2034557B1 (fr) Antenne pour la réception de satellites
DE102014016851B3 (de) MIMO Schlitzantenne für Kraftfahrzeuge
DE19603803C2 (de) Quad-Antenne, auf einem isolierenden Material und Verfahren zu deren Fertigung
EP4383460A2 (fr) Antenne satellite
DE102007012570B4 (de) Patch-Antenne
DE4220131C2 (de) Aktive Empfangsantenne für einen Empfang im Nahfeld in Form einer Leiterschleife, insb. einer strahlenden geschlitzten Koaxialleitung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

17P Request for examination filed

Effective date: 20110601

17Q First examination report despatched

Effective date: 20160314

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170217

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 917759

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010013956

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010013956

Country of ref document: DE

Owner name: DELPHI DEUTSCHLAND GMBH, DE

Free format text: FORMER OWNER: DELPHI DELCO ELECTRONICS EUROPE GMBH, 42119 WUPPERTAL, DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: DELPHI DEUTSCHLAND GMBH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170809

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171109

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171209

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171109

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171110

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20180201 AND 20180207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010013956

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 917759

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100527

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200522

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200527

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240726

Year of fee payment: 15