EP2034557B1 - Antenne pour la réception de satellites - Google Patents

Antenne pour la réception de satellites Download PDF

Info

Publication number
EP2034557B1
EP2034557B1 EP20080015708 EP08015708A EP2034557B1 EP 2034557 B1 EP2034557 B1 EP 2034557B1 EP 20080015708 EP20080015708 EP 20080015708 EP 08015708 A EP08015708 A EP 08015708A EP 2034557 B1 EP2034557 B1 EP 2034557B1
Authority
EP
European Patent Office
Prior art keywords
antenna
loop
conductor
der
monopole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20080015708
Other languages
German (de)
English (en)
Other versions
EP2034557A2 (fr
EP2034557A3 (fr
Inventor
Stefan Lindenmeier
Heinz Lindenmeier
Jochen Hopf
Leopold Reiter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delphi Delco Electronics Europe GmbH
Original Assignee
Delphi Delco Electronics Europe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102008003532A external-priority patent/DE102008003532A1/de
Application filed by Delphi Delco Electronics Europe GmbH filed Critical Delphi Delco Electronics Europe GmbH
Publication of EP2034557A2 publication Critical patent/EP2034557A2/fr
Publication of EP2034557A3 publication Critical patent/EP2034557A3/fr
Application granted granted Critical
Publication of EP2034557B1 publication Critical patent/EP2034557B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/32Vertical arrangement of element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/32Vertical arrangement of element
    • H01Q9/36Vertical arrangement of element with top loading

Definitions

  • the invention relates to an antenna for receiving circularly polarized satellite radio signals.
  • Satellite radio signals are transmitted due to polarization rotations in the transmission path usually with circularly polarized electromagnetic waves.
  • program contents are transmitted, for example, in frequency bands closely spaced separate frequency bands. This is done in the example of SDARS satellite broadcasting at a frequency of about 2.3 GHz in two adjacent frequency bands each with a bandwidth of 4 MHz with a spacing of the center frequencies of 8 MHz and 4 MHz.
  • the signals are emitted by different satellites with a circularly polarized in one direction electromagnetic wave.
  • circularly polarized antennas are used for reception in the corresponding direction.
  • Such antennas are for example off DE-A-4008505 and DE-A-10163793 known.
  • This satellite broadcasting system is additionally supported by the regional emission of terrestrial signals in another, arranged between the two satellite signals frequency band of the same bandwidth.
  • a satellite receiving antenna in which a dipole antenna whose antenna connection point lies in the plane of the loop antenna is arranged in the center of a circular loop antenna.
  • the dipole antenna and loop antenna are connected via half-wave / half-balanced lines to a 90 ° hybrid coupler which combines the horizontally polarized signals received from the loop antenna and the vertically polarized signals received from the dipole antenna into a circularly polarized signal.
  • the conductor loop of the loop antenna is interrupted on diametrically opposite sides, wherein one of the breaks contains a capacitive element and the other interruption forms an antenna junction, which is connected to the two halves of the conductor loop via a matching network of capacitors.
  • the circumference of the conductor loop is half a wavelength long.
  • Other antennas combining horizontal and vertical electric fields for receiving circularly polarized signals are off JP 2000-077934 A1 and DE 101 63 793 A1 known.
  • the object of the invention is therefore to provide an antenna which is suitable for receiving the radiated in both satellite frequency bands electromagnetic waves with both left-handed (LHCP) and with clockwise circular polarization (RHCP) and at its antenna connection point about the same, for the Satellite reception has suitable radiation characteristics.
  • the antenna should also be able to be economically designed.
  • the antenna for receiving circularly polarized satellite radio signals comprises at least one two- or three-dimensional antenna conductor structure connected to an antenna output terminal and is characterized in that the multidimensional antenna conductor pattern is designed to consist essentially of a plurality of antenna conductor sections which, relative to a space reference point common to the antenna conductor sections, arranged in pairs symmetrically and in the same direction, and that the multidimensional antenna conductor structure is further configured such that when the antenna is reciprocally operated as the transmitting antenna in the individual pairs of antenna conductor sections, antenna currents of at least approximately equal magnitude and the arithmetic mean of the current phases of these antenna currents respectively counted in the antenna conductor portions of each pair in the same direction at substantially seed individual pair of antenna conductor sections has at least approximately the same value with respect to a common phase reference point.
  • Such an antenna is capable of receiving and leaving both left-handed circularly polarized waves and right-handed circularly polarized waves Realize itself by relatively simple Antennenleiterer Modellen also suitable for receiving satellite signals elevation angle of the radiation pattern.
  • the distribution of the currents on an antenna in receive mode depends on the terminator at the antenna junction.
  • the distribution of the currents on the antenna conductors relative to the supply current at the antenna connection point is independent of the source resistance of the supplying signal source and is thus clearly linked to the directional diagram and the polarization of the antenna.
  • the object of the invention is directed to a receiving antenna, the properties of the antenna are described below for better traceability for the reciprocal operation of the antenna as a transmitting antenna, the transmission case, however, due to the naturally valid reciprocity relationship also applies to the reception case.
  • a particular advantage of an antenna according to the invention is the property that the electric field strength vector generated according to the law of reciprocity when operating the antenna as transmitting antenna in the far field is polarized in each point of the room at any time along a fixed, fixed line specific to that point of the room in that, however, there is no equality requirement with respect to the direction of this line in the space for the different spatial directions of the radiation pattern, as is known in the case of radio transmission with linear polarized antennas.
  • this line is always perpendicular to the propagation direction, but with respect to its other direction according to the invention is completely free formable. This results in a manageability variety that allows optimal adaptation to a required radiation pattern.
  • the antenna it is only necessary to preclude a temporal change in the direction of the electrical and thus the magnetic field strength vector for the reciprocal operation as a transmitting antenna in each spatial direction over the period of high frequency oscillation. Spaces in which this condition is not met, always contribute to the support of one of the two satellite signals and thus forcibly to the attenuation of the other satellite signal and thus weaken the overall system.
  • FIG. 1 illustrates the problem from which the invention proceeds.
  • the problem arises from the fact that two satellite radio frequency bands with small bandwidth Bu or Bo closely adjacent at a high frequency in the L band or in the S band, in any case at a frequency of fm> 1 GHz with opposite directions, that is with right rotating circular polarization (RHCP) or left rotating circular polarization (LHCP) are radiated.
  • RHCP right rotating circular polarization
  • LHCP left rotating circular polarization
  • the electrically very short conductor elements are as vectors ⁇ 1 ... ⁇ 5 , whose direction is given both by the direction of the position in space and by the Zählpfeilraum of the current flowing on the conductor element current, which can be regarded as constant in magnitude and phase.
  • the coordinate directions of the spatial coordinate system are denoted by x, y and z, its coordinate origin by B.
  • vth conductor element with the complex current Iv and its by the position vector p ⁇ described position in space can be its contribution to the complex electric field strength vector e ⁇ y in far-field point of view P, distant from the origin B of the coordinate system by a distance r A , whose position is further divided by the unit direction vector r described.
  • is the elevation angle related to the vertical direction and ⁇ is the azimuthal angle.
  • fictitious, equally long conductor elements can be arranged along a straight line and connected to one another in a conductive manner, so that essentially a rod-shaped conductor is formed and an interruption of the rod-shaped conductor forms an antenna connection point.
  • Linear conductors have the property that all conductor elements have a same directional vector whose components in the x, y and z direction are in a common relationship to all the conductor elements.
  • a substantially rod-shaped conductor 4 can be mounted substantially perpendicularly over a substantially horizontal, electrically conductive base surface 6.
  • the same spatial direction applies as for the antenna itself. This results in the desired for mobile reception Rundstrahl properties of the antenna.
  • the rod-shaped conductor 4 is inclined relative to the vertical line 2 on the base surface 6, this forms together with its mirror image a V-shaped antenna.
  • the deviation of the antenna from the vertical line on the base surface 6 is as small as possible.
  • the conductors 4 forming a substantially perpendicular monopole 7 contain at least one interruption point 5 which connects at least one dummy element 8 to the design of the vertical diagram or bridged.
  • the vertical diagram can be advantageously adapted to the requirements.
  • Vehicle antennas are often designed as combination antennas for multiple radio services. In particular, for the reception of AM / FM broadcast signals longer antennas are required.
  • An antenna like in FIG. 3 with the height h2 can be advantageously extended to an AM / FM rod antenna with the total height hg, as in FIG. 4 is shown.
  • a further interruption point 5 is provided at the upper end of the satellite receiving antenna, which is connected to a high impedance reactance, for example, with a parallel resonant circuit 39, the resonant frequency f r on the center frequency f m of the satellite frequency bands is tuned.
  • a further interruption point 5 is connected at a distance 40, which is preferably smaller than 1 / 5 ⁇ to further secure the radiation characteristic also with a high-impedance reactance 39 connected.
  • the extension 32 of the rod antenna can be made largely free and in particular contain such series elements, which are high impedance at the satellite frequency.
  • e ⁇ 1 - 2 c ⁇ I 1 ⁇ RVX 1 RVY 1 RVZ 1 ⁇ cos wt + ⁇ ⁇ p ⁇ 1 ⁇ r ⁇ + ⁇ 1 + cos wt - ⁇ ⁇ p ⁇ 1 ⁇ r ⁇ + ⁇ 1
  • the direction of the sum vector SV thus results not only from the directions of the two direction vectors of the paired conductor elements ⁇ 1 , ⁇ 2 , but also from their complex currents and is the ratio of the components SVx, SVy, SVz of the sum vector SV certainly.
  • Each of these components changes in phase over the period of the cosine oscillation, so that according to the invention the polarization of the electric field strength vector takes place strictly along a line at any point in time. Naturally, this line is always perpendicular to the unit direction vector r oriented, but otherwise can take any direction. A component of the electric field strength perpendicular to this line does not exist at any time.
  • an antenna consisting of a plurality of symmetrically to a common reference point B in space in the manner indicated in pairs and arranged identically aligned electrically very short conductor elements ⁇ 1 , ⁇ 2 and ⁇ 3 , ⁇ 4 , etc. as in FIG. 2 is achieved, it is achieved that - caused by the excitation of the antenna at the antenna connection point 3 - this pair act as radiating elementary antennas ⁇ n , ⁇ m and in both belonging to a pair of elementary antennas elemental antennas, eg. B. ⁇ 1 , ⁇ 2 in FIG.
  • Such a loop 14 may, for example, be designed as a regular n-gon with the phase reference point B in the symmetry point of the n-gon.
  • the loop antenna 14 is formed of a plurality of closed loops with a common phase reference point, but in one of the loops, the antenna junction 3 is formed by interruption.
  • the loop antenna 14 consists of a plurality of loops arranged in a row, which are essentially in mutually parallel planes with the smallest possible distance from each other in the form of a coil or
  • Spiral are arranged.
  • a substantially common central phase reference point is formed for all loops and the antenna connection point 3 is provided by the two ends of the coil.
  • the loop antenna 14 is not electrically short and contains for effective electrical shortening several introduced at points of interruption 5 capacitors or capacitors. As a result, the constancy of the current is given by amount and phase on the conductor elements sufficiently.
  • Fig. 5a shows a circular loop antenna 14 with radius R, which may also be designed polygonal. At its center is the phase center B.
  • the structure is subdivided into "z" line sections, each with the length ⁇ s.
  • the total orbital length is S.
  • the antenna acts as a loop antenna with dimensions in the range of the wavelength, wherein nevertheless a homogeneous current distribution is achieved by dividing the structure and inserting capacitances 16 according to the invention.
  • the length of the antenna is electrically shortened and creates a homogeneous, horizontally polarized electromagnetic field all around.
  • the loop is two-dimensional.
  • the loop antenna 14 is arranged at a constant height h above the conductive base 6. Due to the reflection on the base 6 lies the common phase center B now on the base 6.
  • two paired electrically very short conductor elements as vectors ⁇ 1 , ⁇ 2 , whose direction is given both by the direction of their position in space and by the counting arrow direction of the current flowing on the conductor element current, which can be regarded as constant in magnitude and phase.
  • the vertical main beam direction can be adjusted by the choice of the height h and the radius of the line ring. It can be achieved a zero point in the vertical direction and in the horizontal direction.
  • the conductor characteristic impedance of the as shown in FIG. 5c circulating line over the conductive base 6 is Zw.
  • the line of length S is to be divided into a sufficient number of sections by insertion of capacitances 16.
  • a horizontally arranged loop antenna 14 is placed at a distance of about 1/16 of the wavelength above the conductive base 6, as exemplified in FIG. 5b is shown.
  • the diameter of the loop antenna 14 is chosen to be slightly larger than 1/4 of the wavelength.
  • Along the conductor guide is at intervals of about 1/8 of the wavelength each with a capacity 16 with a reactance of about -200 ohms connected interruption point 5 is introduced.
  • FIG. 7 For example, the vertical diagram of such an antenna is shown for a) left-hand rotating circular polarization and b) right-hand rotating circular polarization.
  • a possible small residual imbalance can be reduced by refinement of the circuit according to the above specifications with reactances and perfection of the symmetry of the antenna with respect to the antenna connection point 3.
  • a radius R of about 4 cm, a height h of about 18 mm and a conductor diameter D of about 3 mm have to be favorable for realizing both the vertical directional pattern and a matching conductor characteristic impedance Zw proved.
  • FIG. 6 shows a further advantageous embodiment of a loop antenna 14 according to the invention with coupling 18 at the antenna connection point 3 via a symmetrical two-wire line 26 outside the center Z, a Umsymmetrierglied 29 and a matching network 25.
  • the influence of not in the phase center located symmetrical vertical feed line in the form of symmetrical Two-wire line 26 does not reduce the polarization purity due to the symmetry property explained below.
  • the connection of the one connection on the unbalanced side of the Umsymmetrierglieds 29 to the connection point 28 of the antenna arrangement is advantageously carried out using a guided over the conductive base 6 microstrip line 30.
  • the other terminal on the unbalanced side of the Umsymmetrierglied 29 is connected to the electrically conductive base 6. Due to the Symmetry properties of the two-wire line 26 compensate for the effects of the currents flowing toward one another in the opposite direction on the conductors of the two-wire line 26, so that these also do not influence the radiation properties of the loop antenna 14. As will be explained below, the currents generated by the electromagnetic reception field on these conductors also have no influence on the effects at the antenna connection point 3.
  • An electrical conductor which in a plane perpendicular to the base 6 and symmetrically with respect to the antenna connection point 3 oriented symmetry plane SE of the satellite antenna array, for example, as a planar or linear antenna 24 - FIG. 16 - Is guided, due to the symmetry of the antenna connection point 3 without influence on the operation of the satellite antenna.
  • the effect of the currents produced by the electromagnetic reception field in the antenna 24 cancel each other out with respect to their effect at the antenna connection point 3.
  • This also applies to the two electrical conductors of the two-wire line 26 in FIG. 6 to, which can be considered as guided in the plane of symmetry SE due to the small distance between the two conductors. From this the antenna 24 in FIG.
  • antenna connection point 3 decoupling property is used in an advantageous embodiment of the invention in the design of combination antennas for different radio services.
  • Such an antenna can thus in addition to the satellite reception by arranging one or more separate and guided in the plane of symmetry SE antennas such.
  • antenna 24 - for radio services such as AM / FM reception, cellular radio services, etc. are used.
  • the coupling takes place centrally and at the ring level.
  • the matching network 25 and the Umsymmetrierglied 29 are also arranged on the ring plane.
  • the two-wire line 26 is connected to the unbalanced side of the Umsymmetrierglied 29 and guided in the center Z to the base 6.
  • the latter establishes the connection to the connection point 28 of the antenna arrangement.
  • the effects of the currents flowing in the opposite direction compensate each other on the conductors of the two-wire line 26 so that they do not influence the radiation properties of the loop antenna 14.
  • a distribution or coupling network acting in reciprocal transmission case as a power distributor suntkopplungs- and phase shifter network 31 is provided to the separate terminals via the loop antenna 14 on the one hand and the monopoly 7 on the other is connected, and which is designed in such a way that in the reciprocal transmission case the phases of the currents flowing in the monopole 7 and in the loop antenna 14 are the same.
  • the reflection are due to the phase condition of the currents to the loop antenna 14 and the monopole antenna 7 with respect to the phase center B on the base 6, the above conditions required for the formation of paired conductor members ⁇ n, ⁇ m, thus meeting for the polarization of the electric field strength.
  • the main beam direction in the vertical diagram of the loop antenna 14 is thereby drawn by adding the vertical monopole 7 to low elevation.
  • the combination now allows to receive a vertical polarized electric field for additional terrestrial applications even at lower elevation.
  • the vertical directional pattern can be filled to low elevation angles for these signals. Trained as a rod antenna monopoly 7 has in its vertical directional characteristic a similar main beam direction as the horizontal polarized loop antenna 14, but provides for low elevation angle a larger contribution than the loop antenna 14.
  • both the weighting of the properties of the two antennas can be set differently and additionally the alignment of the phase centers.
  • the monopoly 7 When arranged in FIG. 10 is the monopoly 7 different than the rod antenna in FIG. 9 realized.
  • the vertical, provided for feeding the loop antenna 14 two-wire line 26 is utilized as a monopole 7, wherein the loop antenna 14 serves as a roof capacitor 12 of the monopoly 7.
  • an additional coupling is provided, wherein the loop antenna 14 is used in a mode as a roofing capacity 12 of the monopole 7 for a vertically polarized field with.
  • a matching network 33 for the monopole mode is used, which is preferably designed such that the above power coupling and phase shifting network 31 can be connected thereto.
  • the weighting of the antennas can be adjusted differently with the aid of this asymmetrical power coupling and phase shifting network 31, and the phase center of gravity can be adjusted.
  • the matching of the impedance of the loop antenna 14 can be done by means of the matching network 25, which can be realized in a simple embodiment as ⁇ / 4-line transformer. Due to the vertically polarized receiving two-wire line 26 with the loop antenna 14 as a roof capacitance 12 relative to the base 6 and due to the horizontally polarized receiving loop antenna 14 between the two conductors of the two-wire line 26 signals from vertical and horizontal field components in acting in the transmission case as a power divider satinkopplungs- and Phase shifter network 31 superimposed.
  • this property can advantageously be exploited for supporting the radiation properties at low elevation by phase-locked combination of the vertically and horizontally polarized antennas and choosing the same phase center of gravity (in analogy to the phase reference point in the origin of the coordinate system according to the above considerations).
  • This can be a linearly polarized field produce, which at higher Elevation is preferably horizontal and preferably vertically polarized at low elevation.
  • the unbalanced power coupling and phase shifting network 31 in the central base 19 of the antenna arrangement is realized in that one conductor of the two-wire line 26 is conductively connected to the conductive base 6 via a reactance 41 and the other conductor of the two-wire line 26 is led to the connection point 28 of the antenna arrangement ,
  • the reactance 41 is realized by a capacitor whose size adjusts the desired weighting.
  • FIG. 10 described antenna is in FIG. 11 executed in a symmetrical embodiment with star-shaped multi-arm horizontal feed and central connection to a vertical feed as an alternative to the one-armed, "asymmetrical" feed. In this way the roundness of the azimuthal directional pattern is perfected.
  • the example shows an embodiment with two-armed symmetrical feed to the two antenna connection points 3 formed in the loop antenna 14.
  • FIG. 12 shows a particularly advantageous two-armed feed via band conductor 34 of a loop antenna 14 and the current paths indicated by arrows.
  • the central vertical feed takes place here, for example, in coaxial design, wherein the outer conductor of a coaxial line 35 is connected to one and the inner conductor to the other band of the strip conductor 34.
  • an identically shaped and identically aligned electrically short dipole 21 is correspondingly present, so that for each electrically very short conductor element on the dipole 21, a corresponding corresponding conductor element extending essentially in the same plane exists on a corresponding dipole 21.
  • Both dipoles 21 forming a pair are fed in the reciprocal transmission case at the antenna connection point 3 in each case with the same current in the amount.
  • the arithmetic mean of the phases of the currents of a dipole pair counted in the same direction has the same value for all dipole pairs.
  • the dipoles 21 are rectilinear and designed to be symmetrical to their antenna connection points 3 and extending in a horizontal plane, the antenna connection points 3 being arranged distributed equidistant on a horizontal circle whose center forms the common reference point B.
  • the dipoles 21 are oriented perpendicular to the connecting line to the center of the circle.
  • FIG. 13a a circular array antenna system is given, as in a simplest form in FIG. 13a is shown.
  • the figure shows a symmetrical embodiment of an antenna according to the invention with 4 arranged in a square dipoles 21 and with a centrally located in the phase center B coupling network 10, the output of which forms the connection point 28 and acts in reciprocal transmission case as a distribution network.
  • the antenna connection points 3 are each connected via an electrical line 27 to one of the inputs 23 of the coupling network 10, wherein the dipole pairs are fed with equal signals according to amplitudes and phases. Adjacent ends of adjacent dipoles 21 may be interconnected via capacitors 16.
  • FIG. 13b shows a dipole arrangement similar FIG. 13a but with a superposition of the reception of horizontal and vertical electric field components, similar to the Figures 10 and 11 ,
  • the dipoles 21 additionally act as roofing capacitance 12 of the vertical monopole 7 thus formed by the two-wire line 26.
  • FIG. 13b in an advantageous embodiment of an antenna arrangement according to FIG. 13a the arranged in a square lying dipoles 21 on a conductive base 6 with a central coupling - similar to the antenna in FIG. 10 - be combined with a monopoly.
  • the vertical feed line in the form of the two-wire line 26 is used to power the dipoles 21 as a monopole 7 with the dipoles 21 as roof capacity 12.
  • the weighting of the effects of the dipoles 21 and the monopole 7 formed in this way can be adjusted differently according to the requirements and the alignment of the phase centers can be done here with the help of the unbalanced in the reciprocal transmission case acting as a power divider power coupling and phase shifter network 31.
  • advantageous embodiment of the invention are similar to Fig. 13a and 13b , in the central phase reference point B of a circular array antenna system with horizontally oriented dipoles 21, an electrically short vertical monopole 7 and a distribution or coupling network 10 is present.
  • the output 24 of the coupling network 10 is designed as a connection point 28 of the antenna arrangement and the antenna connection points 3 of the antennas in the circle group and the monopole 7 are fed in reciprocal transmission case via an electrical line 27 from the coupling network 10 in such a way that the phases of in the current supplied to the monopole 7 corresponds to the phase position of the currents fed into the circuit group antenna system with respect to the common phase reference point B.
  • a plurality of electrically short vertical monopoles 7 can be arranged in pairs symmetrically to the central phase reference point and fed in the reciprocal transmission case via the coupling network 10 in such a way that the arithmetic mean of the current phases of the paired monopolies 7 and the phase of the current in the central Monopole 7 fed current relative to the phase reference point B are the same.
  • a diversity switch 37 which is controlled by a diversity module 38.
  • the received signals of both antennas are each received with their own - but same for both directions of the circular polarization - radiation characteristic.
  • a particular advantage of an antenna arrangement according to the invention is the possibility of a substantially horizontally polarized antenna and a substantially vertically polarized antenna combine to achieve separate connections for circularly polarized waves in both directions of rotation.
  • the loop antenna 14 with the vertical monopole 7 with common phase center B in FIG. 9 either combined in a low-cost manner using the power coupling and phase shifting network 31, as related to FIG.
  • Antennas for circularly polarized waves are usually realized in the prior art by interconnecting similar antennas - such as two crossed dipoles or two crossed loop antennas - via 90 ° phase switching.
  • similar antennas - such as two crossed dipoles or two crossed loop antennas - via 90 ° phase switching.
  • - as in Figure 17a illustrated a circularly polarized antenna of two different antennas according to the present invention, whose vertical directional patterns are congruent and their main direction is designed to receive the satellite signals suitable.
  • the equality of the directional diagrams for example, by choosing the structure of the trained as a rod antenna monopole 7 with dummy element 8 - similar to in connection with the in FIG. 3 described antenna - as well as by appropriate design of the loop antenna 14 - as related to FIG. 7 described - realized.
  • phase center B of both antennas can be accomplished by means of the matching network 25 for the loop antenna 14 and the matching network for the monopole mode, respectively.
  • the matching network 25 for the loop antenna 14 and the matching network for the monopole mode respectively.
  • the vertically and horizontally polarized antenna 7 and 14 at the common phase center B as in FIG. 9 but with separate supply of the signals to the terminal for vertical polarization 49 or for connection for horizontal polarization 48 of a hybrid coupler 45 with 90 ° positive or negative phase difference with respect to the LHCP terminal 46 and the RHCP terminal 47 for the separate generation of LHCP or RHCP signals done.
  • FIG. 17b A similar antenna arrangement is in FIG. 17b however, the realization of the monopole 7 is similar to the antenna arrangement in FIG. 10 by the combination of acting as a roof capacitance loop antenna 14 and the two-wire line 26 takes place.
  • a combined matching circuit 50 By means of a combined matching circuit 50, both the adaptation of the loop antenna 14 and the adjustment of the monopole 7 as well as the adjustment of a common phase center B are ensured.
  • a loop antenna 14 - as in FIG. 11 - With two opposing antenna connection points 3 and connected thereto and located in the loop level matching networks 25, which are preferably implemented as ⁇ / 4 transformation lines provided.
  • the outputs of the matching networks 25 are connected in parallel in addition.
  • the received signal is fed via the two-wire line 26 to a matching network 25 located on the base area 6, the output of which is in turn connected to one of the two inputs of a signal combination circuit designed in particular as a 90 ° hybrid coupler 45.
  • the antenna arrangement can also be advantageously used for polarization diversity by switching between reception for LHCP and RHCP waves.
  • the axis ratio of the circularly elliptically polarized field is adjusted by introducing an attenuator 56 into the path of the monopole 7 from the loop antenna 14.
  • Increasing attenuation is accompanied by the fact that the main beam direction of the antenna increases in elevation and the antenna can be optimized for optimal interference resistance to horizontally incident noise and temperature outside noise.
  • a phase shifter (not shown) can be adjusted according to the invention by adjusting the phase with the attenuation of both the ellipticity, the sense of polarization and the elevation of the main beam direction of the antenna.
  • the switch 55 may be omitted if necessary.
  • FIG. 20 In a further particularly economical embodiment of such an antenna with circular or elliptically polarized field with reversible direction of rotation is in FIG. 20 - similar to the antenna in FIG. 11 -
  • the separate monopoly 7 saved.
  • the two-wire line 26 is also utilized here.
  • the difference of 90 ° between the phases of the horizontal field component picked up by the vertical two-wire line 26 with the loop antennas 14 as the roof capacitance 12 and the loop field 14 is set so that their combination with this phase difference is present at the microstrip conductor 30 to the matching network 54 and thus also at the junction 28.
  • the antenna receives a circularly polarized field.
  • a circuit combining the receive signals of the loop antenna 14 at the output of the matching networks 25 from the horizontally polarized electric field and the receiving signals of the vertical two-wire line 26 from the vertically polarized electric field comprises an LHCP / RHCP switch 55 for reversing the polarity of the receiving voltage of the loop antenna 14.
  • the latter can be added in this way with different signs of the received voltage from the vertically polarized electric field, so that between the reception of LHCP field and RHCP field by switching the LHCP / RHCP switch 55 can be switched.
  • the network 31 can also correspond to the network 31 corresponding network 53 of reactances accordingly FIG. 18 to form the vertical directional pattern of the linearly-vertically polarized antenna into the ground-connected leg of the vertical two-wire line 26.
  • the network 53 With the aid of the network 53, the adjustment of the common mode to differential ratio on the vertical two-wire line 26 can be set.
  • the network 53 is to be designed in such a way that the reception voltages from the horizontal and the vertical electric field components are superimposed in phase.
  • This network 53 can be designed in the simplest case as a capacity.
  • the ratio of the low-polarization vertically-polarized field of the main beam direction to the proportion of the higher polarization horizontally-polarized field of the main beam direction can be adjusted.
  • the elevation of the main beam direction of the overall characteristic between the elevation angles 0 ° (horizontal) and 45 ° can thus be freely selected.

Claims (12)

  1. Antenne pour la réception de signaux radiophoniques satellite à polarisation circulaire, comprenant :
    - au moins une structure de conducteur d'antenne bidimensionnelle ou tridimensionnelle, formant une antenne en boucle (14), qui est essentiellement constituée d'une pluralité de tronçons de conducteur d'antenne (Δv) qui, par référence à un point de référence dans l'espace commun aux tronçons de conducteur d'antenne (Δv), sont agencés par paires symétriquement et s'étendent dans la même direction, et sont raccordés électriquement pour donner une boucle conductrice agencée essentiellement dans un plan horizontal, dans laquelle au moins une interruption de la boucle conductrice forme un emplacement de branchement d'antenne (3) de l'antenne en boucle (14),
    - une structure de conducteur d'antenne linéaire, et
    - un réseau d'ajustement et de décalage de phase (25, 31) qui relie ledit au moins un emplacement de branchement d'antenne (3) de l'antenne en boucle (14) et un emplacement de branchement d'antenne (3) de la structure d'antenne linéaire à un branchement de sortie d'antenne (28),
    caractérisée en ce que
    l'antenne en boucle (14) est ainsi réalisée que lors d'un fonctionnement réciproque de l'antenne à titre d'antenne émettrice des courants d'antenne ayant au moins approximativement la même intensité s'écoulent dans les paires individuelles de tronçons de conducteur d'antenne (Δv), et la moyenne arithmétique des phases de ces courants d'antenne comptés respectivement dans la même direction dans les tronçons de conducteur d'antenne (Δv) de chaque paire a au moins approximativement la même valeur sensiblement dans la totalité des paires de tronçons de conducteur d'antenne (Δv) par référence à un point de référence de phase commun (B),
    en ce que l'antenne en boucle (14) est agencée parallèlement et à distance d'une surface de base (6) approximativement horizontale et électriquement conductrice,
    en ce que la structure d'antenne linéaire est réalisée sous la forme d'un monopôle (7) vertical plus court sur le plan électrique, agencé au point de référence de phase (B) de l'antenne en boucle (14),
    et en ce que le réseau d'adaptation et de décalage de phase (25, 31) qui relie l'emplacement de branchement d'antenne (3) du monopôle (7) ainsi que l'emplacement de branchement d'antenne (3) de l'antenne en boucle (14) au branchement de sortie d'antenne (28) est ainsi réalisé que, lors d'un fonctionnement réciproque de l'antenne à titre d'antenne émettrice, il égalise mutuellement les phases des courants au niveau des emplacements de branchement d'antenne (3) du monopôle (7).
  2. Antenne selon la revendication 1, caractérisée en ce que
    le réseau d'adaptation et de décalage de phase (25 ; 31) est ainsi réalisé que, lors d'un fonctionnement réciproque de l'antenne à titre d'antenne émettrice, il superpose mutuellement les courants du monopôle (7) et de l'antenne en boucle (14) pour influencer le diagramme directionnel vertical.
  3. Antenne pour la réception de signaux radiophoniques satellite à polarisation circulaire, comprenant :
    - au moins une structure de conducteur d'antenne bidimensionnelle ou tridimensionnelle, formant une antenne en boucle (14), qui est essentiellement constituée d'une pluralité de tronçons de conducteur d'antenne (Δv) qui, par référence à un point de référence dans l'espace commun aux tronçons de conducteur d'antenne (Δv), sont agencés par paires symétriquement et s'étendent dans la même direction, et sont raccordés électriquement pour donner une boucle conductrice agencée essentiellement dans un plan horizontal, dans laquelle au moins une interruption de la boucle conductrice forme un emplacement de branchement d'antenne (3) de l'antenne en boucle (14),
    - une structure de conducteur d'antenne linéaire, et
    - un réseau d'ajustement et de décalage de phase (25, 31) qui relie ledit au moins un emplacement de branchement d'antenne (3) de l'antenne en boucle (14) et un emplacement de branchement d'antenne (3) de la structure d'antenne linéaire à un branchement de sortie d'antenne (28),
    caractérisée en ce que
    l'antenne en boucle (14) est ainsi réalisée que lors d'un fonctionnement réciproque de l'antenne à titre d'antenne émettrice des courants d'antenne ayant au moins approximativement la même intensité s'écoulent dans les paires individuelles de tronçons de conducteur d'antenne (Δv), et la moyenne arithmétique des phases de ces courants d'antenne comptés respectivement dans la même direction dans les tronçons de conducteur d'antenne (Δv) de chaque paire a au moins approximativement la même valeur sensiblement dans la totalité des paires de tronçons de conducteur d'antenne (Δv) par référence à un point de référence de phase commun (B),
    en ce que l'antenne en boucle (14) est agencée parallèlement et à distance d'une surface de base (6) approximativement horizontale et électriquement conductrice,
    en ce que ledit au moins un emplacement de branchement d'antenne (3) de l'antenne en boucle (14) est relié, au moins entre le plan de la boucle de conducteur et la surface de base (6) électriquement conductrice, via une ligne à deux fils (26), au branchement de sortie d'antenne (28), dans laquelle la ligne à deux fils (26) ainsi que l'emplacement de branchement d'antenne (3) sont agencés symétriquement par rapport à un plan de symétrie vertical (SE) qui contient le point de référence dans l'espace et le point de référence de phase (B) engendré lors du fonctionnement réciproque de l'antenne à titre d'antenne émettrice,
    en ce que la ligne à deux fils (26) s'étend verticalement par le point de référence dans l'espace et par le point de référence de phase (B) engendré lors du fonctionnement réciproque de l'antenne à titre d'antenne émettrice, et est exploité comme un monopôle vertical (7) avec une capacité terminale (12) formée par la boucle de conducteur,
    et en ce que le réseau d'adaptation et de décalage de phase (33, 31) relie la ligne à deux fils (26) au branchement de sortie d'antenne (28) et découple, sur la surface de base (6) électriquement conductrice, aussi bien les courants du monopôle (7) que ceux de l'antenne en boucle (14).
  4. Antenne selon la revendication 3, caractérisée en ce que l'une des deux lignes de la ligne à deux fils (26) est connectée de manière conductrice via une réactance (41) avec la surface de base conductrice (6) pour la pondération de la réception du champ électrique à polarisation horizontale et du champ électrique à polarisation verticale, et l'autre des deux lignes est reliée au branchement de sortie d'antenne (28) via le réseau d'adaptation et de décalage de phase (33, 31).
  5. Antenne selon la revendication 3 ou 4, caractérisée en ce que l'antenne en boucle (14) comprend deux emplacements de branchement d'antenne (3) mutuellement opposés dans le plan de symétrie (SE), auxquels des réseaux d'adaptation (25) agencés dans le plan de la boucle sont branchés, dont les sorties sont branchées en parallèle avec effet additif et sont reliées à la ligne à deux fils (26).
  6. Antenne selon l'une des revendications 3 à 5, caractérisée en ce qu'au moins une autre antenne (24) de conception linéaire ou surfacique est agencée à l'intérieur du plan de symétrie (SE) pour au moins un autre service radiophonique.
  7. Antenne selon l'une des revendications 1 à 6, caractérisée en ce que la boucle de conducteur comprend, pour son raccourcissement efficace sur le plan électrique, au moins une interruption pontée par une capacité (16), en particulier plusieurs interruptions agencées à distance les unes des autres et pontées par des capacités (16).
  8. Antenne pour la réception de signaux radiophoniques satellite à polarisation circulaire, comprenant :
    - au moins une structure de conducteur d'antenne (14) bidimensionnelle ou tridimensionnelle, qui est essentiellement constituée d'une pluralité de tronçons de conducteur d'antenne (Δv) qui, par référence à un point de référence dans l'espace commun aux tronçons de conducteur d'antenne (Δv), sont agencés par paires de manière symétrique sensiblement dans un plan horizontal commun en s'étendant dans la même direction,
    - une structure de conducteur d'antenne linéaire, et
    - un réseau d'adaptation et de décalage de phase (31, 33) qui relie la structure de conducteur d'antenne bidimensionnelle ou tridimensionnelle et la structure de conducteur d'antenne linéaire à un branchement de sortie d'antenne (28),
    caractérisée en ce que
    la structure de conducteur d'antenne (14 ; 21 ; 42) bidimensionnelle ou tridimensionnelle est ainsi réalisée que lors d'un fonctionnement réciproque de l'antenne à titre d'antenne émettrice, des courants d'antenne ayant au moins approximativement la même intensité s'écoulent dans les paires individuelles de tronçons de conducteur d'antenne (Δv), et la moyenne arithmétique des phases de ces courants d'antenne comptés respectivement dans la même direction dans les tronçons de conducteur d'antenne (Δv) de chaque paire a au moins approximativement la même valeur par référence à un point de référence de phase (B) commun, dans laquelle les tronçons de conducteur d'antenne sont agencés sous la forme d'un groupe dipolaire comprenant plusieurs dipôles (21) agencés essentiellement dans un plan horizontal commun, dont les dipôles (21) sont agencés par paires symétriquement par rapport au point de référence de phase (B) engendré lors du fonctionnement réciproque de l'antenne à titre d'antenne émettrice, ou respectivement par rapport au point de référence dans l'espace, et les paires de tronçons de conducteur d'antenne sont associées respectivement à des paires de dipôles, et dans laquelle les dipôles individuels (21) sont ainsi réalisés que les courants d'antenne qui se produisent sur leur conducteur dipolaire lors du fonctionnement réciproque de l'antenne en fonctionnement d'émission, ont approximativement la même phase, et la moyenne arithmétique des phases de ces courants d'antenne de chaque paire de dipôles, comptée respectivement dans la même direction, possède la même valeur et les valeurs sont égales pour la totalité des paires de dipôles agencés dans le plan horizontal commun,
    en ce que les dipôles (21) des groupes de dipôles sont des dipôles rectilignes, respectivement symétriques à leurs emplacements de branchement dipolaires (3), qui sont agencés parallèlement et à distance d'une surface de base électriquement conductrice (6) qui s'étend approximativement horizontalement, de sorte que les emplacements de branchement dipolaires (3) sont agencés dans le plan horizontal commun sur un cercle tout autour du point de référence de phase (B) ou respectivement du point de référence dans l'espace, et sont reliés au branchement de sortie d'antenne (28) via un réseau de connexion (10),
    en ce que la structure de conducteur d'antenne linéaire est agencée au point de référence de phase (B) du groupe dipolaire généré lors du fonctionnement réciproque de l'antenne à titre d'antenne émettrice, et forme un monopole (7) vertical court sur le plan électrique, et en ce qu'un emplacement de branchement d'antenne du monopôle (7) et un branchement de sortie du réseau de connexion (10) sont reliés au branchement de sortie d'antenne (28) via le réseau d'adaptation et de décalage de phase (31, 33), et le réseau d'adaptation et de décalage de phase (31, 33) égalise mutuellement les phases, qui s'établissent lors du fonctionnement réciproque de l'antenne à titre d'antenne émettrice, des courants au niveau de l'emplacement de branchement d'antenne du monopôle et du branchement de sortie du réseau de connexion (10).
  9. Antenne selon la revendication 8, caractérisée en ce que le réseau d'adaptation et de décalage de phase (31, 33) est ainsi réalisé qu'il superpose mutuellement les courants du monopôle (7) et du réseau de connexion (10) pour influencer le diagramme directionnel vertical.
  10. Antenne selon l'une des revendications 1 à 9, caractérisée en ce qu'un emplacement de branchement d'antenne du monopôle (7) ainsi qu'un emplacement de branchement d'antenne de la structure de conducteur d'antenne bidimensionnelle ou tridimensionnelle (14, 21) sont connectés chacun pour lui-même à un inverseur (37), relié au branchement de sortie d'antenne (28), d'une installation d'antenne en diversité (38), soit directement soit via un réseau d'adaptation (25).
  11. Antenne selon l'une des revendications 1 à 10, caractérisé en ce qu'un emplacement de branchement d'antenne de la structure de conducteur d'antenne bidimensionnelle ou tridimensionnelle (14) est connecté pour lui-même via un réseau d'adaptation (25, 33) à des entrées d'un circuit de combinaison de signaux, en particulier d'un coupleur hybride à 90° (45), dont les sorties délivrent, séparément les unes des autres, un signal de réception à polarisation circulaire qui tourne vers la gauche et un signal de réception à polarisation circulaire qui tourne vers la droite.
  12. Antenne selon la revendication 11, caractérisé en ce qu'un élément (56) qui règle l'amortissement et/ou la phase du signal reçu est branché entre l'emplacement de branchement d'antenne du monopôle (7) et/ou de la structure de conducteur d'antenne bidimensionnelle ou tridimensionnelle (14), et l'entrée respectivement associée du circuit de combinaison de signaux (45).
EP20080015708 2007-09-06 2008-09-05 Antenne pour la réception de satellites Active EP2034557B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007042446 2007-09-06
DE102008003532A DE102008003532A1 (de) 2007-09-06 2008-01-08 Antenne für den Satellitenempfang

Publications (3)

Publication Number Publication Date
EP2034557A2 EP2034557A2 (fr) 2009-03-11
EP2034557A3 EP2034557A3 (fr) 2009-10-28
EP2034557B1 true EP2034557B1 (fr) 2012-02-01

Family

ID=40149633

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20080015708 Active EP2034557B1 (fr) 2007-09-06 2008-09-05 Antenne pour la réception de satellites

Country Status (1)

Country Link
EP (1) EP2034557B1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009011542A1 (de) 2009-03-03 2010-09-09 Heinz Prof. Dr.-Ing. Lindenmeier Antenne für den Empfang zirkular in einer Drehrichtung der Polarisation ausgestrahlter Satellitenfunksignale
DE102010011867B4 (de) * 2010-03-18 2011-12-22 Kathrein-Werke Kg Breitbandige omnidirektionale Antenne
DE102010035934A1 (de) * 2010-08-31 2012-03-01 Heinz Lindenmeier Empfangsantenne für zirkular polarisierte Satellitenfunksignale
DE102019204163B3 (de) 2019-03-26 2020-10-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Erzeugung eines Abstimmsignals zur Abstimmung einer magnetischen Antenne

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB194365A (en) * 1921-12-05 1923-03-05 Walter Dornig Improvements in or relating to wireless telegraphy antennae
NL64189C (fr) * 1939-04-26
DE865478C (de) * 1949-11-03 1953-02-02 Lorenz C Ag Rundstrahlantenne fuer sehr Kurze Wellen
JPS5763941A (en) * 1980-10-06 1982-04-17 Nippon Telegr & Teleph Corp <Ntt> Radio transmitter and receiver
US4547776A (en) * 1983-11-03 1985-10-15 The United States Of America As Represented By The Secretary Of The Navy Loop antenna with improved balanced feed
EP0776530A4 (fr) * 1995-06-21 1998-06-10 Motorola Inc Procede et antenne produisant un diagramme de rayonnement omnidirectionnel
JP2000077934A (ja) * 1998-08-27 2000-03-14 Yasushi Koshiro 偏波切替えループアンテナ
DE10163793A1 (de) * 2001-02-23 2002-09-05 Heinz Lindenmeier Flachantenne für die mobile Satellitenkommunikation
DE10304911B4 (de) * 2003-02-06 2014-10-09 Heinz Lindenmeier Kombinationsantennenanordnung für mehrere Funkdienste für Fahrzeuge
DE202005015708U1 (de) * 2005-10-06 2005-12-29 Kathrein-Werke Kg Dual polarisierte Dipolstrahler

Also Published As

Publication number Publication date
EP2034557A2 (fr) 2009-03-11
EP2034557A3 (fr) 2009-10-28

Similar Documents

Publication Publication Date Title
DE102008003532A1 (de) Antenne für den Satellitenempfang
EP2226895B1 (fr) Antenne pour la réception circulaire dans un sens de rotation de la polarisation de signaux radio par satellite rayonnés
EP2458680B1 (fr) Antenne pour la réception de signaux satellite circulaires polarisés
EP2256864B1 (fr) Antenne destinée à la polarisation circulaire et dotée d&#39;une surface de base conductrice
DE102010011867B4 (de) Breitbandige omnidirektionale Antenne
EP2424036B1 (fr) Antenne de réception pour signaux radio par satellite polarisés circulaires
EP2664025B1 (fr) Antenne de réception multibande pour la réception combinée de signaux satellites et de signaux radiophoniques à émission terrestre
EP1239543B1 (fr) Antenne plate pour communication mobile via satellites
DE69835540T2 (de) Antennensystem für zirkular polarisierte funkwellen mit antennenmiltteln und interfacenetzwerk
EP1277252B1 (fr) Antenne dipole a double polarisation
EP2929589B1 (fr) Antenne omnidirectionnelle à double polarité
EP3178129B1 (fr) Antenne unipolaire à bande large à structure multiple pour deux bandes de fréquence séparées par un espace blanc dans la plage d&#39;ondes décimétriques, destinée à des véhicules
DE3931752A1 (de) Koaxialschlitzantenne des wanderwellenleitungstyps
EP2034557B1 (fr) Antenne pour la réception de satellites
EP1969674A1 (fr) Ensemble antenne et son utilisation
WO2019115363A1 (fr) Antenne à fentes
DE602004009460T2 (de) Ultrabreitbandige Antenne
DE102004050598A1 (de) Dualband-Antenne für zirkulare Polarisation
EP3483983A1 (fr) Antenne réceptrice pour la navigation par satellite sur un véhicule
DE102017200129A1 (de) Ndip-Antenne
DE2521978C3 (de) Kurzwellen-Steilstrahlantenne
DE102007012570B4 (de) Patch-Antenne
EP2546925A1 (fr) Module dýantenne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20091222

17Q First examination report despatched

Effective date: 20100125

AKX Designation fees paid

Designated state(s): DE FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008006250

Country of ref document: DE

Effective date: 20120329

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20121105

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008006250

Country of ref document: DE

Effective date: 20121105

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200914

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200922

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210905

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231128

Year of fee payment: 16