EP2034557B1 - Antenna for satellite reception - Google Patents

Antenna for satellite reception Download PDF

Info

Publication number
EP2034557B1
EP2034557B1 EP20080015708 EP08015708A EP2034557B1 EP 2034557 B1 EP2034557 B1 EP 2034557B1 EP 20080015708 EP20080015708 EP 20080015708 EP 08015708 A EP08015708 A EP 08015708A EP 2034557 B1 EP2034557 B1 EP 2034557B1
Authority
EP
European Patent Office
Prior art keywords
antenna
loop
conductor
der
monopole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20080015708
Other languages
German (de)
French (fr)
Other versions
EP2034557A3 (en
EP2034557A2 (en
Inventor
Stefan Lindenmeier
Heinz Lindenmeier
Jochen Hopf
Leopold Reiter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delphi Delco Electronics Europe GmbH
Original Assignee
Delphi Delco Electronics Europe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102008003532A external-priority patent/DE102008003532A1/en
Application filed by Delphi Delco Electronics Europe GmbH filed Critical Delphi Delco Electronics Europe GmbH
Publication of EP2034557A2 publication Critical patent/EP2034557A2/en
Publication of EP2034557A3 publication Critical patent/EP2034557A3/en
Application granted granted Critical
Publication of EP2034557B1 publication Critical patent/EP2034557B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/32Vertical arrangement of element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/32Vertical arrangement of element
    • H01Q9/36Vertical arrangement of element with top loading

Definitions

  • the invention relates to an antenna for receiving circularly polarized satellite radio signals.
  • Satellite radio signals are transmitted due to polarization rotations in the transmission path usually with circularly polarized electromagnetic waves.
  • program contents are transmitted, for example, in frequency bands closely spaced separate frequency bands. This is done in the example of SDARS satellite broadcasting at a frequency of about 2.3 GHz in two adjacent frequency bands each with a bandwidth of 4 MHz with a spacing of the center frequencies of 8 MHz and 4 MHz.
  • the signals are emitted by different satellites with a circularly polarized in one direction electromagnetic wave.
  • circularly polarized antennas are used for reception in the corresponding direction.
  • Such antennas are for example off DE-A-4008505 and DE-A-10163793 known.
  • This satellite broadcasting system is additionally supported by the regional emission of terrestrial signals in another, arranged between the two satellite signals frequency band of the same bandwidth.
  • a satellite receiving antenna in which a dipole antenna whose antenna connection point lies in the plane of the loop antenna is arranged in the center of a circular loop antenna.
  • the dipole antenna and loop antenna are connected via half-wave / half-balanced lines to a 90 ° hybrid coupler which combines the horizontally polarized signals received from the loop antenna and the vertically polarized signals received from the dipole antenna into a circularly polarized signal.
  • the conductor loop of the loop antenna is interrupted on diametrically opposite sides, wherein one of the breaks contains a capacitive element and the other interruption forms an antenna junction, which is connected to the two halves of the conductor loop via a matching network of capacitors.
  • the circumference of the conductor loop is half a wavelength long.
  • Other antennas combining horizontal and vertical electric fields for receiving circularly polarized signals are off JP 2000-077934 A1 and DE 101 63 793 A1 known.
  • the object of the invention is therefore to provide an antenna which is suitable for receiving the radiated in both satellite frequency bands electromagnetic waves with both left-handed (LHCP) and with clockwise circular polarization (RHCP) and at its antenna connection point about the same, for the Satellite reception has suitable radiation characteristics.
  • the antenna should also be able to be economically designed.
  • the antenna for receiving circularly polarized satellite radio signals comprises at least one two- or three-dimensional antenna conductor structure connected to an antenna output terminal and is characterized in that the multidimensional antenna conductor pattern is designed to consist essentially of a plurality of antenna conductor sections which, relative to a space reference point common to the antenna conductor sections, arranged in pairs symmetrically and in the same direction, and that the multidimensional antenna conductor structure is further configured such that when the antenna is reciprocally operated as the transmitting antenna in the individual pairs of antenna conductor sections, antenna currents of at least approximately equal magnitude and the arithmetic mean of the current phases of these antenna currents respectively counted in the antenna conductor portions of each pair in the same direction at substantially seed individual pair of antenna conductor sections has at least approximately the same value with respect to a common phase reference point.
  • Such an antenna is capable of receiving and leaving both left-handed circularly polarized waves and right-handed circularly polarized waves Realize itself by relatively simple Antennenleiterer Modellen also suitable for receiving satellite signals elevation angle of the radiation pattern.
  • the distribution of the currents on an antenna in receive mode depends on the terminator at the antenna junction.
  • the distribution of the currents on the antenna conductors relative to the supply current at the antenna connection point is independent of the source resistance of the supplying signal source and is thus clearly linked to the directional diagram and the polarization of the antenna.
  • the object of the invention is directed to a receiving antenna, the properties of the antenna are described below for better traceability for the reciprocal operation of the antenna as a transmitting antenna, the transmission case, however, due to the naturally valid reciprocity relationship also applies to the reception case.
  • a particular advantage of an antenna according to the invention is the property that the electric field strength vector generated according to the law of reciprocity when operating the antenna as transmitting antenna in the far field is polarized in each point of the room at any time along a fixed, fixed line specific to that point of the room in that, however, there is no equality requirement with respect to the direction of this line in the space for the different spatial directions of the radiation pattern, as is known in the case of radio transmission with linear polarized antennas.
  • this line is always perpendicular to the propagation direction, but with respect to its other direction according to the invention is completely free formable. This results in a manageability variety that allows optimal adaptation to a required radiation pattern.
  • the antenna it is only necessary to preclude a temporal change in the direction of the electrical and thus the magnetic field strength vector for the reciprocal operation as a transmitting antenna in each spatial direction over the period of high frequency oscillation. Spaces in which this condition is not met, always contribute to the support of one of the two satellite signals and thus forcibly to the attenuation of the other satellite signal and thus weaken the overall system.
  • FIG. 1 illustrates the problem from which the invention proceeds.
  • the problem arises from the fact that two satellite radio frequency bands with small bandwidth Bu or Bo closely adjacent at a high frequency in the L band or in the S band, in any case at a frequency of fm> 1 GHz with opposite directions, that is with right rotating circular polarization (RHCP) or left rotating circular polarization (LHCP) are radiated.
  • RHCP right rotating circular polarization
  • LHCP left rotating circular polarization
  • the electrically very short conductor elements are as vectors ⁇ 1 ... ⁇ 5 , whose direction is given both by the direction of the position in space and by the Zählpfeilraum of the current flowing on the conductor element current, which can be regarded as constant in magnitude and phase.
  • the coordinate directions of the spatial coordinate system are denoted by x, y and z, its coordinate origin by B.
  • vth conductor element with the complex current Iv and its by the position vector p ⁇ described position in space can be its contribution to the complex electric field strength vector e ⁇ y in far-field point of view P, distant from the origin B of the coordinate system by a distance r A , whose position is further divided by the unit direction vector r described.
  • is the elevation angle related to the vertical direction and ⁇ is the azimuthal angle.
  • fictitious, equally long conductor elements can be arranged along a straight line and connected to one another in a conductive manner, so that essentially a rod-shaped conductor is formed and an interruption of the rod-shaped conductor forms an antenna connection point.
  • Linear conductors have the property that all conductor elements have a same directional vector whose components in the x, y and z direction are in a common relationship to all the conductor elements.
  • a substantially rod-shaped conductor 4 can be mounted substantially perpendicularly over a substantially horizontal, electrically conductive base surface 6.
  • the same spatial direction applies as for the antenna itself. This results in the desired for mobile reception Rundstrahl properties of the antenna.
  • the rod-shaped conductor 4 is inclined relative to the vertical line 2 on the base surface 6, this forms together with its mirror image a V-shaped antenna.
  • the deviation of the antenna from the vertical line on the base surface 6 is as small as possible.
  • the conductors 4 forming a substantially perpendicular monopole 7 contain at least one interruption point 5 which connects at least one dummy element 8 to the design of the vertical diagram or bridged.
  • the vertical diagram can be advantageously adapted to the requirements.
  • Vehicle antennas are often designed as combination antennas for multiple radio services. In particular, for the reception of AM / FM broadcast signals longer antennas are required.
  • An antenna like in FIG. 3 with the height h2 can be advantageously extended to an AM / FM rod antenna with the total height hg, as in FIG. 4 is shown.
  • a further interruption point 5 is provided at the upper end of the satellite receiving antenna, which is connected to a high impedance reactance, for example, with a parallel resonant circuit 39, the resonant frequency f r on the center frequency f m of the satellite frequency bands is tuned.
  • a further interruption point 5 is connected at a distance 40, which is preferably smaller than 1 / 5 ⁇ to further secure the radiation characteristic also with a high-impedance reactance 39 connected.
  • the extension 32 of the rod antenna can be made largely free and in particular contain such series elements, which are high impedance at the satellite frequency.
  • e ⁇ 1 - 2 c ⁇ I 1 ⁇ RVX 1 RVY 1 RVZ 1 ⁇ cos wt + ⁇ ⁇ p ⁇ 1 ⁇ r ⁇ + ⁇ 1 + cos wt - ⁇ ⁇ p ⁇ 1 ⁇ r ⁇ + ⁇ 1
  • the direction of the sum vector SV thus results not only from the directions of the two direction vectors of the paired conductor elements ⁇ 1 , ⁇ 2 , but also from their complex currents and is the ratio of the components SVx, SVy, SVz of the sum vector SV certainly.
  • Each of these components changes in phase over the period of the cosine oscillation, so that according to the invention the polarization of the electric field strength vector takes place strictly along a line at any point in time. Naturally, this line is always perpendicular to the unit direction vector r oriented, but otherwise can take any direction. A component of the electric field strength perpendicular to this line does not exist at any time.
  • an antenna consisting of a plurality of symmetrically to a common reference point B in space in the manner indicated in pairs and arranged identically aligned electrically very short conductor elements ⁇ 1 , ⁇ 2 and ⁇ 3 , ⁇ 4 , etc. as in FIG. 2 is achieved, it is achieved that - caused by the excitation of the antenna at the antenna connection point 3 - this pair act as radiating elementary antennas ⁇ n , ⁇ m and in both belonging to a pair of elementary antennas elemental antennas, eg. B. ⁇ 1 , ⁇ 2 in FIG.
  • Such a loop 14 may, for example, be designed as a regular n-gon with the phase reference point B in the symmetry point of the n-gon.
  • the loop antenna 14 is formed of a plurality of closed loops with a common phase reference point, but in one of the loops, the antenna junction 3 is formed by interruption.
  • the loop antenna 14 consists of a plurality of loops arranged in a row, which are essentially in mutually parallel planes with the smallest possible distance from each other in the form of a coil or
  • Spiral are arranged.
  • a substantially common central phase reference point is formed for all loops and the antenna connection point 3 is provided by the two ends of the coil.
  • the loop antenna 14 is not electrically short and contains for effective electrical shortening several introduced at points of interruption 5 capacitors or capacitors. As a result, the constancy of the current is given by amount and phase on the conductor elements sufficiently.
  • Fig. 5a shows a circular loop antenna 14 with radius R, which may also be designed polygonal. At its center is the phase center B.
  • the structure is subdivided into "z" line sections, each with the length ⁇ s.
  • the total orbital length is S.
  • the antenna acts as a loop antenna with dimensions in the range of the wavelength, wherein nevertheless a homogeneous current distribution is achieved by dividing the structure and inserting capacitances 16 according to the invention.
  • the length of the antenna is electrically shortened and creates a homogeneous, horizontally polarized electromagnetic field all around.
  • the loop is two-dimensional.
  • the loop antenna 14 is arranged at a constant height h above the conductive base 6. Due to the reflection on the base 6 lies the common phase center B now on the base 6.
  • two paired electrically very short conductor elements as vectors ⁇ 1 , ⁇ 2 , whose direction is given both by the direction of their position in space and by the counting arrow direction of the current flowing on the conductor element current, which can be regarded as constant in magnitude and phase.
  • the vertical main beam direction can be adjusted by the choice of the height h and the radius of the line ring. It can be achieved a zero point in the vertical direction and in the horizontal direction.
  • the conductor characteristic impedance of the as shown in FIG. 5c circulating line over the conductive base 6 is Zw.
  • the line of length S is to be divided into a sufficient number of sections by insertion of capacitances 16.
  • a horizontally arranged loop antenna 14 is placed at a distance of about 1/16 of the wavelength above the conductive base 6, as exemplified in FIG. 5b is shown.
  • the diameter of the loop antenna 14 is chosen to be slightly larger than 1/4 of the wavelength.
  • Along the conductor guide is at intervals of about 1/8 of the wavelength each with a capacity 16 with a reactance of about -200 ohms connected interruption point 5 is introduced.
  • FIG. 7 For example, the vertical diagram of such an antenna is shown for a) left-hand rotating circular polarization and b) right-hand rotating circular polarization.
  • a possible small residual imbalance can be reduced by refinement of the circuit according to the above specifications with reactances and perfection of the symmetry of the antenna with respect to the antenna connection point 3.
  • a radius R of about 4 cm, a height h of about 18 mm and a conductor diameter D of about 3 mm have to be favorable for realizing both the vertical directional pattern and a matching conductor characteristic impedance Zw proved.
  • FIG. 6 shows a further advantageous embodiment of a loop antenna 14 according to the invention with coupling 18 at the antenna connection point 3 via a symmetrical two-wire line 26 outside the center Z, a Umsymmetrierglied 29 and a matching network 25.
  • the influence of not in the phase center located symmetrical vertical feed line in the form of symmetrical Two-wire line 26 does not reduce the polarization purity due to the symmetry property explained below.
  • the connection of the one connection on the unbalanced side of the Umsymmetrierglieds 29 to the connection point 28 of the antenna arrangement is advantageously carried out using a guided over the conductive base 6 microstrip line 30.
  • the other terminal on the unbalanced side of the Umsymmetrierglied 29 is connected to the electrically conductive base 6. Due to the Symmetry properties of the two-wire line 26 compensate for the effects of the currents flowing toward one another in the opposite direction on the conductors of the two-wire line 26, so that these also do not influence the radiation properties of the loop antenna 14. As will be explained below, the currents generated by the electromagnetic reception field on these conductors also have no influence on the effects at the antenna connection point 3.
  • An electrical conductor which in a plane perpendicular to the base 6 and symmetrically with respect to the antenna connection point 3 oriented symmetry plane SE of the satellite antenna array, for example, as a planar or linear antenna 24 - FIG. 16 - Is guided, due to the symmetry of the antenna connection point 3 without influence on the operation of the satellite antenna.
  • the effect of the currents produced by the electromagnetic reception field in the antenna 24 cancel each other out with respect to their effect at the antenna connection point 3.
  • This also applies to the two electrical conductors of the two-wire line 26 in FIG. 6 to, which can be considered as guided in the plane of symmetry SE due to the small distance between the two conductors. From this the antenna 24 in FIG.
  • antenna connection point 3 decoupling property is used in an advantageous embodiment of the invention in the design of combination antennas for different radio services.
  • Such an antenna can thus in addition to the satellite reception by arranging one or more separate and guided in the plane of symmetry SE antennas such.
  • antenna 24 - for radio services such as AM / FM reception, cellular radio services, etc. are used.
  • the coupling takes place centrally and at the ring level.
  • the matching network 25 and the Umsymmetrierglied 29 are also arranged on the ring plane.
  • the two-wire line 26 is connected to the unbalanced side of the Umsymmetrierglied 29 and guided in the center Z to the base 6.
  • the latter establishes the connection to the connection point 28 of the antenna arrangement.
  • the effects of the currents flowing in the opposite direction compensate each other on the conductors of the two-wire line 26 so that they do not influence the radiation properties of the loop antenna 14.
  • a distribution or coupling network acting in reciprocal transmission case as a power distributor suntkopplungs- and phase shifter network 31 is provided to the separate terminals via the loop antenna 14 on the one hand and the monopoly 7 on the other is connected, and which is designed in such a way that in the reciprocal transmission case the phases of the currents flowing in the monopole 7 and in the loop antenna 14 are the same.
  • the reflection are due to the phase condition of the currents to the loop antenna 14 and the monopole antenna 7 with respect to the phase center B on the base 6, the above conditions required for the formation of paired conductor members ⁇ n, ⁇ m, thus meeting for the polarization of the electric field strength.
  • the main beam direction in the vertical diagram of the loop antenna 14 is thereby drawn by adding the vertical monopole 7 to low elevation.
  • the combination now allows to receive a vertical polarized electric field for additional terrestrial applications even at lower elevation.
  • the vertical directional pattern can be filled to low elevation angles for these signals. Trained as a rod antenna monopoly 7 has in its vertical directional characteristic a similar main beam direction as the horizontal polarized loop antenna 14, but provides for low elevation angle a larger contribution than the loop antenna 14.
  • both the weighting of the properties of the two antennas can be set differently and additionally the alignment of the phase centers.
  • the monopoly 7 When arranged in FIG. 10 is the monopoly 7 different than the rod antenna in FIG. 9 realized.
  • the vertical, provided for feeding the loop antenna 14 two-wire line 26 is utilized as a monopole 7, wherein the loop antenna 14 serves as a roof capacitor 12 of the monopoly 7.
  • an additional coupling is provided, wherein the loop antenna 14 is used in a mode as a roofing capacity 12 of the monopole 7 for a vertically polarized field with.
  • a matching network 33 for the monopole mode is used, which is preferably designed such that the above power coupling and phase shifting network 31 can be connected thereto.
  • the weighting of the antennas can be adjusted differently with the aid of this asymmetrical power coupling and phase shifting network 31, and the phase center of gravity can be adjusted.
  • the matching of the impedance of the loop antenna 14 can be done by means of the matching network 25, which can be realized in a simple embodiment as ⁇ / 4-line transformer. Due to the vertically polarized receiving two-wire line 26 with the loop antenna 14 as a roof capacitance 12 relative to the base 6 and due to the horizontally polarized receiving loop antenna 14 between the two conductors of the two-wire line 26 signals from vertical and horizontal field components in acting in the transmission case as a power divider satinkopplungs- and Phase shifter network 31 superimposed.
  • this property can advantageously be exploited for supporting the radiation properties at low elevation by phase-locked combination of the vertically and horizontally polarized antennas and choosing the same phase center of gravity (in analogy to the phase reference point in the origin of the coordinate system according to the above considerations).
  • This can be a linearly polarized field produce, which at higher Elevation is preferably horizontal and preferably vertically polarized at low elevation.
  • the unbalanced power coupling and phase shifting network 31 in the central base 19 of the antenna arrangement is realized in that one conductor of the two-wire line 26 is conductively connected to the conductive base 6 via a reactance 41 and the other conductor of the two-wire line 26 is led to the connection point 28 of the antenna arrangement ,
  • the reactance 41 is realized by a capacitor whose size adjusts the desired weighting.
  • FIG. 10 described antenna is in FIG. 11 executed in a symmetrical embodiment with star-shaped multi-arm horizontal feed and central connection to a vertical feed as an alternative to the one-armed, "asymmetrical" feed. In this way the roundness of the azimuthal directional pattern is perfected.
  • the example shows an embodiment with two-armed symmetrical feed to the two antenna connection points 3 formed in the loop antenna 14.
  • FIG. 12 shows a particularly advantageous two-armed feed via band conductor 34 of a loop antenna 14 and the current paths indicated by arrows.
  • the central vertical feed takes place here, for example, in coaxial design, wherein the outer conductor of a coaxial line 35 is connected to one and the inner conductor to the other band of the strip conductor 34.
  • an identically shaped and identically aligned electrically short dipole 21 is correspondingly present, so that for each electrically very short conductor element on the dipole 21, a corresponding corresponding conductor element extending essentially in the same plane exists on a corresponding dipole 21.
  • Both dipoles 21 forming a pair are fed in the reciprocal transmission case at the antenna connection point 3 in each case with the same current in the amount.
  • the arithmetic mean of the phases of the currents of a dipole pair counted in the same direction has the same value for all dipole pairs.
  • the dipoles 21 are rectilinear and designed to be symmetrical to their antenna connection points 3 and extending in a horizontal plane, the antenna connection points 3 being arranged distributed equidistant on a horizontal circle whose center forms the common reference point B.
  • the dipoles 21 are oriented perpendicular to the connecting line to the center of the circle.
  • FIG. 13a a circular array antenna system is given, as in a simplest form in FIG. 13a is shown.
  • the figure shows a symmetrical embodiment of an antenna according to the invention with 4 arranged in a square dipoles 21 and with a centrally located in the phase center B coupling network 10, the output of which forms the connection point 28 and acts in reciprocal transmission case as a distribution network.
  • the antenna connection points 3 are each connected via an electrical line 27 to one of the inputs 23 of the coupling network 10, wherein the dipole pairs are fed with equal signals according to amplitudes and phases. Adjacent ends of adjacent dipoles 21 may be interconnected via capacitors 16.
  • FIG. 13b shows a dipole arrangement similar FIG. 13a but with a superposition of the reception of horizontal and vertical electric field components, similar to the Figures 10 and 11 ,
  • the dipoles 21 additionally act as roofing capacitance 12 of the vertical monopole 7 thus formed by the two-wire line 26.
  • FIG. 13b in an advantageous embodiment of an antenna arrangement according to FIG. 13a the arranged in a square lying dipoles 21 on a conductive base 6 with a central coupling - similar to the antenna in FIG. 10 - be combined with a monopoly.
  • the vertical feed line in the form of the two-wire line 26 is used to power the dipoles 21 as a monopole 7 with the dipoles 21 as roof capacity 12.
  • the weighting of the effects of the dipoles 21 and the monopole 7 formed in this way can be adjusted differently according to the requirements and the alignment of the phase centers can be done here with the help of the unbalanced in the reciprocal transmission case acting as a power divider power coupling and phase shifter network 31.
  • advantageous embodiment of the invention are similar to Fig. 13a and 13b , in the central phase reference point B of a circular array antenna system with horizontally oriented dipoles 21, an electrically short vertical monopole 7 and a distribution or coupling network 10 is present.
  • the output 24 of the coupling network 10 is designed as a connection point 28 of the antenna arrangement and the antenna connection points 3 of the antennas in the circle group and the monopole 7 are fed in reciprocal transmission case via an electrical line 27 from the coupling network 10 in such a way that the phases of in the current supplied to the monopole 7 corresponds to the phase position of the currents fed into the circuit group antenna system with respect to the common phase reference point B.
  • a plurality of electrically short vertical monopoles 7 can be arranged in pairs symmetrically to the central phase reference point and fed in the reciprocal transmission case via the coupling network 10 in such a way that the arithmetic mean of the current phases of the paired monopolies 7 and the phase of the current in the central Monopole 7 fed current relative to the phase reference point B are the same.
  • a diversity switch 37 which is controlled by a diversity module 38.
  • the received signals of both antennas are each received with their own - but same for both directions of the circular polarization - radiation characteristic.
  • a particular advantage of an antenna arrangement according to the invention is the possibility of a substantially horizontally polarized antenna and a substantially vertically polarized antenna combine to achieve separate connections for circularly polarized waves in both directions of rotation.
  • the loop antenna 14 with the vertical monopole 7 with common phase center B in FIG. 9 either combined in a low-cost manner using the power coupling and phase shifting network 31, as related to FIG.
  • Antennas for circularly polarized waves are usually realized in the prior art by interconnecting similar antennas - such as two crossed dipoles or two crossed loop antennas - via 90 ° phase switching.
  • similar antennas - such as two crossed dipoles or two crossed loop antennas - via 90 ° phase switching.
  • - as in Figure 17a illustrated a circularly polarized antenna of two different antennas according to the present invention, whose vertical directional patterns are congruent and their main direction is designed to receive the satellite signals suitable.
  • the equality of the directional diagrams for example, by choosing the structure of the trained as a rod antenna monopole 7 with dummy element 8 - similar to in connection with the in FIG. 3 described antenna - as well as by appropriate design of the loop antenna 14 - as related to FIG. 7 described - realized.
  • phase center B of both antennas can be accomplished by means of the matching network 25 for the loop antenna 14 and the matching network for the monopole mode, respectively.
  • the matching network 25 for the loop antenna 14 and the matching network for the monopole mode respectively.
  • the vertically and horizontally polarized antenna 7 and 14 at the common phase center B as in FIG. 9 but with separate supply of the signals to the terminal for vertical polarization 49 or for connection for horizontal polarization 48 of a hybrid coupler 45 with 90 ° positive or negative phase difference with respect to the LHCP terminal 46 and the RHCP terminal 47 for the separate generation of LHCP or RHCP signals done.
  • FIG. 17b A similar antenna arrangement is in FIG. 17b however, the realization of the monopole 7 is similar to the antenna arrangement in FIG. 10 by the combination of acting as a roof capacitance loop antenna 14 and the two-wire line 26 takes place.
  • a combined matching circuit 50 By means of a combined matching circuit 50, both the adaptation of the loop antenna 14 and the adjustment of the monopole 7 as well as the adjustment of a common phase center B are ensured.
  • a loop antenna 14 - as in FIG. 11 - With two opposing antenna connection points 3 and connected thereto and located in the loop level matching networks 25, which are preferably implemented as ⁇ / 4 transformation lines provided.
  • the outputs of the matching networks 25 are connected in parallel in addition.
  • the received signal is fed via the two-wire line 26 to a matching network 25 located on the base area 6, the output of which is in turn connected to one of the two inputs of a signal combination circuit designed in particular as a 90 ° hybrid coupler 45.
  • the antenna arrangement can also be advantageously used for polarization diversity by switching between reception for LHCP and RHCP waves.
  • the axis ratio of the circularly elliptically polarized field is adjusted by introducing an attenuator 56 into the path of the monopole 7 from the loop antenna 14.
  • Increasing attenuation is accompanied by the fact that the main beam direction of the antenna increases in elevation and the antenna can be optimized for optimal interference resistance to horizontally incident noise and temperature outside noise.
  • a phase shifter (not shown) can be adjusted according to the invention by adjusting the phase with the attenuation of both the ellipticity, the sense of polarization and the elevation of the main beam direction of the antenna.
  • the switch 55 may be omitted if necessary.
  • FIG. 20 In a further particularly economical embodiment of such an antenna with circular or elliptically polarized field with reversible direction of rotation is in FIG. 20 - similar to the antenna in FIG. 11 -
  • the separate monopoly 7 saved.
  • the two-wire line 26 is also utilized here.
  • the difference of 90 ° between the phases of the horizontal field component picked up by the vertical two-wire line 26 with the loop antennas 14 as the roof capacitance 12 and the loop field 14 is set so that their combination with this phase difference is present at the microstrip conductor 30 to the matching network 54 and thus also at the junction 28.
  • the antenna receives a circularly polarized field.
  • a circuit combining the receive signals of the loop antenna 14 at the output of the matching networks 25 from the horizontally polarized electric field and the receiving signals of the vertical two-wire line 26 from the vertically polarized electric field comprises an LHCP / RHCP switch 55 for reversing the polarity of the receiving voltage of the loop antenna 14.
  • the latter can be added in this way with different signs of the received voltage from the vertically polarized electric field, so that between the reception of LHCP field and RHCP field by switching the LHCP / RHCP switch 55 can be switched.
  • the network 31 can also correspond to the network 31 corresponding network 53 of reactances accordingly FIG. 18 to form the vertical directional pattern of the linearly-vertically polarized antenna into the ground-connected leg of the vertical two-wire line 26.
  • the network 53 With the aid of the network 53, the adjustment of the common mode to differential ratio on the vertical two-wire line 26 can be set.
  • the network 53 is to be designed in such a way that the reception voltages from the horizontal and the vertical electric field components are superimposed in phase.
  • This network 53 can be designed in the simplest case as a capacity.
  • the ratio of the low-polarization vertically-polarized field of the main beam direction to the proportion of the higher polarization horizontally-polarized field of the main beam direction can be adjusted.
  • the elevation of the main beam direction of the overall characteristic between the elevation angles 0 ° (horizontal) and 45 ° can thus be freely selected.

Description

Die Erfindung betrifft eine Antenne für den Empfang zirkular polarisierter Satellitenfunksignale.The invention relates to an antenna for receiving circularly polarized satellite radio signals.

Insbesondere bei Satelliten-Rundfunksystemen kommt es besonders auf die Wirtschaftlichkeit sowohl bezüglich der vom Satelliten abgestrahlten Sendeleistung als auch der Effizienz der Empfangsantenne an. Satellitenfunksignale werden aufgrund von Polarisationsdrehungen auf dem Übertragungsweg in der Regel mit zirkular polarisierten elektromagnetischen Wellen übertragen. Vielfach werden Programminhalte zum Beispiel in frequenzmäßig dicht nebeneinander liegenden getrennten Frequenzbändern übertragen. Dies geschieht im Beispiel des SDARS-Satellitenrundfunks bei einer Frequenz von circa 2,3 GHz in zwei benachbarten Frequenzbändern jeweils mit einer Bandbreite von 4 MHz mit einem Abstand der Mittenfrequenzen von 8 MHz bzw. 4 MHz. Die Signale werden von unterschiedlichen Satelliten mit einer in einer Richtung zirkular polarisierten elektromagnetischen Welle abgestrahlt. Demzufolge werden zum Empfang in der entsprechenden Richtung zirkular polarisierte Antennen verwendet. Solche Antennen sind zum Beispiel aus DE-A-4008505 und DE-A-10163793 bekannt. Dieses Satelliten-Rundfunksystem wird zusätzlich durch die bereichsweise Ausstrahlung terrestrischer Signale in einem weiteren, zwischen den beiden Satellitensignalen angeordneten Frequenzband gleicher Bandbreite unterstützt.In particular, in satellite broadcasting systems, it is particularly important to economize both with respect to the transmitted power emitted by the satellite and the efficiency of the receiving antenna. Satellite radio signals are transmitted due to polarization rotations in the transmission path usually with circularly polarized electromagnetic waves. In many cases, program contents are transmitted, for example, in frequency bands closely spaced separate frequency bands. This is done in the example of SDARS satellite broadcasting at a frequency of about 2.3 GHz in two adjacent frequency bands each with a bandwidth of 4 MHz with a spacing of the center frequencies of 8 MHz and 4 MHz. The signals are emitted by different satellites with a circularly polarized in one direction electromagnetic wave. As a result, circularly polarized antennas are used for reception in the corresponding direction. Such antennas are for example off DE-A-4008505 and DE-A-10163793 known. This satellite broadcasting system is additionally supported by the regional emission of terrestrial signals in another, arranged between the two satellite signals frequency band of the same bandwidth.

Bei einem Satelliten Rundfunksystem, bei welchem Signale in frequenzmäßig dicht nebeneinander liegenden Frequenzbändern etwa gleicher Breite übertragen werden, die zirkular polarisierten Wellen jedoch mit zu einander entgegen gesetzten Drehrichtungen ausgestrahlt werden, müssten demzufolge für den Empfang der beiden Frequenzbänder unterschiedlich zirkular polarisierte Antennen zum Beispiel nach den Mustern der aus DE-A-4008505 und DE-A-10163793 bekannten Ausführungsformen eingesetzt werden. Insbesondere für den Empfang in Fahrzeugen ist der Einsatz mehrerer Antennen mit getrennten Leitungen zum Empfänger beziehungsweise der Einsatz einer komplizierten Umschalteinrichtung zum selektiven Empfang des einen oder des anderen Signals wirtschaftlich aufwändig und damit nachteilig. Eine getrennte Verarbeitung anhand frequenzselektiver Maßnahmen der beiden Frequenzbänder innerhalb ein und derselben Antenne ist aufgrund der hohen Selektionsforderung mit wirtschaftlichen Mitteln nicht erreichbar.In a satellite broadcasting system, in which signals are transmitted in frequency closely adjacent frequency bands approximately the same width, the circularly polarized waves are radiated but with opposite directions of rotation, would therefore have to receive the two frequency bands differently circularly polarized antennas, for example according to Pattern out DE-A-4008505 and DE-A-10163793 known embodiments are used. In particular for reception in vehicles is the use of multiple antennas with separate Lines to the receiver or the use of a complicated switching device for selective reception of one or the other signal economically complex and thus disadvantageous. Separate processing based on frequency-selective measures of the two frequency bands within one and the same antenna is not achievable due to the high selection requirement with economic means.

Aus US 5,751,252 ist eine Satellitenempfangsantenne bekannt, bei welcher im Zentrum einer kreisförmigen Schleifenantenne eine Dipolantenne angeordnet ist, deren Antennenanschlussstelle in der Ebene der Schleifenantenne liegt. Die Dipolantenne und die Schleifenantenne sind über Lambda/Halbe Symmetrieleitungen mit einem 90°-Hybridkoppler verbunden, der die von der Schleifenantenne empfangenen horizontal polarisierten Signale und die von der Dipolantenne empfangenen vertikal polarisierten Signale zu einem zirkular polarisierten Signal kombiniert. Die Leiterschleife der Schleifenantenne ist auf diametral gegenüberliegenden Seiten unterbrochen, wobei eine der Unterbrechungen ein kapazitives Element enthält und die andere Unterbrechung eine Antennenanschlussstelle bildet, die über ein Anpassnetzwerk aus Kondensatoren mit den beiden Hälften der Leiterschleife verbunden ist. Der Umfang der Leiterschleife ist eine halbe Wellenlänge lang. Weitere Antennen, die horizontale und vertikale elektrische Felder für den Empfang zirkular polarisierter Signale kombinieren, sind aus JP 2000-077934 A1 und DE 101 63 793 A1 bekannt.Out US 5,751,252 For example, a satellite receiving antenna is known in which a dipole antenna whose antenna connection point lies in the plane of the loop antenna is arranged in the center of a circular loop antenna. The dipole antenna and loop antenna are connected via half-wave / half-balanced lines to a 90 ° hybrid coupler which combines the horizontally polarized signals received from the loop antenna and the vertically polarized signals received from the dipole antenna into a circularly polarized signal. The conductor loop of the loop antenna is interrupted on diametrically opposite sides, wherein one of the breaks contains a capacitive element and the other interruption forms an antenna junction, which is connected to the two halves of the conductor loop via a matching network of capacitors. The circumference of the conductor loop is half a wavelength long. Other antennas combining horizontal and vertical electric fields for receiving circularly polarized signals are off JP 2000-077934 A1 and DE 101 63 793 A1 known.

Aufgabe der Erfindung ist es deshalb, eine Antenne anzugeben, welche für den Empfang der in beiden Satelliten-Frequenzbändern ausgestrahlten elektromagnetischen Wellen sowohl mit linksdrehender (LHCP) als auch mit rechtsdrehender zirkularer Polarisation (RHCP) geeignet ist und an ihrer Antennenanschlussstelle etwa gleiche, für den Satellitenempfang geeignete Strahlungscharakteristik besitzt. Die Antenne soll darüber hinaus wirtschaftlich gestaltet werden können.The object of the invention is therefore to provide an antenna which is suitable for receiving the radiated in both satellite frequency bands electromagnetic waves with both left-handed (LHCP) and with clockwise circular polarization (RHCP) and at its antenna connection point about the same, for the Satellite reception has suitable radiation characteristics. The antenna should also be able to be economically designed.

Diese Aufgabe wird durch die in den Ansprüchen 1, 3 oder 8 angegebenen Merkmale gelöst.This object is achieved by the features specified in claims 1, 3 or 8.

Gemäß der Erfindung umfasst die Antenne für den Empfang zirkular polarisierter Satellitenfunksignale wenigstens eine mit einem Antennenausgangsanschluss verbundene, zwei- oder dreidimensionale Antennenleiterstruktur und ist dadurch gekennzeichnet, dass die mehrdimensionale Antennenleiterstruktur so gestaltet ist, dass sie im Wesentlichen aus einer Vielzahl von Antennenleiterabschnitten besteht, die, bezogen auf einen den Antennenleiterabschnitten gemeinsamen Raum-bezugspunkt, paarweise symmetrisch und in gleicher Richtung sich erstreckend angeordnet sind, und dass die mehrdimensionale Antennenleiterstruktur ferner so ausgebildet ist, dass bei reziprokem Betrieb der Antenne als Sendeantenne in den einzelnen Paaren von Antennenleiterabschnitten Antennenströme zumindest näherungsweise gleicher Größe fließen und das arithmetische Mittel der Stromphasen dieser in den Antennenleiterabschnitten jedes Paars jeweils in gleiche Richtung gezählten Antennenströme bei im Wesentlichen sämtlichen Paaren von Antennenleiterabschnitten bezogen auf einen gemeinsamen Phasenbezugspunkt zumindest näherungsweise den gleichen Wert hat.According to the invention, the antenna for receiving circularly polarized satellite radio signals comprises at least one two- or three-dimensional antenna conductor structure connected to an antenna output terminal and is characterized in that the multidimensional antenna conductor pattern is designed to consist essentially of a plurality of antenna conductor sections which, relative to a space reference point common to the antenna conductor sections, arranged in pairs symmetrically and in the same direction, and that the multidimensional antenna conductor structure is further configured such that when the antenna is reciprocally operated as the transmitting antenna in the individual pairs of antenna conductor sections, antenna currents of at least approximately equal magnitude and the arithmetic mean of the current phases of these antenna currents respectively counted in the antenna conductor portions of each pair in the same direction at substantially seed individual pair of antenna conductor sections has at least approximately the same value with respect to a common phase reference point.

Eine solche Antenne vermag linksdrehend zirkular polarisierte Wellen und rechtsdrehend zirkular polarisierte Wellen gleichermaßen empfangen und lässt sich durch relativ einfache Antennenleiterstrukturen auch für zum Empfang von Satellitensignalen geeignete Elevationswinkel des Strahlungsdiagramms realisieren.Such an antenna is capable of receiving and leaving both left-handed circularly polarized waves and right-handed circularly polarized waves Realize itself by relatively simple Antennenleitererstrukturen also suitable for receiving satellite signals elevation angle of the radiation pattern.

Die Verteilung der Ströme auf einer Antenne im Empfangsbetrieb ist vom Abschlusswiderstand an der Antennenanschlussstelle abhängig. Im Gegensatz hierzu ist im Sendebetrieb die auf den Speisestrom an der Antennenanschlussstelle bezogene Verteilung der Ströme auf den Antennenleitern vom Quellwiderstand der speisenden Signalquelle unabhängig und ist somit eindeutig mit dem Richtdiagramm und der Polarisation der Antenne verknüpft. Aufgrund dieser Eindeutigkeit in Verbindung mit dem Gesetz der Reziprozität, nach welchem die Strahlungseigenschaften - wie Richtdiagramm und Polarisation - im Sendebetrieb wie im Empfangsbetrieb identisch sind, wird die erfindungsgemäße Aufgabe bezüglich Polarisation und Richtdiagrammen an Hand der Gestaltung der Antennenstruktur zur Erzeugung entsprechender Ströme im Sendebetrieb der Antenne gelöst. Damit ist auch die erfindungsgemäße Aufgabe für den Empfangsbetrieb gelöst. Alle im Folgenden durchgeführten Betrachtungen über Ströme auf der Antennenstruktur und deren Phasen beziehungsweise deren Phasenbezugspunkt beziehen sich somit auf den reziproken Betrieb der Empfangsantenne als Sendeantenne, wenn nicht ausdrücklich der Empfangsbetrieb angesprochen ist.The distribution of the currents on an antenna in receive mode depends on the terminator at the antenna junction. In contrast, in the transmission mode, the distribution of the currents on the antenna conductors relative to the supply current at the antenna connection point is independent of the source resistance of the supplying signal source and is thus clearly linked to the directional diagram and the polarization of the antenna. Because of this uniqueness in conjunction with the law of reciprocity, according to which the radiation properties - such as directional diagram and polarization - are identical in transmission mode as in receiving mode, the object of the invention with respect to polarization and directional diagrams on the basis of the design of the antenna structure for generating corresponding currents in the transmission mode Antenna solved. Thus, the object of the invention for the receiving operation is solved. All considerations made below about currents on the antenna structure and their phases or their phase reference point thus refer to the reciprocal operation of the receiving antenna as a transmitting antenna, unless the receiving mode is specifically addressed.

Die Erfindung wird im Folgenden an Hand von Ausführungsbeispielen näher erläutert. Die zugehörigen Figuren zeigen im Einzelnen:

  • Fig. 1:
    Frequenzbänder zweier Satelliten-Rundfunksignale mit in unterschiedliche Drehrichtungen zirkular polarisierter Ausstrahlung in dichter Frequenznachbarschaft;
  • Fig. 2:
    Darstellung des Zusammenhangs zwischen Strom durchflossenen, beliebig orientierten elektrisch sehr kurzen Leiterelementen und den zugehörigen elektrischen und magnetischen Feldstärkevektoren in einem fernen Aufpunkt;
  • Fig. 3:
    1. a) Einen Monopol 7, der zur Gestaltung seines Vertikaldiagramms eine mit einem Blindelement 8 beschaltete Unterbrechungsstelle 5 aufweist,
    2. b) ein Vertikaldiagramm für den Empfang im Bereich von Elevationswinkeln zwischen 25° und 65°;
  • Fig. 4:
    Satelliten-Empfangsantenne für den Empfang von Satellitensignalen kombiniert mit einer längeren Antenne für den Empfang von AM/FM-Rundfunksignalen;
  • Fig. 5:
    1. a) Eine kreisförmige Schleifenantenne 14 mit Kapazitäten 16,
    2. b) eine kreisförmige Schleifenantenne 14 in konstanter Höhe h über einer leitenden Grundfläche 6 mit fiktivem Spiegelbild,
    3. c) ein Detail der Schleifantenne 14 zur Erläuterung der Berechnung des Wellenwiderstands Zw der umlaufenden Leitung über der leitenden Grundfläche 6;
  • Fig. 6:
    Eine Variante der Schleifantenne 14 in Fig. 5b mit Auskopplung der Empfangssignale über eine symmetrische Zweidrahtleitung 26 außerhalb ihres Zentrums Z und mit einem Umsymmetrierglied 29 und einem Anpassnetzwerk 25;
  • Fig. 7:
    Ein Vertikaldiagramm einer Schleifenantenne 14 nach Fig. 5b und Fig. 6 für
    1. a) links drehende zirkulare Polarisation und
    2. b) rechts drehende zirkulare Polarisation;
  • Fig. 8:
    Eine weitere Ausführungsform der Schleifenantenne 14 bei welcher das Anpassnetzwerk 25 und das Umsymmetrierglied 29 auf der Ringebene angeordnet sind. Für die Verbindung zu einem Antenneneingangsanschluss 28 ist eine Zweidrahtleitung 26 im Zentrum Z zur leitenden Grundfläche 6 geführt, wo sie als Mikrostreifenleiter 30 über der Grundfläche 6 zur Anschlussstelle 28 weitergeführt ist;
  • Fig. 9:
    Eine Ausführungsform der Schleifenantenne 14 gemäß der Erfindung mit einem als Stabantenne ausgebildeten Monopol 7 für den Empfang vertikal polarisierter Felder im Zentrum Z der horizontalen Schleifenantenne 14 mit einem Leistungsteiler- und Phasenschiebernetzwerk 31 zur phasengerechten Überlagerung der horizontal und vertikal polarisierten Feldanteile;
  • Fig. 10:
    Eine Antenne ähnlich Fig. 9 jedoch mit einer vertikalen Zuleitung 26 zur Speisung der Schleifenantenne 14, wobei die Zuleitung 26 einen Monopol 7 und die Schleifenantenne 14 eine Dachkapazität 12 des Monopols 7 bildet;
  • Fig. 11:
    Eine Schleifenantenne 14 mit zwei symmetrisch zueinander angeordneten Antennenanschlussstellen 3 und je einem Anpassnetzwerk 25 in der Schleifenebene sowie mit zentralem Anschluss an eine vertikale Zuleitung 26 als Alternative zu Figur 10;
  • Fig. 12:
    Eine Ausführungsform mit zweigeteilter Zuführung zu der Schleifenantenne 14 in Form eines Bandleiters 34 mit durch Pfeile gekennzeichneten Stromwegen;
  • Fig. 13:
    1. a) Eine symmetrische Ausführungsform einer Antenne mit vier in einem Quadrat angeordneten, horizontal liegenden Dipolen 21 und mit einem zentral im Phasenzentrum B angeordneten Verteilungsnetzwerk 10, dessen Ausgang 24 den Ausgangsanschluss 28 bildet.
    2. b) eine Antennenanordnung ähnlich Figur 13a jedoch mit einer Überlagerung empfangener horizontaler und vertikaler elektrischer Feldkomponenten wie an Hand der Figuren 10 und 11 erläutert. Das Dipolsystem wirkt als Dachkapazität des auf diese Weise gebildeten vertikalen Monopols;
  • Fig. 14:
    Eine Antennenanordnung nach der Erfindung als Diversity-Empfangsantenne mit einem entsprechend gestalteten Verteilungsnetzwerk 10 zum Verfügbarmachen sowohl der Empfangssignale der Schleifenantenne 14 mit horizontal orientierten Leiterelementen als auch den Empfangssignalen des vertikalen Monopols 7;
  • Fig. 15:
    Eine Antennenanordnung ähnlich Figur 10 mit einem extrem einfach als Blindwiderstand 41 realisierbaren Leistungsteiler- und Phasenschiebernetzwerk 31 über der Grundfläche 6;
  • Fig. 16:
    Eine Antennenanordnung ähnlich den Beispielen in den Figuren 8 bis 15 mit einer in einer senkrecht zur Grundfläche 6 und symmetrisch bezüglich der Antennenanschlussstelle 3 orientierten Symmetrieebene SE der Antennenanordnung angeordneten linearen oder flächig gestalteten Antenne 24 für einen weiteren Funkdienst oder mehrere weitere Funkdienste;
  • Fig. 17:
    1. a) Eine Antennenanordnung mit einem als Stabantenne ausgebildeten, vertikal polarisierten Monopol 7 und einer horizontal polarisierten Schleifenantenne 14 nach der Erfindung mit auf den Sendefall bezogen gemeinsamem Phasenzentrum B wie in Figur 9, jedoch mit getrennter Zuführung der Signale zum Anschluss für Vertikalpolarisation 49 beziehungsweise zum Anschluss für Horizontalpolarisation 48 eines Hybridkopplers 45 mit 90° positivem beziehungsweise negativem Phasenunterschied bezüglich des LHCP-Anschlusses 46 und des RHCP-Anschlusses 47 für getrennte Verfügbarkeit von LHCP- beziehungsweise RHCP-Signalen,
    2. b) eine Antennenanordnung wie in Figur a) jedoch mit einer Realisierung des Monopols 7 gemäß der Antennenanordnung in Figur 10 durch die Kombination der Wirkungen der Schleifenantenne 14 als Dachkapazität und der Zweidrahtleitung 26;
  • Fig. 18:
    Eine Antennenanordnung mit phasengleicher Überlagerung der Empfangsspannungen aus den horizontalen und den vertikalen elektrischen Feldanteilen einer Schleifenantenne 14 und einer durch die vertikalen Zweidrahtleitung 26 gebildeten Monopolantenne 7. Mit Hilfe eines in einen der Leiter der Zweidrahtleitung 26 eingebrachten Netzwerks 53 erfolgt die Einstellung des Gleichtakt-zu-Gegentakt-Verhältnisses auf der vertikalen Zweidrahtleitung 26, womit das Verhältnis des Anteiles des vertikal polarisierten Feldes mit niederer Elevation der Hauptstrahlrichtung zu dem Anteil des horizontal polarisierten Feldes mit höherer Elevation der Hauptstrahlrichtung eingestellt wird. Dieses Netzwerk 53 kann im einfachsten Fall als eine Kapazität gestaltet werden;
  • Fig. 19:
    1. a) Eine Antennenanordnung zur alternativen Auskopplung von RHCPbeziehungsweise LHCP-Signalen mit einer Schleifenantenne 14 mit zwei einander gegenüberliegenden Antennenanschlussstellen 3 und daran angeschlossenen Anpassnetzwerken 25 und einem im Zentrum der Schleifenantenne 14 befindlichen Monopol 7 in Form einer Stabantenne. Die Empfangssignale der beiden Antennen werden in einem 90°-Hybridkoppler 45 überlagert, an dessen Ausgänge ein LHCP/RHCP-Umschalter 55 angeschlossen ist. Angesteuert durch einen im Empfänger befindlichen Umschalter zwischen LHCP und RHCP - Satelliten-Empfangssignalen stehen die Signale der beiden Drehrichtungen der Polarisation alternierend zur Verfügung;
    2. b) Eine Variante der Antennenanordnung, die auch den Empfang elliptisch polarisierter Felder erlaubt;
  • Fig. 20:
    Eine Antennenanordnung ähnlich der Variante der Fig. 19, bei der jedoch entsprechend der Antenne in Fig. 11 der Monopol 7 durch eine Zweidrahtleitung 26 gebildet ist, die die Schleifenantenne 14 mit der leitenden Grundfläche 6 verbindet.
The invention will be explained in more detail below with reference to exemplary embodiments. The accompanying figures show in detail:
  • Fig. 1 :
    Frequency bands of two satellite broadcast signals with circularly polarized radiation in different directions of rotation in dense frequency neighborhood;
  • Fig. 2 :
    Representation of the relationship between current traversed, arbitrarily oriented electrically very short conductor elements and the associated electric and magnetic field strength vectors in a distant Aufpunkt;
  • Fig. 3 :
    1. a) a monopole 7 which has an interruption point 5 connected to a dummy element 8 for the purpose of designing its vertical diagram,
    2. b) a vertical diagram for reception in the range of elevation angles between 25 ° and 65 °;
  • Fig. 4 :
    Satellite receiving antenna for receiving satellite signals combined with a longer antenna for receiving AM / FM broadcast signals;
  • Fig. 5 :
    1. a) A circular loop antenna 14 with capacitances 16,
    2. b) a circular loop antenna 14 at a constant height h above a conductive base 6 with a fictitious mirror image,
    3. c) a detail of the grinding antenna 14 for explaining the calculation of the characteristic impedance Zw of the circulating line over the conductive base 6;
  • Fig. 6 :
    A variant of the grinding antenna 14 in FIG Fig. 5b with coupling of the received signals via a symmetrical two-wire line 26 outside its center Z and with a Umsymmetrierglied 29 and a matching network 25;
  • Fig. 7 :
    A vertical diagram of a loop antenna 14 after Fig. 5b and Fig. 6 For
    1. a) left rotating circular polarization and
    2. b) clockwise rotating circular polarization;
  • Fig. 8 :
    Another embodiment of the loop antenna 14 in which the matching network 25 and the Umsymmetrierglied 29 are arranged on the ring plane. For the connection to an antenna input terminal 28, a two-wire line 26 is led in the center Z to the conductive base 6, where it as a microstrip conductor 30 is continued over the base 6 to the connection point 28;
  • Fig. 9 :
    An embodiment of the loop antenna 14 according to the invention with a trained as a rod antenna monopole 7 for receiving vertically polarized fields in the center Z of the horizontal loop antenna 14 with a power splitter and phase shifter network 31 for phase-correct superposition of horizontally and vertically polarized field components;
  • Fig. 10 :
    An antenna similar Fig. 9 but with a vertical feed line 26 for feeding the loop antenna 14, the feed line 26 forming a monopole 7 and the loop antenna 14 forming a roofing capacity 12 of the monopole 7;
  • Fig. 11 :
    A loop antenna 14 with two antenna connection points 3 arranged symmetrically to one another and one matching network 25 each in the loop plane and with a central connection to a vertical feed line 26 as an alternative to FIG. 10 ;
  • Fig. 12 :
    An embodiment with two-part supply to the loop antenna 14 in the form of a strip conductor 34 with current paths indicated by arrows;
  • Fig. 13 :
    1. a) A symmetrical embodiment of an antenna with four arranged in a square, horizontally disposed dipoles 21 and with a centrally located in the phase center B distribution network 10, the output 24 forms the output terminal 28.
    2. b) an antenna arrangement similar FIG. 13a however, with a superposition of received horizontal and vertical electric field components as with the hand Figures 10 and 11 explained. The dipole system acts as a roofing capacity of the vertical monopole thus formed;
  • Fig. 14 :
    An antenna arrangement according to the invention as a diversity receiving antenna with a correspondingly designed distribution network 10 for making available both the received signals of the loop antenna 14 with horizontally oriented conductor elements and the received signals of the vertical monopole 7;
  • Fig. 15 :
    An antenna arrangement similar FIG. 10 with a power divider and phase shifter network 31, which can be realized extremely simply as a reactance 41, over the base surface 6;
  • Fig. 16 :
    An antenna arrangement similar to the examples in FIGS FIGS. 8 to 15 with a linear or area-shaped antenna 24 arranged in a plane perpendicular to the base 6 and symmetrically with respect to the antenna connection point 3 symmetrical plane SE of the antenna arrangement for another radio service or several other radio services;
  • Fig. 17 :
    1. a) An antenna arrangement with a rod antenna designed as a vertically polarized monopole 7 and a horizontally polarized loop antenna 14 according to the invention with respect to the transmission case common phase center B as in FIG. 9 but with separate supply of the signals to the vertical polarization terminal 49 and the horizontal polarization terminal 48 of a hybrid coupler 45 with 90 ° positive and negative phase difference with respect to the LHCP terminal 46 and the RHCP terminal 47 for separate availability of LHCP and RHCP signals, respectively .
    2. b) an antenna arrangement as in Figure a) but with a realization of the monopole 7 according to the antenna arrangement in FIG. 10 by combining the effects of the loop antenna 14 as the roof capacitance and the two-wire line 26;
  • Fig. 18 :
    An antenna arrangement with in-phase superposition of the received voltages from the horizontal and the vertical electric field components of a loop antenna 14 and one through the vertical Two-wire line 26 formed monopole antenna 7. With the help of a introduced into one of the conductors of the two-wire line 26 network 53, the adjustment of the common mode to-push-pull ratio on the vertical two-wire line 26, whereby the ratio of the proportion of vertically polarized field with low elevation of the main beam direction is set to the proportion of the horizontal polarized field with higher elevation of the main beam direction. This network 53 can be designed as a capacity in the simplest case;
  • Fig. 19 :
    1. a) An antenna arrangement for the alternative coupling of RHCP and LHCP signals with a loop antenna 14 with two opposing antenna connection points 3 and connected matching networks 25 and located in the center of the loop antenna 14 monopole 7 in the form of a rod antenna. The received signals of the two antennas are superimposed in a 90 ° hybrid coupler 45, to whose outputs an LHCP / RHCP switch 55 is connected. Triggered by a switch located in the receiver between LHCP and RHCP satellite received signals, the signals of the two directions of rotation of the polarization are alternately available;
    2. b) A variant of the antenna arrangement, which also allows the reception of elliptically polarized fields;
  • Fig. 20 :
    An antenna arrangement similar to the variant of Fig. 19 in which, however, according to the antenna in Fig. 11 the monopole 7 is formed by a two-wire line 26 which connects the loop antenna 14 to the conductive base 6.

Obwohl die erfindungsgemäße Aufgabe auf eine Empfangsantenne gerichtet ist, werden nachfolgend die Eigenschaften der Antenne aus Gründen der besseren Nachvollziehbarkeit für den reziproken Betrieb der Antenne als Sendeantenne beschrieben, wobei der Sendefall aber aufgrund der naturgemäß geltenden Reziprozitätsbeziehung auch auf den Empfangsfall zutrifft.Although the object of the invention is directed to a receiving antenna, the properties of the antenna are described below for better traceability for the reciprocal operation of the antenna as a transmitting antenna, the transmission case, however, due to the naturally valid reciprocity relationship also applies to the reception case.

Besonderer Vorteil einer Antenne nach der Erfindung ist die Eigenschaft, dass der entsprechend dem Reziprozitätsgesetz bei Betrieb der Antenne als Sendeantenne im Fernfeld erzeugte elektrische Feldstärkevektor zwar in jedem Punkt des Raumes zu jedem Zeitpunkt längs einer für diesen Punkt des Raumes spezifischen, feststehenden geraden Linie polarisiert ist, dass jedoch bezüglich der Richtung dieser Linie im Raum für die unterschiedlichen Raumrichtungen des Strahlungsdiagramm keine Gleichheitsforderung besteht, wie sie bei der Funkübertragung mit linearen polarisierten Antennen bekannt ist. Naturgemäß steht diese Linie stets senkrecht auf der Ausbreitungsrichtung, ist jedoch bezüglich ihrer sonstigen Richtung erfindungsgemäß vollkommen frei gestaltbar. Daraus ergibt sich eine Gestaltbarkeitsvielfalt, welche die optimale Anpassung an eine geforderte Strahlungscharakteristik ermöglicht. Für die erfindungsgemäße Gestaltung der Antenne ist es lediglich notwendig, für den reziproken Betrieb als Sendeantenne in jeder Raumrichtung über die Periode der Hochfrequenzschwingung eine zeitliche Änderung der Richtung des elektrischen und damit des magnetischen Feldstärkevektors auszuschließen. Raumrichtungen in denen diese Bedingung nicht erfüllt ist, tragen stets zur Unterstützung eines der beiden Satelliten-Signale und somit zwangsweise zur Abschwächung des anderen Satelliten-Signals bei und schwächen somit das Gesamtsystem.A particular advantage of an antenna according to the invention is the property that the electric field strength vector generated according to the law of reciprocity when operating the antenna as transmitting antenna in the far field is polarized in each point of the room at any time along a fixed, fixed line specific to that point of the room in that, however, there is no equality requirement with respect to the direction of this line in the space for the different spatial directions of the radiation pattern, as is known in the case of radio transmission with linear polarized antennas. Naturally, this line is always perpendicular to the propagation direction, but with respect to its other direction according to the invention is completely free formable. This results in a manageability variety that allows optimal adaptation to a required radiation pattern. For the inventive design of the antenna, it is only necessary to preclude a temporal change in the direction of the electrical and thus the magnetic field strength vector for the reciprocal operation as a transmitting antenna in each spatial direction over the period of high frequency oscillation. Spaces in which this condition is not met, always contribute to the support of one of the two satellite signals and thus forcibly to the attenuation of the other satellite signal and thus weaken the overall system.

In Figur 1 ist die Problematik dargestellt, von der die Erfindung ausgeht. Die Problematik ergibt sich daraus, dass zwei Satelliten-Rundfunk-Frequenzbänder mit kleiner Bandbreite Bu beziehungsweise Bo dicht benachbart bei einer hohen Frequenz im L-Band beziehungsweise im S-Band, jedenfalls bei einer Frequenz von fm >1 GHz mit entgegengesetzten Richtungen, das heißt mit rechts drehender zirkularer Polarisation (RHCP) bzw. links drehender zirkularer Polarisation (LHCP) abgestrahlt werden. Bei einer Bandbreite Bu beziehungsweise Bo von einigen Megahertz (typisch etwa 4 -25 MHz) ist der relative Frequenzabstand zwischen den Mittenfrequenzen fmu und fmo derart gering, dass eine frequenzselektive Gestaltung der Antenne für links drehende und rechts drehende zirkulare Polarisation nicht zugleich möglich ist.In FIG. 1 illustrates the problem from which the invention proceeds. The problem arises from the fact that two satellite radio frequency bands with small bandwidth Bu or Bo closely adjacent at a high frequency in the L band or in the S band, in any case at a frequency of fm> 1 GHz with opposite directions, that is with right rotating circular polarization (RHCP) or left rotating circular polarization (LHCP) are radiated. With a bandwidth Bu or Bo of a few megahertz (typically about 4 -25 MHz), the relative frequency spacing between the center frequencies fmu and fmo is so small that a frequency-selective design of the antenna for left-rotating and right-rotating circular polarization is not possible at the same time.

Im Folgenden werden die Grundlagen zur Gestaltung von Antennen erläutert, welche der erfindungsgemäßen Antenne zugrunde liegen.In the following, the principles for the design of antennas are explained, which are based on the antenna according to the invention.

Anhand von Figur 2 soll der Zusammenhang zwischen Strom durchflossenen, beliebig im Raum orientierten elektrisch sehr kurzen Leiterelementen bzw. Antennenleiterabschnitten der Länge Δ1...Δ5 < λ/20 und den im fernen Aufpunkt P erzeugten komplexen elektrischen und magnetischen Feldstärkevektoren E ̲

Figure imgb0001
und H ̲
Figure imgb0002
erläutert werden. Die elektrisch sehr kurzen Leiterelemente sind als Vektoren Δ 1 ...Δ 5 dargestellt, deren Richtung sowohl durch die Richtung der Lage im Raum als auch durch die Zählpfeilrichtung des auf dem Leiterelement fließenden Stromes, welcher nach Betrag und Phase als konstant angesehen werden kann, gegeben ist. Die Koordinatenrichtungen des räumlichen Koordinatensystems sind mit x, y und z bezeichnet, sein Koordinatenursprung mit B. In einer allgemeinen Beschreibung des v-ten Leiterelementes mit dem komplexen Strom Iv und seiner durch den Positionsvektor p ν beschriebenen Position im Raum kann sein Beitrag zum komplexen elektrischen Feldstärkevektor E ̲ y
Figure imgb0003
im - mit Abstand rA vom Ursprung B des Koordinatensystems entfernten - Fernfeld-Aufpunkt P, dessen Position ferner durch den Einheits-Richtungsvektor r beschrieben ist, angegeben werden. Sind N solcher Leiterelemente vorhanden, dann lautet die elektrische Feldstärke summarisch: E ̲ v = jexp - jβr A Z 0 2 υ = 1 N Δ v × r × r I υ exp j β p υ + ψ υ
Figure imgb0004
Based on FIG. 2 should the relationship between current traversed, arbitrarily oriented in space electrically very short conductor elements or antenna conductor sections of length Δ1 ... Δ5 <λ / 20 and generated in the remote point P complex electric and magnetic field strength vectors e
Figure imgb0001
and H
Figure imgb0002
be explained. The electrically very short conductor elements are as vectors Δ 1 ... Δ 5 , whose direction is given both by the direction of the position in space and by the Zählpfeilrichtung of the current flowing on the conductor element current, which can be regarded as constant in magnitude and phase. The coordinate directions of the spatial coordinate system are denoted by x, y and z, its coordinate origin by B. In a general description of the vth conductor element with the complex current Iv and its by the position vector p ν described position in space can be its contribution to the complex electric field strength vector e y
Figure imgb0003
in far-field point of view P, distant from the origin B of the coordinate system by a distance r A , whose position is further divided by the unit direction vector r described. If there are N such conductor elements, then the electric field strength is summed up: e v = JEXP - jβr A Z 0 2 Σ υ = 1 N Δ v × r × r I υ exp j β p υ + ψ υ
Figure imgb0004

Hierin sind: Iν die Stromamplitude und ψν die Stromphase des ν-ten Leiterelements; λ die Wellenlänge; β = 2π/ λ; Z0 der Wellenwiderstand des freien Raumes.
Fasst man die für alle Leiterelemente gleich wirkenden Faktoren zu einer Konstanten c = j e - j β r A Z 0 2 r A λ

Figure imgb0005

zusammen, so lässt sich die Zeitfunktion der elektrischen Feldstärke bei willkürlich gewählter Grundphase wie folgt angeben: E ̲ v = c v = 1 N I ν Δ v × r × r cos wt + β p v r + ψ v
Figure imgb0006
Herein: I ν the current amplitude and ψ ν the current phase of the ν-th conductor element; λ the wavelength; β = 2π / λ; Z 0 is the characteristic impedance of free space.
If one considers the factors, which act the same for all ladder elements, as a constant c = j e - j β r A Z 0 2 r A λ
Figure imgb0005

together, the time function of the electric field strength with arbitrarily chosen basic phase can be specified as follows: e v = c Σ v = 1 N I ν Δ v × r × r cos wt + β p v r + ψ v
Figure imgb0006

w ist hierbei die Kreisfrequenz und t der Zeitparameter.
In Gleichung (3) steht der Ausdruck in der geschweiften Klammer für die räumliche Richtung des Beitrags eines Leiterelements zu der sich ergebenden räumlichen Richtung des resultierenden elektrischen Feldstärkevektors.
Beschreibt man den Vektor Δ ν durch seine Komponenten Δx ν, Δy ν, Δz ν, so lässt sich der Richtungsvektor des v-ten Leiterelementes in der geschweiften Klammer wie folgt angeben: RV v = Δ x v Δ y v Δ z v × sinϑ cosϕ sinϑ sinϕ cosϑ × sinϑ cosϕ sinϑ sinϕ cosϑ

Figure imgb0007
w is the angular frequency and t is the time parameter.
In equation (3), the expression in the curly bracket represents the spatial direction of the contribution of a conductor element to the resulting spatial direction of the resulting electric field strength vector.
Describing the vector Δ ν by its components Δ ν x, Δ y ν, ν Δ z, then the direction vector of the v-th conductor element can be in the curly brackets indicate how follows: RV v ~ = Δ x v Δ y v Δ z v × sinθ cos sinθ sinφ cos × sinθ cos sinθ sinφ cos
Figure imgb0007

ϑ ist hierbei der auf die Vertikalrichtung bezogene Elevationswinkel und φ der Azimutalwinkel.
Eingesetzt erhält man vereinfacht an Stelle von Gleichung (3): E = c v = 1 N I ν RVx ν RVy ν RVz ν cos wt + β p v r + ψ v

Figure imgb0008
In this case, θ is the elevation angle related to the vertical direction and φ is the azimuthal angle.
Substituted one obtains simplified instead of equation (3): e = c Σ v = 1 N I ν RVX ν RVY ν RVZ ν cos wt + β p v r + ψ v
Figure imgb0008

Aus Gleichung (4) geht hervor, dass sich für die unterschiedlich und beliebig ausgerichteten Leiterelemente jeweils unterschiedliche Komponenten RVx ν , RVy ν, RVz ν ergeben und diese Komponenten mit einer Schwingung mit unterschiedlicher Phase und Amplitude zur Gesamtfeldstärke beitragen. Damit wird die Richtung des gesamten elektrischen Feldstärkevektors E im Aufpunkt P zeitabhängig. Der Feldstärkevektor schwingt somit über eine Periode der Hochfrequenzschwingung im allgemeinen Fall nicht längs einer Linie, wie es zur Lösung der erfindungsgemäßen Aufgabe notwendig wäre.From equation (4) shows that for different and randomly oriented conductor elements each having different components RVX ν, ν RVY, RVZ ν arise and these components contribute to a vibration having a different phase and amplitude to the total field strength. This turns the direction of the entire electric field strength vector e time-dependent in the point of view P The field strength vector thus oscillates over one period of the high frequency oscillation in the general case not along a line, as would be necessary to achieve the object of the invention.

Im Folgenden werden Antennen vorgestellt, welche teilweise die erfindungsgemäße Aufgabe lösen.In the following, antennas are presented, which partially solve the problem of the invention.

In der einfachsten Form der Antenne können fiktive, gleich lange Leiterelemente längs einer gestreckten geraden Linie angeordnet und leitend miteinander verbunden sein, so dass im Wesentlichen ein stabförmiger Leiter gebildet ist und eine Unterbrechung des stabförmigen Leiters eine Antennenanschlussstelle bildet. Geradlinige Leiter besitzen die Eigenschaft, dass alle Leiterelemente einen gleichen Richtungsvektor aufweisen, dessen Komponenten in x, y und z -Richtung in einem, allen Leiterelementen gemeinsamen Verhältnis zueinander stehen. Damit kann der Ausdruck in der geschweiften Klammer in Gleichung (5) vor die Summenbildung gezogen werden und im Summenausdruck verbleibt allein die Überlagerung einer Reihe in der Frequenz gleicher, jedoch in Amplitude und Phase unterschiedlicher Schwingungen. Hierfür ergibt sich eine resultierende Schwingung, welche mit den folgenden Komponenten des E-Vektors. E = c RVx ν RVy ν RVz ν v = 1 N I ν cos wt + β p v r + ψ v

Figure imgb0009
In the simplest form of the antenna, fictitious, equally long conductor elements can be arranged along a straight line and connected to one another in a conductive manner, so that essentially a rod-shaped conductor is formed and an interruption of the rod-shaped conductor forms an antenna connection point. Linear conductors have the property that all conductor elements have a same directional vector whose components in the x, y and z direction are in a common relationship to all the conductor elements. Thus, the expression in the curly brace in equation (5) can be subtracted from the summation, and the sum term alone leaves the superimposition of a series of frequency equal but different in amplitude and phase. This results in a resulting vibration, which with the following components of the E vector. e = c RVX ν RVY ν RVZ ν Σ v = 1 N I ν cos wt + β p v r + ψ v
Figure imgb0009

Damit besitzen die Schwingungskomponenten des elektrischen Feldstärkevektors E ̲

Figure imgb0010
in allen Raumrichtungen die gleiche Phase. Der elektrische Feldstärkevektor ist somit in jedem Punkt des Raumes zu jedem Zeitpunkt längs einer für diesen Punkt des Raumes spezifischen, feststehenden geraden Linie polarisiert, deren Raumrichtung durch den Richtungsvektor RV v = RV gegeben ist.Thus have the vibration components of the electric field strength vector e ~
Figure imgb0010
the same phase in all spatial directions. The electric field strength vector is thus polarized in each point of the space at any time along a fixed straight line specific to that point of the space, its spatial direction through the direction vector RV v = RV given is.

Insbesondere für den Satelliten-Rundfunkempfang in Fahrzeugen werden Antennen mit azimutaler Rundcharakteristik eingesetzt, welche auf der elektrisch leitenden Fahrzeugaußenhaut angebracht werden. Wie nachfolgend an Hand der Fig. 3a und 3b erläutert, kann hierzu ein im Wesentlichen stabförmiger Leiter 4 im Wesentlichen senkrecht über einer im Wesentlichen horizontalen, elektrisch leitenden Grundfläche 6 angebracht werden. Für die Leiterelemente bzw. Antennenleiterabschnitte auf dem Spiegelbild der senkrecht über der leitenden Grundfläche 6 gebildeten Antenne gilt die gleiche Raumrichtung wie für die Antenne selbst. Daraus ergeben sich die für den mobilen Empfang erwünschten Rundstrahleigenschaften der Antenne. Ist der stabförmige Leiter 4 jedoch gegenüber der vertikalen Linie 2 auf der Grundfläche 6 geneigt, so bildet dieser zusammen mit seinem Spiegelbild eine V-förmige Antenne. Damit sind nicht alle Leiterelemente in der gleichen Richtung orientiert und die erfindungsgemäße Aufgabe ist nicht gelöst. Es ist also erfindungsgemäß wesentlich, dass die Abweichung der Antenne von der vertikalen Linie auf der Grundfläche 6 so klein wie möglich ist.In particular, for the satellite broadcast reception in vehicles antennas are used with azimuthal omnidirectional, which are mounted on the electrically conductive vehicle skin. As follows from the hand Fig. 3a and 3b For this purpose, a substantially rod-shaped conductor 4 can be mounted substantially perpendicularly over a substantially horizontal, electrically conductive base surface 6. For the conductor elements or antenna conductor sections on the mirror image of the antenna formed vertically above the conductive base 6, the same spatial direction applies as for the antenna itself. This results in the desired for mobile reception Rundstrahl properties of the antenna. However, if the rod-shaped conductor 4 is inclined relative to the vertical line 2 on the base surface 6, this forms together with its mirror image a V-shaped antenna. Thus, not all conductor elements are oriented in the same direction and the object of the invention is not solved. It is therefore essential according to the invention that the deviation of the antenna from the vertical line on the base surface 6 is as small as possible.

Insbesondere für den Empfang von geostationären Satelliten, deren Signale in nördlichen Breiten unter vergleichsweise niedriger Elevation einfallen, ist vorgesehen, dass die einen im Wesentlichen senkrechten Monopol 7 bildenden Leiter 4 mindestens eine Unterbrechungsstelle 5 enthalten, die zur Gestaltung des Vertikaldiagramms mit mindestens einem Blindelement 8 beschaltet bzw. überbrückt ist. Auf diese Weise kann das Vertikaldiagramm auf vorteilhafte Weise den Erfordernissen angepasst werden. In Figur 3a ist eine Antennenanschlussstelle 3 im Fußpunkt des Monopols 7 gebildet, wobei der optimale Empfang im Bereich des Elevationswinkels zwischen 25° und 65°, wie in Figur 3b ersichtlich, gestaltet ist und es ist die Gesamtlänge des Monopols 7 etwa h2 = 5/8 λ der zu empfangenden Satelliten-Signale gestaltet. Hierfür ist die Unterbrechungsstelle 5 in der Höhe von etwa h1 = 3/8 λ bis 4/8 λ über der leitenden Grundfläche 6 angebracht und diese mit einem induktiven Widerstand von circa 200 Ohm bei der vorgesehenen Frequenz fm beschaltet.In particular for the reception of geostationary satellites whose signals occur in northern latitudes with comparatively low elevation, it is provided that the conductors 4 forming a substantially perpendicular monopole 7 contain at least one interruption point 5 which connects at least one dummy element 8 to the design of the vertical diagram or bridged. In this way, the vertical diagram can be advantageously adapted to the requirements. In FIG. 3a an antenna junction 3 is formed at the base of the monopole 7, wherein the optimum reception in the range of the elevation angle between 25 ° and 65 °, as in FIG. 3b can be seen, is designed and it is the total length of the monopoly 7 about h2 = 5/8 λ designed to be received satellite signals. For this purpose, the interruption point 5 is mounted in the height of about h1 = 3/8 λ to 4/8 λ above the conductive base 6 and connected with an inductive resistance of about 200 ohms at the intended frequency f m .

Fahrzeugantennen werden häufig als Kombinationsantennen für mehrere Funkdienste gestaltet. Insbesondere für den Empfang von AM/FM-Rundfunksignalen sind längere Antennen erforderlich. Eine Antenne wie in Figur 3 mit der Höhe h2 kann vorteilhaft zu einer AM/FM-Stabantenne mit der Gesamthöhe hg verlängert werden, wie dies in Figur 4 dargestellt ist. Um den Einfluss des Stabes oberhalb der Satelliten-Empfangsantenne auf deren Strahlungscharakteristik zu vermeiden, ist am oberen Ende der Satelliten-Empfangsantenne eine weitere Unterbrechungsstelle 5 vorgesehen, welche mit einem hochohmigen Blindwiderstand, zum Beispiel mit einem Parallelresonanzkreis 39 beschaltet ist, dessen Resonanzfrequenz fr auf die Mittenfrequenz fm der Satelliten-Frequenzbänder abgestimmt ist. Eine weitere Unterbrechungsstelle 5 ist im Abstand 40, welcher vorzugsweise kleiner ist als 1/5λ zur weiteren Sicherung der Strahlungscharakteristik ebenfalls mit einem hochohmigen Blindwiderstand 39 beschaltet. Bereits oberhalb des ersten Parallelresonanzkreises 39 kann die Verlängerung 32 der Stabantenne weitgehend frei gestaltet werden und insbesondere solche Serienelemente enthalten, welche bei der Satelliten-Frequenz hochohmig sind.Vehicle antennas are often designed as combination antennas for multiple radio services. In particular, for the reception of AM / FM broadcast signals longer antennas are required. An antenna like in FIG. 3 with the height h2 can be advantageously extended to an AM / FM rod antenna with the total height hg, as in FIG. 4 is shown. In order to avoid the influence of the rod above the satellite receiving antenna on the radiation characteristics, a further interruption point 5 is provided at the upper end of the satellite receiving antenna, which is connected to a high impedance reactance, for example, with a parallel resonant circuit 39, the resonant frequency f r on the center frequency f m of the satellite frequency bands is tuned. A further interruption point 5 is connected at a distance 40, which is preferably smaller than 1 / 5λ to further secure the radiation characteristic also with a high-impedance reactance 39 connected. Already above the first parallel resonant circuit 39, the extension 32 of the rod antenna can be made largely free and in particular contain such series elements, which are high impedance at the satellite frequency.

Im Gegensatz zu den bisherigen vorgestellten Antennen , welche aus einem geradlinigen Leiter oder mehreren zueinander parallelen geradlinigen Leitern gebildet sind, sollen im Folgenden komplexere erfindungsgemäße Antennenstrukturen betrachtet werden.In contrast to the previously presented antennas which are formed from a straight-line conductor or a plurality of mutually parallel rectilinear conductors, in the following more complex antenna structures according to the invention are to be considered.

Um die hierfür erforderlichen Bedingungen zu erörtern, werden in Figur 2 die Vektoren Δ 1 und Δ 2 der beiden gleich langen, sehr kurzen Leiterelemente Δ1 = Δ2 betrachtet, welche zueinander parallel ausgerichtet sind und bezüglich des Ursprungs B des Koordinatensystems symmetrisch positioniert sind, so dass die beiden Positionsvektoren p 1 und p 2 negativ gleich groß zueinander sind, d.h. p 1 = - p 2 ist und ebenfalls die Phasenwinkel ψ1 und ψ2 negativ gleich groß sind, also ψ1 = -ψ2 ist. Aufgrund der Parallelität der beiden Leiterelemente Δ1 und Δ2 gilt Δ 1 = Δ 2. Dies trifft auch auf die beiden gleichen Richtungsvektoren zu, das heißt es gilt: RV 1-2 = RV 1 = RV 2. Der Beitrag E 1-2 der beiden Strom durchflossenen Leiterelemente zum elektrischen Feldstärkevektor im fernen Aufpunkt P lautet demnach nach Gleichung (5): E 1 - 2 = c I 1 RVx 1 RVy 1 RVz 1 cos wt + β p 1 r + ψ 1 + cos wt - β p 1 r + ψ 1

Figure imgb0011
In order to discuss the conditions required for this, FIG. 2 the vectors Δ 1 and Δ 2 of the two equally long, very short conductor elements Δ 1 = Δ 2 considered, which are aligned parallel to each other and are symmetrically positioned with respect to the origin B of the coordinate system, so that the two position vectors p 1 and p 2 are negatively equal to each other, ie p 1 = - p 2 and also the phase angles ψ 1 and ψ 2 are negatively equal, ie ψ 1 = -ψ 2 . Due to the parallelism of the two conductor elements Δ 1 and Δ 2 applies Δ 1 = Δ 2 . This also applies to the two same direction vectors, that is to say: RV 1-2 = RV 1 = RV 2 . The contribution e 1-2 of the two current-carrying conductor elements to the electric field strength vector in the far point P is therefore according to equation (5): e 1 - 2 = c I 1 RVX 1 RVY 1 RVZ 1 cos wt + β p 1 r + ψ 1 + cos wt - β p 1 r + ψ 1
Figure imgb0011

Daraus folgt unmittelbar: E 1 - 2 = c I 1 cos β p 1 r + ψ 1 RVx 1 RVy 1 RVz 1 cos wt

Figure imgb0012
It follows immediately: e 1 - 2 = c I 1 cos β p 1 r + ψ 1 RVX 1 RVY 1 RVZ 1 cos wt
Figure imgb0012

Aus Gleichung (8) ergibt sich für die Leiterelemente Δ1 und Δ2, dass die Phase der Cosinus-Schwingungen in Gleichung (7), welche sich aus dem Innenprodukt des Positionsvektors p 1 mit der Stromphase ψ1 zusammensetzt, infolge der Paarbildung symmetrisch zum Ursprung des Koordinatensystems sowohl räumlich als auch hinsichtlich der Stromphasen nunmehr ausschließlich in dem Amplituden-Faktor c I 1 cos β p 1 r + ψ 1

Figure imgb0013

enthalten ist. Bei willkürlicher Zuweisung der Nullphase für den Bezugspunkt - hier dem Ursprung des Koordinatensystems - ist die Cosinus-Schwingung in Gleichung (8) ohne Phasenverschiebung. Alle Komponenten des elektrischen Feldstärkevektors E 1-2 besitzen die gleiche Phase und die erfindungsgemäße Forderung der Polarisation ist erfüllt. Stellt man eine analoge Überlegung für das willkürlich orientierte Paar der in Fig. 2 dargestellten Leiterelemente Δ3 = Δ4 mit den Stromamplituden I3 = I4 mit den Phasenbeziehungen der Ströme ψ3 = -ψ4 an, so lautet der von diesem Part der Leiterelemente erzeugte Beitrag zur elektrischen Feldstärke in Analogie zu Gleichung (8), wie folgt: E 3 - 4 = c I 3 cos β p 3 r + ψ 3 RVx v RVy v RVz v cos wt
Figure imgb0014
From equation (8), for the ladder elements Δ 1 and Δ 2 , the phase of the cosine oscillations in equation (7) resulting from the internal product of the position vector p 1 with the current phase ψ 1 , due to the pairing symmetrical to the origin of the coordinate system both spatially and in terms of current phases now exclusively in the amplitude factor c I 1 cos β p 1 r + ψ 1
Figure imgb0013

is included. With arbitrary assignment of the zero phase for the reference point - here the origin of the coordinate system - the cosine oscillation in equation (8) is without phase shift. All components of the electric field strength vector e 1-2 have the same phase and the polarization requirement according to the invention is fulfilled. Imagine an analogous consideration for the arbitrarily oriented couple in Fig. 2 The conductor elements Δ 3 = Δ 4 with the current amplitudes I 3 = I 4 with the phase relationships of the currents ψ 3 = -ψ 4 indicate that the contribution to the electric field strength generated by this part of the conductor elements is analogous to equation (8) follows: e 3 - 4 = c I 3 cos β p 3 r + ψ 3 RVX v RVY v RVZ v cos wt
Figure imgb0014

Durch Überlagerung der durch beide Paare der Leiterelemente erzeugte Feldstärkebeitrag ergibt sich: E 1 - 2 + E 3 - 4 = c I 1 cos β p 1 r + ψ 1 RVx 1 RVy 1 RVz 1 + I 3 cos β p 3 r + ψ 3 RVx 3 RVy 3 RVz 3 cos wt

Figure imgb0015
By superimposing the field strength contribution generated by both pairs of the conductor elements results: e 1 - 2 + e 3 - 4 = c I 1 cos β p 1 r + ψ 1 RVX 1 RVY 1 RVZ 1 + I 3 cos β p 3 r + ψ 3 RVX 3 RVY 3 RVZ 3 cos wt
Figure imgb0015

Die beiden Richtungsvektoren RV 1und RV 3der jeweils beliebig im Raum orientierten paarigen Leiterelemente werden somit jeweils mit einem Faktor, der die Stromamplitude, den Positionsvektor p sowie die Stromphase ψ enthält, gewichtet und summiert. Mit dem daraus resultierenden Summenvektor SV : SV = { I 1 cos β p 1 r + ψ 1 RVx 1 RVy 1 RVz 1 + I 3 cos β p 3 r + ψ 3 RVx 3 RVy 3 RVz 3 = SVx SVy SVz

Figure imgb0016

ergibt sich an Stelle von Gleichung (10) E 1 - 2 + E 3 - 4 = c SVx SVy SVz cos wt
Figure imgb0017
The two directional vectors RV 1 and RV 3 of each arbitrarily oriented in space paired conductor elements are thus each with a factor of the current amplitude, the position vector p as well as the current phase ψ contains, weighted and summed. With the resulting sum vector SV : SV = { I 1 cos β p 1 r + ψ 1 RVX 1 RVY 1 RVZ 1 + I 3 cos β p 3 r + ψ 3 RVX 3 RVY 3 RVZ 3 = SVx SVy SVZ
Figure imgb0016

results in place of equation (10) e 1 - 2 + e 3 - 4 = c SVx SVy SVZ cos wt
Figure imgb0017

Die Richtung des Summenvektors SV ergibt sich somit nicht nur aus den Richtungen der beiden Richtungsvektoren der paarigen Leiterelemente Δ1, Δ2, sondern auch aus deren komplexen Strömen und ist aus dem Verhältnis der Komponenten SVx, SVy, SVz des Summenvektors SV bestimmt. Jede dieser Komponenten ändert sich über die Periode der Cosinusschwingung gleichphasig, so dass die Polarisation des elektrischen Feldstärkevektors zu jedem Zeitpunkt erfindungsgemäß streng entlang einer Linie erfolgt. Naturgemäß ist diese Linie zwar stets senkrecht zum Einheits-Richtungsvektor r orientiert, kann jedoch ansonsten jede beliebige Richtung einnehmen. Eine zu dieser Linie senkrechte Komponente der elektrischen Feldstärke existiert zu keinem Zeitpunkt. Diese Betrachtung kann auf die Überlagerung einer beliebigen Anzahl beliebig im Raum orientierter paariger Leiterelemente Δνdieser Art ohne Änderung der vorherigen Aussagen erweitert werden. Für eine allgemeinere Darstellung wird nun für die Stromphasen sämtlicher Leiterelemente eine gemeinsame Bezugsphase ψ0 eingeführt und gefordert, dass für die Stromphasen der paarig einander zugeordneten Leiterelemente - z.B. ψ1 und ψ2 - gilt, dass diese um den gleichen Wert Δψ12 jedoch mit unterschiedlichem Vorzeichen von dieser Bezugsphase abweichen, das heißt: Ψ 1 = Ψ 0 + Δ Ψ 12 und Ψ 2 = Ψ 0 - Δ Ψ 12 , sodass gilt : Ψ 1 + Ψ 2 / 2 = Ψ 0

Figure imgb0018

Gilt dieser Zusammenhang für alle paarigen Leiterelemente, wie zum Beispiel den paarigen Leiterelementen Δ3 und Δ4, so gilt analog: Ψ 3 = Ψ 0 + Δ Ψ 34 und Ψ 4 = Ψ 0 - Δ Ψ 34 , sodass gilt : Ψ 3 + Ψ 4 / 2 = Ψ 0 usw .
Figure imgb0019
The direction of the sum vector SV thus results not only from the directions of the two direction vectors of the paired conductor elements Δ 1 , Δ 2 , but also from their complex currents and is the ratio of the components SVx, SVy, SVz of the sum vector SV certainly. Each of these components changes in phase over the period of the cosine oscillation, so that according to the invention the polarization of the electric field strength vector takes place strictly along a line at any point in time. Naturally, this line is always perpendicular to the unit direction vector r oriented, but otherwise can take any direction. A component of the electric field strength perpendicular to this line does not exist at any time. This consideration can be extended to the superposition of any number of arbitrarily oriented in space paired conductor elements Δ ν of this kind without changing the previous statements. For a more general representation, a common reference phase ψ 0 is now introduced for the current phases of all the conductor elements and required that for the current phases of the paired conductor elements - eg ψ 1 and ψ 2 - that these by the same value Δψ 12 but with different Signs deviate from this reference phase, that is: Ψ 1 = Ψ 0 + Δ Ψ 12 and Ψ 2 = Ψ 0 - Δ Ψ 12 . so that applies : Ψ 1 + Ψ 2 / 2 = Ψ 0
Figure imgb0018

If this relationship applies to all paired conductor elements, such as the paired conductor elements Δ 3 and Δ 4 , the following applies analogously: Ψ 3 = Ψ 0 + Δ Ψ 34 and Ψ 4 = Ψ 0 - Δ Ψ 34 . so that applies : Ψ 3 + Ψ 4 / 2 = Ψ 0 etc ,
Figure imgb0019

Unter dieser Voraussetzung besitzen die Feldbeiträge aller Leiterelementpaare in Gleichung (11) die gleiche Grundphase ψ0. Naturgemäß ist die Wahl der Grundphase der Zeitfunktion ψ0 ohne Einfluss auf den Summenvektor SV .Under this condition, the field contributions of all conductor element pairs in equation (11) have the same basic phase ψ 0 . Naturally, the choice of the basic phase of the time function ψ 0 has no influence on the sum vector SV ,

Somit lässt sich zusammenfassen, dass eine Antenne, die aus einer Vielzahl von jeweils symmetrisch zu einem gemeinsamen Bezugspunkt B im Raum in der angegebenen Weise paarweise angeordneten und gleich ausgerichteten elektrisch sehr kurzen Leiterelementen Δ1, Δ2 bzw. Δ3, Δ4 usw. wie in Figur 2 dargestellt, besteht, erreicht wird, dass - bewirkt durch die Erregung der Antenne an der Antennenanschlussstelle 3 - diese paarig als strahlende Elementarantennen Δn, Δm wirken und der in beiden zu einem Elementarantennenpaar gehörigen Elementarantennen , z. B. Δ1, Δ2 in Figur 2 fließende Strom der Größe nach gleich ist und der räumliche Bezugspunkt für alle Elementarantennenpaare Δn, Δm in der Weise ein gemeinsames Phasenzentrum B bildet, dass das arithmetische Mittel der Phasen der beiden, in der jeweils gleichen Richtung gezählten Ströme eines Elementarantennenpaares für alle Dipolpaare Δn, Δm .... den gleichen Wert (ψ0) besitzt.Thus, it can be summarized that an antenna consisting of a plurality of symmetrically to a common reference point B in space in the manner indicated in pairs and arranged identically aligned electrically very short conductor elements Δ 1 , Δ 2 and Δ 3 , Δ 4 , etc. as in FIG. 2 is achieved, it is achieved that - caused by the excitation of the antenna at the antenna connection point 3 - this pair act as radiating elementary antennas Δ n , Δ m and in both belonging to a pair of elementary antennas elemental antennas, eg. B. Δ 1 , Δ 2 in FIG. 2 flowing current is equal in magnitude and the spatial reference point for all elementary antenna pairs Δ n , Δ m forms a common phase center B in such a way that the arithmetic mean of the phases of the two, counted in the same direction currents of a pair of elementary antenna for all dipole pairs Δ n , Δ m .... has the same value (ψ0).

Elektrisch kurze Antennen, das sind Antennen, deren Abmessungen < 3/8 λ betragen, haben die Eigenschaft, dass die Ströme auf diesen Antennen über deren Ausdehnung praktisch konstante Phasen haben. Somit kann, wie dies nachfolgend z. B. an Hand von Fig. 5a und Fig. 5b erläutert wird, durch leitende Aneinanderreihung von elektrisch sehr kurzen Leiterelementen bzw. Antennenleiterabschnitten um einen gemeinsamen Bezugspunkt eine Schleifenantenne 14 - mit einer durch eine Unterbrechung der Schleife 14 gestalteten Antennenanschlussstelle 3 - gebildet werden. Wenn die Abmessungen der Schleife 14 elektrisch hinreichend klein sind, so dass der Ringstrom dem Betrag nach an jeder Stelle gleich ist, existiert zu jedem sehr kurzen Leiterelement Δn ein Paar bildendes korrespondierendes sehr kurzes Leiterelement Δm, so dass die oben genannten Bedingungen auf die Schleife 14 zutreffen. Eine solche Schleife 14 kann zum Beispiel als reguläres n-Eck gestaltet sein mit dem Phasen-Bezugspunkt B im Symmetriepunkt des n-Ecks. In einem weiteren Beispiel ist die Schleifenantenne 14 aus mehreren geschlossenen Schleifen mit gemeinsamem Phasen-Bezugspunkt gebildet, wobei jedoch in einer der Schleifen durch Unterbrechung die Antennenanschlussstelle 3 gebildet ist. In einer weiteren vorteilhaften Ausführung besteht die Schleifenantenne 14 aus mehreren leitend aneinander gereihten Schleifen, die im Wesentlichen in zueinander parallelen Ebenen mit möglichst geringem Abstand voneinander in Form einer Spule bzw.Electrically short antennas, which are antennas whose dimensions are <3/8 λ, have the property that the currents on these antennas have virtually constant phases over their extent. Thus, as follows, for. B. on hand of Fig. 5a and Fig. 5b is explained, by conductive juxtaposition of electrically very short conductor elements or antenna conductor sections about a common reference point, a loop antenna 14 - with an opening formed by an interruption of the loop 14 antenna connection point 3 - are formed. If the dimensions of the loop 14 are electrically sufficiently small so that the ring current is in magnitude at any point is equal to, exists for each very short conductor element Δ n a pair of forming corresponding very short conductor element Δ m such that the above conditions to the Apply loop 14. Such a loop 14 may, for example, be designed as a regular n-gon with the phase reference point B in the symmetry point of the n-gon. In another example, the loop antenna 14 is formed of a plurality of closed loops with a common phase reference point, but in one of the loops, the antenna junction 3 is formed by interruption. In a further advantageous embodiment, the loop antenna 14 consists of a plurality of loops arranged in a row, which are essentially in mutually parallel planes with the smallest possible distance from each other in the form of a coil or

Wendel angeordnet sind. Dabei ist für alle Schleifen ein im Wesentlichen gemeinsamer zentraler Phasen-Bezugspunkt gebildet und die Antennenanschlussstelle 3 ist durch die beiden Enden der Spule gegeben.Spiral are arranged. In this case, a substantially common central phase reference point is formed for all loops and the antenna connection point 3 is provided by the two ends of the coil.

In einer besonders vorteilhaften Ausführung wie sie z.B. in den Figuren 5a und 5b dargestellt ist, ist die Schleifenantenne 14 nicht elektrisch kurz und enthält zur wirksamen elektrischen Verkürzung mehrere an Unterbrechungsstellen 5 eingebrachte Kapazitäten bzw. Kondensatoren. Hierdurch ist die Konstanz des Stromes nach Betrag und Phase auf den Leiterelementen hinreichend gegeben.In a particularly advantageous embodiment, as for example in the FIGS. 5a and 5b is shown, the loop antenna 14 is not electrically short and contains for effective electrical shortening several introduced at points of interruption 5 capacitors or capacitors. As a result, the constancy of the current is given by amount and phase on the conductor elements sufficiently.

Fig. 5a zeigt eine kreisförmige Schleifenantenne 14 mit Radius R, welche auch polygonal gestaltet sein kann. In ihrem Mittelpunkt befindet sich das Phasenzentrum B. Die Struktur ist unterteilt in "z" Leitungsabschnitte, jeweils mit der Länge Δs. Die Gesamt-Umlauflänge beträgt S. Die Antenne wirkt als Rahmenantenne mit Abmessungen im Bereich der Wellenlänge, wobei trotzdem erfindungsgemäß eine homogene Stromverteilung durch Unterteilung der Struktur und Einfügen von Kapazitäten 16 erreicht wird. Dadurch wirkt die Antenne in ihrer Länge elektrisch verkürzt und erzeugt rundum ein homogenes, horizontal polarisiertes elektromagnetisches Feld. Im Gegensatz zu den weiter oben beschriebenen eindimensionalen Strukturen ist die Ringleitung zweidimensional. Erfindungsgemäß ist zu jedem der elektrisch sehr kurzen Leiterelemente Δ1, Δ2, ....., welche als Elementarantennen wirken, ein korrespondierendes gleich ausgerichtetes sehr kurzes Leiterelement vorhanden ist, welches in der Gegenrichtung stromdurchflossenen ist, so dass die oben beschriebene Paarbildung bezogen auf das Phasenzentrum B im Zentrum gegeben ist. In Figur 5a sind beispielhaft zwei paarige elektrisch sehr kurze Leiterelemente, als Vektoren Δ 1,Δ 2 dargestellt, deren Richtung sowohl durch die Richtung ihrer Lage im Raum als auch durch die Zählpfeilrichtung des auf dem Leiterelement fließenden Stromes, welcher nach Betrag und Phase als konstant angesehen werden kann, gegeben ist. Fig. 5a shows a circular loop antenna 14 with radius R, which may also be designed polygonal. At its center is the phase center B. The structure is subdivided into "z" line sections, each with the length Δs. The total orbital length is S. The antenna acts as a loop antenna with dimensions in the range of the wavelength, wherein nevertheless a homogeneous current distribution is achieved by dividing the structure and inserting capacitances 16 according to the invention. As a result, the length of the antenna is electrically shortened and creates a homogeneous, horizontally polarized electromagnetic field all around. In contrast to the one-dimensional structures described above, the loop is two-dimensional. According to the invention, for each of the electrically very short conductor elements Δ 1 , Δ 2 ,..., Which act as elemental antennas, there is a corresponding, equally aligned, very short conductor element, which is current-flowed in the opposite direction, so that the pair formation described above relates is given to the phase center B in the center. In FIG. 5a are exemplary two-pair electrically very short conductor elements, as vectors Δ 1 , Δ 2 , whose direction is given both by the direction of their position in space and by the counting arrow direction of the current flowing on the conductor element current, which can be regarded as constant in magnitude and phase.

In Figur 5b ist die Schleifenantenne 14 mit konstanter Höhe h über der leitenden Grundfläche 6 angeordnet. Aufgrund der Spiegelung an der Grundfläche 6 liegt das gemeinsame Phasenzentrum B nunmehr auf der Grundfläche 6. Beispielhaft sind wieder zwei paarige elektrisch sehr kurze Leiterelemente, als Vektoren Δ 1,Δ 2 gekennzeichnet, dargestellt, deren Richtung sowohl durch die Richtung ihrer Lage im Raum als auch durch die Zählpfeilrichtung des auf dem Leiterelement fließenden Stromes gegeben ist, welcher nach Betrag und Phase als konstant angesehen werden kann,. Zu jedem Leiterelement der Schleifenantenne 14 existiert somit ein entsprechendes paariges Leiterelement auf dem virtuellen Spiegelbild der Schleifenantenne 14. Die vertikale Hauptstrahlrichtung kann über die Wahl der Höhe h und den Radius des Leitungsrings eingestellt werden. Es kann eine Nullstelle in vertikaler Richtung und in horizontaler Richtung erreicht werden.In FIG. 5b the loop antenna 14 is arranged at a constant height h above the conductive base 6. Due to the reflection on the base 6 lies the common phase center B now on the base 6. By way of example again two paired electrically very short conductor elements, as vectors Δ 1 , Δ 2 , whose direction is given both by the direction of their position in space and by the counting arrow direction of the current flowing on the conductor element current, which can be regarded as constant in magnitude and phase. For each conductor element of the loop antenna 14 thus exists a corresponding paired conductor element on the virtual mirror image of the loop antenna 14. The vertical main beam direction can be adjusted by the choice of the height h and the radius of the line ring. It can be achieved a zero point in the vertical direction and in the horizontal direction.

Die ringförmig umlaufende Leiterlänge S wird erfindungsgemäß wieder in z gleich lange Stücke mit der Länge Δs = S/z unterteilt. Der Leiter-Wellenwiderstand der gemäß der Darstellung in Figur 5c umlaufenden Leitung über der leitenden Grundfläche 6 sei Zw. Die kapazitive Reaktanz ΔX pro Leitungstück Δs und damit der in dieses Leiterstück jeweils einzufügende Kapazitätswert C = 1/(ω*ΔX) ist bei Annahme einer gestreckten Länge Δs und bei näherungsweise ringförmiger Leitung mit großem Radius R der ringförmigen Schleifenantenne 14 gegenüber der Leiterhöhe h definiert durch ΔX / Δw = tan 2 π Δs / λ .

Figure imgb0020
The annular circumferential conductor length S is according to the invention again divided into z equal pieces of length Δs = S / z. The conductor characteristic impedance of the as shown in FIG. 5c circulating line over the conductive base 6 is Zw. The capacitive reactance ΔX per line section Δs and thus the capacitance value C = 1 / (ω * ΔX) to be inserted into this conductor section is defined assuming an elongated length Δs and for an approximately annular line with a large radius R of the annular loop antenna 14 with respect to the conductor height h by .DELTA.X / .DELTA.w = tan 2 π Δs / λ ,
Figure imgb0020

Es ergibt sich in guter Näherung für die in das Leitungsstück Δs einzufügende Kapazitätswert C: C = 1 / ω Zw tan 2 πΔs / λ

Figure imgb0021
This results in a good approximation for the capacitance value C to be inserted into the line section Δs: C = 1 / ω Twan 2 πΔs / λ
Figure imgb0021

Kreisfrequenz der Satellitensignale = w; Freiraumwellenlänge der Satellitensignale =λAngular frequency of the satellite signals = w; Free space wavelength of the satellite signals = λ

Um in guter Näherung ein Runddiagramm zu erhalten, ist die Leitung der Länge S durch Einfügung von Kapazitäten 16 in ausreichend viele Teilstücke zu teilen. Für eine sinnvolle Unterteilung gilt: Δs/λ < 1/8. Sind die Teilstücke Δs = S/z ausreichend klein gewählt, so ist die Gleichheit Δs aller Teilstücke nicht unbedingt erforderlich, solange nur nach jedem Teilstück eine Kapazität 16 eingefügt wird, deren Wert sich nach oben beschriebenem Kriterium aus der relativen Länge Δs/λ des betreffenden Teilstücks errechnet.
Als Beispiel zur Gestaltung des Empfangs im Bereich eines Elevationswinkels zwischen 25° und 65° bei azimutaler Rundcharakteristik ist eine horizontal angeordnete Schleifenantenne 14 im Abstand von etwa 1/16 der Wellenlänge über der leitenden Grundfläche 6 platziert, wie es beispielhaft in Figur 5b dargestellt ist. Der Durchmesser der Schleifenantenne 14 ist etwas größer als 1/4 der Wellenlänge gewählt. Längs der Leiterführung ist in Abständen von etwa 1/8 der Wellenlänge ist jeweils eine mit einer Kapazität 16 mit einem Blindwiderstand von etwa -200 Ohm beschaltete Unterbrechungsstelle 5 eingebracht.
In order to obtain a round diagram to a good approximation, the line of length S is to be divided into a sufficient number of sections by insertion of capacitances 16. For a meaningful subdivision: Δs / λ <1/8. If the sections .DELTA.s = S / z are chosen to be sufficiently small, the equality .DELTA.s of all sections is not absolutely necessary as long as a capacitance 16 is inserted only after each section, whose value is calculated according to the above-described criterion from the relative length Δs / λ of the relevant section.
As an example for the design of the reception in the range of an elevation angle between 25 ° and 65 ° with azimuthal omnidirectional characteristic, a horizontally arranged loop antenna 14 is placed at a distance of about 1/16 of the wavelength above the conductive base 6, as exemplified in FIG FIG. 5b is shown. The diameter of the loop antenna 14 is chosen to be slightly larger than 1/4 of the wavelength. Along the conductor guide is at intervals of about 1/8 of the wavelength each with a capacity 16 with a reactance of about -200 ohms connected interruption point 5 is introduced.

In Figur 7 ist beispielhaft das Vertikaldiagramm einer solchen Antenne für a) links drehende zirkulare Polarisation und b) rechts drehende zirkulare Polarisation dargestellt. Eine eventuelle kleine Restunsymmetrie kann durch Verfeinerung der Beschaltung nach den genannten Vorgaben mit Blindwiderständen und Vervollkommnung der Symmetrie der Antenne bezüglich der Antennenanschlussstelle 3 reduziert werden. Für das Beispiel einer ringförmigen Schleifenantenne 14 im Frequenzbereich um 1500 MHz haben sich ein Radius R von etwa 4cm, eine Höhe h von etwa 18mm und ein Leiterdurchmesser D von etwa 3mm zur Realisierung sowohl des vertikalen Richtdiagramms als auch eines passenden Leiter-Wellenwiderstands Zw als günstig erwiesen.In FIG. 7 For example, the vertical diagram of such an antenna is shown for a) left-hand rotating circular polarization and b) right-hand rotating circular polarization. A possible small residual imbalance can be reduced by refinement of the circuit according to the above specifications with reactances and perfection of the symmetry of the antenna with respect to the antenna connection point 3. For the example of an annular loop antenna 14 in the frequency range around 1500 MHz, a radius R of about 4 cm, a height h of about 18 mm and a conductor diameter D of about 3 mm have to be favorable for realizing both the vertical directional pattern and a matching conductor characteristic impedance Zw proved.

Figur 6 zeigt eine weitere vorteilhafte Ausführungsform einer Schleifenantenne 14 nach der Erfindung mit Auskopplung 18 an der Antennenanschlussstelle 3 über eine symmetrische Zweidrahtleitung 26 außerhalb des Zentrums Z, einem Umsymmetrierglied 29 und einem Anpassnetzwerk 25. Der Einfluss der nicht im Phasenzentrum befindlichen symmetrischen vertikalen Speiseleitung in Form der symmetrischen Zweidrahtleitung 26 schmälert die Polarisationsreinheit aufgrund der weiter unten erläuterten Symmetrieeigenschaft nicht. Die Verbindung des einen Anschlusses auf der unsymmetrischen Seite des Umsymmetrierglieds 29 zur Anschlussstelle 28 der Antennenanordnung erfolgt vorteilhaft mit Hilfe eines über der leitenden Grundfläche 6 geführten Mikrostreifenleiters 30. Der andere Anschluss auf der unsymmetrischen Seite des Umsymmetrierglied 29 ist mit der elektrisch leitenden Grundfläche 6 verbunden. Aufgrund der Symmetrieeigenschaften der Zweidrahtleitung 26 kompensieren sich die Wirkungen der zueinander in entgegen gesetzter Richtung fließenden Ströme auf den Leitern der Zweidrahtleitung 26, so dass auch diese die Strahlungseigenschaften der Schleifenantenne 14 nicht beeinflussen. Wie im Folgenden erläutert wird, sind auch die vom elektromagnetischen Empfangsfeld erzeugten Ströme auf diesen Leitern ohne Einfluss auf die Wirkungen an der Antennenanschlussstelle 3. FIG. 6 shows a further advantageous embodiment of a loop antenna 14 according to the invention with coupling 18 at the antenna connection point 3 via a symmetrical two-wire line 26 outside the center Z, a Umsymmetrierglied 29 and a matching network 25. The influence of not in the phase center located symmetrical vertical feed line in the form of symmetrical Two-wire line 26 does not reduce the polarization purity due to the symmetry property explained below. The connection of the one connection on the unbalanced side of the Umsymmetrierglieds 29 to the connection point 28 of the antenna arrangement is advantageously carried out using a guided over the conductive base 6 microstrip line 30. The other terminal on the unbalanced side of the Umsymmetrierglied 29 is connected to the electrically conductive base 6. Due to the Symmetry properties of the two-wire line 26 compensate for the effects of the currents flowing toward one another in the opposite direction on the conductors of the two-wire line 26, so that these also do not influence the radiation properties of the loop antenna 14. As will be explained below, the currents generated by the electromagnetic reception field on these conductors also have no influence on the effects at the antenna connection point 3.

Ein elektrische Leiter, welcher in einer senkrecht zur Grundfläche 6 und symmetrisch bezüglich der Antennenanschlussstelle 3 orientierten Symmetrieebene SE der Satellitenantennenanordnung zum Beispiel als flächig gestaltete beziehungsweise lineare Antenne 24 - wie in Figur 16 - geführt ist, ist aufgrund der Symmetrie zur Antennenanschlussstelle 3 ohne Einfluss auf die Wirkungsweise der Satellitenantenne. Die Wirkung der durch das elektromagnetische Empfangsfeld in der Antenne 24 hervorgerufenen Ströme heben sich bezüglich ihrer Wirkung an der Antennenanschlussstelle 3 auf. Dies trifft auch auf die beiden elektrischen Leiter der Zweidrahtleitung 26 in Figur 6 zu, welche aufgrund des kleinen Abstandes der beiden Leiter voneinander als in der Symmetrieebene SE geführt angesehen werden können. Von dieser die Antenne 24 in Figur 16 und die Antennenanschlussstelle 3 entkoppelnden Eigenschaft wird in einer vorteilhaften Ausgestaltung der Erfindung bei Gestaltung von Kombinationsantennen für unterschiedliche Funkdienste Gebrauch gemacht. Eine derartige Antenne kann somit neben den Satellitenempfang durch Anordnen von einer oder mehreren voneinander getrennten und in der Symmetrieebene SE geführter Antennen wie - z. B. der Antenne 24 - für Funkdienste wie den AM/FM-Empfang, Zellen- Funkdienste, usw. verwendet werden.An electrical conductor, which in a plane perpendicular to the base 6 and symmetrically with respect to the antenna connection point 3 oriented symmetry plane SE of the satellite antenna array, for example, as a planar or linear antenna 24 - FIG. 16 - Is guided, due to the symmetry of the antenna connection point 3 without influence on the operation of the satellite antenna. The effect of the currents produced by the electromagnetic reception field in the antenna 24 cancel each other out with respect to their effect at the antenna connection point 3. This also applies to the two electrical conductors of the two-wire line 26 in FIG. 6 to, which can be considered as guided in the plane of symmetry SE due to the small distance between the two conductors. From this the antenna 24 in FIG. 16 and the antenna connection point 3 decoupling property is used in an advantageous embodiment of the invention in the design of combination antennas for different radio services. Such an antenna can thus in addition to the satellite reception by arranging one or more separate and guided in the plane of symmetry SE antennas such. As the antenna 24 - for radio services such as AM / FM reception, cellular radio services, etc. are used.

Bei der in der Figur 8 dargestellten vorteilhaften Ausführungsform der Schleifenantenne 14 erfolgt die Auskopplung zentral und auf Ringebene. Das Anpassnetzwerk 25 und das Umsymmetrierglied 29 sind ebenfalls auf der Ringebene angeordnet. Die Zweidrahtleitung 26 ist auf der unsymmetrischen Seite des Umsymmetrierglied 29 angeschlossen und im Zentrum Z zur Grundfläche 6 geführt. Dort ist ihr erster Leiter mit der leitenden Grundfläche 6 und ihr zweiter Leiter mit dem über der Grundplatte 6 geführten Mikrostreifenleiter 30 verbunden. Letztere stellt die Verbindung zur Anschlussstelle 28 der Antennenanordnung her. Auch hier kompensieren sich die Wirkungen der in entgegen gesetzter Richtung fließenden Ströme auf den Leitern der Zweidrahtleitung 26, so dass diese die Strahlungseigenschaften der Schleifenantenne 14 nicht beeinflussen.When in the FIG. 8 illustrated advantageous embodiment of the loop antenna 14, the coupling takes place centrally and at the ring level. The matching network 25 and the Umsymmetrierglied 29 are also arranged on the ring plane. The two-wire line 26 is connected to the unbalanced side of the Umsymmetrierglied 29 and guided in the center Z to the base 6. There is their first conductor with the conductive base 6 and its second conductor with the guided over the base plate 6 microstrip conductor 30th connected. The latter establishes the connection to the connection point 28 of the antenna arrangement. Here, too, the effects of the currents flowing in the opposite direction compensate each other on the conductors of the two-wire line 26 so that they do not influence the radiation properties of the loop antenna 14.

Für den Fall, dass das Satelliten-Rundfunksystem zusätzlich durch die bereichsweise Ausstrahlung vertikal polarisierter terrestrischer Signale in einem weiteren, in der Frequenz dicht benachbartem Frequenzband gleicher Bandbreite unterstützt wird, ist es wünschenswert, das vertikale Richtdiagramm für diese Signale zu niedrigen Elevationswinkeln hin aufzufüllen. Damit kann die Antenne in einem Kompromiss sowohl die Satelliten-Empfangssignale als auch die terrestrischen Signale empfangen. Um dies zu erreichen, ist in einer vorteilhaften Ausgestaltung der Erfindung im zentralen Phasen-Bezugspunkt B der Schleifenantenne 14 in Figur 9 ein elektrisch kurzer, vertikal orientierter Monopol 7 angebracht. Weiterhin ist als Verteilungs- bzw. Kopplungsnetzwerks ein im reziproken Sendefall als Leistungsverteiler wirkendes Leistungskopplungs- und Phasenschiebernetzwerk 31 vorgesehen an das über separate Anschlüssen die Schleifenantenne 14 einerseits und den Monopol 7 andererseits angeschlossen ist, und welches in der Weise gestaltet ist, dass im reziproken Sendefall die Phasen der in dem Monopol 7 und in der Schleifenantenne 14 fließenden Ströme jeweils gleich sind. Aufgrund der Gleichphasigkeit der Ströme auf der Schleifenantenne 14 und der Monopolantenne 7 bezüglich des Phasenzentrum B auf der Grundfläche 6 unter Berücksichtigung der Spiegelung sind die oben geforderten Bedingungen für die Bildung paariger Leiterelemente Δn, Δm und damit für die Polarisation der elektrischen Feldstärke erfüllt. Die Hauptstrahlrichtung im Vertikaldiagramm der Schleifenantenne 14 wird dabei durch Hinzufügen des vertikalen Monopols 7 zu niedriger Elevation hin gezogen. Die Kombination ermöglicht nun auch bei niedrigerer Elevation ein vertikales polarisiertes elektrisches Feld für zusätzliche terrestrische Anwendungen zu empfangen. Über unterschiedliche Gewichtung bei der Überlagerung der beiden Antennen kann das vertikale Richtdiagramm zu niedrigen Elevationswinkeln hin für diese Signale aufgefüllt werden. Der als Stabantenne ausgebildete Monopol 7 besitzt in seiner vertikalen Richtcharakteristik eine ähnliche Hauptstrahlrichtung wie die horizontal polarisierte Schleifenantenne 14, liefert jedoch für niedrige Elevationswinkel einen größeren Beitrag als die Schleifenantenne 14. Mit Hilfe des unsymmetrischen Leistungskopplungs- und Phasenschiebernetzwerks 31 kann sowohl die Gewichtung der Eigenschaften der beiden Antennen unterschiedlich eingestellt werden und zusätzlich die Angleichung der Phasenschwerpunkte erfolgen.In the event that the satellite broadcasting system is additionally supported by the regional radiation of vertically polarized terrestrial signals in another, closely adjacent in frequency frequency band of the same bandwidth, it is desirable to fill the vertical radiation pattern for these signals at low elevation angles out. This allows the antenna to compromise receiving both the satellite receive signals and the terrestrial signals. To achieve this, in an advantageous embodiment of the invention in the central phase reference point B of the loop antenna 14 in FIG. 9 an electrically short, vertically oriented monopole 7 attached. Furthermore, as a distribution or coupling network acting in reciprocal transmission case as a power distributor Leistungskopplungs- and phase shifter network 31 is provided to the separate terminals via the loop antenna 14 on the one hand and the monopoly 7 on the other is connected, and which is designed in such a way that in the reciprocal transmission case the phases of the currents flowing in the monopole 7 and in the loop antenna 14 are the same. Taking into account the reflection are due to the phase condition of the currents to the loop antenna 14 and the monopole antenna 7 with respect to the phase center B on the base 6, the above conditions required for the formation of paired conductor members Δ n, Δ m, thus meeting for the polarization of the electric field strength. The main beam direction in the vertical diagram of the loop antenna 14 is thereby drawn by adding the vertical monopole 7 to low elevation. The combination now allows to receive a vertical polarized electric field for additional terrestrial applications even at lower elevation. By varying the weighting of the superimposition of the two antennas, the vertical directional pattern can be filled to low elevation angles for these signals. Trained as a rod antenna monopoly 7 has in its vertical directional characteristic a similar main beam direction as the horizontal polarized loop antenna 14, but provides for low elevation angle a larger contribution than the loop antenna 14. With the aid of the unbalanced power coupling and phase shifter network 31, both the weighting of the properties of the two antennas can be set differently and additionally the alignment of the phase centers.

Bei der Anordnung in Figur 10 ist der Monopol 7 anders als die Stabantenne in Figur 9 realisiert. Die vertikale, zur Speisung der Schleifenantenne 14 vorgesehene Zweidrahtleitung 26 wird als Monopol 7 ausgenutzt, wobei die Schleifenantenne 14 als Dachkapazität 12 des Monopols 7 dient. Hierfür wird eine zusätzliche Auskopplung geschaffen, wobei die Schleifenantenne 14 in einem Modus als Dachkapazität 12 des Monopol 7 für ein vertikal polarisiertes Feld mit verwendet wird. Bei Bedarf kommt ein Anpassnetzwerk 33 für den Monopolmodus zur Anwendung, welches vorzugsweise derart gestaltet ist, dass das oben genannte Leistungskopplungs- und Phasenschiebernetzwerk 31 daran angeschlossen werden kann. Somit kann auch hier mit Hilfe dieses unsymmetrischen Leistungskopplungs- und Phasenschiebernetzwerks 31 die Gewichtung der Antennen unterschiedlich eingestellt werden und die Angleichung der Phasenschwerpunkte erfolgen. Die Anpassung der Impedanz der Schleifenantenne 14 kann mit Hilfe des Anpassnetzwerks 25 erfolgen, welches in einer einfachen Ausführungsform als λ/4-Leitungstransformator realisiert werden kann. Aufgrund der vertikal polarisiert empfangenden Zweidrahtleitung 26 mit der Schleifenantenne 14 als Dachkapazität 12 gegenüber der Grundfläche 6 sowie aufgrund der horizontal polarisiert empfangenden Schleifenantenne 14 zwischen den beiden Leitern der Zweidrahtleitung 26 werden Signale aus vertikalen und horizontalen Feldkomponenten in dem im Sendefall als Leistungsteiler wirkenden Leistungskopplungs- und Phasenschiebernetzwerk 31 überlagert. Diese Eigenschaft kann erfindungsgemäß vorteilhaft zur Unterstützung der Strahlungseigenschaften bei niedriger Elevation durch phasenstarre Kombination der vertikal und horizontal polarisierten Antennen und bei Wahl des gleichen Phasenschwerpunkts (in Analogie zum Phasenbezugspunkt im Ursprung des Koordinatensystems gemäß den obigen Betrachtungen) ausgenützt werden. Damit lässt sich ein linear polarisiertes Feld erzeugen, welches bei höherer Elevation vorzugsweise horizontal und bei niederer Elevation vorzugsweise vertikal polarisiert ist.When arranged in FIG. 10 is the monopoly 7 different than the rod antenna in FIG. 9 realized. The vertical, provided for feeding the loop antenna 14 two-wire line 26 is utilized as a monopole 7, wherein the loop antenna 14 serves as a roof capacitor 12 of the monopoly 7. For this purpose, an additional coupling is provided, wherein the loop antenna 14 is used in a mode as a roofing capacity 12 of the monopole 7 for a vertically polarized field with. If necessary, a matching network 33 for the monopole mode is used, which is preferably designed such that the above power coupling and phase shifting network 31 can be connected thereto. Thus, here too, the weighting of the antennas can be adjusted differently with the aid of this asymmetrical power coupling and phase shifting network 31, and the phase center of gravity can be adjusted. The matching of the impedance of the loop antenna 14 can be done by means of the matching network 25, which can be realized in a simple embodiment as λ / 4-line transformer. Due to the vertically polarized receiving two-wire line 26 with the loop antenna 14 as a roof capacitance 12 relative to the base 6 and due to the horizontally polarized receiving loop antenna 14 between the two conductors of the two-wire line 26 signals from vertical and horizontal field components in acting in the transmission case as a power divider Leistungskopplungs- and Phase shifter network 31 superimposed. According to the invention, this property can advantageously be exploited for supporting the radiation properties at low elevation by phase-locked combination of the vertically and horizontally polarized antennas and choosing the same phase center of gravity (in analogy to the phase reference point in the origin of the coordinate system according to the above considerations). This can be a linearly polarized field produce, which at higher Elevation is preferably horizontal and preferably vertically polarized at low elevation.

In einer vorteilhaften Ausgestaltung der Erfindung gemäß Figur 15 ist das unsymmetrische Leistungskopplungs -und Phasenschiebernetzwerk 31 im zentralen Fußpunkt 19 der Antennenanordnung dadurch realisiert, dass der eine Leiter der Zweidrahtleitung 26 über einen Blindwiderstand 41 mit der leitenden Grundfläche 6 leitend verbunden ist und der andere Leiter der Zweidrahtleitung 26 zur Anschlussstelle 28 der Antennenanordnung geführt ist. Durch Wahl des Blindwiderstands 41 kann die Gewichtung des Empfangs des horizontal und des vertikal polarisierten elektrischen Feldes eingestellt werden. Bei dem in Figur 15 dargestellten Beispiel ist der Blindwiderstands 41 durch einen Kondensator realisiert, dessen Größe die gewünschte Gewichtung einstellt.In an advantageous embodiment of the invention according to FIG. 15 the unbalanced power coupling and phase shifting network 31 in the central base 19 of the antenna arrangement is realized in that one conductor of the two-wire line 26 is conductively connected to the conductive base 6 via a reactance 41 and the other conductor of the two-wire line 26 is led to the connection point 28 of the antenna arrangement , By selecting the reactance 41, the weighting of the reception of the horizontal and vertical polarized electric fields can be adjusted. At the in FIG. 15 As illustrated, the reactance 41 is realized by a capacitor whose size adjusts the desired weighting.

Die in Figur 10 beschriebene Antenne ist in Figur 11 in einer symmetrischen Ausführungsform mit sternförmig mehrarmiger horizontaler Zuführung und zentralem Anschluss an eine vertikale Zuführung als Alternative zur einarmigen, "unsymmetrischen" Zuführung ausgeführt. Auf diese Weise wird die Rundheit der azimutalen Richtcharakteristik perfektioniert. Das Beispiel zeigt eine Ausführungsform mit zweiarmiger symmetrischer Zuführung zu den in der Schleifenantenne 14 ausgebildeten beiden Antennenanschlussstellen 3.In the FIG. 10 described antenna is in FIG. 11 executed in a symmetrical embodiment with star-shaped multi-arm horizontal feed and central connection to a vertical feed as an alternative to the one-armed, "asymmetrical" feed. In this way the roundness of the azimuthal directional pattern is perfected. The example shows an embodiment with two-armed symmetrical feed to the two antenna connection points 3 formed in the loop antenna 14.

Figur 12 zeigt eine besonders vorteilhafte zweiarmige Zuführung über Bandleiter 34 einer Schleifenantenne 14 und die durch Pfeile gekennzeichneten Stromwege. Die zentrale vertikale Zuführung erfolgt hier beispielsweise in koaxialer Ausführung, wobei der Außenleiter einer Koaxialleitung 35 mit dem einen und der Innenleiter mit dem anderen Band des Bandleiters 34 verbunden ist. FIG. 12 shows a particularly advantageous two-armed feed via band conductor 34 of a loop antenna 14 and the current paths indicated by arrows. The central vertical feed takes place here, for example, in coaxial design, wherein the outer conductor of a coaxial line 35 is connected to one and the inner conductor to the other band of the strip conductor 34.

In einer weiteren vorteilhaften Ausgestaltung der Erfindung wie sie nachfolgend an Hand der Fig. 13a und 13b beschrieben wird, ist jeweils eine Gruppe von elektrisch sehr kurzen, im Wesentlichen in einer horizontalen Ebene verlaufenden Leiterelementen Δν elektrisch leitend aneinander gereiht und somit ein elektrisch kurzer Dipol 21 mit nahezu gleicher Phase der Ströme auf den Leiterelementen gestaltet, welcher an einer durch eine Unterbrechungsstelle gebildeten Antennenanschlussstelle 3 koppelbar ist, bzw. im reziproken Sendefall gespeist werden kann. Jeweils symmetrisch zum gemeinsamen Bezugspunkt B ist ein gleich geformter und gleich ausgerichteter elektrisch kurzer Dipol 21 korrespondierend vorhanden, sodass zu jedem elektrisch sehr kurzen Leiterelement auf dem Dipol 21 ein entsprechend korrespondierendes, im Wesentlichen in derselben Ebene verlaufendes Leiterelement auf einem korrespondierenden Dipol 21 existiert. Beide ein Paar bildende Dipole 21 sind im reziproken Sendefall an der Antennenanschlussstelle 3 jeweils mit dem gleichen Strom dem Betrag nach gespeist. Das arithmetische Mittel der Phasen der in der jeweils gleichen Richtung gezählten Ströme eines Dipolpaars besitzt für alle Dipolpaare den gleichen Wert.In a further advantageous embodiment of the invention as described below with reference to the Fig. 13a and 13b is described, is in each case a group of electrically very short, substantially in a horizontal plane extending conductor elements Δ ν strung together electrically and thus an electrically short dipole 21 designed with almost the same phase of the currents on the conductor elements, which at one through a point of interruption formed Antenna connection point 3 can be coupled, or can be fed in reciprocal transmission case. In each case symmetrically to the common reference point B, an identically shaped and identically aligned electrically short dipole 21 is correspondingly present, so that for each electrically very short conductor element on the dipole 21, a corresponding corresponding conductor element extending essentially in the same plane exists on a corresponding dipole 21. Both dipoles 21 forming a pair are fed in the reciprocal transmission case at the antenna connection point 3 in each case with the same current in the amount. The arithmetic mean of the phases of the currents of a dipole pair counted in the same direction has the same value for all dipole pairs.

In einer vorteilhaften Ausführungsform der Erfindung sind die Dipole 21 geradlinig und zu ihren Antennenanschlussstellen 3 symmetrisch und in einer horizontalen Ebene verlaufend gestaltet, wobei die Antennenanschlussstellen 3 mehrerer Dipolpaare äquidistant auf einem horizontalen Kreis, dessen Mittelpunkt den gemeinsamen Bezugspunkt B bildet, verteilt angeordnet. Die Dipole 21 sind senkrecht zur Verbindungslinie zum Mittelpunkt des Kreises orientiert. Dadurch ist eine Kreisgruppenantennenanlage gegeben, wie sie in einer einfachsten Form in Figur 13a dargestellt ist. Die Figur zeigt eine symmetrische Ausführungsform einer Antenne nach der Erfindung mit 4 in einem Quadrat angeordneten Dipolen 21 und mit einem zentral im Phasenzentrum B angeordneten Kopplungsnetzwerk 10, dessen Ausgang die Anschlussstelle 28 bildet und im reziproken Sendefall als Verteilungsnetzwerk wirkt. Die Antennenanschlussstellen 3 sind jeweils über eine elektrische Leitung 27 an einen der Eingänge 23 des Kopplungsnetzwerks 10 angeschlossen wobei die Dipolpaare mit gleichen Signalen nach Amplituden und Phasen gespeist werden. Benachbarte Enden benachbarter Dipole 21 können über Kondensatoren 16 miteinander verbunden sein.In an advantageous embodiment of the invention, the dipoles 21 are rectilinear and designed to be symmetrical to their antenna connection points 3 and extending in a horizontal plane, the antenna connection points 3 being arranged distributed equidistant on a horizontal circle whose center forms the common reference point B. The dipoles 21 are oriented perpendicular to the connecting line to the center of the circle. As a result, a circular array antenna system is given, as in a simplest form in FIG. 13a is shown. The figure shows a symmetrical embodiment of an antenna according to the invention with 4 arranged in a square dipoles 21 and with a centrally located in the phase center B coupling network 10, the output of which forms the connection point 28 and acts in reciprocal transmission case as a distribution network. The antenna connection points 3 are each connected via an electrical line 27 to one of the inputs 23 of the coupling network 10, wherein the dipole pairs are fed with equal signals according to amplitudes and phases. Adjacent ends of adjacent dipoles 21 may be interconnected via capacitors 16.

Figur 13b zeigt eine Dipolanordnung ähnlich Figur 13a jedoch mit einer Überlagerung des Empfangs horizontaler und vertikaler elektrischer Feldkomponenten, ähnlich den Figuren 10 und 11. Die Dipole 21 wirken zusätzlich als Dachkapazität 12 des auf diese Weise durch die Zweidrahtleitung 26 gebildeten vertikalen Monopols 7. FIG. 13b shows a dipole arrangement similar FIG. 13a but with a superposition of the reception of horizontal and vertical electric field components, similar to the Figures 10 and 11 , The dipoles 21 additionally act as roofing capacitance 12 of the vertical monopole 7 thus formed by the two-wire line 26.

Ebenso können, wie in Figur 13b dargestellt, in einer vorteilhaften Ausgestaltung einer Antennenanordnung nach Figur 13a die im Quadrat angeordneten liegenden Dipole 21 über einer leitenden Grundfläche 6 mit zentraler Auskopplung - ähnlich wie bei der Antenne in Figur 10 - mit einem Monopol kombiniert werden. Bei dieser Anordnung ist die vertikale Zuleitung in Form der Zweidrahtleitung 26 zur Speisung der Dipole 21 als Monopol 7 mit den Dipolen 21 als Dachkapazität 12 eingesetzt. Somit kann auch hier mit Hilfe des unsymmetrischen im reziproken Sendefall als Leistungsteiler wirkenden Leistungskopplungs- und Phasenschiebernetzwerks 31 die Gewichtung der Wirkungen der Dipole 21 und des auf diese Weise gebildeten Monopols 7 entsprechend den Anforderungen unterschiedlich eingestellt werden und die Angleichung der Phasenschwerpunkte erfolgen.Likewise, as in FIG. 13b shown, in an advantageous embodiment of an antenna arrangement according to FIG. 13a the arranged in a square lying dipoles 21 on a conductive base 6 with a central coupling - similar to the antenna in FIG. 10 - be combined with a monopoly. In this arrangement, the vertical feed line in the form of the two-wire line 26 is used to power the dipoles 21 as a monopole 7 with the dipoles 21 as roof capacity 12. Thus, the weighting of the effects of the dipoles 21 and the monopole 7 formed in this way can be adjusted differently according to the requirements and the alignment of the phase centers can be done here with the help of the unbalanced in the reciprocal transmission case acting as a power divider power coupling and phase shifter network 31.

In einer weiteren nicht dargestellten, vorteilhaften Ausführungsform der Erfindung sind, ähnlich den Fig. 13a und 13b, im zentralen Phasen-Bezugspunkt B einer Kreisgruppenantennenanlage mit horizontal ausgerichteten Dipolen 21 ein elektrisch kurzer vertikaler Monopol 7 und ein Verteilungs- bzw. Kopplungsnetzwerk 10 vorhanden. Der Ausgang 24 des Kopplungsnetzwerks 10 ist als Anschlussstelle 28 der Antennenanordnung ausgeführt und die Antennenanschlussstellen 3 der Antennen in der Kreisgruppe und des Monopols 7 werden im reziproken Sendefall jeweils über eine elektrische Leitung 27 von dem Kopplungsnetzwerk 10 in der Weise gespeist, dass die Phasen des in den Monopol 7 eingespeisten Stromes der Phasenlage der in die Kreisgruppenantennenanlage eingespeisten Ströme bezüglich des gemeinsamen Phasen-Bezugspunkts B entspricht. Schließlich können auch mehrere elektrisch kurze vertikale Monopole 7 paarweise symmetrisch zum zentralen Phasen-Bezugspunkt angeordnet und im reziproken Sendefall über das Kopplungsnetzwerk 10 in der Weise gespeist werden, dass das arithmetische Mittel der Stromphasen der paarweise angeordneten Monopole 7 und die Phase des Stroms in dem zentralen Monopol 7 eingespeisten Stromes bezogen auf den Phasen-Bezugspunkt B jeweils gleich sind.In a further, not shown, advantageous embodiment of the invention are similar to Fig. 13a and 13b , in the central phase reference point B of a circular array antenna system with horizontally oriented dipoles 21, an electrically short vertical monopole 7 and a distribution or coupling network 10 is present. The output 24 of the coupling network 10 is designed as a connection point 28 of the antenna arrangement and the antenna connection points 3 of the antennas in the circle group and the monopole 7 are fed in reciprocal transmission case via an electrical line 27 from the coupling network 10 in such a way that the phases of in the current supplied to the monopole 7 corresponds to the phase position of the currents fed into the circuit group antenna system with respect to the common phase reference point B. Finally, a plurality of electrically short vertical monopoles 7 can be arranged in pairs symmetrically to the central phase reference point and fed in the reciprocal transmission case via the coupling network 10 in such a way that the arithmetic mean of the current phases of the paired monopolies 7 and the phase of the current in the central Monopole 7 fed current relative to the phase reference point B are the same.

In einer besonders vorteilhaften Ausführungsform der Erfindung ist das Kopplungsnetzwerk 10, wie in Figur 14 dargestellt, für die Verwendung der Antenne als Diversity-Empfangsantenne in der Weise gestaltet, und zwar so, dass sowohl die Empfangssignale der Antennen mit horizontal orientierten Leiterelementen als auch die des vertikalen Monopols 7 jeweils getrennt voneinander alternativ zur Verfügung stehen. Dies geschieht in einem einfachsten Fall mit der Hilfe eines Diversity-Umschalters 37, welcher von einem Diversity-Modul 38 angesteuert wird. Dabei werden die Empfangssignale beider Antennen jeweils mit der ihnen eigenen - jedoch für beide Richtungen der zirkularen Polarisation gleichen - Strahlungscharakteristik empfangen.In a particularly advantageous embodiment of the invention, the coupling network 10, as in FIG. 14 shown adapted for the use of the antenna as a diversity receiving antenna in such a way that both the reception signals of the antennas with horizontally oriented conductor elements and those of the vertical monopole 7 are each alternatively alternatively available. This is done in the simplest case with the aid of a diversity switch 37, which is controlled by a diversity module 38. In this case, the received signals of both antennas are each received with their own - but same for both directions of the circular polarization - radiation characteristic.

Insbesondere im Fahrzeugbau ist der kompatible Ausbau einfacher Geräte hin zu besonders leistungsfähigen und damit aufwändigeren Geräten auf wirtschaftliche Weise besonders wichtig. Ein besonderer Vorteil einer Antennenanordnung nach der Erfindung besteht in der Möglichkeit, eine im wesentlichen horizontal polarisierte Antenne und eine im wesentlichen vertikal polarisierte Antenne zu kombinieren, um getrennte Anschlüsse für zirkular polarisierte Wellen beider Drehrichtungen zu erreichen. Somit kann zum Beispiel die Schleifenantenne 14 mit dem vertikalen Monopol 7 mit gemeinsamem Phasenzentrum B in Figur 9 entweder auf wenig aufwändige Weise mit Hilfe des Leistungskopplungs- und Phasenschiebernetzwerks 31 kombiniert werden, wie dies im Zusammenhang mit Figur 9 beschrieben ist, oder die Antennenanschlussstellen 3 der beiden Antennen werden in einer aufwändigeren Form mittels einer 90°-Phasenschaltung mit unterschiedlichen Vorzeichen so kombiniert, dass sie an einem LHCP-Anschlusses 46 und einem RHCP-Anschlusses 47 getrennt nach LHCPbeziehungsweise RHCP-Wellen verfügbar sind. Dabei ist es besonders vorteilhaft, dass bei bestehender Grundform der aus der Schleifen-antenne 14 und dem Monopol 7 kombinierten Konstruktion der Antennenanordnung sowohl die wenig aufwändige Betriebsform zur Lösung der erfindungsgemäßen Aufgabe als auch die Erweiterung zur getrennten Darstellung für den Betrieb für LHCPbeziehungsweise RHCP-Wellen wirtschaftlich realisiert werden kann.In particular, in the automotive industry, the compatible expansion of simple devices to particularly powerful and thus more complex devices in an economical way is particularly important. A particular advantage of an antenna arrangement according to the invention is the possibility of a substantially horizontally polarized antenna and a substantially vertically polarized antenna combine to achieve separate connections for circularly polarized waves in both directions of rotation. Thus, for example, the loop antenna 14 with the vertical monopole 7 with common phase center B in FIG. 9 either combined in a low-cost manner using the power coupling and phase shifting network 31, as related to FIG. 9 or the antenna terminals 3 of the two antennas are combined in a more elaborate form by means of a 90 ° phase circuit with different signs so as to be available at an LHCP terminal 46 and a RHCP terminal 47 separated by LHCP and RHCP waves, respectively. It is particularly advantageous that in existing basic form of the loop antenna 14 and the monopole 7 combined construction of the antenna arrangement, both the low-cost operating form to achieve the object of the invention as well as the extension for separate representation for the operation for LHCPbeziehungsweise RHCP waves can be realized economically.

Antennen für zirkular polarisierte Wellen werden nach dem Stand der Technik gewöhnlich dadurch realisiert, dass gleichartige Antennen - wie zum Beispiel zwei gekreuzte Dipole oder zwei gekreuzte Rahmenantennen - über 90°-Phasenschaltung zusammengeschaltet werden. Im Gegensatz hierzu wird im vorliegenden Fall - wie in Figur 17a dargestellt - eine zirkular polarisierte Antenne aus zwei unterschiedlichen Antennen nach der vorliegenden Erfindung gestaltet, deren vertikale Richtdiagramme deckungsgleich sind und deren Hauptrichtung für den Empfang der Satellitensignale passend gestaltet ist. Die Gleichheit der Richtdiagramme kann beispielsweise durch Wahl der Struktur des als Stabantenne ausgebildeten Monopols 7 mit Blindelement 8 - ähnlich wie im Zusammenhang mit der in Figur 3 beschriebenen Antenne - sowie durch entsprechende Gestaltung der Schleifenantenne 14 - wie im Zusammenhang mit Figur 7 beschrieben - realisiert werden. Die Gleichheit des Phasenzentrums B beider Antennen kann mit Hilfe des Anpassnetzwerks 25 für die Schleifenantenne 14 beziehungsweise des Anpassnetzwerks für den Monopolmodus bewerkstelligt werden. Für die Realisierung einer derartigen Antenne kann - wie in Figur 17a dargestellt - die vertikal und die horizontal polarisierten Antenne 7 bzw. 14 bei gemeinsamen Phasenzentrum B wie in Figur 9, jedoch mit getrennter Zuführung der Signale zum Anschluss für Vertikalpolarisation 49 beziehungsweise zum Anschluss für Horizontalpolarisation 48 eines Hybridkopplers 45 mit 90° positivem oder negativem Phasenunterschied bezüglich des LHCP-Anschlusses 46 beziehungsweise des RHCP-Anschlusses 47 für die getrennte Erzeugung von LHCP- beziehungsweise RHCP-Signalen erfolgen.Antennas for circularly polarized waves are usually realized in the prior art by interconnecting similar antennas - such as two crossed dipoles or two crossed loop antennas - via 90 ° phase switching. In contrast, in the present case - as in Figure 17a illustrated a circularly polarized antenna of two different antennas according to the present invention, whose vertical directional patterns are congruent and their main direction is designed to receive the satellite signals suitable. The equality of the directional diagrams, for example, by choosing the structure of the trained as a rod antenna monopole 7 with dummy element 8 - similar to in connection with the in FIG. 3 described antenna - as well as by appropriate design of the loop antenna 14 - as related to FIG. 7 described - realized. The equality of the phase center B of both antennas can be accomplished by means of the matching network 25 for the loop antenna 14 and the matching network for the monopole mode, respectively. For the realization of such an antenna can - as in Figure 17a shown - the vertically and horizontally polarized antenna 7 and 14 at the common phase center B as in FIG. 9 , but with separate supply of the signals to the terminal for vertical polarization 49 or for connection for horizontal polarization 48 of a hybrid coupler 45 with 90 ° positive or negative phase difference with respect to the LHCP terminal 46 and the RHCP terminal 47 for the separate generation of LHCP or RHCP signals done.

Eine ähnliche Antennenanordnung ist in Figur 17b dargestellt, wobei jedoch die Realisierung des Monopols 7 ähnlich der Antennenanordnung in Figur 10 durch die Kombination der als Dachkapazität wirkenden Schleifenantenne 14 und der Zweidrahtleitung 26 erfolgt. Mit Hilfe einer kombinierten Anpassschaltung 50 wird sowohl die Anpassung der Schleifenantenne 14 und die Anpassung des Monopols 7 als auch die Einstellung eines gemeinsamen Phasenzentrums B sichergestellt.A similar antenna arrangement is in FIG. 17b however, the realization of the monopole 7 is similar to the antenna arrangement in FIG FIG. 10 by the combination of acting as a roof capacitance loop antenna 14 and the two-wire line 26 takes place. By means of a combined matching circuit 50, both the adaptation of the loop antenna 14 and the adjustment of the monopole 7 as well as the adjustment of a common phase center B are ensured.

In einer weiteren vorteilhaften Antennenanordnung zur alternativen Auskopplung von RHCP- beziehungsweise LHCP-Signalen ist, wie in Figur 19a dargestellt, eine Schleifenantenne 14 - wie in Figur 11 - mit zwei einander gegenüberliegenden Antennenanschlussstellen 3 und daran angeschlossenen und in der Schleifenebene befindlichen Anpassnetzwerken 25, welche vorzugsweise als λ/4-Transformationsleitungen realisiert sind, vorgesehen. Die Ausgänge der Anpassnetzwerke 25 sind addierend parallel geschaltet. Das Empfangssignal wird über die Zweidrahtleitung 26 einem auf der Grundfläche 6 befindlichen Anpassnetzwerk 25 zugeführt, dessen Ausgang wiederum an einen der beiden Eingänge einer insbesondere als 90°-Hybridkoppler 45 ausgebildeten Signalkombinierschaltung angeschlossen ist. An der Antennenanschlussstelle 3 im Fußpunkt des im Zentrum der Anordnung befindlichen, als Stabantenne ausgebildeten Monopols 7 ist ebenfalls ein Anpassnetzwerk 25 angeschlossen, dessen Ausgang den anderen der beiden Eingänge des 90°-Hybridkopplers 45 speist. Ein an die Ausgänge des 90°-Hybridkopplers 45 angeschalteter LHCP/RHCP-Umschalter 55 stellt an der Anschlussstelle 28, angesteuert durch einen in einem Radioempfängermodul 52 befindlichen Umschalter Satelliten-Empfangssignale der beiden Drehrichtungen der Polarisation alternativ zur Verfügung. Bei Ansteuerung mit einem Diversity-Steuermodul 38 kann die Antennenanordnung in vorteilhafter Weise ebenso für Polarisations - Diversity durch Umschalten zwischen dem Empfang für LHCP- und RHCP- Wellen eingesetzt werden.In a further advantageous antenna arrangement for the alternative decoupling of RHCP or LHCP signals, as in FIG. 19a shown, a loop antenna 14 - as in FIG. 11 - With two opposing antenna connection points 3 and connected thereto and located in the loop level matching networks 25, which are preferably implemented as λ / 4 transformation lines provided. The outputs of the matching networks 25 are connected in parallel in addition. The received signal is fed via the two-wire line 26 to a matching network 25 located on the base area 6, the output of which is in turn connected to one of the two inputs of a signal combination circuit designed in particular as a 90 ° hybrid coupler 45. At the antenna connection point 3 in the base of the located in the center of the arrangement, designed as a rod antenna monopole 7 is also a matching network 25 is connected, the output of the other feeds the two inputs of the 90 ° hybrid coupler 45. An LHCP / RHCP switch 55 connected to the outputs of the 90 ° hybrid coupler 45 alternatively provides satellite reception signals of the two directions of polarization at the connection point 28, driven by a switch located in a radio receiver module 52. When driven by a diversity control module 38, the antenna arrangement can also be advantageously used for polarization diversity by switching between reception for LHCP and RHCP waves.

Auch kann, wie in Figur 19b in einer Variante von Fig. 19a dargestellt, das Achsenverhältnis des zirkular bzw. elliptisch polarisierten Feldes durch Einbringen eines Dämpfungsgliedes 56 in den Pfad des Monopols 7 von der Schleifenantenne 14 eingestellt werden. Mit steigender Dämpfung geht einher, dass die Hauptstrahlrichtung der Antenne in Elevation ansteigt und die Antenne auf optimale Störresistenz gegenüber horizontal einfallenden Störungen und Temperatur-Außenrauschen optimiert werden kann. Durch Ergänzung des Dämpfungsgliedes 56 in Fig. 19b mit einem Phasendrehglied (nicht dargestellt) können durch Einstellung der Phase mit der Dämpfung erfindungsgemäß sowohl die Elliptizität, der Drehsinn der Polarisation und die Elevation der Hauptstrahlrichtung der Antenne eingestellt werden. Der Umschalter 55 kann gegebenenfalls entfallen.Also, as in FIG. 19b in a variant of Fig. 19a 4, the axis ratio of the circularly elliptically polarized field is adjusted by introducing an attenuator 56 into the path of the monopole 7 from the loop antenna 14. Increasing attenuation is accompanied by the fact that the main beam direction of the antenna increases in elevation and the antenna can be optimized for optimal interference resistance to horizontally incident noise and temperature outside noise. By supplementing the attenuator 56 in Fig. 19b with a phase shifter (not shown) can be adjusted according to the invention by adjusting the phase with the attenuation of both the ellipticity, the sense of polarization and the elevation of the main beam direction of the antenna. The switch 55 may be omitted if necessary.

In einer weiteren besonders wirtschaftlichen Ausführungsform einer derartigen Antenne mit zirkularem bzw. elliptisch polarisiertem Feld bei umschaltbarem Drehsinn ist in Figur 20 - ähnlich wie bei der Antenne in Figur 11 - der gesonderte Monopol 7 eingespart. Für den Empfang bei vertikaler Polarisation wird auch hier die Zweidrahtleitung 26 ausgenutzt. Durch Einfügen eines geeignet gestalteten Netzwerks 53 in einen der Stränge der vertikalen Zweidrahtleitung 26 wird der Unterschied von 90° zwischen den Phasen des von der vertikalen Zweidrahtleitung 26 mit der Schleifenantennen 14 als Dachkapazität 12 und des von der Schleifenantenne 14 aufgenommenen horizontalen Feldanteils so eingestellt, dass deren Kombination mit diesem Phasenunterschied am Mikrostreifenleiter 30 zum Anpassnetzwerk 54 vorliegt und somit ebenso an der Anschlussstelle 28. Damit empfängt die Antenne ein zirkular polarisiertes Feld. Eine die Empfangssignale der Schleifenantenne 14 am Ausgang der Anpassnetzwerke 25 aus dem horizontal polarisierten elektrischen Feld und die Empfangssignale der vertikalen Zweidrahtleitung 26 aus dem vertikal polarisierten elektrischen Feld verknüpfende Schaltung umfasst einen LHCP/RHCP-Umschalter 55 zur Vertauschung der Polarität der Empfangsspannung der Schleifenantenne 14. Letztere kann auf diese Weise mit unterschiedlichem Vorzeichen der Empfangsspannung aus dem vertikal polarisierten elektrischen Feld hinzugefügt werden, so dass zwischen dem Empfang von LHCP-Feld und RHCP-Feld durch Umschaltung der LHCP/RHCP-Umschalter 55 umgeschaltet werden kann.In a further particularly economical embodiment of such an antenna with circular or elliptically polarized field with reversible direction of rotation is in FIG. 20 - similar to the antenna in FIG. 11 - The separate monopoly 7 saved. For reception in vertical polarization, the two-wire line 26 is also utilized here. By inserting an appropriately designed network 53 into one of the strands of the vertical two-wire line 26, the difference of 90 ° between the phases of the horizontal field component picked up by the vertical two-wire line 26 with the loop antennas 14 as the roof capacitance 12 and the loop field 14 is set so that their combination with this phase difference is present at the microstrip conductor 30 to the matching network 54 and thus also at the junction 28. Thus, the antenna receives a circularly polarized field. A circuit combining the receive signals of the loop antenna 14 at the output of the matching networks 25 from the horizontally polarized electric field and the receiving signals of the vertical two-wire line 26 from the vertically polarized electric field comprises an LHCP / RHCP switch 55 for reversing the polarity of the receiving voltage of the loop antenna 14. The latter can be added in this way with different signs of the received voltage from the vertically polarized electric field, so that between the reception of LHCP field and RHCP field by switching the LHCP / RHCP switch 55 can be switched.

Wie bereits im Zusammenhang mit der Antenne in Figur 15 erläutert -kann auch hier ein dem Netzwerk 31 entsprechendes Netzwerk 53 aus Blindwiderständen entsprechend Figur 18 zur Gestaltung des vertikalen Richtdiagramms der linear vertikal polarisierten Antenne in den mit Masse verbundenen Strang der vertikalen Zweidrahtleitung 26 geschaltet werden. Mit Hilfe des Netzwerks 53, kann die Einstellung des Gleichtakt-zu-Gegentakt-Verhältnisses auf der vertikalen Zweidrahtleitung 26 eingestellt werden. Im Gegensatz zu den oben beschriebenen Antennen in den Figuren 19 und 20 ist das Netzwerk 53 in der Weise zu gestalten, dass die Empfangsspannungen aus den horizontalen und den vertikalen elektrischen Feldanteilen phasengleich überlagert werden. Dieses Netzwerk 53 kann im einfachsten Fall als Kapazität gestaltet werden. Durch Einstellung des Gleichtakt-zu-Gegentakt-Verhältnisses auf der vertikalen Zweidrahtleitung 26 kann das Verhältnis des Anteiles des vertikal polarisierten Feldes mit niederer Elevation der Hauptstrahlrichtung zu dem Anteil des horizontal polarisierten Feldes mit höherer Elevation der Hauptstrahlrichtung eingestellt werden. Durch Gestaltung des Netzwerks 53 kann somit die Elevation der Hauptstrahlrichtung der Gesamtcharakteristik zwischen den Elevationswinkeln 0° (horizontal) und 45° frei gewählt werden.As already related to the antenna in FIG. 15 explained here can also correspond to the network 31 corresponding network 53 of reactances accordingly FIG. 18 to form the vertical directional pattern of the linearly-vertically polarized antenna into the ground-connected leg of the vertical two-wire line 26. With the aid of the network 53, the adjustment of the common mode to differential ratio on the vertical two-wire line 26 can be set. In contrast to the antennas described above in the Figures 19 and 20 the network 53 is to be designed in such a way that the reception voltages from the horizontal and the vertical electric field components are superimposed in phase. This network 53 can be designed in the simplest case as a capacity. By adjusting the common-mode to differential ratio on the vertical two-wire line 26, the ratio of the low-polarization vertically-polarized field of the main beam direction to the proportion of the higher polarization horizontally-polarized field of the main beam direction can be adjusted. By designing the network 53, the elevation of the main beam direction of the overall characteristic between the elevation angles 0 ° (horizontal) and 45 ° can thus be freely selected.

Für die Gestaltung von Satellitenempfangsantennen, die sich gleichermaßen für den Empfang linksdrehend zirkular polarisierter Signale als auch für den Empfang rechtsdrehend zirkular polarisierter Signale eignen haben sich folgende Merkmale und Merkmalskombinationen als bevorzugt erwiesen:

  1. 1. Durch die Gestaltung elektrisch sehr kurzer Leiterelemente Δ1, Δ2,... der Antenne 1 ist sichergestellt, dass entsprechend dem zwischen Empfangsantennen und Sendeantennen geltenden Reziprozitätsgesetz bei Einspeisung von Sendeleistung an mindestens einer Antennenanschlussstelle der Antenne 3 der im Fernfeld erzeugte elektrische Feldstärkevektor E ν in jedem Punkt P des Raumes zu jedem Zeitpunkt längs einer für diesen Punkt P des Raumes spezifischen, feststehenden geraden Linie polarisiert ist.
    Diese Bedingung lässt sich z.B. erfüllen, wenn alle Leiterelemente Δ1, Δ2 längs einer gestreckten Linie 2 angeordnet sind und leitend miteinander verbunden sind, so dass im Wesentlichen ein stabförmiger Leiter 4 gebildet ist und die Antennenanschlussstelle 3 durch eine Unterbrechung des stabförmigen Leiters 4 gebildet ist.
    Der im Wesentlichen stabförmige Leiter 4 ist vorzugsweise im Wesentlichen senkrecht über einer im Wesentlichen horizontalen leitenden Grundfläche 6 angebracht und weist eine Unterbrechungsstelle auf, durch welche die Antennenanschlussstelle 3 gebildet ist. Bevorzugt weist der so gebildete im Wesentlichen senkrechte Monopol 7 zur Gestaltung des Vertikaldiagramms mindestens eine Unterbrechungsstelle 5 auf, welche mit mindestens einem Blindelement 8 beschaltet ist. Die im Fußpunkt des Monopols 7 gebildete Antennenanschlussstelle 3 kann zur Gestaltung des optimalen Empfangs im Bereich eines Elevationswinkels zwischen 25° und 65° die Gesamtlänge h2 des Monopols 7 etwa 5/8 λ der zu empfangenden Satelliten-Signalen beitragen, wobei die Unterbrechungsstelle 5 in einer Höhe h1 von etwa 3/8 λ - 4/8 λ über einer leitenden Grundfläche 6 angebracht und mit einem bei dieser Frequenz induktiven Blindwiderstand 8 von circa 200 Ohm beschaltet ist ( Figur 3 ).
  2. 2. Die Leiterelemente Δ1, Δ2,... können längs mehrerer zueinander paralleler, gestreckter gerader Linien angeordnet sein, so dass mehre stabförmige Leiter 4 gebildet sind, von denen in mindestens einem die Antennenanschlussstelle 3 ausgebildet ist. Die stabförmigen Leiter 4 können hierbei vertikal über der im Wesentlichen horizontalen leitenden Grundfläche 6 orientiert sein.
    Beispielsweise kann zur Gestaltung eines im Wesentlichen runden azimutalen Richtdiagramms eine Kreisgruppenantennenanlage 9 mit untereinander gleich ausgeführten stabförmigen Leitern 4 als parasitäre Strahler 11 vorgesehen sein, wobei im Zentrum Z der Kreisgruppenantennenanlage 9 eine Antenne gemäß der vorstehenden Ziffer 1 und eine gemäß den Anforderungen an die Rundheit des azimutalen Richtdiagramms hinreichend großen Anzahl von auf einem Kreis im gleichen Winkelabstand W voneinander angeordneten parasitären Strahlern 11 vorgesehen sind.
    Die Kreisgruppenantennenanlage 9 enthält ein Verteilungsnetzwerk bzw. ein Koppelungsnetzwerk mit mehreren Anschlüssen 23, wobei einer (24) der Anschlüsse als Antennenanschlussstelle 3 ausgeführt ist und die stabförmigen und gleichartig ausgeführten in der Kreisgruppe angeordneten stabförmigen Leiter 4 jeweils eine Unterbrechungsstelle 5 enthalten und somit als Strahler 7 ausgebildet sind, welche jeweils über eine gleichartige elektrische Leitung 27 an jeweils einen der übrigen Anschlüsse des Netzwerks 10 angeschlossen sind und im reziproken Sendefall mit gleichen Signalen nach Amplituden und Phasen speisbar sind, wobei der im Zentrum Z der Kreisgruppenantennenanlage 9 befindliche Strahler 7 zur Gestaltung des Richtdiagramms gleichfalls an einen der Anschlüsse des Netzwerks 10 angeschlossen ist und mit einem Signal mit gesonderter Amplitude und Phase speisbar ist. Alternativ kann im Zentrum Z der Kreisgruppe an Stelle des Strahlers 7 auch ein parasitärer Strahler 11 angebracht sein. Auch können die im Kreis angeordneten stabförmigen Leiter 4 zur Gestaltung des Vertikaldiagramms jeweils mindestens eine mit mindestens einem Blindelement 8 beschaltete Unterbrechungsstelle 5 enthalten. Entsprechendes gilt für den im Zentrum Z der Kreisgruppe angeordnete stabförmige Leiter, der zur Gestaltung des Vertikaldiagramms jeweils mindestens eine mit mindestens einem Blindelement 8 beschaltete Unterbrechungsstelle 5 enthalten kann. Zur Gestaltung möglichst niedriger stabförmiger Leiter können diese an ihrem oberen Ende eine Dachkapazität 12 enthalten und dadurch verlängert wirken. Darüber hinaus kann die Kreisgruppenantennenanlage 9 auch aus mehreren in konzentrischen Kreisen angeordneten und im jeweiligen Kreis aus gleichartig ausgeführten stabförmigen Leitern bestehen, die gegebenenfalls nach Betrag und Phase gleich erregt werden.
  3. 3. In einer bevorzugten Ausgestaltung besteht die Antenne aus einer Vielzahl von jeweils symmetrisch zu einem gemeinsamen Bezugspunkt im Raum in der angegebenen Weise paarweise angeordneten und gleich ausgerichteten elektrisch sehr kurzen Leiterelementen Δ1, Δ2 bzw. Δ3, Δ4 bzw. Δ5, Δ6, wobei - bewirkt durch die Erregung der Antenne an der Antennenanschlussstelle 3 - diese paarweise als strahlende Elementarantennen Δn, Δm wirken und zwar so, dass der in beiden zu einem Elementarantennenpaar gehörigen Elementarantennen Δn, Δm fließende Strom der Größe nach gleich ist und der Bezugspunkt für alle Elementarantennenpaare Δn, Δm in der Weise ein gemeinsames Phasenzentrum B bilden, dass das arithmetische Mittel der Phasen der beiden, in der jeweils gleichen Richtung gezählten Ströme eines Elementarantennepaares für alle Elementarantennenpaare Δn, Δm den gleichen Wert besitzt.
    Bevorzugt ist durch leitende Aneinanderreihung von elektrisch sehr kurzen Leiterelementen um den gemeinsamen Bezugspunkt eine Schleifenantenne 14 mit einer an einer Stelle durch Unterbrechung der Schleife gestalteten Antennenanschlussstelle 3 gebildet ist, wobei die Abmessungen der Schleife elektrisch hinreichend klein sind, so dass der Ringstrom dem Betrag nach an jeder Stelle gleich ist und jedes sehr kurze Leiterelement durch ein korrespondierendes sehr kurzes Leiterelement zu einem Paar ergänzt ist. Alle Leiterelemente Δ1, Δ2.... verlaufen zweckmäßigerweise in einer Ebene wobei die Schleifenantenne 14 die Form eines regulären n-Ecks, dessen Phasen-Bezugspunkt durch den Symmetriepunkt des n-Ecks gegeben ist, oder die Form eines Kreisrings haben kann, wobei hier Bezugspunkt B durch den Mittelpunkt des Kreisrings gegeben ist. Die Schleifenantenne 14 kann auch aus mehreren geschlossenen Schleifen mit gemeinsamem Phasen-Bezugspunkt B gebildet sein, wobei jedoch in einer der Schleifen durch Unterbrechung die Antennen-anschlussstelle 3 auszubilden ist. Hierbei kann die Schleifenantenne 14 aus mehreren leitend aneinander gereihten Schleifen in im Wesentlichen zueinander parallelen Ebenen mit möglichst geringem Abstand voneinander in Form einer Spule gestaltet sein, so dass für alle Schleifen ein im Wesentlichen gemeinsamer Phasen-Bezugspunkt gebildet ist und die Antennenanschluss-stelle 3 durch die beiden Enden der Spirale gegeben ist.
    Soweit die Schleifenantenne 14 nicht elektrisch klein ist, kann sie zur wirksamen elektrischen Verkürzungen mehrere an Unterbrechungsstellen 5 eingebrachte Kapazitäten 16 enthalten, wodurch die Konstanz des Stromes nach Betrag und Phase auf den Leiterelementen Δ1, Δ2 hinreichend sichergestellt wird, ( Figur 5a ). Bevorzugt ist, dass die Schleifenantenne 14 kreisförmig oder angenähert quadratisch in einer Ebene parallel zu einer im Wesentlichen horizontalen leitenden Grundfläche 6 gestaltet ist, und an Unterbrechungsstellen eingebrachte Kapazitäten 16 aufweist, die sowohl die Konstanz des Stromes auf den Leiterelementen Δ1, Δ2 als auch das Vertikaldiagramm gestalten.
    Zur Gestaltung des Empfangs im Bereich eines Elevationswinkels zwischen 25° und 65° mit azimutaler Rundcharakteristik ist die Schleifenantenne 14 bevorzugt im Abstand von etwa 1/16 bis 1/8 der Wellenlänge über der leitenden Grundfläche 6 platziert ist, wobei die Seitenlänge der Schleifenantenne 14 etwa 1/4 der Wellenlänge gewählt ist und längs der Leiterführung in Abständen von etwa 1/8 der Wellenlänge jeweils mit einer Kapazität mit einem Blindwiderstand von etwa -200 Ohm beschaltete Unterbrechungsstelle eingebracht ist ( Figur 5b und c).
    In einer bevorzugten Ausgestaltung ist im zentralen Phasen-Bezugspunkt ein elektrisch kurzer vertikaler Monopol 7 sowie ein Verteilungsnetzwerk 10 vorgesehen, dessen Eingang als Antennenanschlussstelle 3 ausgeführt ist und die Schleifenantenne 14 und der Monopol 7 entsprechend dem zwischen Empfangsantennen und Sendeantennen geltenden Reziprozitätsgesetz jeweils über eine elektrische Leitung von einem Ausgang des Verteilungsnetzwerks in der Weise gespeist sind, dass die Phasen des in den Monopol 7 und in die Schleifenantenne eingespeisten Stromes jeweils gleich sind ( Figur 9 ). Das Verteilungsnetzwerk ist hierfür als ein Leistungsteiler- und Phasenschiebernetzwerk 31 mit separaten Anschlüssen für die Schleifenantenne 14 und den Monopol 7 in der Weise gestaltet, dass die Phasen des in den Monopol 7 und in die Schleifenantenne 14 eingespeisten Stromes zur Bildung des gemeinsamen Phasenzentrums B unter Berücksichtigung der Spiegelung an der Grundfläche 6 nahezu gleich sind und, dass die Gewichtung bei der Überlagerung der Wirkungen der Schleifenantenne 14 und des Monopols 7 in der Weise eingestellt ist, dass die Hauptrichtung des resultierenden vertikalen Richtdiagramms zwar für den Satellitenempfang eingestellt ist, dass das Richtdiagramm durch die Wirkung des Monopols 7 jedoch zu niedrigen Elevationswinkeln hin aufgefüllt ist ( Figur 9 ).
  4. 4. In einer weiteren bevorzugten Variante ist jeweils eine Gruppe von elektrisch sehr kurzen, im Wesentlichen in einer horizontalen Ebene verlaufenden Leiterelementen Δ1, Δ2 elektrisch leitend aneinander gereiht, derart, dass sie mehrere elektrisch kurze Dipole 21 mit nahezu gleicher Phase der Ströme auf den Leiterelementen Δ1, Δ2 bilden, die an einer durch eine Unterbrechungsstelle gebildeten Dipol-Anschlussstelle 22 gespeist sind, wobei jeweils symmetrisch zum gemeinsamen Bezugspunkts B ein gleich geformter elektrisch kurzer Dipol 21 korrespondierend vorhanden ist, sodass zu jedem elektrisch sehr kurzen Leiterelement Δ1 auf einem Dipol ein entsprechend korrespondierendes, im Wesentlichen in derselben Ebene verlaufendes Leiterelement Δ2 auf dem korrespondieren Dipol 21 existiert und, wenn beide ein Paar bildende Dipole 21 an der Dipol-Anschlussstelle 22 jeweils mit dem gleichen Strom dem Betrag nach gespeist werden, das arithmetische Mittel der Phasen dieser in der jeweils gleichen Richtung gezählten Ströme eines Dipolpaares den gleichen Wert besitzt und dieser Wert für alle derart in derselben Ebene gebildeten Dipolpaare gleich ist.
    Die Dipole 21 sind bevorzugt geradlinig und zu Dipol-Anschlussstelle 22 symmetrisch und verlaufen in einer horizontalen Ebene, wobei die Dipol-Anschlussstellen mehrerer Dipolpaare äquidistant auf einem horizontalen Kreis, dessen Mittelpunkt den gemeinsamen Bezugspunkt B bildet, verteilt angeordnet und die Dipole 21 senkrecht zur Verbindungslinie zum Mittelpunkt des Kreises orientiert sind. Auf diese Weise wird eine Kreisgruppenantennenanlage 9 gebildet, die entsprechend dem Reziprozitätsgesetz ein Verteilungsnetzwerk 10 mit mehreren Ausgängen 23 enthält, dessen Eingang als Antennenanschlussstelle 3 ausgeführt ist, wobei die Dipol-Anschlussstellen jeweils über eine elektrische Leitung an einen der Ausgänge des Verteilungsnetzwerks 10 angeschlossen sind und die Dipolpaare mit gleichen Signalen nach Amplituden und Phasen gespeist sind ( Figur 13a ).
    Die Kreisgruppe sollte zur Erzeugung einer hinreichend runden azimutalen Strahlungscharakteristik eine hinreichende Anzahl von Dipolpaaren enthalten und über einer elektrisch leitenden horizontalen Grundfläche 6 in einem der Gestaltung der vertikalen Strahlungscharakteristik entsprechenden Abstand angeordnet sein ( Figur 13b ).
    Im zentralen Phasen-Bezugspunkt B kann ein elektrisch kurzer, vertikaler Monopol 7 vorhanden sein. Ferner ist ein Verteilungsnetzwerk 10 vorhanden, dessen dem Reiziprozitätsgesetz entsprechender Eingang die Antennenanschlussstelle 3 bildet, wobei die Kreisgruppenantennenanlage 9 und der Monopol 7 jeweils über eine elektrische Leitung 27 von einem Ausgang 23 des Verteilungsnetzwerks 10 in der Weise gespeist sind, dass die Phasen des in den Monopol 7 eingespeisten Stromes der Phasenlage der in der Kreisgruppenantennenanlage 9 eingespeisten Ströme bezüglich des gemeinsamen Phasen-Bezugspunkts B entsprechen. Hierbei sind zweckmäßigerweise mehrere elektrisch kurze vertikale Monopole 7 paarweise symmetrisch zum zentralen Phasen-Bezugspunkt B angeordnet vorhanden, wobei die Monopole entsprechend dem Reziprozitätsgesetz vom Verteilungsnetzwerk 10 in der Weise gespeist sind, dass das arithmetische Mittel der Stromphasen der paarweise angeordneten Monopole 7 und die Phase des in einen zentralen Monopol 7 eingespeisten Stromes bezogen auf den Phasen-Bezugspunkt B jeweils gleich sind.
  5. 5. In einer bevorzugten Ausgestaltung ist das Verteilungsnetzwerk 10 für die Verwendung der Antenne als Diversity-Empfangsantenne in der Weise gestaltet ist, dass sowohl die Empfangssignale der vorangegangenen unter Ziffer 4 erläuterten Antenne als auch die des vertikalen Monopols 7 und die zusammengefassten Empfangssignale der Kreisgruppenantennenanlage 9 jeweils getrennt voneinander alternativ zur Verfügung stehen.
    Das Verteilungsnetzwerk 10 kann aber auch für die Verwendung der Antennenanordnung als Diversity-Empfangsantenne in der Weise gestaltet sein, dass sowohl die Empfangssignale der vorangegangenen unter Ziffer 3 erläuterten Antenne als auch die des vertikalen Monopols 7 und die Empfangssignale der Schleifenantenne 14 jeweils getrennt voneinander alternativ zur Verfügung stehen ( Figur 14 ).
  6. 6. Die Auskopplung an der Antennenanschlussstelle 3 über eine daran angeschlossene symmetrische Zweidrahtleitung 26 wie sie unter Ziffer 3 erwähnt ist, kann auch so erfolgen, dass die Zweidrahtleitung innerhalb der senkrecht zur Grundfläche 6 und symmetrisch bezüglich der Antennenanschlussstelle 3 orientierten Symmetrieebene SE der Antennenanordnung zur leitenden Grundfläche 6 geführt ist ( Figur 6 ). Auch kann an Stelle des vertikalen Monopols 7 die Zuleitung zur Speisung der Schleifenantenne 14 als vertikal ausgerichtete Zweidrahtleitung 26 im Zentrum Z der Schleifenantenne 14 angeordnet sein, wodurch die Zweidrahtleitung zum einen die Funktion eines Monopols 7 mit der Schleifenantenne 14 als Dachkapazität 12 erhält und zum anderen die Speisung der Schleifenantenne 14 wahrgenommen ist, wobei im zentralen Fußpunkt auf der leitenden Grundfläche 6 zwei Auskopplungen für die beiden auf diese Weise gebildeten Antennen vorhanden sind (Figur 10). Hierbei kann (entsprechend dem Reziprozitätsgesetz) das unsymmetrische Leistungsteiler- und Phasenschiebernetzwerk 31 im Fußpunkt der Antennenanordnung dadurch realisiert werden, dass der eine Leiter der Zweidrahtleitung 26 über einen Blindwiderstand 41 mit der leitenden Grundfläche 6 leitend verbunden wird, und der andere Leiter der Zweidrahtleitung 26 zur Anschlussstelle 28 der Antennenanordnung geführt und durch die Wahl des Blindwiderstands 41 die Gewichtung des Empfangs des horizontal und des vertikal polarisierten elektrischen Feldes eingestellt wird ( Figur 15 ).
  7. 7. Bei einer unter Ziffer 1 erwähnten Antenne kann zusätzlich für den Empfang von Signalen mit niedrigeren Frequenzen - wie zum Beispiel AM/FM-Rundfunksignalen - eine größere Gesamtlänge hg gestaltet sein, wobei die für den Satellitenempfang notwendige Länge h2 hinausgehende Teil der stabförmigen Antenne über eine Unterbrechungsstelle 5 abgetrennt ist und dieser Teil, abhängig von seiner Länge, mit einer oder mehreren Unterbrechungsstellen 5 in Abständen von weniger als 1/5λ versehen ist und wobei diese Unterbrechungsstellen jeweils mit einer auf die Mittelfrequenz fm der Satelliten-Frequenzbänder abgestimmten Resonanzschaltung 39 beschaltet sind, welche bei dieser Frequenz hochohmig ist ( Figur 4 ).
    Innerhalb der senkrecht zur Grundfläche 6 und symmetrisch bezüglich der Antennenanschlussstelle 3 orientierten Symmetrieebene SE der Antennenanordnung kann mindestens eine linear beziehungsweise flächig gestaltete Antenne für einen oder mehrere andere Funkdienste gestaltet sein ( Figur 16 ).
  8. 8. Bei der unter Ziffer 3 erwähnten Antenne sind die vertikalen Richtdiagramme das als Stabantenne ausgebildeten Monopols und der Schleifenantenne 14 bevorzugt deckungsgleich und bezüglich der Hauptrichtung für den Empfang der Satellitensignale eingestellt, wobei ein Anpassnetzwerk 25 für die Schleifenantenne 14 und ein Anpassnetzwerk 33 für den Monopol in der Form vorhanden sind, sodass ein gemeinsames Phasenzentrum B gebildet ist. Die beiden Ausgänge der Anpassnetzwerke 32, 33 können mit den Eingängen 48, 49 eines 90°-Hybridkopplers 45 verbunden sein, so dass ein Ausgang 46 für LHCP-Wellen und der andere Ausgang 47 für RHCP-Wellen gestaltet ist ( Figur 17a , Fig. 19 ).
  9. 9. Die unter Ziffer 6 beschriebene Antenne ist bevorzugt so gestaltet, dass die Schleifenantenne 14 zwei aneinander gegenüberliegende Antennenanschlussstellen 3 und daran angeschlossene und in der Schleifenebene befindliche Anpassnetzwerke 25 aufweist, deren Ausgänge addierend parallel geschaltet sind, wobei das unsymmetrische Leistungsteiler- und Phasenschiebernetzwerk 31 im Fußpunkt der Antennenanordnung dadurch realisiert ist, dass der eine Leiter der Zweidrahtleitung 26 über einen Blindwiderstand 41 mit der leitenden Grundfläche 6 leitend verbunden ist und der andere Leiter der Zweidrahtleitung 26 zur Anschlussstelle 28 der Antennenanordnung geführt ist. Durch Wahl des Netzwerk 53 aus Blindwiderständen kann die Gewichtung des Empfangs des horizontal und des vertikal polarisierten elektrischen Feldes eingestellt werden. ( Figur 18 ). Zur Vertauschung der Polarität der Empfangsspannung der Schleifenantenne 14 kann vorgesehen sein, dass die Empfangsspannung der Schleifenantenne 14 mit unterschiedlichen Vorzeichen der Empfangsspannung aus dem vertikal polarisierten elektrischen Feld hinzugefügt werden kann, und der Empfang von LHC- und RHC-polarisiertem Feld durch Umschaltung der LHRCP/RHCP-Umschalter 55 wahlweise möglich ist ( Figur 20 ).
For the design of satellite receiving antennas, which are equally suitable for the reception of left-handed circularly polarized signals and for the reception of clockwise circularly polarized signals, the following features and combinations of features have proven to be preferred:
  1. 1. The design of electrically very short conductor elements Δ 1 , Δ 2 ,... Of the antenna 1 ensures that the electric field strength vector generated in the far field is generated in accordance with the reciprocity law applicable between receiving antennas and transmitting antennas when transmitting power is supplied to at least one antenna connection point of the antenna 3 e ν is polarized in every point P of space at any time along a fixed straight line specific to that point P of space.
    This condition can be met, for example, if all the conductor elements Δ1, Δ2 are arranged along a straight line 2 and are conductively connected to one another, so that substantially a rod-shaped conductor 4 is formed and the antenna connection point 3 is formed by an interruption of the rod-shaped conductor 4.
    The substantially rod-shaped conductor 4 is preferably mounted substantially perpendicularly over a substantially horizontal conductive base 6 and has an interruption point, through which the antenna connection point 3 is formed. Preferably, the thus formed substantially perpendicular monopole 7 for the design of the vertical diagram on at least one point of interruption 5, which is connected to at least one dummy element 8. The antenna connection point 3 formed at the base of the monopole 7 can contribute to the design of the optimal reception in the range of elevation angle between 25 ° and 65 ° the total length h2 of the monopole 7 about 5/8 λ of the satellite signals to be received, the interruption point 5 in one Height h1 of about 3/8 λ - 4/8 λ mounted above a conductive base 6 and connected to a reactive at this frequency reactance 8 of approximately 200 ohms ( FIG. 3 ).
  2. 2. The conductor elements Δ 1 , Δ 2 ,... Can be arranged along a plurality of straight lines which are parallel to one another, so that a plurality of rod-shaped conductors 4 are formed, of which the antenna connection point 3 is formed in at least one. The rod-shaped conductors 4 can in this case be oriented vertically over the substantially horizontal conductive base surface 6.
    For example, to design a substantially round azimuthal directional diagram, a circular array antenna system 9 with mutually identical rod-shaped conductors 4 can be provided as parasitic radiators 11, wherein in the center Z of the circular array antenna system 9 an antenna according to the preceding paragraph 1 and one according to the requirements of the roundness of azimuthal Directional diagram sufficiently large number of arranged on a circle at the same angular distance W from each other parasitic radiators 11 are provided.
    The circular array antenna system 9 contains a distribution network or a coupling network with a plurality of terminals 23, wherein one (24) of the terminals is designed as antenna connection point 3 and the rod-shaped and identically designed arranged in the circle group rod-shaped conductor 4 each contain a point of interruption 5 and thus as a radiator. 7 are formed, which are each connected via a similar electrical line 27 to each one of the remaining terminals of the network 10 and reciprocally transmitting with the same signals according to amplitudes and phases are fed, said located in the center Z of the circular array antenna 9 emitters 7 for the design of Directional diagram is also connected to one of the terminals of the network 10 and can be fed with a signal with a separate amplitude and phase. Alternatively, in the center Z of the circle group instead of the radiator 7, a parasitic radiator 11 may be attached. The arranged in a circle rod-shaped conductors 4 for the design of the vertical diagram can each contain at least one connected to at least one dummy element 8 interruption point 5. The same applies to the rod-shaped conductor arranged in the center Z of the circle group, which may each contain at least one interruption point 5 connected to at least one dummy element 8 for designing the vertical diagram. To design the lowest possible rod-shaped conductors, these may contain at their upper end a roof capacity 12 and thereby act extended. In addition, the circular array antenna system 9 may also consist of a plurality of concentric circles arranged in the respective circle of similar executed rod-shaped conductors, which are optionally excited the same amount and phase.
  3. 3. In a preferred embodiment, the antenna consists of a plurality of each symmetrical to a common reference point in space the manner indicated in pairs and arranged identically aligned very short conductor elements Δ1, Δ2 and Δ3, Δ4 and Δ5, Δ6, where - caused by the excitation of the antenna at the antenna connection point 3 - these act in pairs as radiating elementary antennas Δ n , Δ m in such a way that the associated both to one elementary antenna pair elementary antennas Δ n, Δ m current flowing according to size is the same and the reference point for all the elementary antenna pairs Δ n, Δ m B form a common phase center in such a way that the arithmetic mean of Phases of the two, in the same direction counted currents of an elementary antenna pair for all elementary antenna pairs Δ n , Δ m has the same value.
    Preferably, a loop antenna 14 is formed by a conductive juxtaposition of electrically very short conductor elements around the common reference point with an arranged at one point by interrupting the loop antenna connection point 3, wherein the dimensions of the loop are electrically sufficiently small, so that the ring current in the amount of Each location is the same and each very short conductor element is complemented by a corresponding very short conductor element to a pair. All the conductor elements Δ 1 , Δ 2 ... Suitably extend in a plane, wherein the loop antenna 14 may take the form of a regular n-corner whose phase reference point is given by the symmetry point of the n-corner, or the shape of a circular ring. where reference point B is given by the center of the annulus. The loop antenna 14 can also be formed of a plurality of closed loops with common phase reference point B, but in one of the loops by interruption, the antenna connection point 3 is to be formed. In this case, the loop antenna 14 can be configured from a plurality of loops arranged in a row in substantially parallel planes with the smallest possible distance from one another in the form of a coil, so that a substantially common phase reference point is formed for all loops and the antenna connection point 3 passes through the two ends of the spiral is given.
    As far as the loop antenna 14 is not electrically small, it may contain the effective electrical truncations several introduced at breakpoints 5 capacitances 16, whereby the constancy of the current is sufficiently ensured in accordance with the magnitude and phase on the conductor elements Δ 1, Δ 2, ( FIG. 5a ). It is preferred that the loop antenna 14 is circular or approximately square in shape in a plane parallel to a substantially horizontal conductive base 6 and has capacitances 16 introduced at break points, which will control both the continuity of the current on the conductor elements Δ 1 , Δ 2 and to shape the vertical diagram.
    To design the reception in the range of an elevation angle between 25 ° and 65 ° with azimuthal omnidirectional characteristic, the loop antenna 14 is preferably placed at a distance of approximately 1/16 to 1/8 of the wavelength above the conductive base 6, the side length of the loop antenna 14 being approximately 1/4 of the wavelength is selected and along the conductor guide at intervals of about 1/8 of the wavelength each with a capacity with a reactance of about -200 ohms connected interruption point is introduced ( FIG. 5b and c).
    In a preferred embodiment, an electrically short vertical monopole 7 and a distribution network 10 is provided in the central phase reference point, whose input is designed as an antenna connection point 3 and the loop antenna 14 and the monopole 7 in accordance with the reciprocity law between receiving antennas and transmitting antennas each via an electrical line are fed by an output of the distribution network in such a way that the phases of the current fed into the monopole 7 and into the loop antenna are the same ( FIG. 9 ) . The distribution network is designed for this purpose as a power divider and phase shifter network 31 with separate connections for the loop antenna 14 and the monopole 7 in such a way that the phases of the current fed into the monopole 7 and into the loop antenna 14 to form the common phase center B below Considering the reflection at the base 6 are almost equal and that the weighting is set in the superposition of the effects of the loop antenna 14 and the monopole 7 in such a way that the main direction of the resulting vertical radiation pattern is set for the satellite reception that the radiation pattern However, due to the effect of the monopole 7, it is filled up to low elevation angles ( FIG. 9 ).
  4. 4. In a further preferred variant, in each case a group of electrically very short conductor elements Δ 1 , Δ 2 running substantially in a horizontal plane are connected to one another in an electrically conductive manner, such that they have a plurality of electrically short dipoles 21 with almost the same phase of the currents form the conductor elements Δ 1 , Δ 2 , which are fed to a dipole connection point 22 formed by an interruption point, wherein in each case symmetrically to the common reference point B an identically shaped electrically short dipole 21 is correspondingly present, so that for each electrically very short conductor element Δ 1 on a dipole a corresponding corresponding, substantially in the same plane extending conductor element Δ 2 on the corresponding dipole 21 exists and, if both a pair of dipoles 21 are fed at the dipole junction 22 in each case with the same amount of current, the arithmetic This means the phases of this in the jewe In the same direction counted currents of a dipole pair has the same value and this value is the same for all dipole pairs formed in the same plane.
    The dipoles 21 are preferably rectilinear and symmetrical to the dipole junction 22 and extend in a horizontal plane, the dipole junctions of several pairs of dipoles arranged equidistant on a horizontal circle whose center forms the common reference point B, and the dipoles 21 perpendicular to the connecting line are oriented to the center of the circle. In this way, a circular array antenna system 9 is formed, which according to the reciprocity law, a distribution network 10 having a plurality of outputs 23, whose input is designed as an antenna connection point 3, wherein The dipole connection points are each connected via an electrical line to one of the outputs of the distribution network 10 and the dipole pairs are supplied with equal signals by amplitudes and phases ( FIG. 13a ).
    The circle group should contain a sufficient number of dipole pairs to generate a sufficiently round azimuthal radiation characteristic and be arranged above an electrically conductive horizontal base surface 6 in a distance corresponding to the configuration of the vertical radiation characteristic ( FIG. 13b ).
    In the central phase reference point B, an electrically short, vertical monopole 7 may be present. Further, a distribution network 10 is provided, whose the Reiziprozitätsgesetz corresponding input forms the antenna connection point 3, the circular array antenna system 9 and the monopoly 7 are respectively fed via an electrical line 27 from an output 23 of the distribution network 10 in such a way that the phases of the in the Monopole 7 fed current of the phase angle of the fed in the group antenna array 9 streams with respect to the common phase reference point B correspond. Here are expediently several electrically short vertical monopoles 7 arranged in pairs symmetrically to the central phase reference point B, wherein the monopolies are fed according to the reciprocity law of the distribution network 10 in such a way that the arithmetic mean of the current phases of the paired monopolies 7 and the phase of in a central monopole 7 fed current relative to the phase reference point B are the same.
  5. 5. In a preferred embodiment, the distribution network 10 is designed for the use of the antenna as a diversity receiving antenna in such a way that both the received signals of the previous explained under 4 antenna and those of the vertical monopoly 7 and the combined received signals of the circular array antenna system each separately as an alternative.
    However, the distribution network 10 can also be designed for the use of the antenna arrangement as a diversity receiving antenna in such a way that both the received signals of the previous explained in paragraph 3 antenna as well as the vertical monopole 7 and the received signals of the loop antenna 14 are each separated from each other alternatively Available ( FIG. 14 ).
  6. 6. The decoupling at the antenna connection point 3 via a symmetrical two-wire line 26 connected thereto, as mentioned under point 3, can also take place in such a way that the two-wire line is conductive within the plane of symmetry SE of the antenna arrangement oriented perpendicular to the base surface 6 and symmetrically with respect to the antenna connection point 3 Base area 6 is guided ( FIG. 6 ). Also, in place of the vertical monopole 7, the supply line for feeding the loop antenna 14 may be arranged as a vertically aligned two-wire line 26 in the center Z of the loop antenna 14, whereby the two-wire line on the one hand the function of a monopoly 7 with the loop antenna 14 as roof capacity 12 receives and on the other the supply of the loop antenna 14 is perceived, wherein in the central base point on the conductive base surface 6 two outcouplings for the two antennas formed in this way are present ( FIG. 10 ). In this case (in accordance with the law of reciprocity), the unbalanced power divider and phase shifter network 31 can be realized in the base of the antenna arrangement in that one conductor of the two-wire line 26 is conductively connected to the conductive base 6 via a reactance 41, and the other conductor of the two-wire line 26 to Junction 28 of the antenna array out and adjusted by the choice of the reactance 41, the weighting of the reception of the horizontal and the vertical polarized electric field ( FIG. 15 ).
  7. 7. In the case of an antenna mentioned under 1 above, it can also be used to receive signals with lower frequencies - such as AM / FM broadcast signals a greater total length hg be designed, wherein the necessary for the satellite reception length h2 part of the rod-shaped antenna is separated via an interruption point 5 and this part, depending on its length, with one or more interruption points 5 at intervals of less than 1 / 5λ is provided and wherein these interruption points are each connected to a tuned to the center frequency f m of the satellite frequency bands resonant circuit 39 which is high impedance at this frequency ( FIG. 4 ).
    Within the symmetry plane SE of the antenna arrangement oriented perpendicular to the base surface 6 and symmetrically with respect to the antenna connection point 3, at least one antenna configured in a linear or planar manner can be designed for one or more other radio services ( FIG. 16 ).
  8. 8. In the case of the antenna referred to in point 3, the vertical directional patterns of the monopole and loop antenna 14 are preferably congruent with respect to the main direction of reception of the satellite signals, with a matching network 25 for the loop antenna 14 and a matching network 33 for the monopole in the Form are present, so that a common phase center B is formed. The two outputs of the matching networks 32, 33 can be connected to the inputs 48, 49 of a 90 ° hybrid coupler 45, so that one output 46 is designed for LHCP waves and the other output 47 is designed for RHCP waves ( Figure 17a . Fig. 19 ).
  9. 9. The antenna described in paragraph 6 is preferably designed so that the loop antenna 14 has two mutually opposite antenna connection points 3 and connected thereto and located in the loop plane matching networks 25 whose outputs are connected in addition in parallel, wherein the unbalanced power divider and phase shifter network 31 in Base point of the antenna arrangement is realized in that the one conductor of the two-wire line 26 is conductively connected via a reactance 41 to the conductive base 6 and the other conductor of the two-wire line 26 is guided to the connection point 28 of the antenna arrangement. By selecting the network 53 of reactances, the weighting of the reception of the horizontally and vertically polarized electric field can be adjusted. ( FIG. 18 ). For interchanging the polarity of the received voltage of the loop antenna 14, it may be provided that the receiving voltage of the loop antenna 14 can be added with different signs of the received voltage from the vertically polarized electric field, and the reception of LHC and RHC polarized field by switching the LHRCP / RHCP switch 55 is optional ( FIG. 20 ).

Claims (12)

  1. Antenna for reception of circularly polarized satellite radio signals, comprising:
    - at least one two- or three-dimensional antenna conductor structure forming a loop antenna (14), the antenna conductor structure essentially comprised of a plurality of antenna conductor sections (Δv) which are arranged symmetrically in pairs with regard to a spatial reference point common to the antenna conductor sections (Δv) and extending in the same direction and are electrically connected to form a conductor loop arranged essentially in a horizontal plane, wherein at least one gap in the conductor loop forms an antenna connection point (3) of the loop antenna (14),
    - a linear antenna conductor structure, and
    - a matching and phase shift network (25, 31) connecting the at least one antenna connection point (3) of the loop antenna (14) and an antenna connection point (3) of the linear antenna structure to an antenna output port (28), characterized in that
    the loop antenna (14) is arranged such that, in case of reciprocal operation of the antenna as a transmitting antenna, antenna currents of at least approximately equal size flow in the individual pairs of antenna conductor sections (Δv) and the arithmetic mean of the current phases of said antenna currents, counted in the same direction in the antenna conductor sections (Δv) of each pair at essentially all pairs of antenna conductor sections (Δv) relative to a common phase reference point (B) has at least approximately the same value,
    the loop antenna (14) is arranged parallel to and spaced apart from a approximately horizontal electrically conductive base surface (6),
    the linear antenna structure is formed as a electrically short, vertical monopole (7) disposed in the phase reference point (B) of the loop antenna (14), and
    the matching and phase shift network (25, 31) connecting the antenna connection point (3) of the monopole (7) and the antenna connection point (3) of the loop antenna (14) to the antenna output port (28) is arranged such that, in reciprocal operation of the antenna as a transmitting antenna, it approximates the phases of the currents at the antenna connection points (3) of the monopole (7) and the loop antenna (14) to one another.
  2. Antenna according to claim 1, characterized in that
    the matching and phase shift network (25, 31) is configured such that, in reciprocal operation of the antenna as a transmitting antenna, it overlaps the currents of the monopole (7) and the loop antenna (14) one another for influencing the vertical directional diagram.
  3. Antenna for reception of circularly polarized satellite radio signals, comprising:
    - at least one two- or three-dimensional antenna conductor structure forming a loop antenna (14), the antenna conductor structure essentially comprised of a plurality of antenna conductor sections (Δv) which are arranged symmetrically in pairs with regard to a spatial reference point common to the antenna conductor sections (Δv) and extending in the same direction and are electrically connected to form a conductor loop arranged essentially in one horizontal plane, wherein at least one gap in the conductor loop forms an antenna connection point (3) of the loop antenna (14),
    - a linear antenna conductor structure, and
    - a matching and phase shift network (25, 31) connecting the at least one antenna connection point (3) of the loop antenna (14) and an antenna connection point (3) of the linear antenna structure to an antenna output port (28), characterized in that
    the loop antenna (14) is arranged such that, in case of reciprocal operation of the antenna as a transmitting antenna, antenna currents of at least approximately equal size flow in the individual pairs of antenna conductor sections (Δv) and the arithmetic mean of the current phases of said antenna currents, counted in the same direction in the antenna conductor sections (Δv) of each pair at essentially all pairs of antenna conductor sections (Δv) relative to a common phase reference point (B) has at least approximately the same value,
    the loop antenna (14) is arranged parallel to and spaced apart from a approximately horizontal conductive base surface (6),
    the at least one antenna connection point (3) of the loop antenna (14) is connected to the antenna output port (28) via a two-wire line (26) at least between the plane of the conductor loop and the electrically conductive base surface (6), wherein the two-wire line (26) and the antenna connection point (3) are symmetrically arranged to a vertical plane of symmetry (SE) comprising the spatial reference point and, in reciprocal operation of the antenna as a transmitting antenna, the formed phase reference point (B),
    the two-wire line (26) runs vertically through the spatial reference point and, in reciprocal operation of the antenna as a transmitting antenna, the formed phase reference point (B) and is used as a vertical monopole (7) with a top capacity (12) formed by the conductor loop, and
    the matching and phase shift network (33, 31) connects the two-wire line (26) to the antenna output port (28) and couples out both currents of the monopole (7) and the loop antenna (14) on the electrically conductive base surface (6).
  4. Antenna according to claim 3, characterized in that one of the two conductors of the two-wire line (26) is conductively connected via a reactance (41) to the conductive base surface (6) for weighting of reception of the horizontally polarized and the vertically polarized electrical field and the other of the two conductors is connected to the antenna output port (28) via the matching and phase shift network (33, 31).
  5. Antenna according to claim 3 or 4, characterized in that the loop antenna (14) has two antenna connection points (3) opposite each other in the plane of symmetry (SE), to which are connected matching networks (25) arranged in the loop plane, whose ports are connected in parallel for adding and connected to the two-wire line (26).
  6. Antenna according to any of the claims 3 to 5, characterized in that at least one further linear or planar antenna (24) is located within the plane of symmetry (SE) for at least one additional radio service.
  7. Antenna according to any of the claims 1 to 6, characterized in that the conductor loop comprises, for its electrically active shortening, at least one gap bridged by a capacitance (16), particularly a plurality of gaps spaced apart from each other and bridged by capacitances (16).
  8. Antenna for reception of circularly polarized satellite radio signals, comprising:
    - at least one two- or three-dimensional antenna conductor structure (14), the antenna conductor structure essentially comprised of a plurality of antenna conductor sections (Δv) which are arranged symmetrically in pairs with regard to a spatial reference point common to the antenna conductor sections (Δv) and extending in the same direction essentially in a common horizontal plane,
    - a linear antenna conductor structure, and
    - a matching and phase shift network (31, 33) connecting the two- or three-dimensional antenna conductor structure and the linear antenna conductor structure to an antenna output port (28),
    characterized in that
    the two- or three-dimensional antenna conductor structure (14; 21; 42) is adapted such that, in case of reciprocal operation of the antenna as a transmitting antenna, antenna currents of at least approximately equal size flow in the individual pairs of antenna conductor sections (Δv) and the arithmetic mean of the current phases of said antenna currents, counted in the same direction in the antenna conductor sections (Δv) of each pair at essentially all pairs of antenna conductor sections (Δv) relative to a common phase reference point (B) has at least approximately the same value, wherein the antenna conductor sections are arranged in the form of a dipole group including a plurality of dipoles (21) arranged essentially in a common horizontal plane, wherein the dipoles (21) are arranged symmetrically in pairs with regard to the formed phase reference point (B), in reciprocal operation of the antenna as a transmitting antenna, or the spatial reference point, and the pairs of antenna conductor sections are each allocated to dipole pairs, and wherein the individual dipoles (21) are arranged such that the antenna currents, in reciprocal operation of the antenna in transmitting operation, on its dipole conductors have approximately equal phases, and the arithmetic mean of the phases of said antenna currents of each dipole pair, counted in the same direction, has the same value and the values for all dipole pairs in the common horizontal plane are the same,
    the dipoles (21) of the dipole group are straight dipoles each symmetrical to their dipole connection points (3), arranged parallel to and spaced apart from a approximately horizontal electrically conductive base surface (6), wherein the dipole connection points (3) are arranged in a circle around the phase reference point (B) or the spatial reference point in the common horizontal plane and connected to the antenna output port (28) via an interconnection network (10),
    the linear antenna conductor structure is disposed in the phase reference point (B) of the dipole group formed in reciprocal operation of the antenna as a transmitting antenna and forms an electrically short, vertical monopole (7), and that an antenna connection point of the monopole (7) and an output port of the interconnection network (10) are connected to the antenna output port (28) via the matching and phase shift network (31, 33), and that the matching and phase shift network (31, 33) matches the phases of the currents resulting from the reciprocal operation of the antenna as a transmitting antenna at the antenna connection point of the monopole and the output port of the interconnection network (10).
  9. Antenna according to claim 8, characterized in that the matching and phase shift network (31, 33) is arranged such that it overlaps the currents of the monopole (7) and of the interconnection network (10) one another for influencing the vertical directional diagram.
  10. Antenna according to any of the claims 1 to 9, characterized in that an antenna connection point of the monopole (7) and an antenna connection point of the two- or three-dimensional antenna conductor structure (14, 21) are each connected to a switch (37) of an antenna diversity system (38) connected to the antenna output port (28) either directly individually or via a matching network (25).
  11. Antenna according to any of the claims 1 to 10, characterized in that an antenna connection point of the two- or three-dimensional antenna conductor structure (14) is each connected individually via a matching network (25, 33) to inputs of a signal combination circuit, in particular a 90° hybrid coupler (45), whose outputs separately from each other provide a left-hand circularly polarized reception signal and a right-hand circularly polarized reception signal.
  12. Antenna according to claim 11, characterized in that an element (56) is connected between the antenna connection point of the monopole (7) and/or the two- or three-dimensional antenna conductor structure (14) and the respective associated input of the signal combination circuit (45) for adjusting the attenuation and/or the phase of the reception signal.
EP20080015708 2007-09-06 2008-09-05 Antenna for satellite reception Active EP2034557B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007042446 2007-09-06
DE102008003532A DE102008003532A1 (en) 2007-09-06 2008-01-08 Antenna for satellite reception

Publications (3)

Publication Number Publication Date
EP2034557A2 EP2034557A2 (en) 2009-03-11
EP2034557A3 EP2034557A3 (en) 2009-10-28
EP2034557B1 true EP2034557B1 (en) 2012-02-01

Family

ID=40149633

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20080015708 Active EP2034557B1 (en) 2007-09-06 2008-09-05 Antenna for satellite reception

Country Status (1)

Country Link
EP (1) EP2034557B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009011542A1 (en) * 2009-03-03 2010-09-09 Heinz Prof. Dr.-Ing. Lindenmeier Antenna for receiving circularly in a direction of rotation of the polarization of broadcast satellite radio signals
DE102010011867B4 (en) * 2010-03-18 2011-12-22 Kathrein-Werke Kg Broadband omnidirectional antenna
DE102010035934A1 (en) 2010-08-31 2012-03-01 Heinz Lindenmeier Receiving antenna for circularly polarized satellite radio signals
DE102019204163B3 (en) * 2019-03-26 2020-10-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Generation of a tuning signal for tuning a magnetic antenna

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB194365A (en) * 1921-12-05 1923-03-05 Walter Dornig Improvements in or relating to wireless telegraphy antennae
NL64189C (en) * 1939-04-26
DE865478C (en) * 1949-11-03 1953-02-02 Lorenz C Ag Omnidirectional antenna for very short waves
JPS5763941A (en) * 1980-10-06 1982-04-17 Nippon Telegr & Teleph Corp <Ntt> Radio transmitter and receiver
US4547776A (en) * 1983-11-03 1985-10-15 The United States Of America As Represented By The Secretary Of The Navy Loop antenna with improved balanced feed
AU691111B2 (en) * 1995-06-21 1998-05-07 Google Technology Holdings LLC Method and antenna for providing an omnidirectional pattern
JP2000077934A (en) * 1998-08-27 2000-03-14 Yasushi Koshiro Polarization switching loop antenna
DE10163793A1 (en) * 2001-02-23 2002-09-05 Heinz Lindenmeier Antenna for mobile satellite communication in vehicle, has positions of impedance connection point, antenna connection point, impedance coupled to impedance connection point selected to satisfy predetermined condition
DE10304911B4 (en) * 2003-02-06 2014-10-09 Heinz Lindenmeier Combination antenna arrangement for multiple radio services for vehicles
DE202005015708U1 (en) * 2005-10-06 2005-12-29 Kathrein-Werke Kg Dual-polarized broadside dipole array, e.g. for crossed antennas, has a dual-polarized radiator with polarizing planes and a structure like a dipole square

Also Published As

Publication number Publication date
EP2034557A3 (en) 2009-10-28
EP2034557A2 (en) 2009-03-11

Similar Documents

Publication Publication Date Title
DE102008003532A1 (en) Antenna for satellite reception
EP2226895B1 (en) Antenna for receiving satellite radio signals emitted circularly in a polarisation direction
EP2458680B1 (en) Antenna for receiving circular polarised satellite radio signals
EP2256864B1 (en) Antenna for circular polarisation with a conductive base
DE102010011867B4 (en) Broadband omnidirectional antenna
EP2424036B1 (en) Receiver antenna for circular polarised satellite radio signals
EP2664025B1 (en) Multiband reception antenna for the combined reception of satellite signals and terrestrially emitted radio signals
EP1239543B1 (en) Flat antenna for the mobil satellite communication
DE69835540T2 (en) ANTENNA SYSTEM FOR CIRCULAR POLARIZED RADIO WAVES WITH ANTENNA MILTTLES AND INTERFACENETZWERK
EP1277252B1 (en) Dual-polarized dipole array antenna
EP2929589B1 (en) Dual polarized, omnidirectional antenna
EP3178129B1 (en) Multi-structure broadband monopole antenna for two frequency bands in the decimeter wave range separated by a frequency gap, for motor vehicles
DE3931752A1 (en) COAXIAL SLOT ANTENNA
EP2034557B1 (en) Antenna for satellite reception
WO2007073993A1 (en) Antenna arrangement and use thereof
WO2019115363A1 (en) Slot antenna
EP3483983A1 (en) Receiving antenna for satellite navigation on a vehicle
DE602004009460T2 (en) Ultra-wideband antenna
DE102004050598A1 (en) Micro strip line antenna for use in automobile industry for transmitting and receiving e.g. circularly polarized satellite radio signal, has resonant unit enclosing recesses whose form deviates from rectangular form
EP3349303A1 (en) Kombinationsantenne
DE2521978C3 (en) Shortwave steep beam antenna
DE102007012570B4 (en) Patch antenna
EP2546925A1 (en) Antenna module

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20091222

17Q First examination report despatched

Effective date: 20100125

AKX Designation fees paid

Designated state(s): DE FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008006250

Country of ref document: DE

Effective date: 20120329

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20121105

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008006250

Country of ref document: DE

Effective date: 20121105

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200914

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200922

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210905

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231128

Year of fee payment: 16