EP2256864B1 - Antenna for circular polarisation with a conductive base - Google Patents
Antenna for circular polarisation with a conductive base Download PDFInfo
- Publication number
- EP2256864B1 EP2256864B1 EP10005480.8A EP10005480A EP2256864B1 EP 2256864 B1 EP2256864 B1 EP 2256864B1 EP 10005480 A EP10005480 A EP 10005480A EP 2256864 B1 EP2256864 B1 EP 2256864B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- slot
- radiator
- antenna
- electrically conductive
- line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000010287 polarization Effects 0.000 claims description 21
- 230000005855 radiation Effects 0.000 claims description 21
- 230000009466 transformation Effects 0.000 claims description 14
- 239000004020 conductor Substances 0.000 claims description 13
- 230000008878 coupling Effects 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 239000011796 hollow space material Substances 0.000 claims 1
- 230000006978 adaptation Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000005672 electromagnetic field Effects 0.000 description 3
- 230000010363 phase shift Effects 0.000 description 3
- 239000012876 carrier material Substances 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005388 cross polarization Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/16—Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
- H01Q9/28—Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/10—Resonant slot antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/24—Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
Definitions
- the invention relates to an antenna on the outer skin of a vehicle for the reception of circularly polarized satellite signals, in which a at a distance in front of the front of an electrically conductive ground plane 2 in the flat outer skin of a vehicle and oriented perpendicular to the electrically conductive ground plane symmetry plane SE running with essentially parallel to the electrically conductive ground plane 2 oriented electric dipole radiator 1 with dipole connection point 8 and connected to the latter and in the plane of symmetry SE to the electrically conductive ground plane extending feed line 6 and an antenna connection point 12 are present antennas for generating and receiving other types of polarization other than horizontal or vertical polarization are known from various publications.
- US-A-4129871 is concerned with the task of modifying horizontally polarized radiating transmitting antennas so that they radiate circularly polarized signals in order to achieve a better television reception, especially in urban areas.
- US-A-5021797 discloses an elliptically polarized radiating antenna for television signals having a plurality of slot antennas and parasitic dipoles
- US-A-5272487 discloses an antenna with a conductive mast that can emit elliptically polarized signals, with an emphasis on optimizing the radiation pattern.
- JP-A-2006-186880 is an antenna for a vehicle for receiving polarized signals, consisting of a slot radiator and a dipole.
- an electric dipole radiator designed in the same way and extending in a further plane of symmetry oriented perpendicular to both the plane of symmetry SE and the electrically conductive base 2 is used. Both dipole radiators are connected together via a 90 ° phase shifter and the combined signal is conducted via the feed line 6 to the base.
- Antennas of this type are known, for example from the DE 4008505 A1 , They are often used to receive satellite radio services such as Inmarsat, SDARS, Worldspace, etc.
- satellite radio services such as Inmarsat, SDARS, Worldspace, etc.
- An antenna is known in which a provided at a distance from the front of an electrically conductive ground plane in the flat outer skin of a vehicle and in a plane oriented perpendicular to the electrically conductive ground plane symmetry plane, provided with parallel to the electrically conductive ground plane oriented electric dipole radiator with dipole connection point is. At this a in the plane of symmetry to the electrically conductive ground plane extending dipole feed line and an antenna connection point is present.
- a slot radiator In the electrically conductive ground plane, a slot radiator is designed with its longitudinal extent along the section line between the plane of symmetry and the electrically conductive ground plane with the slot radiator connection point, which is formed by mutually opposite slot connection points located on the longitudinal edges.
- the slot radiator with the slot radiator connection point is as approximately rectangular slot with straight longitudinal edges and compared to the longitudinal extent of small slot width in the electrically conductive ground plane given by the line of intersection between the plane of symmetry and the electrically conductive ground plane, extending parallel to the longitudinal extent and through the center formed of the slot leading longitudinal symmetry line.
- the electric dipole radiator and the course of the dipole feed line are designed symmetrically to the line of symmetry perpendicular to the electrically conductive ground plane and running through the center of the slot.
- the electric dipole radiator with its dipole connection point is electrically symmetrically fed.
- the electric dipole radiator and the slot radiator have a same resonant frequency.
- the object of the invention is to provide an improved antenna for the reception of satellite signals with circular polarization.
- Antennas according to the invention can be advantageously used in particular because of their aerodynamically favorable designability in connection with the low volume of construction outside the body of a vehicle or aircraft.
- the circular polarization is generated in antennas according to the prior art in such a way that two linearly polarized and in their spatial longitudinal extent mutually perpendicular antennas are present, which in the far field of the antenna, the two spatially oriented perpendicular to each other and 90 ° to each other in the Phase shifted electromagnetic fields.
- the present invention demonstrates a solution which allows two linearly polarized antennas to be combined but with a longitudinal extent substantially along a common line.
- This solution consists in the advantageous combination of a slot radiator 3, which is designed in an electrically conductive base 2 along its longitudinal symmetry line SL and arranged in the dipole 14 above this electrically conductive base 2 and parallel to both the electrically conductive base 2 and the longitudinal symmetry line SL electrical Dipole radiator 1.
- FIG. 1 shows the basic form of a circular polarization antenna according to the invention.
- a slot radiator 3 in the conductive base 2 is a slot with its longitudinal extent 4 along the line of intersection between the plane of symmetry SE and the conductive base 2 with the slot radiator connection point 7, which by located on opposite longitudinal edges 18 and mutually adjacent slot connection points 19 is formed, formed.
- the electric dipole radiator 1 with dipole connection point 8 is mounted at a distance from the front side of the electrically conductive base 2. This is oriented substantially parallel to the electrically conductive base 2 and extends in a direction perpendicular to the electrically conductive base 2 oriented plane, here called the plane of symmetry SE.
- the electric dipole radiator 1 is connected with its dipole connection point 8 to the dipole feed line 6, which is guided in the plane of symmetry SE to the electrically conductive base 2 and extends substantially perpendicular to the electrically conductive base 2 out.
- the circular polarization is formed by the electromagnetic radiation field of the introduced into the electrically conductive base 2 slot heater 3, the electric field is oriented in the far field perpendicular to its longitudinal extent 4.
- the slot radiator 3 is therefore arranged with its longitudinal extent 4 along the line of intersection between the plane of symmetry SE and the electrically conductive base area 2, producing a perpendicularly oriented electric radiation field necessary for the circular polarization in a distant reference point to the radiation field of the electric dipole radiator 1.
- the slot radiator connection point 7 is formed by slot connection points 19 located opposite one another and located on the longitudinal edges 18 of the slot radiator 3.
- both the electric dipole radiator 1 and the slot radiator 3 are tuned at the frequency for which the antenna is designed, in each case to its resonant frequency, at which the antenna impedance is substantially real.
- each half-wavelength resonance ( ⁇ / 2) of the two emitters is of particular importance.
- the slot radiator 3 is introduced with the slot radiator connection point 7 as an elongated approximately rectangular slot with substantially straight longitudinal edges 18 in the electrically conductive base 2. Over the small slot width 5 compared to the longitudinal extent 4, the frequency bandwidth results at the resonance frequency of the slot determined by the longitudinal extent 4.
- Round radiation properties of the antenna can be achieved according to the invention by observing symmetry conditions in a simple manner.
- the slot radiator 3 is symmetrical to the longitudinal line SL of symmetry section line between the Symmetrieebene SE and the electrically conductive base 2 to make.
- the further easy-to-follow symmetry condition is the symmetrical configuration of the electric dipole radiator 1 and its symmetrical feed to the symmetry line ZL perpendicular to the electrically conductive base 2 and passing through the center Z of the slot.
- the symmetrical feeding at the dipole connection point 8 takes place via the dipole feed line 6 extending substantially symmetrically to the symmetry line ZL.
- FIG. 2 is to support the radiation on the electric dipole radiator 1 facing the front of the electrically conductive base 2 by shielding against the radiation on the back of the slot radiator 3 on the back of the base 2 by a cavity resonator 15 covered.
- the cavity resonator 15 is advantageously designed as a conductively bound cavity body, which completely covers the slot radiator 3 and which is electrically connected to the electrically conductive base 2, so that a perfect shield against the radiation of the electromagnetic fields of the slot radiator 3 in the on the back of the electrically conductive base 2 is given half space.
- the reactive energy stored in the cavity influences - depending on the dimensions of the cavity - the resonance characteristics of the slot radiator 3.
- the longitudinal extent 4 of the slot radiator 3 is selected about half a wavelength ( ⁇ / 2).
- the expansion of the cavity body in the longitudinal direction of the slot is at least greater than half a wavelength ( ⁇ / 2) and its dimension in symmetrical mounting transversely to the longitudinal direction of the slot suitably greater than ( ⁇ / 4) selected.
- the slot is disposed approximately at the level of the electrically conductive base 2 and the cavity body is below, for example, no stylistic disadvantages associated with the application to vehicles, because the housing covering the antennas are wider down to achieve sufficient strength .
- Its dimension perpendicular to the electrically conductive base 2 is advantageously greater than ( ⁇ / 10) selected depending on the required bandwidth of the slot radiator 3.
- the center of the cuboid cavity body is suitably chosen lying on the vertical symmetry line ZL.
- the dipole spacing is 14 to form the circular polarization of the antenna from the electrically conductive base 2 about a quarter of the free space wavelength selected.
- the phase difference in the interest of the shortest possible dipole feed line 6 for this elevation angle is advantageously 180 ° to choose.
- the electrical length of the dipole feed line 6 is then approximately ⁇ / 2 and can be implemented to bridge the geometric distance of ⁇ / 4 between the slot connection points 19 and the dipole radiator connection point 8.
- the required superimposition of the radiation fields of the two radiators at an electrical phase angle of + -90 ° is thus established via the path difference of the electromagnetic wave, which results from the distance of ⁇ / 4 of the electric dipole radiator 1 from the electrically conductive base 2.
- the signal powers prevailing at the slot radiator connection point 7 and at the dipole connection point 8 must be set approximately the same.
- the dipole connection point 8 due to the bundling of the radiation, which results together with the mirrored to the electrically conductive base 2 electric dipole radiator 1, set correspondingly lower than at the slot radiator junction 7. Accordingly, to achieve the circular polarization to select both the signal powers and the electrical phase angles at the two radiator connection points 7, 8 in accordance with the different magnitudes of the directional diagrams of the two radiators or their different phases relative to a distant reference point, at a certain predetermined elevation angle. Also, the distance 14 can be varied advantageously for adjusting the vertical directional diagram of the electric dipole radiator 1 and does not have to be selected exactly to ⁇ / 4.
- This distribution network 13 is in Fig. 1 in a particularly simple embodiment via an asymmetrically designed with respect to the electrically conductive base 2 as a ground plane antenna line 11 to the antenna connection point 12 and in the vicinity of the Center Z formed.
- one of the slot connection points 19 of the slot radiator connection point 7 is formed by the ground connection of the antenna line 11 on one of the two longitudinal edges 18.
- the other of the slot connection points 19 is connected by connecting the voltage-carrying conductor of the antenna line 11 adjacent to the opposite longitudinal edge 18.
- the dipole feed line 6 is designed as a symmetrical two-wire line. Their two conductors are connected with their feed line connection points 25 each with one of the slot connection points 19 of the slot radiator connection point 7. In this way, a conversion of the signals conducted asymmetrically polarized by the antenna line 11 into the signals conducted on the symmetrical two-wire line and symmetrically polarized relative to the electrically conductive base area 2 is achieved in a low-effort manner.
- the slot connection points 19 of the slot radiator connection point 7 thus also form the feed line connection points 25.
- the impedance at a slot radiator junction 7 mounted in the center Z of a slot radiator 3 is generally much higher than that of an elongated dipole radiator with values below 100 ohms, up to several kilo-ohms.
- the chain circuit of several lines with different characteristic impedances and an electrical length of ⁇ / 4 can be used by way of example.
- the large impedance of the slot radiator 3 compared to the characteristic impedance of the technically feasible lines is bridged into the impedance level of the electric dipole radiator 1 in two steps. For such an impedance transformation carried out in several steps, sufficiently low-impedance line characteristic impedances result, which can be realized on conventional electrical printed circuit boards.
- antennas according to the invention it is therefore advantageous, for example, to design the dipole feed line 6 by two ⁇ / 4 transformers in chain connection.
- a first transformation step first the extremely high impedance of the slot radiator 3 at the slot radiator connection point 7 by an electrically ⁇ / 4-long line with a technically feasible characteristic impedance transformed into an impedance which is less than the impedance of the electric dipole radiator 1.
- the necessary characteristic impedance can be realized as a ribbon cable.
- the further transformation - starting from this impedance level - in the higher resistance of the electric dipole radiator 1 can then take place in a second transformation step with an electrically ⁇ / 4-long line with a likewise readily realizable line impedance.
- An exemplary embodiment of such an advantageous antenna according to the invention thus has an electrical length of ⁇ / 2 in the region of the dipole feed line 6.
- another line piece can be supplemented to cause additional phase rotations.
- this overall electrically ⁇ / 2-long dipole feed line 6 can be easily arranged by meandering, designed substantially symmetrically to the vertical line of symmetry ZL and running in the plane of symmetry SE wiring so that overall the geometric length of ⁇ / 4 is bridged.
- ⁇ r of 4 the straight length of a ⁇ / 2 long line gives exactly a geometric length of ⁇ / 4.
- the antenna may alternatively be used for left or right polarized signals.
- the dipole and the dipole feed line 6 are printed on a printed circuit board.
- This technology allows the design of the characteristic impedance and the transformation properties of the feed line 6 within wide limits.
- inductive and capacitive blanking elements or concentrated dummy elements printed on the printed circuit board can be applied to the design of matching networks 10 and / or phase rotation elements 17.
- transformation circuits with resonance character - for example, as a parallel resonant circuit with partial coupling - can be realized, which allow the adaptation of the low impedance of the electric dipole radiator 1 to the impedance level of the high-impedance slot radiator 3 to transform.
- the dipole feed line 6 consists of a printed symmetrical two-wire line, which is connected at its one end to the electric dipole radiator 1 and at the other End is connected to a consisting of dummy elements transformation circuit with a resonant character, which causes the impedance matching to the high impedance level of the slot radiator 3.
- the line length required for meeting the phase condition is again advantageously provided by a meander-shaped design of the feed line 6, which is guided substantially symmetrically to the vertical line of symmetry ZL and in the plane of symmetry SE.
- phase-shift chain circuits of lumped reactive elements can be used which do not transform the impedance.
- the distribution network 13 is formed from a substantially consisting of concentrated reactive elements circuit.
- Fig. 2 is in a further advantageous embodiment of the invention, the distribution network 13 connected via a relation to the electrically conductive base 2 asymmetrically designed as a ground surface antenna line 11 to the antenna connection point 12 and in the vicinity of the center Z as in FIG. 1 formed by the one of the feeder line connection points 25 by the ground terminal of the antenna line 11 on one of the two longitudinal edges 18 and the other of the feeder line connection points 25 by connecting the voltage-carrying conductor of the antenna line 11 adjacent formed on the opposite longitudinal edge 18 and there also the dipole feed line 6 is connected with its feed line connection points 25.
- the slot radiator connection point 7 is formed at a distance 16 from the center Z and connected via a parallel branching of the unbalanced antenna line 11 via slot connection points 19 formed in an analogous manner.
- the antenna resistance of the slot radiator 3 at resonance is maximum in the center Z when the slot radiator connection point 7 is formed and is generally much larger than the characteristic resistance of conventional lines. It changes with increasing distance 16 from the center Z to smaller values. In the interest of better adaptation to such line structures, it is therefore advantageous according to the invention to choose the distance 16 accordingly.
- the fulfillment of the phase and power conditions is carried out according to the invention in the part of the wiring between the parallel branching of the antenna line 11 and the slot radiator connection point 7 on the one hand and to the dipole connection point 8 on the other.
- the antenna line 11 is designed to the slot radiator connection point 7 as an asymmetrical with respect to the electrically conductive base 2 as a ground surface stripline 20 whose strip conductor is coupled in known manner by radiation coupling to the slot of the slot radiator 3.
- the strip conductor is guided in the region of the slot of the slot radiator 3 perpendicular to its longitudinal extent and at least partially over the slot.
- the one of the slot connection points 19 is given by the ground point at the point where the strip conductor crosses the one of the longitudinal edges 18 in plan view.
- the other of the slot connection points 19 is given by non-contact radiation coupling of the voltage-carrying stripline on the opposite longitudinal edge 18.
- the dipole radiator connection point 8 is in the example of Fig. 5 is again arranged in the center Z of the slot radiator 3, wherein the two dipole feed line connection points 25 are again arranged on the two longitudinal edges 18. Due to the electrical dipole radiator 1 connected in the center of the slot radiator 3 is additionally damped, so that the distance 16 must be chosen correspondingly smaller than he would have to be chosen without this damping for the adjustment.
- the slot radiator 3 is partially included in the distribution network 13 for dividing the signal power present at the antenna connection point 12 on the slot radiator 3 on the one hand and the electric dipole radiator 1 on the other.
- the slot of the slot radiator 3 at its both ends is formed by substantially transverse to its longitudinal symmetry line SL oriented transverse slots 22.
- these transverse slots 22 are advantageously designed at both ends to be similar and symmetrical to the longitudinal symmetry line SL, as shown in FIG FIG. 4 is shown.
- the slot resonance frequency thus occurs at a smaller longitudinal extent 4 than half the free space wavelength ⁇ .
- the length of the electric dipole radiator 1 can be shortened by the fact that it is loaded at its two ends in each case with a similar end capacity 21.
- Such end capacities 21 may, for example, as in FIG. 4 be indicated, formed by substantially vertically oriented conductor structures.
- Such conductor structures according to the invention are particularly advantageous because they do not increase the transverse dimension of the part of the antenna located above the electrically conductive base 2.
- the electrically conductive base 2 is given by the outer surface of an electrically conductive and formed of sheet metal vehicle body itself, in which the slot radiator 3 is introduced into the sheet.
- the surface of the electrically conductive body is then designed such that it substantially fills the recess of the electrically conductive vehicle body, and its outer surface is substantially complemented with its surface to a plane and in this way the electrically conductive base 2 is designed.
- the recess to be introduced into the vehicle body can advantageously be chosen to be only slightly larger in the longitudinal and transverse dimensions than required by the dimensions of the slot.
- the electrically conductive base 2 is designed as a conductive surface, preferably made of sheet metal and mounted under the vehicle skin.
- the slot radiator 3 is introduced and it carries in an advantageous embodiment of the invention on its rear side Cavity resonator 15 and on its front side the electric dipole radiator 1 and the dipole feed line 6.
- the mounting of the antenna can be done on the inside of the vehicle body.
- the dimensions of the electrically conductive base 2 are two-dimensional sufficiently large to choose so that adjust approximately the radiation properties of the antenna, as they apply to an antenna of this type with extended electrically conductive base 2.
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Waveguide Aerials (AREA)
- Details Of Aerials (AREA)
Description
Die Erfindung betrifft eine Antenne auf der Außenhaut eines Fahrzeugs für den Empfang zirkular polarisierter Satellitensignale, bei der ein in einem Abstand vor der Vorderseite einer elektrisch leitenden Grundebene 2 in der ebenen Außenhaut eines Fahrzeugs und in einer senkrecht zur elektrisch leitenden Grundebene orientierten Symmetrieebene SE verlaufender mit im Wesentlichen parallel zur elektrisch leitenden Grundebene 2 orientierten elektrischer Dipolstrahler 1 mit Dipol-Anschlussstelle 8 und eine an Letztere angeschlossene und in der Symmetrieebene SE zur elektrisch leitenden Grundebene hin verlaufende Speiseleitung 6 und eine Antennen-Anschlussstelle 12 vorhanden sind, Antennen zur Erzeugung und zum Empfang anderer Polarisationsarten außer horizontaler oder vertikaler Polarisation sind aus verschiedenen Schriften bekannt.The invention relates to an antenna on the outer skin of a vehicle for the reception of circularly polarized satellite signals, in which a at a distance in front of the front of an electrically
Zur Gestaltung einer Antenne für zirkulare Polarisation wird nach dem Stande der Technik ein in gleicher Weise gestalteter und in einer sowohl zur Symmetrieebene SE und zur elektrisch leitenden Grundfläche 2 senkrecht orientierten weiteren Symmetrienebene verlaufender elektrischer Dipolstrahler eingesetzt. Beide Dipolstrahler werden über ein 90° Phasendrehglied zusammengeschaltet und das zusammengefasste Signal über die Speiseleitung 6 zur Grundfläche geleitet. Antennen dieser Art sind z.B. bekannt aus der
Aus der
Aus dem Dokument
Aufgabe der Erfindung ist es, eine verbesserte Antenne für den Empfang von Satellitensignalen mit zirkularer Polarisation zu schaffen.The object of the invention is to provide an improved antenna for the reception of satellite signals with circular polarization.
Diese Aufgabe wird durch die Merkmale des Hauptanspruchs gelöst.This object is solved by the features of the main claim.
Antennen nach der Erfindung können insbesondere aufgrund ihrer strömungstechnisch günstigen Gestaltbarkeit in Verbindung mit dem geringen Bauvolumen außerhalb der Karosserie eines Fahrzeugs beziehungsweise Flugzeugs vorteilhaft eingesetzt werden.Antennas according to the invention can be advantageously used in particular because of their aerodynamically favorable designability in connection with the low volume of construction outside the body of a vehicle or aircraft.
Die Erfindung wird im Folgenden an Hand der Figuren näher beschrieben. Es zeigen:
-
Fig.1 :- Grundprinzip einer Antenne nach der Erfindung mit einem
gestreckten Dipol 1 und mit der elektrischen Länge einer halben Wellenlänge (λ/2) mit einerSpeiseleitung 6 über einer elektrischleitenden Grundfläche 2 mitSchlitzstrahler 3 imAbstand 14 von vorzugsweise etwa einer Viertelwellenlänge und einer einfachen Parallelverzweigung alsVerteilnetzwerk 13 und einer alsStreifenleitung 20 ausgeführten Antennen-Leitung 11.
- Grundprinzip einer Antenne nach der Erfindung mit einem
-
Fig.2 :- Antenne nach der Erfindung wie in
, jedoch mit einemFigur 1Verteilnetzwerk 13 mitAnpassnetzwerk 10 aus konzentrierten Blindelementen zur Einstellung der richtigen Phasen zur Speisung desSchlitzstrahlers 3 und desDipolstrahlers 1 und der Anpassung der Impedanzen zur erforderlichen Leistungsaufteilung.
- Antenne nach der Erfindung wie in
-
Fig.3 :- Antenne nach der Erfindung wie in
, jedoch mit einemFigur 2Phasenschiebernetzwerk 17 in der Dipol-Speiseleitung 6 zur Einhaltung der Phasenbedingung der zeitlich um 90° gegeneinander verschobenen elektromagnetischen Felder desSchlitzstrahlers 3 und deselektrischen Dipolstrahlers 1 im Fernfeld sowie einAnpassnetzwerk 10 zur Anpassung der Dipolimpedanz an die Dipol-Speiseleitung 6.
- Antenne nach der Erfindung wie in
-
Fig.4 :- Antenne nach der Erfindung wie in
, jedoch mit kurzen Querschlitzen 22 an den beiden Enden desFigur 3Schlitzstrahlers 3 zur Verringerung derLängsausdehnung 4 desSchlitzstrahlers 3 und mitEndkapazitäten 21 zur Verringerung der Länge deselektrischen Dipolstrahlers 1.
- Antenne nach der Erfindung wie in
-
Fig.5 :- Antenne nach der Erfindung mit einer Speisung des
Schlitzstrahlers 3 über eine Mikro-Streifenleitung 20 zur einfacheren und verlustarmen Anpassung an die Antennen-Leitung 11
- Antenne nach der Erfindung mit einer Speisung des
-
Fig.1 :- Basic principle of an antenna according to the invention with an
elongated dipole 1 and the electrical length of half a wavelength (λ / 2) with afeed line 6 over an electricallyconductive base 2 withslot radiator 3 at adistance 14 of preferably about a quarter wavelength and a simple parallel branching asDistribution network 13 and anantenna line 11 designed as astripline 20.
- Basic principle of an antenna according to the invention with an
-
Fig.2 :- Antenna according to the invention as in
FIG. 1 but with adistribution network 13 with matchingnetwork 10 of concentrated reactive elements for setting the correct phases for feeding theslot radiator 3 and thedipole radiator 1 and the matching of the impedances to the required power distribution.
- Antenna according to the invention as in
-
Figure 3 :- Antenna according to the invention as in
FIG. 2 , but with aphase shifter network 17 in thedipole feed line 6 to comply with the phase condition of the temporally shifted by 90 ° to each other electromagnetic fields of theslot radiator 3 and theelectric dipole radiator 1 in the far field and amatching network 10 for adjusting the dipole impedance to the dipole feed line. 6
- Antenna according to the invention as in
-
Figure 4 :- Antenna according to the invention as in
FIG. 3 but with short transverse slots 22 at the two ends of theslot radiator 3 for reducing thelongitudinal extent 4 of theslot radiator 3 and withendcapacities 21 for reducing the length of theelectric dipole radiator 1.
- Antenna according to the invention as in
-
Figure 5 :- Antenna according to the invention with a feed of the
slot radiator 3 via amicrostrip line 20 for easier and low-loss adaptation to the antenna line 11th
- Antenna according to the invention with a feed of the
Die zirkulare Polarisation wird bei Antennen nach dem Stande der Technik in der Weise erzeugt, dass zwei linear polarisierte und in ihrer räumlichen Längsausdehnung zueinander senkrecht orientierte Antennen vorhanden sind, welche im Fernfeld der Antenne die beiden räumlich senkrecht zueinander orientierten und um 90° gegeneinander in der Phase verschobenen elektromagnetischen Felder erzeugen. Die vorliegende Erfindung zeigt eine Lösung auf, welche es ermöglicht, dass zwei linear polarisierte Antennen, jedoch mit einer im Wesentlichen längs einer gemeinsamen Linie verlaufenden Längsausdehnung kombiniert sind. Diese Lösung besteht in der vorteilhaften Kombination eines Schlitzstrahlers 3, welcher in einer elektrisch leitenden Grundfläche 2 längs seiner Längssymmetrielinie SL gestaltet ist und eines im Dipolabstand 14 über dieser elektrisch leitenden Grundfläche 2 und parallel sowohl zur elektrisch leitenden Grundfläche 2 als auch zur Längssymmetrielinie SL angeordneten elektrischen Dipolstrahlers 1.The circular polarization is generated in antennas according to the prior art in such a way that two linearly polarized and in their spatial longitudinal extent mutually perpendicular antennas are present, which in the far field of the antenna, the two spatially oriented perpendicular to each other and 90 ° to each other in the Phase shifted electromagnetic fields. The present invention demonstrates a solution which allows two linearly polarized antennas to be combined but with a longitudinal extent substantially along a common line. This solution consists in the advantageous combination of a
Rundstrahlungseigenschaften der Antenne können erfindungsgemäß durch Einhalten von Symmetriebedingungen auf einfache Weise erreicht werden. Hierfür ist der Schlitzstrahler 3 symmetrisch zu der mit Längssymmetrielinie SL bezeichneten Schnittlinie zwischen der Symmetrieebene SE und der elektrisch leitenden Grundfläche 2 zu gestalten. Die weitere einfach einzuhaltende Symmetriebedingung ist die symmetrische Ausgestaltung des elektrischen Dipolstrahlers 1 und seine symmetrische Speisung zu der auf der elektrisch leitenden Grundfläche 2 senkrecht stehenden und durch das Zentrum Z des Schlitzes laufenden Symmetrielinie ZL. Die symmetrische Speisung an der Dipol-Anschlussstelle 8 erfolgt über die im Wesentlichen symmetrisch zur Symmetrielinie ZL verlaufende Dipol-Speiseleitung 6.Round radiation properties of the antenna can be achieved according to the invention by observing symmetry conditions in a simple manner. For this purpose, the
In
In einer besonders vorteilhaften Ausgestaltung der Erfindung ist der Dipolabstand 14 zur Gestaltung der Zirkularpolarisation der Antenne von der elektrisch leitenden Grundfläche 2 etwa ein Viertel der Freiraum-Wellenlänge gewählt. Zur Erzeugung der zirkular polarisierten Strahlung unter dem Elevationswinkel von 90° ist der Phasenunterschied der Signale an der Dipol-Anschlussstelle 8 und der Schlitzstrahler-Anschlussstelle 7, abhängig von der Drehrichtungen der zirkularen Polarisation 0° bzw. ein ganzzahlig Vielfaches von 180° zu wählen. Bei dem in
Die Erfüllung sowohl der Bedingung der zeitlichen Phasenverschiebung von + - 90° Grad je nach Drehrichtung der Polarisation als auch die Gleichheit der Intensität der sich überlagernden Strahlungsfelder im Fernfeld ist erfindungsgemäß durch Gestaltung des Verteilnetzwerks 13 sowie durch die Gestaltung der Dipol-Speiseleitung 6 bewirkt. Dieses Verteilnetzwerk 13 ist in
Die Impedanz an einer im Zentrum Z eines Schlitzstrahlers 3 angebrachten Schlitzstrahler-Anschlussstelle 7 ist in der Regel mit bis zu einigen Kilo-Ohm wesentlich höher als die eines gestreckten Dipolstrahlers mit Werten unter 100 Ohm. Im Interesse technisch leichter realisierbarer Leitungs-Wellenwiderstände kann beispielhaft die Kettenschaltung mehrerer Leitungen mit unterschiedlichen Wellenwiderständen und einer elektrischen Länge von jeweils λ/4 zur Anwendung kommen. In diesem Fall wird die im Vergleich zum Wellenwiderstand technisch realisierbarer Leitungen große Impedanz des Schlitzstrahlers 3 in das Impedanzniveau des elektrischen Dipolstrahlers 1 in zwei Schritten überbrückt. Für eine derartige, in mehreren Schritten durchgeführte Impedanztransformation ergeben sich hinreichend niederohmige Leitungs-Wellenwiderstände, welche auf üblichen elektrischen Leiterplatten realisiert werden können.The impedance at a
Bei erfindungsgemäßen Antennen ist es daher zum Beispiel vorteilhaft, die Dipol-Speiseleitung 6 durch zwei λ/4-Transformatoren in Kettenschaltung zu gestalten. In einem ersten Transformationsschritt wird zunächst die extrem hohe Impedanz des Schlitzstrahlers 3 an der Schlitzstrahler-Anschlussstelle 7 durch eine elektrisch λ/4-lange Leitung mit einem technisch realisierbaren Wellenwiderstand in eine Impedanz transformiert, welche geringer ist als die Impedanz des elektrischen Dipolstrahlers 1. Der dafür notwendige Wellenwiderstand kann als Bandleitung realisiert werden. Die weitere Transformation - ausgehend von diesem Impedanzniveau - in den hierzu höheren Widerstand des elektrischen Dipolstrahlers 1 kann dann in einem zweiten Transformationsschritt mit einer elektrisch λ/4-langen Leitung mit einem ebenfalls problemlos realisierbaren Leitungs-Wellenwiderstand erfolgen. Eine beispielhaft derart realisierte vorteilhafte Antenne nach der Erfindung weist also im Bereich der Dipol-Speiseleitung 6 eine elektrische Länge von λ/2 auf. Gegebenenfalls kann noch ein weiteres Leitungsstück ergänzt werden, um zusätzliche Phasendrehungen zu bewirken. Geometrisch kann diese insgesamt elektrisch λ/2-lange Dipolspeiseleitung 6 durch mäanderförmige, im Wesentlichen symmetrisch zur vertikalen Symmetrielinie ZL gestaltete und in der Symmetrieebene SE verlaufende Leitungsführung problemlos so angeordnet werden, dass insgesamt die geometrische Länge von λ/4 überbrückt wird. Im Fall eines Trägermaterials mit einem effektiven Dielektrizitätskoeffizienten εr von 4 ergibt dann die gestreckte Länge einer λ/2 langen Leitung genau eine geometrische Länge von λ/4. Bei Trägermaterialien mit einem effektiven Dielektrizitätskoeffizienten εr von größer als 4 ist es dann vorteilhaft, ein weiteres Leitungsstück mit einer elektrischen Länge von λ/2 als weiteres Bestandteil der Dipol-Speiseleitung 6 zu verwenden, um die Phasenforderung weiterhin zu erfüllen. Durch Vertauschen der Speiseleitungs-Anschlusspunkte 25 kann die Antenne alternativ für links- oder rechts-polarisierte Signale verwendet werden.In antennas according to the invention, it is therefore advantageous, for example, to design the
In einer weiteren vorteilhaften Ausgestaltung der Erfindung sind der Dipol und die Dipol-Speiseleitung 6 auf einer Leiterplatte aufgedruckt. Diese Technologie ermöglicht die Gestaltung des Wellenwiderstands und der Transformationseigenschaften der Speiseleitung 6 in weiten Grenzen. Gleichermaßen können auf die Leiterplatte gedruckte induktive und kapazitive Blindelemente bzw. konzentrierte Blindelemente für die Gestaltung von Anpassnetzwerken 10 und/oder Phasendrehgliedern 17 aufgebracht werden. Mit Hilfe an sich bekannter Schaltungen aus konzentrierten Blindelementen können Transformationsschaltungen mit Resonanzcharakter - zum Beispiel als Parallelschwingkreis mit Teilankopplung - realisiert werden, welche es erlauben, die Anpassung der niedrigen Impedanz des elektrischen Dipolstrahlers 1 auf das Impedanzniveau des hochohmigen Schlitzstrahlers 3 zu transformieren. In einem vorteilhaften Ausführungsbeispiel besteht die Dipol-Speiseleitung 6 aus einer aufgedruckten symmetrischen Zweidraht-Leitung, welche an ihrem einen Ende an den elektrischen Dipolstrahler 1 angeschlossen ist und an ihrem anderen Ende an eine aus Blindelementen bestehende Transformationsschaltung mit Resonanzcharakter angeschlossen ist, welche die Impedanz-Anpassung an das hohe Impedanzniveau des Schlitzstrahlers 3 bewirkt. Die zur Erfüllung der Phasenbedingung geforderte Leitungslänge erfolgt dabei wieder vorteilhaft durch mäanderförmige Gestaltung der Speiseleitung 6, welche im Wesentlichen symmetrisch zur vertikalen Symmetrielinie ZL und in der Symmetrieebene SE verlaufend geführt ist. Ebenso können zum Ausgleich der elektrischen Länge der Dipol-Speiseleitung 6 Phasendreh-Kettenschaltungen aus konzentrierten Blindelementen eingesetzt werden, welche die Impedanz nicht transformieren. In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist das Verteilnetzwerk 13 aus einer im Wesentlichen aus konzentrierten Blindelementen bestehenden Schaltung gebildet. Durch diese Impedanztransformations- und Phasendreheigenschaften kann sowohl die Phasen- als auch die Leistungs-Bedingung für die Erreichung der zirkularen Polarisation erfüllt werden.In a further advantageous embodiment of the invention, the dipole and the
In
Durch Einfügung von Anpassnetzwerken 10 und/oder Phasendrehgliedern 17 in die Dipol-Speiseleitung 6, wie in
In
Insbesondere für mobile Anwendungen von Antennen nach der Erfindung - zum Beispiel auf dem Dach eines Fahrzeugs - kann es notwendig sein, die Längsausdehnung 4 des Schlitzstrahlers 3 kürzer zu gestalten als λ/2. Die notwendige Verkürzung kann erfindungsgemäß dadurch erreicht werden, dass der Schlitz des Schlitzstrahlers 3 an seinen beiden Enden durch im Wesentlichen quer zu seiner Längssymmetrielinie SL orientierte Querschlitze 22 ausgeformt ist. Aus Gründen der azimutalen Rotationssymmetrie des Richtdiagramms der Antenne sind diese Querschlitze 22 vorteilhaft an beiden Enden gleichartig und symmetrisch zur Längssymmetrielinie SL ausgeführt, wie dies in
Auf entsprechende Weise kann die Länge des elektrischen Dipolstrahlers 1 dadurch verkürzt werden, dass dieser an seinen beiden Enden jeweils mit einer gleichartigen Endkapazität 21 belastet ist. Derartige Endkapazitäten 21 können zum Beispiel, wie in
In einer einfachsten Ausführungsform der Antenne ist die elektrisch leitende Grundfläche 2 durch die Außenfläche einer elektrisch leitenden und aus Blech gestalteten Fahrzeugkarosserie selbst gegeben, in welche der Schlitzstrahler 3 in das Blech eingebracht ist. In der Regel ist es jedoch aus Gründen der leichteren Herstellbarkeit vorteilhafter, wenn ein elektrisch leitender Körper, in dessen Außenfläche der Schlitzstrahler 3 gestaltet ist, in die entsprechende Aussparung in einer elektrisch leitenden Fahrzeugkarosserie eingebracht ist und mit dieser elektrisch leitend verbunden ist. Erfindungsgemäß ist dann die Oberfläche des elektrisch leitenden Körpers derart gestaltet, dass er die Aussparung der elektrisch leitenden Fahrzeugkarosserie im Wesentlichen ausfüllt, und deren Außenfläche mit seiner Oberfläche im Wesentlichen zu einer Ebene ergänzt und auf diese Weise die elektrisch leitende Grundfläche 2 gestaltet ist. Die in die Fahrzeugkarosserie einzubringende Aussparung kann dabei vorteilhaft in der Längs- und Querausdehnung nur wenig größer gewählt sein als dies die Abmessungen des Schlitzes erfordern.In a simplest embodiment of the antenna, the electrically
Ist die Fahrzeugkarosserie elektrisch nicht leitend - also zum Beispiel aus Kunststoff - wird die elektrisch leitende Grundfläche 2 als leitende Fläche, vorzugsweise aus Blech gestaltet und unter der Fahrzeughaut angebracht. In diese Fläche ist der Schlitzstrahler 3 eingebracht und sie trägt in einer vorteilhaften Ausgestaltung der Erfindung auf ihrer Rückseite den Hohlraumresonator 15 und auf ihrer Vorderseite den elektrischen Dipolstrahler 1 und die Dipol-Speiseleitung 6. Durch eine in ihrer Querabmessung vergleichsweise kleine Aussparung kann die Montage der Antenne auf der Innenseite der Fahrzeugkarosserie erfolgen. Die Abmessungen der elektrisch leitenden Grundfläche 2 sind zweidimensional hinreichend groß zu wählen, so dass sich angenähert die Strahlungseigenschaften der Antenne einstellen, wie sie für eine Antenne dieser Art mit ausgedehnter elektrisch leitender Grundfläche 2 zutreffen.If the vehicle body is not electrically conductive - that is, for example made of plastic - the electrically
Claims (15)
- An antenna for the reception of circularly polarized satellite signals in which there are present an electric dipole radiator (1) having a dipole connection point (8), said electric dipole radiator extending at a spacing from the front side of an electrically conductive base plane (2) and in a plane of symmetry (SE) oriented perpendicular to the electrically conductive base plane (2) and oriented substantially in parallel with the electrically conductive base plane (2); a dipole feed line (6) that is connected to said dipole connection point and extends in the plane of symmetry (SE) toward the electrically conductive base plane (2); and an antenna connection point (12), wherein:- a slot radiator (3) having its longitudinal extent (4) along the line of intersection between the plane of symmetry (SE) and the electrically conductive base plane (2) having the slot radiator connection point (7) is configured in the electrically conductive base plane (2), said slot radiator connection point being formed by mutually opposite slot connection sites (19) located on the longitudinal margins (18);- the electric dipole radiator (1) and the slot radiator (3) have the same resonant frequency;- the slot radiator (3) having the slot radiator connection point (7) is formed as an approximately rectangular slot having straight longitudinal margins (18) and having a slot width (5) into the electrically conductive base plane (2) that is small in comparison with the longitudinal extent (4) by the longitudinal line of symmetry (SL) given by the line of intersection between the plane of symmetry (SE) and the electrically conductive base plane (2), extending in parallel with the longitudinal extent (4), and leading through the center (Z) of the slot;- the electric dipole radiator (1) and the extent of the dipole feed line (6) are configured symmetrical to the line of symmetry (ZL) standing perpendicular on the electrically conductive base plane (2) and running through the center (Z) of the slot;
and the electric dipole radiator (1) having the dipole connection point (8) is fed electrically symmetrically;- the slot radiator (3) and the electric dipole radiator (1) having the dipole feed line (6) are connected via a distribution network (13) to the antenna connection point (12) according to amount and phase in a manner such that circular polarization is present in the far field at the resonant frequency of both radiators (1, 3),
characterized in that- the distribution network (13) is connected to the antenna connection point (12) via an antenna line (11) designed asymmetrically with respect to the electrically conductive base plane (2) as a ground plane and is formed in a manner such that the one slot connection site (19) of the slot connection point (7) is formed by the ground connection of the antenna line (11) on one of the two longitudinal margins (18) and the other slot connection site (19) is formed by a connection of the voltage-conductive conductor of the antenna line (11) adjacently on the oppositely disposed longitudinal margin (18) and the dipole feed line (6) is designed as a symmetrical two-wire line whose two dipole feed line connection sites (25) are arranged on the two longitudinal margins (18). - An antenna in accordance with claim 1,
characterized in that
the slot radiator (3) is covered at the rear side of the base plane (2) by a hollow space resonator (15) covering the slot radiator (3) to support the radiation at the front side facing the electric dipole radiator (4) and to screen from the radiation at the rear side of the electrically conductive base plane (2). - An antenna in accordance with claim 1 or claim 2,
characterized in that
the longitudinal extent (4) of the slot radiator (3) amounts to approximately half a wavelength and the dipole spacing (14) from the electrically conductive base plane (2) is selected at approximately a quarter of the free space wavelength for the configuration of the circular polarization of the antenna and the phase difference of the signals at the dipole connection point (8) and at the slot connection point (7) amounts in dependence on the direction of rotation of the circular polarization to 0° or to a whole-number multiple of 180° and the signal powers present at the two radiator connection points (7, 8) are approximately equal in amount. - An antenna in accordance with claim 1, claim 2 or claim 3,
characterized in that
the distribution network (13) is formed in the proximity of the center (Z) in a manner such that the one feed line connection site (25) is formed by the ground connection of the antenna line (11) at one of the two longitudinal margins (18) and the other feed line connection site (25) is formed by connection of the voltage-conductive conductor of the antenna line (11) adjacently on the oppositely disposed longitudinal margin (18); but such that the slot connection point (7) is formed at a spacing (16) from the center (Z) to lower the impedance of the slot radiator (3) and is connected via a parallel branch of the asymmetrical antenna line (11) via slot connection sites (19) formed in an analog manner. - An antenna in accordance with any one of the claims 1 to 4,
characterized in that
the dipole and the dipole feed line (6) are printed onto a printed circuit board and phase and power conditions are satisfied by configuring the wave resistance and by configuring the line length by a meandering line guide designed substantially symmetrically to the vertical line of symmetry (ZL). - An antenna in accordance with any one of the claims 1 to 5,
characterized in that
the distribution network (13) is formed from a circuit comprising dummy elements having the impedance transformation properties and phase rotation properties required for the satisfaction of phase and power conditions. - An antenna in accordance with any one of the claims 1 to 6,
characterized in that,
to shorten the longitudinal extent (4) of the slot radiator (3), its two ends are shaped in transverse slots (22) designed symmetrically to the longitudinal line of symmetry (SL), oriented perpendicular thereto, and having the transverse slot length (23); and thus in that, in dependence on the transverse slot length (23) and on the transverse slot width (24), the resonant frequency of the slot occurs at a smaller longitudinal extent (4) than half the free space wavelength λ. - An antenna in accordance with any one of the claims 1 to 7,
characterized in that,
to shorten the length of the electric dipole radiator (1), a respective similar end capacitance (21) is connected to its two ends. - An antenna in accordance with any one of the claims 1 to 8,
characterized in that
the electrically conductive base plane (2) is the outer surface of an electrically conductive vehicle body formed from sheet metal; and in that the slot radiator (3) is introduced into the sheet metal. - An antenna in accordance with any one of the claims 1 to 8,
characterized in that
the antenna line (11) to the slot radiator connection point (7) is configured as a stripline (20) configured asymmetrically with respect to the electrically conductive base plane (2) as the ground plane, with the strip conductor of said stripline being guided in the region of the slot of the slot radiator (3) perpendicular to its longitudinal extent and being guided at least partly over the slot, whereby the one of the slot connection sites (19) is given by the site on the electrically conductive base plane (2) at the point where the strip conductor intersects the one of the longitudinal margins (18) in the plan view and the other slot connection site (18) is given by a contactless radiation coupling of the voltage-conductive strip conductor on the oppositely disposed longitudinal margin (18). - An antenna in accordance with any one of the claims 1 to 3 or 5 to 11,
characterized in that
parts of the slot radiator (3) are integrated into the distribution network (13) in a manner such that the signal power present at the antenna connection point (25) and to be split over the slot radiator (3) and the electric dipole radiator (1) is fed in at a point of the slot radiator (3) at the slot radiator connection point (7) and the feed of the signal power of the electric dipole radiator (1) is given by a connection of the feed line connection sites (25) to a different point of the slot radiator (3). - An antenna in accordance with any one of the claims 1 to 11,
characterized in that,
for the transformation between the impedance of the slot radiator (3) that is large in comparison with the wave resistance of technically implementable lines to the impedance level of the electric dipole radiator (1) by the dipole feed line (6), this transformation is configured using at least two electric line pieces connected in a chain and each having λ/4 electrical length, with the impedance of the slot radiator (3) being transformed by this line piece to a lower impedance level than that of the dipole radiator (1) to achieve a sufficiently low-ohm technically implementable line wave resistance, and with this impedance level being transformed by the further line piece connected in a chain and having an implementably low line wave resistance into the impedance of the electric dipole radiator (1) higher for this purpose. - An antenna in accordance with any one of the claims 1 to 12,
characterized in that
the dipole feed line includes a symmetrical two-wire line that is printed on a printed circuit board, whose one end is connected to the electric dipole radiator (1), and whose other end is connected to a transformation circuit comprising dummy elements and having a resonant character effecting the impedance matching to the high impedance level of the slot radiator (3); and in that phase shifter chains of concentrated dummy elements are present to satisfy phase conditions. - An electrically conductive vehicle body having an antenna in accordance with any one of the claims 1 to 13,
characterized in that
an electrically conductive body in whose outer surface the slot radiator (3) is configured is introduced into the cut-out of the electrically conductive vehicle body and is electrically conductively connected thereto such that the outer surface of the electrically conductive body substantially fills up the cut-out of the electrically conductive vehicle body and complements the outer surface thereof with its surface and the electrically conductive base plane (2) is configured in this manner. - An electrically non-conductive vehicle body having an antenna in accordance with any one of the claims 1 to 13,
characterized in that
the electrically conductive base plane (2) is formed by a surface of an electrically conductive body which is selected as having a sufficiently large area and into which the slot radiator (3) is introduced.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009023514A DE102009023514A1 (en) | 2009-05-30 | 2009-05-30 | Antenna for circular polarization with a conductive base |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2256864A1 EP2256864A1 (en) | 2010-12-01 |
EP2256864B1 true EP2256864B1 (en) | 2017-08-09 |
Family
ID=42320268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10005480.8A Active EP2256864B1 (en) | 2009-05-30 | 2010-05-27 | Antenna for circular polarisation with a conductive base |
Country Status (3)
Country | Link |
---|---|
US (1) | US8334814B2 (en) |
EP (1) | EP2256864B1 (en) |
DE (1) | DE102009023514A1 (en) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100328142A1 (en) * | 2008-03-20 | 2010-12-30 | The Curators Of The University Of Missouri | Microwave and millimeter wave resonant sensor having perpendicular feed, and imaging system |
US20120013512A1 (en) * | 2010-07-16 | 2012-01-19 | Joymax Electronics Co., Ltd. | Antenna device for vehicle remote control locking system |
US20140062812A1 (en) * | 2012-08-30 | 2014-03-06 | Cambridge Silicon Radio Limited | Multi-antenna isolation |
CN109672015B (en) * | 2014-04-11 | 2021-04-27 | 康普技术有限责任公司 | Method of eliminating resonance in a multiband radiating array |
CN103984833B (en) * | 2014-05-28 | 2017-04-26 | 西安交通大学 | Simplified directional antenna polarization modeling method |
EP3091610B1 (en) * | 2015-05-08 | 2021-06-23 | TE Connectivity Germany GmbH | Antenna system and antenna module with reduced interference between radiating patterns |
US10083888B2 (en) * | 2015-11-19 | 2018-09-25 | Advanced Semiconductor Engineering, Inc. | Semiconductor device package |
DE102016001327A1 (en) * | 2016-02-05 | 2017-08-10 | Kathrein-Werke Kg | Dual polarized antenna |
US10225760B1 (en) | 2018-03-19 | 2019-03-05 | Pivotal Commware, Inc. | Employing correlation measurements to remotely evaluate beam forming antennas |
KR102640129B1 (en) | 2018-03-19 | 2024-02-22 | 피보탈 컴웨어 인코포레이티드 | Communication of wireless signals through physical barriers |
US10862545B2 (en) | 2018-07-30 | 2020-12-08 | Pivotal Commware, Inc. | Distributed antenna networks for wireless communication by wireless devices |
US10326203B1 (en) | 2018-09-19 | 2019-06-18 | Pivotal Commware, Inc. | Surface scattering antenna systems with reflector or lens |
US10522897B1 (en) | 2019-02-05 | 2019-12-31 | Pivotal Commware, Inc. | Thermal compensation for a holographic beam forming antenna |
US10468767B1 (en) * | 2019-02-20 | 2019-11-05 | Pivotal Commware, Inc. | Switchable patch antenna |
EP3925029A1 (en) * | 2019-05-06 | 2021-12-22 | Huawei Technologies Co., Ltd. | Dual mode antenna structures |
US10734736B1 (en) | 2020-01-03 | 2020-08-04 | Pivotal Commware, Inc. | Dual polarization patch antenna system |
US11069975B1 (en) | 2020-04-13 | 2021-07-20 | Pivotal Commware, Inc. | Aimable beam antenna system |
KR20230017280A (en) | 2020-05-27 | 2023-02-03 | 피보탈 컴웨어 인코포레이티드 | RF signal repeater device management for 5G wireless networks |
US11026055B1 (en) | 2020-08-03 | 2021-06-01 | Pivotal Commware, Inc. | Wireless communication network management for user devices based on real time mapping |
WO2022056024A1 (en) | 2020-09-08 | 2022-03-17 | Pivotal Commware, Inc. | Installation and activation of rf communication devices for wireless networks |
CN112688059B (en) * | 2020-12-14 | 2022-11-01 | 中国科学院国家空间科学中心 | Broadband circularly polarized microstrip array antenna |
JP2024504621A (en) | 2021-01-15 | 2024-02-01 | ピヴォタル コムウェア インコーポレイテッド | Installing repeaters for millimeter wave communication networks |
AU2022212950A1 (en) | 2021-01-26 | 2023-09-07 | Pivotal Commware, Inc. | Smart repeater systems |
US11451287B1 (en) | 2021-03-16 | 2022-09-20 | Pivotal Commware, Inc. | Multipath filtering for wireless RF signals |
WO2022255517A1 (en) * | 2021-06-02 | 2022-12-08 | 엘지전자 주식회사 | Antenna system mounted on vehicle |
CA3224854A1 (en) | 2021-07-07 | 2023-01-12 | Pivotal Commware, Inc. | Multipath repeater systems |
JP2023122834A (en) * | 2022-02-24 | 2023-09-05 | 株式会社デンソーテン | slot antenna |
US11937199B2 (en) | 2022-04-18 | 2024-03-19 | Pivotal Commware, Inc. | Time-division-duplex repeaters with global navigation satellite system timing recovery |
KR102588753B1 (en) * | 2023-02-10 | 2023-10-16 | 한국지질자원연구원 | Circular polarized sensor system having linear complementary structure and operating method thereof |
Family Cites Families (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3942119A (en) | 1973-03-02 | 1976-03-02 | Hans Kolbe & Co. | Multiple-transmission-channel active antenna arrangement |
DE2552002C3 (en) | 1975-11-20 | 1979-07-19 | Gerhard Prof. Dr.-Ing. 8012 Ottobrunn Flachenecker | Interference-suppressed receiving antenna near the heating conductor on the window pane of a motor vehicle |
DE2552049C3 (en) | 1975-11-20 | 1979-01-04 | Hans Heinrich Prof. Dr. 8035 Gauting Meinke | Interference-suppressed receiving antenna near the heating conductor on the window pane of a motor vehicle |
US4129871A (en) * | 1977-09-12 | 1978-12-12 | Rca Corporation | Circularly polarized antenna using slotted cylinder and conductive rods |
DE3315458A1 (en) | 1983-04-28 | 1984-11-08 | Gerhard Prof. Dr.-Ing. 8012 Ottobrunn Flachenecker | ACTIVE WINDSHIELD ANTENNA FOR ALL POLARIZATION TYPES |
DE3410415A1 (en) | 1984-03-21 | 1985-09-26 | Gerhard Prof. Dr.-Ing. 8012 Ottobrunn Flachenecker | ACTIVE AERIAL IN THE REAR WINDOW OF A MOTOR VEHICLE |
DE3517247A1 (en) | 1985-05-13 | 1986-11-13 | Gerhard Prof. Dr.-Ing. 8012 Ottobrunn Flachenecker | ANTENNA DIVERSITY RECEIVING SYSTEM FOR ELIMINATION OF RECEIVING ERRORS |
DE3618452C2 (en) | 1986-06-02 | 1997-04-10 | Lindenmeier Heinz | Diversity antenna arrangement for receiving frequency-modulated signals in the rear window of a motor vehicle with a heating field located therein |
DE3820229C1 (en) | 1988-06-14 | 1989-11-30 | Heinz Prof. Dr.-Ing. 8033 Planegg De Lindenmeier | |
DE3907493A1 (en) | 1989-03-08 | 1990-09-20 | Lindenmeier Heinz | DISC ANTENNA WITH ANTENNA AMPLIFIER |
DE3911178A1 (en) | 1989-04-06 | 1990-10-11 | Lindenmeier Heinz | WINDOW ANTENNA SYSTEM WITH ANTENNA AMPLIFIER |
DE3914424A1 (en) | 1989-05-01 | 1990-12-13 | Lindenmeier Heinz | ANTENNA WITH VERTICAL STRUCTURE FOR TRAINING AN EXTENDED AREA CAPACITY |
US5266960A (en) | 1989-05-01 | 1993-11-30 | Fuba Hans Kolbe Co. | Pane antenna having at least one wire-like antenna conductor combined with a set of heating wires |
US5801663A (en) | 1989-05-01 | 1998-09-01 | Fuba Automotive Gmbh | Pane antenna having at least one wire-like antenna conductor combined with a set of heating wires |
DE4008505A1 (en) | 1990-03-16 | 1991-09-19 | Lindenmeier Heinz | Mobile antenna for satellite communication system - uses etching process on substrate with two part assembly |
US5021797A (en) * | 1990-05-09 | 1991-06-04 | Andrew Corporation | Antenna for transmitting elliptically polarized television signals |
DE4101629C3 (en) | 1991-01-21 | 2003-06-26 | Fuba Automotive Gmbh | Antenna diversity system with at least two antennas for the mobile reception of meter and decimeter waves |
US5272487A (en) * | 1991-09-30 | 1993-12-21 | Harris Corporation | Elliptically polarized antenna |
DE4216377A1 (en) | 1992-05-18 | 1993-11-25 | Lindenmeier Heinz | Radio antenna arrangement near vehicle window panes |
DE4318869C2 (en) | 1993-06-07 | 1997-01-16 | Lindenmeier Heinz | Radio antenna arrangement on the window pane of a motor vehicle and method for determining its wiring |
DE4441761A1 (en) | 1994-11-23 | 1996-05-30 | Lindenmeier Heinz | Multi-antenna scanning diversity system for vehicles |
DE19510236A1 (en) | 1995-03-21 | 1996-09-26 | Lindenmeier Heinz | Flat antenna with low overall height |
DE19607045A1 (en) | 1996-02-24 | 1997-08-28 | Lindenmeier Heinz | Receiving antenna scanning diversity system for the meter wave range for vehicles |
DE19612958A1 (en) | 1996-04-01 | 1997-10-02 | Fuba Automotive Gmbh | Antenna amplifier on a window pane |
DE19614068A1 (en) | 1996-04-09 | 1997-10-16 | Fuba Automotive Gmbh | Flat antenna |
DE19618333A1 (en) | 1996-05-07 | 1997-11-13 | Lindenmeier Heinz | Circuit arrangement for functional testing of mobile radio reception systems |
US5926141A (en) | 1996-08-16 | 1999-07-20 | Fuba Automotive Gmbh | Windowpane antenna with transparent conductive layer |
DE19636125B4 (en) | 1996-09-06 | 2007-12-06 | Fuba Automotive Gmbh & Co. Kg | Space diversity method and circuitry |
DE19637327B4 (en) | 1996-09-13 | 2009-04-09 | Delphi Delco Electronics Europe Gmbh | Frequency diversity arrangement |
DE19740254A1 (en) | 1996-10-16 | 1998-04-23 | Lindenmeier Heinz | Radio antenna arrangement e.g. for GSM |
DE19646100A1 (en) | 1996-11-08 | 1998-05-14 | Fuba Automotive Gmbh | Flat antenna |
EP0848459B1 (en) | 1996-12-13 | 2006-10-11 | FUBA Automotive GmbH & Co. KG | PCB-line connector |
DE19806834A1 (en) | 1997-03-22 | 1998-09-24 | Lindenmeier Heinz | Audio and television antenna for automobile |
US6130645A (en) | 1998-01-14 | 2000-10-10 | Fuba Automotive Gmbh & Co. Kg | Combination wide band antenna and heating element on a window of a vehicle |
DE19817573A1 (en) | 1998-04-20 | 1999-10-21 | Heinz Lindenmeier | Antenna for multiple radio services |
DE19834577B4 (en) | 1998-07-31 | 2011-12-29 | Delphi Technologies, Inc. | antenna system |
DE19847653A1 (en) | 1998-10-15 | 2000-04-20 | Heinz Lindenmeier | Device for suppressing the reception of interference emitted by the vehicle |
DE19847887A1 (en) | 1998-10-18 | 2000-04-20 | Heinz Lindenmeier | Scanning antenna diversity system for vehicle determines maximum current reception signal level for current reception situation in very short level comparison periods not affecting reception |
DE19854169A1 (en) | 1998-11-24 | 2000-05-25 | Heinz Lindenmeier | Window antenna with high-frequency connected heating field |
DE19858465A1 (en) | 1998-12-17 | 2000-06-21 | Heinz Lindenmeier | Scanning diversity antenna system for vehicles has logic switch changed back to incremental mode from maximum level switching mode if noise detected by diversity processor |
DE19916855A1 (en) | 1999-04-14 | 2000-10-26 | Heinz Lindenmeier | Radio telephone system with group antenna for vehicles |
DE19930571B4 (en) | 1999-07-02 | 2010-04-29 | Delphi Delco Electronics Europe Gmbh | Diagnostic device for a multi-antenna arrangement |
DE10033336A1 (en) | 1999-08-11 | 2001-04-12 | Heinz Lindenmeier | Diversity antenna for diversity system in vehicle has edge conductor on side of conducting surface with minimum length of about tenth of wavelength, forming low impedance coupling line |
DE10010226A1 (en) | 1999-08-31 | 2001-03-01 | Lindenmeier Heinz | Antenna arrangement for fixing to window of motor vehicle, has antenna connection terminal provided in free-field formed with window closed between sealing strip and window control device |
DE10102616A1 (en) | 2000-02-17 | 2001-08-23 | Heinz Lindenmeier | Antenna diversity system with phase-regulated summation of antenna signals has logic switch switched to different setting to change received signal paths if received signal noise detected |
DE10100812B4 (en) | 2001-01-10 | 2011-09-29 | Heinz Lindenmeier | Diversity antenna on a dielectric surface in a vehicle body |
DE10163793A1 (en) | 2001-02-23 | 2002-09-05 | Heinz Lindenmeier | Antenna for mobile satellite communication in vehicle, has positions of impedance connection point, antenna connection point, impedance coupled to impedance connection point selected to satisfy predetermined condition |
ATE323978T1 (en) | 2001-03-02 | 2006-05-15 | Fuba Automotive Gmbh | DIVERSITY SYSTEM FOR RECEIVING DIGITAL TERRESTRIAL AND/OR SATELLITE RADIO SIGNALS FOR VEHICLES |
US6768457B2 (en) | 2001-03-02 | 2004-07-27 | Fuba Automotive Gmbh & Co. Kg | Diversity systems for receiving digital terrestrial and/or satellite radio signals for motor vehicles |
DE10114769B4 (en) | 2001-03-26 | 2015-07-09 | Heinz Lindenmeier | Active broadband antenna |
JP2005518172A (en) | 2002-02-22 | 2005-06-16 | ダイムラークライスラー・アクチェンゲゼルシャフト | Method and system for testing at least one antenna |
DE10209060B4 (en) | 2002-03-01 | 2012-08-16 | Heinz Lindenmeier | Reception antenna arrangement for satellite and / or terrestrial radio signals on vehicles |
DE10245813A1 (en) | 2002-10-01 | 2004-04-15 | Lindenmeier, Heinz, Prof. Dr.-Ing. | Active broadband reception antenna with reception level control |
DE10258367A1 (en) | 2002-12-12 | 2004-07-08 | Daimlerchrysler Ag | Multi-objective method and multi-objective sensor device for the distance and angle localization of target objects in the vicinity |
DE10304431A1 (en) | 2003-02-04 | 2004-08-05 | Lindenmeier, Heinz, Prof. Dr.-Ing. | Scanning antenna diversity system is used for frequency modulated audio wireless signals in a road vehicle |
DE10304911B4 (en) | 2003-02-06 | 2014-10-09 | Heinz Lindenmeier | Combination antenna arrangement for multiple radio services for vehicles |
DE10304909B4 (en) | 2003-02-06 | 2014-10-09 | Heinz Lindenmeier | Antenna with monopoly character for several radio services |
US6927735B2 (en) | 2003-02-25 | 2005-08-09 | Fuba Automotive Gmbh & Co. Kg | Antenna arrangement in the aperture of an electrically conductive vehicle chassis |
JP2006186880A (en) | 2004-12-28 | 2006-07-13 | Denso Corp | Circularly polarized wave antenna |
DE102006006266A1 (en) | 2005-02-13 | 2006-08-24 | Lindenmeier, Heinz, Prof. Dr. Ing. | Reception system for receiving digitally modulated radio signals on moving vehicle, updates reference phase when phase reference signal that carries current reference phase related to reference signal occurs |
DE202005008338U1 (en) | 2005-05-24 | 2005-12-22 | Fuba Automotive Gmbh & Co. Kg | Antenna configuration for radio reception in motor vehicle e.g. cabriolet, has bulk connection for transducers and arranged in roof system, over springy contact that is between movable metallic components of system and metallic carriage |
DE102006039357B4 (en) | 2005-09-12 | 2018-06-28 | Heinz Lindenmeier | Antenna diversity system for radio reception for vehicles |
DE102006057520A1 (en) | 2005-12-15 | 2007-06-21 | Lindenmeier, Heinz, Prof. Dr. Ing. | Receiving system with in-phase oscillation of antenna signals |
DE102007011636A1 (en) | 2007-03-09 | 2008-09-11 | Lindenmeier, Heinz, Prof. Dr. Ing. | Antenna for radio reception with diversity function in a vehicle |
EP1978647A3 (en) | 2007-04-05 | 2013-10-09 | Delphi Delco Electronics Europe GmbH | Broadband receiver system |
DE102007017478A1 (en) | 2007-04-13 | 2008-10-16 | Lindenmeier, Heinz, Prof. Dr. Ing. | Receiving system with a circuit arrangement for the suppression of switching interference in antenna diversity |
EP2037593A3 (en) | 2007-07-10 | 2016-10-12 | Delphi Delco Electronics Europe GmbH | Antenna diversity array for relatively broadband radio reception in automobiles |
DE102007039914A1 (en) | 2007-08-01 | 2009-02-05 | Lindenmeier, Heinz, Prof. Dr. Ing. | Antenna diversity system with two antennas for radio reception in vehicles |
DE102008003532A1 (en) | 2007-09-06 | 2009-03-12 | Lindenmeier, Heinz, Prof. Dr. Ing. | Antenna for satellite reception |
DE102008047937A1 (en) | 2008-09-18 | 2010-03-25 | Delphi Delco Electronics Europe Gmbh | Broadcasting Reception System |
-
2009
- 2009-05-30 DE DE102009023514A patent/DE102009023514A1/en not_active Withdrawn
-
2010
- 2010-05-24 US US12/786,236 patent/US8334814B2/en active Active
- 2010-05-27 EP EP10005480.8A patent/EP2256864B1/en active Active
Non-Patent Citations (4)
Title |
---|
AZADEGAN R ET AL: "A novel approach for miniaturization of slot antennas", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 51, no. 3, 1 March 2003 (2003-03-01), pages 421 - 429, XP011096793, ISSN: 0018-926X, DOI: 10.1109/TAP.2003.809853 * |
FILIPOVIC D S ET AL: "A thin broadband cavity-backed slot spiral antenna for automotive applications", IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM. 2001 DIGEST. APS. BOSTON, MA, JULY 8 - 13, 2001; [IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM], NEW YORK, NY : IEEE, US, 8 July 2001 (2001-07-08), pages 414 - 417vol.1, XP032405022, ISBN: 978-0-7803-7070-8, DOI: 10.1109/APS.2001.958879 * |
PANTSIOS F A: "NEW ELEMENTS THAT PROVIDE PATTERN VERSATILITY IN COAX AND WAVESTAR ANTENNAS", IEEE TRANSACTIONS ON BROADCASTING, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 36, no. 3, 1 September 1990 (1990-09-01), pages 219 - 225, XP000161664, ISSN: 0018-9316, DOI: 10.1109/11.59848 * |
R. COX ET AL: "Circularly polarized phased array antenna element", IRE TRANSACTIONS ON ANTENNAS AND PROPAGATION, vol. 18, no. 6, 1 November 1970 (1970-11-01), USA, pages 804 - 807, XP055254617, ISSN: 0096-1973, DOI: 10.1109/TAP.1970.1139801 * |
Also Published As
Publication number | Publication date |
---|---|
DE102009023514A1 (en) | 2010-12-02 |
US8334814B2 (en) | 2012-12-18 |
US20100302112A1 (en) | 2010-12-02 |
EP2256864A1 (en) | 2010-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2256864B1 (en) | Antenna for circular polarisation with a conductive base | |
DE69608132T2 (en) | SLOT SPIRAL ANTENNA WITH INTEGRATED SYMMETRICAL DEVICE AND INTEGRATED LEAD | |
EP2664025B1 (en) | Multiband reception antenna for the combined reception of satellite signals and terrestrially emitted radio signals | |
DE69604583T2 (en) | PRINTED MULTI-BAND MONOPOLAR ANTENNA | |
DE102010035932B4 (en) | Antenna for receiving circularly polarized satellite radio signals | |
DE69732975T2 (en) | SMALL ANTENNA FOR PORTABLE RADIO | |
DE68909072T2 (en) | Broadband antenna for mobile radio connections. | |
DE102005060648B4 (en) | Antenna device with radiation characteristics suitable for ultra wide band communication | |
EP3411921B1 (en) | Dual-polarized antenna | |
DE102016207434B4 (en) | antenna device | |
DE202021106120U1 (en) | Radiating elements with angled feed shafts and base station antennas including the same | |
DE102008003532A1 (en) | Antenna for satellite reception | |
EP2424036B1 (en) | Receiver antenna for circular polarised satellite radio signals | |
EP2693565B1 (en) | Electrical radiator for vertically polarised radio signals | |
EP3178129B1 (en) | Multi-structure broadband monopole antenna for two frequency bands in the decimeter wave range separated by a frequency gap, for motor vehicles | |
EP2830156A1 (en) | Waveguide radiator, group antenna radiator and synthetic aperture radar radiator | |
DE3931752A1 (en) | COAXIAL SLOT ANTENNA | |
DE102007055327B4 (en) | External multi-band radio antenna module | |
DE19729664C2 (en) | Planar broadband antenna | |
DE102014016851B3 (en) | MIMO slot antenna for motor vehicles | |
EP2034557A2 (en) | Antenna for satellite reception | |
DE19603803C2 (en) | Quad antenna, on an insulating material and process for its manufacture | |
EP4383460A2 (en) | Satellite antenna | |
DE102007012570B4 (en) | Patch antenna | |
DE4220131C2 (en) | Active receiving antenna for reception in the near field in the form of a conductor loop, especially a radiating slotted coaxial line |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME RS |
|
17P | Request for examination filed |
Effective date: 20110601 |
|
17Q | First examination report despatched |
Effective date: 20160314 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170217 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 917759 Country of ref document: AT Kind code of ref document: T Effective date: 20170815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502010013956 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502010013956 Country of ref document: DE Owner name: DELPHI DEUTSCHLAND GMBH, DE Free format text: FORMER OWNER: DELPHI DELCO ELECTRONICS EUROPE GMBH, 42119 WUPPERTAL, DE |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: DELPHI DEUTSCHLAND GMBH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170809 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171109 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171209 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171109 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171110 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20180201 AND 20180207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502010013956 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20180511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180531 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180527 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180527 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180531 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 917759 Country of ref document: AT Kind code of ref document: T Effective date: 20180527 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180527 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100527 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170809 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170809 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20200522 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20200527 Year of fee payment: 11 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210527 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210527 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210531 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240726 Year of fee payment: 15 |