EP2693565B1 - Emetteur électrique pour signaux radio polarisés verticalement - Google Patents

Emetteur électrique pour signaux radio polarisés verticalement Download PDF

Info

Publication number
EP2693565B1
EP2693565B1 EP13177848.2A EP13177848A EP2693565B1 EP 2693565 B1 EP2693565 B1 EP 2693565B1 EP 13177848 A EP13177848 A EP 13177848A EP 2693565 B1 EP2693565 B1 EP 2693565B1
Authority
EP
European Patent Office
Prior art keywords
radiator
frequency
vertical
conductor
ring conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13177848.2A
Other languages
German (de)
English (en)
Other versions
EP2693565A1 (fr
Inventor
Stefan Lindenmeier
Heinz Lindenmeier
Jochen Hopf
Leopold Reiter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delphi Deutschland GmbH
Original Assignee
Delphi Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delphi Deutschland GmbH filed Critical Delphi Deutschland GmbH
Publication of EP2693565A1 publication Critical patent/EP2693565A1/fr
Application granted granted Critical
Publication of EP2693565B1 publication Critical patent/EP2693565B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3275Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle mounted on a horizontal surface of the vehicle, e.g. on roof, hood, trunk

Definitions

  • the invention relates to an electric radiator for vertically polarized radio signals for a radio service with a narrow frequency bandwidth around a frequency fo with the free space wavelength ⁇ o in the GHZ range for the preferred use on vehicles.
  • vehicle antennas it is important for vehicle antennas to create antennas with filigree structures for the individual radio services, which can be combined with antennas for other radio services, in particular with the smallest possible height and often with a small footprint, in order to design combination antennas with a small space requirement as a whole .
  • Such combination antennas are optionally covered with a plastic sheath as Radom or even deepened introduced into a molding of the body as a cavity.
  • the design of vehicle antennas has a high demand on their mechanical stability and vibration resistance.
  • the profitability in the production of crucial importance because of the mass-produced antennas, because of the mass-produced antennas, the profitability in the production of crucial importance.
  • the decisive mechanical dimensions of the antenna are included for the considerations made here only in the expression for the bandwidth factor BFm in brackets, with sufficiently large roof capacity Cs, the effective height hem of the monopole radiator is equal to its geometric height h.
  • the term outside the bracket term "bandwidth factor" BFm for the monopole can be summed to a constant k independent of its dimensions.
  • This radiator bandwidth is the following Reference bandwidth.
  • the impedance of a known capacitive emitter with roof capacitance with inductance Lm 15 for example generating a resonance at a frequency of fo of about 1.5 GHz in the frequency band of a radio service in question, as in FIG. 4a , is therefore very unfavorable especially in the mechanical dimensions given there and the electrically small height h / ⁇ o of about 1/20.
  • the mechanical instability which is accompanied by the structure of the with the roof capacity at the top mechanically loaded spotlight.
  • this radiator is to be used below as a reference radiator 29.
  • an antenna for receiving circularly polarized satellite radio signals comprising a substantially horizontally oriented conductor loop disposed above a conductive base and an arrangement for electromagnetic excitation connected to an antenna terminal Conductor loop has.
  • the conductor loop is designed as a loop emitter by a polygonal or circular closed loop in a substantially horizontal plane with the height H above the conductive base surface, wherein the loop emitter forms a resonant structure and is electrically excited by the arrangement for electromagnetic excitation in that on the ring line, the current distribution of a current line shaft sets in a single direction of rotation, the phase difference over a circuit is just 2 ⁇ .
  • To support the vertically oriented portions of the electromagnetic field at least one on the circumference of the ring line radiator vertical and the conductive base surface extending radiator is present, which is electromagnetically coupled both with the ring line radiator and with the electrically conductive base.
  • the (electrically small) radiator 1 for vertically polarized radio signals for a narrow bandwidth radio service by a frequency f o with the free space wavelength ⁇ o in the GHZ range comprises a substantially horizontally oriented conductor loop arranged above a conductive base surface 6 Radiator feed 5 for electromagnetic excitation of the conductor loop relative to the conductive base 6.
  • the conductor loop is designed by a polygonal or elliptical / circular closed ring conductor 2 in a substantially horizontal plane with the height h smaller ⁇ o / 6 over the conductive base 6 extending.
  • At the periphery of the ring conductor 2 are at least three at conductor loop crosspoints 7 with the ring conductor.
  • the vertical radiator 4b, 4c, 4d which is coupled to the electrically conductive base area 6 between its conductor loop crosspoints 7a, 7b, 7c, 7d and which are each coupled to a ground terminal 3b, 3c, 3d, and which is excited by the radiator feed point 5, between its Conductor loop coupling point 7a and the radiator feed 5 each have inductively active components 13a, 13b, 13c, 13d, so that at the radiator feed 5 at the frequency fo a low-impedance resonance is given by the character of a series resonance.
  • the additional advantage that the radiator gain in flat radiation can be made larger by flattening the vertical radiation pattern with azimuthal omnidirectional characteristic even at very low electric radiator height than with a elementary radiator.
  • the radiator can be made as a filigree yet mechanically stable structure, which allows the combination with another vertically polarized antenna.
  • a particular advantage in this case shows the possibility of an extremely economical way of producing the radiator in large numbers, which is particularly important for use in vehicles of particular importance.
  • the radiator according to the invention can be designed by little complicated complementary measures for an additional wider frequency range as a circularly polarized antenna, in particular for the reception of satellite radio signals.
  • a significant advantage of a radiator according to the invention is further given by the possibility that the remaining free in the center of the loop area on the base can be largely used for attaching additional combined antennas for additional other radio services.
  • the ring conductor (2) may be formed by a closed wire ring and coupled to the vertical radiators by galvanic connection.
  • a radiator according to the invention can be graphically based on a comparison with the already mentioned above as a reference radiator 29 monopole rod radiator in Fig. 4a with roofing capacity 11 and an inductance Lm, 15 at the base point according to the prior art.
  • radiator 29 in FIG. 4a consists of the radiator according to the invention in the FIGS. 1 and 4b from a ring conductor 2, on whose circumference at least three vertical radiators 4a, 4b, 4c and 4d are arranged, wherein the ring line 2 is excited via one of the vertical radiators 4a and the other vertical radiators 4b, 4c and 4d respectively via an inductance 15 are electrically conductively connected to the conductive base 6.
  • the vertical radiators 4a-c and d azimuthally distributed approximately the same and the inductance 15 of all radiators are chosen approximately equal.
  • the decisive phenomenon arises here that the real part of the impedance at the radiator feed 5 is larger by approximately the square of the number N of vertical radiators than in the case of a reference radiator 29 of the same geometric height h according to equation (2), so that at electrically low overall height h / ⁇ o and with a suitable choice of the number N of the vertical radiator 4, the radiator impedance can be made much closer to the target impedance ZL for impedance matching.
  • Rs ZL rsm ZL * N 2 ⁇ 32 * H ⁇ o 2 * N 2
  • a comparison of the bandwidths of the impedance curves in the FIGS. 4b for the radiator according to the invention with the inductors 15 of about 25nH each and in FIG. 4a for the reference radiator 29, within the bounds of the determinable accuracy, the same values for the relative bandwidth of pulp 3.6% are obtained. This is each about the Frequency distances of the impedances with + 45 ° and -45 ° phase around the resonance frequency fo ⁇ 1,5GHz determined.
  • an antenna based on the reference radiator 29 with a matching network 35 for transforming the radiator impedance into the target impedance ZL undergoes a bandwidth reduction, which is not subject to a radiator according to the invention due to its favorable radiator impedance.
  • the additional advantage that the bandwidth factor is practically independent of the conductor width 8 in FIG. 2 . If the vertical radiators 4a-d according to the invention are attached approximately to the outer boundary of the ring line 2, then the currents on the outer boundary of the ring line contribute to the formation of the radiator properties, so that the bandwidth factor of the conductor width 8 is virtually independent to the special case that the ring conductor by a closed surface, as in FIG. 6b , is formed.
  • the impedances of the radiators according to the invention in the FIGS. 4b . 6a and 6b show in comparison with increasing ring conductor width 8 only insignificantly changing resonance resistance Rs at the frequency fo.
  • the bandwidth of the radiator according to the invention is mainly dependent on the relative radiator height, ie with (h / ⁇ ) 2 and the capacitance of the ring conductor 2 according to its outer boundary.
  • it is practically independent of the ring conductor width 8 and the diameter d of a mechanically intrinsically stable wire-shaped ring conductor 2, as can be seen from a comparison of the in the FIGS. 6a and 6b specified bandwidths. This results in the significant advantage in designing an antenna for vehicles that the space in the center Z of the radiator can be provided for combination with other radiators for other radio services.
  • the inventive advantage of the effortless adjustment of the impedance of the A radiator according to the invention at ZL 50 ohms compared to the reference radiator 29 with a VSWR value of more than 20 dB.
  • the VSWR values of the reference radiator 29 are far greater than the resonance frequency on average by about 20 dB, so that a radiator according to the invention is much more decoupled from adjacent antennas for other radio services, such as telephone services with strong transmission radiation.
  • the resonance resistance is within a large value range of h ', which is of interest for practical use.
  • h / ⁇ o can be designed in the vicinity of the target resistance ZL.
  • the dot-dash curve for the impedance of the monopole with roofing capacity as a reference radiator 29 with the same external dimensions shows the comparison of more than an order of magnitude deviating low values.
  • FIG. 7 the vertical radiation pattern of a radiator according to the invention is shown with an advantageously increased gain over a prior art antenna according to the prior art and
  • FIG. 8 shows the azimuthal circular diagram with the azimuthal fluctuation Gmax-Gmin ⁇ 0.26 dB.
  • the gain increase in the frequency environment of the resonant frequency f o is due to the spacing of the vertical radiators 4a-4c and their action as a radiator group with co-excited currents, but on the other hand causes only the above-mentioned slight azimuthal gain fluctuation at not too great a distance.
  • the invention thus has the advantage that the transverse extent of the ring conductor 2, which is related to the wavelength ⁇ o, is not limited to similarly small values, as is the case for its height h. This makes it possible to increase the bandwidth of the radiator at the same relative radiator height h / ⁇ , or alternatively to reduce the height further with the same bandwidth.
  • the in the FIGS. 4b . 6a and 6b given relative bandwidths Brel ⁇ 3,6% about the ratio between the length of the square boundary of the ring line 2 to the circumference of the circular loop smaller.
  • the capacitance of the ring conductor 2 is thus approximately given by the extended length of its outer boundary and contributes linearly to the formation of the bandwidth B of the impedance around the resonance frequency fo.
  • the azimuthal radiation pattern is given even with comparatively large transverse expansions of the ring conductor 2 as a circular diagram.
  • the ring conductor 2 is designed as a closed approximately wire-shaped ring, with which the vertical radiator 4 are galvanically connected.
  • This ring conductor 2 with radiators 4 can be economically punched from sheet metal and through subsequent bending of the radiator 4 are produced.
  • the conductive base in the region of the radiator 1 is designed as a printed circuit board.
  • the prefabricated radiator part can be easily connected to the lower ends of the vertical radiators with the inductors 15 - for example by soldering - whereby a mechanically extremely stable radiator construction is given.
  • This mechanical stability is of great advantage, in particular with regard to the narrow relative bandwidth of some radio services, which counteracts detuning due to mechanical vibrations and ensures high reproducibility in the production process.
  • the ring conductor 2 in the horizontal plane and its outer boundary be executed substantially symmetrical to its center Z, wherein the inner boundary of the ring conductor 2 inner is designed in such a way that along the Circumference, the ring conductor width B in each case is smaller than 1/4 of the measured over the center Z horizontal extension of the ring conductor.
  • the space around the center Z of the ring conductor 2 is advantageously available for the exemplary design of further antennas.
  • the similarity of the currents in the vertical radiators 4 is important for the resulting optimal support of the vertically polarized radiation.
  • This is particularly advantageous to achieve when the ring conductor 2 is circular or designed as a regular polygon with N corners and over the circumference L of the circle or at the corners of the N-corner over the circumference of the length L of the ring conductor 2 in number N mutually identical vertical radiators 4a-d in the same length elongated lengths L / N of the structure away from each other via the conductor loop coupling points 7a-d to the ring conductor 2 are galvanically coupled 6.
  • the resonance at the frequency fo is brought about by designing the inductively active components 13a-d of the vertical radiators 4a-d.
  • the vertical emitter 4a-d can also be connected to one Interruption point with an inductance 15a-d of the necessary inductive components 13a-d to be connected.
  • the components 13a-d inductively active in the vertical radiators 4b-d have approximately the same size in all vertical radiators 4a-d, so that-as already stated above-at resonance in these radiators 4a-d flow equal direction currents of about the same size.
  • this condition is not necessarily met meticulously for a basic perception of the advantages achieved by the invention in terms of a favorable radiator impedance.
  • optimum conditions can be achieved with regard to the radiator impedance and the azimuthal directional independence of the directional diagram.
  • the choice of an interruption point for switching on concentrated inductive components is carried out for the production of the radiator 1 particularly low at the lower end of a rod-shaped vertical radiator 4a-d.
  • a concentrated inductance 32 a-32 c between the lower end of the rod-shaped vertical radiator 4 a - d and the conductive base 6 and the terminal located there of the radiator feed 5 are connected.
  • the other terminal of the radiator feed 5 is formed on the conductive base 6.
  • the inductors 15a-d can advantageously be designed as printed inductances 32a-d on the electrically conductive base 6 designed as an electrically conductive printed circuit board, each at one end with the vertical radiator 4a-d and at the other End are connected to the electrically conductive base 6 and also designed on the coated circuit board a connection of the radiator feed 5.
  • the inductors 32a-d can be omitted if the inductively active components 13a-13d are each realized by shaping the vertical radiators 20.
  • vertical radiator parts 20 and horizontally extending radiator parts 21 are formed, so that the in FIG. 1 shown necessary inductive components 13a - 13c are achieved even at a small height h.
  • the design of the vertical radiator parts 20 and the horizontally extending radiator parts 21 in FIG. 9 also combined by oblique radiator parts 22, as in FIG. 10 represented, or done by meandering radiator parts.
  • a radiator 1 with such vertical radiators 4a-c can be produced, for example, economically from a piece punched from sheet metal and subsequent bending, and the vertical radiators are connected at their lower end to the conductive base 6 or to the radiator junction 5 formed there.
  • a particularly economical solution for use in vehicles is to be achieved by choosing the appropriate dimensions of the radiator 1 in such a way that at the radiator feed 5 adaptation to ZL without matching network 35 is given and the radiator feed 5 -.
  • the antenna connection point 34 forms an antenna 36 adapted to ZL.
  • the impedance matching to ZL can be effected simply by selecting the resonant frequency fo in such a way that the slight detuning of the resonance of the radiator occurring between the radiator feed station 5 and the frequency band of the radio service occurs at a slightly higher frequency f and the adjacent ground terminal 3a occurring impedance is inductive.
  • impedance matching to ZL can be achieved in a simple manner, whereby the radiator feed point 5 likewise forms the antenna connection point 34 of an antenna 36 adapted to ZL.
  • the ring conductor 2 is designed as a square, at the corners of each a ring line crosspoint 7 with a galvanically connected there vertical radiator 4, 4a-d is formed.
  • Three of the radiators 4, 4b-d are connected to the electrically conductive base 6 for coupling to a ground terminal 3b-d via an inductor 13b-d to the ground terminal 3b-d and a radiator 4, 4a, optionally over an inductor 13a connected to the radiator feed 5.
  • the resonance frequency fo is approximately equal to the center frequency f of the service and the pages of Squares are about the same ⁇ / 10 and the height h, 9 is chosen to be approximately equal to ⁇ o / 20.
  • a radiator with these external dimensions can advantageously be designed in such a way that there is impedance matching at ZL at the radiator feed point 5 and thus the antenna connection point 34 is provided by the latter.
  • a radiator according to the invention advantageously offers the possibility of sunk the radiator and to integrate without significant loss of its radiation properties in the vehicle body.
  • the ring conductor 2 is introduced in a further horizontal loop level E in the height h, 9 extending over the cavity base surface 6a in such a way that the conductive cavity base surface 6a, the projection surface of the ring conductor 2 on the below the conductive Base surface plane E1 located at least basal plane E2 and the cavity side surfaces 40 have at each point a contour in such a way that a sufficiently large cavity spacing 10 between the ring conductor 2 and the cavity 38 is given at each point.
  • a sinking of the radiation resistance Rs is associated with the recessed installation of a radiator.
  • the increase of the radiation resistance by a factor N 2 according to the invention relative to a reference radiator 29 is of particular importance.
  • the emitter 1 which is designed for vertical polarization for a radio service to the frequency fo, extended in its function for the reception of circularly polarized satellite radio signals of a satellite service at a frequency fs> fo, as exemplified in Fig. 14 is shown.
  • the phases of the currents in these radiators are set in such a way that the ring conductor 2 together with the conductive base.
  • a radiator for the reception of circularly polarized satellite signals is known from DE 10 2009 040 910 There, for example, in Fig. 17, wherein the feed is given to a vertical radiator via a capacitance and the connection of the other radiator to the electrically conductive base surface 6 also over capacity.
  • Fig. 14a Is the inductors 15a-d of the coupled to the conductive ground plane vertical radiator 4a-c and the one vertical radiator 4d with radiator feed 5 each have a capacitive element 26a-d connected in parallel.
  • Fig. 14b represented, in each case a dummy element circuit 27a-d given, which for the service at the frequency f continue to have the required inductive effect and at the frequency fs for the satellite service the capacitive effect determining the resonance and the direction of rotation of the rotating shaft.
  • the space which can be designed in the center of the ring conductor 2 is used for attaching a further vertically polarized antenna, as shown by way of example in FIG 15A is shown with a rod-shaped antenna 28.
  • a vertical substantially rod-shaped antenna for at least one further radio service can advantageously be designed along a vertical center line VZ.
  • the frequency-selective dipoles 25 are in the frequency ranges of other radio services low impedance and in the frequency range, which is associated with the radiator 1 with ring conductor 2, high impedance perform.
  • the design of rod-shaped, radiation-isolated antennas bridged by frequency-selectively bridged interruption points is known from the DE103 04 911 ,
  • the ring conductor 2 can essentially be defined by the boundary of a closed conductive surface, as in FIG Fig. 3 , the ring line coupling points 7a, 7b, 7c, 7d are each formed in the vicinity of this boundary.
  • the electrical properties such. As the radiation resistance Rs at the resonant frequency fo, are only insignificantly influenced by the representation of the ring conductor 2 as a closed surface due to the essential for the function currents along the boundary of the surface. This also applies to the relative radiator bandwidth Brel.
  • the bandwidth B can be theoretically maximally increased by additions to a matching network at the antenna connection point 34 assuming an arbitrarily complicated, but lossless matching network by a factor of 2 ⁇ / ln2, as cited in the cited document in the AEÜ is.
  • the magnification factors that can be achieved in practice are all the smaller, with reasonable economic outlay, the further the radiator impedance deviates from the target impedance ZL.
  • losses increase the bandwidth, but to the same extent reduce the radiation gain of an antenna.
  • the radiator 1 according to the invention is always superior to the reference radiator 29 with matching network even when supplementing with a matching network and taking into account losses in terms of radiation gain and achievable bandwidth.

Landscapes

  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Claims (15)

  1. Émetteur électrique (1) pour signaux radio polarisés verticalement pour un service de radio à largeur de bande de fréquences étroite autour d'une fréquence fo ayant la longueur d'onde dans l'espace libre λο dans la gamme de fréquences des GHz, comprenant au moins une boucle conductrice orientée sensiblement horizontalement, disposée au-dessus d'une surface de base conductrice (6), avec un point d'alimentation d'émetteur (5) pour l'excitation électromagnétique de la boucle conductrice par rapport à la surface de base conductrice (6), dans lequel
    - la boucle conductrice est formée par un conducteur annulaire (2) fermé de manière polygonale ou elliptique/circulaire s'étendant dans un plan sensiblement horizontal à une hauteur h inférieure à λο/6 au-dessus de la surface de base conductrice (6),
    - au moins trois émetteurs (4, 4a-d) s'étendant verticalement par rapport à la surface de base conductrice (6), qui sont répartis de manière approximativement uniforme sur la circonférence du conducteur annulaire (2) et sont couplés électromagnétiquement au conducteur annulaire (2) en des points couplage de boucle conductrice (7), sont présents, au moins deux des émetteurs verticaux (4, 4a-d) étant couplés électromagnétiquement à la surface de base électriquement conductrice (6) en des points de connexion de masse (3b-d) et un seul émetteur vertical (4a) étant excité à son extrémité inférieure par le point d'alimentation d'émetteur (5),
    - les émetteurs verticaux (4b-d) couplés à la surface de base électriquement conductrice (6), entre leurs points de couplage de boucle conductrice (7a-d) et le point de connexion de masse (3a, 3b), et l'émetteur vertical (4a) excité par le point d'alimentation d'émetteur (5), entre son point de couplage de boucle conductrice (7a) et le point d'alimentation d'émetteur (5), possèdent respectivement des composants inductivement actifs (13a-d), en sorte qu'il existe au point d'alimentation d'émetteur (5), à la fréquence fo, une résonance à faible impédance ayant le caractère d'une résonance série à laquelle les courants circulent en phase et dans le même sens dans les émetteurs verticaux.
  2. Émetteur selon la revendication 1,
    caractérisé en ce que
    le conducteur annulaire (2) est conçu plat dans le plan horizontal et sa bordure extérieure sensiblement symétrique par rapport à son centre Z, et sa bordure intérieure est conçue de telle sorte que, le long de la circonférence, la largeur de conducteur annulaire B soit chaque fois inférieure à 1/4 de l'extension horizontale du conducteur annulaire (2) mesurée passant par le centre Z du conducteur annulaire (2).
  3. Émetteur selon au moins l'une des revendications 1 ou 2,
    caractérisé en ce que
    le conducteur annulaire (2) est conçu circulaire ou sous la forme d'un polygone régulier à N angles et sur la circonférence L du cercle ou aux angles du polygone sur la circonférence de longueur (L) du conducteur annulaire (2), N émetteurs verticaux identiques (4a-d), éloignés les uns des autres de distances longitudinales de même longueur (L/N) de la structure de conducteur annulaire, sont couplés galvaniquement (6) au conducteur annulaire (2) par les points de couplage de boucle conductrice (7a-d) et la résonance à la fréquence fo est définie par la conception des composants inductivement actifs (13a-d) des émetteurs verticaux (4a-d).
  4. Émetteur selon au moins l'une des revendications 1 à 3,
    caractérisé en ce que,
    pour produire la résonance de l'émetteur (1), les émetteurs verticaux (4a-d) sont reliés chacun en un point d'interruption à une inductance (15a-d) de réactance inductive XL nécessaire pour cela,
    et / ou
    que les composants inductivement actifs dans les émetteurs verticaux (4b-d) possèdent approximativement la même grandeur dans tous les émetteurs verticaux (4a-d), en sorte qu'à la résonance des courants de même sens et approximativement de même grandeur circulent dans ces émetteurs (4a-d).
  5. Émetteur selon au moins l'une des revendications précédentes,
    caractérisé en ce que
    les composants inductivement actifs (15a-d) sont conçus comme des inductances concentrées (32a-32c) respectivement à l'extrémité inférieure des émetteurs verticaux.
  6. Émetteur selon au moins l'une des revendications précédentes,
    caractérisé en ce que
    la fréquence de résonance fo est choisie de telle sorte que le léger désaccord de la résonance de l'émetteur se produisant à une fréquence f légèrement supérieure dans la bande de fréquences du service de radio, qui apparaît entre le point d'alimentation d'émetteur (5) et le point de connexion de masse adjacent (3a), soit inductif de telle sorte que, lorsqu'une capacité est connectée en parallèle entre le point d'alimentation d'émetteur (5) et le point de connexion de masse adjacent (3a), il existe une adaptation d'impédance à une impédance cible prédéfinie ZL et le point d'alimentation d'émetteur (5) forme le point de connexion d'antenne (34) d'une antenne adaptée à ZL.
  7. Émetteur selon au moins l'une des revendications précédentes,
    caractérisé en ce que
    la fréquence de résonance fo est choisie de telle sorte que le léger désaccord de la résonance de l'émetteur se produisant à une fréquence f légèrement inférieure dans la bande de fréquences du service de radio, qui apparaît entre le point d'alimentation d'émetteur (5) et le point de connexion de masse adjacent (3a), soit capacitif de telle sorte que, lorsqu'une inductance est connectée en parallèle entre le point d'alimentation d'émetteur (5) et le point de connexion de masse adjacent (3a), il existe une adaptation d'impédance à une impédance cible prédéfinie ZL et le point d'alimentation d'émetteur (5) forme le point de connexion d'antenne (34) d'une antenne adaptée à ZL.
  8. Émetteur selon au moins l'une des revendications précédentes,
    caractérisé en ce que
    le conducteur annulaire (2) est conçu comme un carré à chacun des angles duquel est formé un point de couplage de conducteur annulaire (7) auquel est galvaniquement connecté un émetteur vertical (4, 4a-d), et trois émetteurs (4, 4a-d) sont chacun connectés à la surface de base électriquement conductrice (6) pour le couplage à un point de connexion de masse (3b-d) par une inductance (13b-d) en un point de connexion de masse (3b-d) et un émetteur (4, 4a) est relié au point d'alimentation d'émetteur (5) par une inductance (13a).
  9. Émetteur selon la revendication 8,
    caractérisé en ce que
    la fréquence de résonance fo est choisie approximativement égale à la fréquence centrale f du service de radio et les côtés du carré sont choisis approximativement égaux à λο/10 et la hauteur h approximativement égale à λο/20, en sorte qu'une adaptation d'impédance à une impédance cible prédéfinie ZL règne au point d'alimentation d'émetteur (5) et que celui-ci définit le point de connexion d'antenne (34).
  10. Émetteur selon au moins l'une des revendications précédentes,
    caractérisé en ce que
    les composants inductivement actifs comprennent des inductances (32a-d) qui sont conçues en technique de circuit imprimé sur la surface de base électriquement conductrice (6) réalisée sous la forme d'une carte de circuit imprimé revêtue de manière électroconductrice, lesquelles sont reliées chacune à une extrémité à l'émetteur vertical (4, 4a-d) et à l'autre extrémité à la surface de base électriquement conductrice (6), respectivement au point d'alimentation d'émetteur (5) également réalisé sur la carte de circuit imprimé revêtue.
  11. Émetteur selon au moins l'une des revendications précédentes,
    caractérisé en ce que
    les composants inductivement actifs (13a-g) nécessaires pour la résonance sont définis chacun par la mise en forme des émetteurs verticaux (4a-c) de telle sorte que des parties d'émetteur verticales (20) et des parties d'émetteur horizontales (21) ou des parties d'émetteur en méandres ou s'étendant obliquement sont présentes dans les émetteurs verticaux (4a-c).
  12. Émetteur selon au moins l'une des revendications précédentes,
    caractérisé en ce que
    la surface de base électriquement conductrice (6) s'étendant sensiblement dans un plan de surface de base (E1) est formée à l'emplacement du conducteur annulaire (2) comme une cavité électriquement conductrice (38) ouverte vers le haut, dont la surface de base de cavité électriquement conductrice (6a) s'étend dans un plan de surface de base (E2) situé dans la profondeur de cavité (12) parallèlement au plan de surface de base (E1) et au-dessous de celui-ci et dans laquelle le conducteur annulaire (2) est placé dans un autre plan de ligne annulaire horizontale (E) à la hauteur h de manière à s'étendre au-dessus de la surface de base de cavité (6a), et la surface de base de cavité (6a) recouvre au moins la surface de projection verticale du conducteur annulaire (2) sur le plan de surface de base (E2) situé au-dessous du plan de surface de base conductrice (E1) et les surfaces latérales de cavité électriquement conductrices (40) présentent en chaque point un contour de telle sorte qu'il existe une distance de cavité (10) suffisamment grande entre le conducteur annulaire (2) et la cavité (38) en chaque point.
  13. Émetteur selon au moins l'une des revendications précédentes,
    caractérisé en ce que
    l'émetteur (1) est conçu pour la réception supplémentaire de signaux radio par satellite à polarisation circulaire d'un service de radio par satellite à une fréquence fs > f, le conducteur annulaire (2) formant avec la surface de base conductrice (6) une ligne annulaire, en sorte qu'une structure de résonance est formée à la fréquence fs de telle sorte que, par alimentation par un des émetteurs verticaux (4d) avec point d'alimentation d'émetteur (5) sur la ligne annulaire, la distribution de courant d'une onde de ligne progressive est réglée dans une direction circonférentielle unique, dont la différence de phase par rapport à une circulation azimutale est exactement de 2π, un élément capacitif (26) étant connecté en parallèle aux inductances (15a-d) des émetteurs verticaux (4a-c) couplés au plan de base conducteur ainsi que de l'émetteur vertical (4d) avec point d'alimentation d'émetteur (5), en sorte que l'on obtient chaque fois un circuit d'éléments réactifs (27) qui possède toujours l'effet inductif nécessaire pour le service de radio à la fréquence f et possède l'effet capacitif déterminant la résonance et la direction circonférentielle de l'onde circulante à la fréquence fs pour le service de radio par satellite.
  14. Émetteur selon au moins l'une des revendications précédentes,
    caractérisé en ce
    qu'au centre Z du conducteur annulaire (2), le long d'une ligne centrale verticale VZ, une antenne verticale en forme de tige pour au moins un autre service de radio est divisée en sections conductrices séparées les unes des autres par des points d'interruption de telle sorte que les longueurs étirées (14) des sections conductrices (24) sont choisies non supérieures à 3/8 de la longueur d'onde λο et les points d'interruption sont shuntés par des dipôles sélectifs en fréquence (25) qui ont une faible impédance dans les gammes de fréquences des autres services de radio et une impédance élevée dans la gamme de fréquences associée à l'émetteur (1) avec conducteur annulaire (2).
  15. Émetteur selon au moins l'une des revendications précédentes,
    caractérisé en ce que
    le conducteur annulaire (2) est défini par la bordure d'une surface conductrice fermée et les points de couplage de ligne annulaire (7a, 7b, 7c, 7d) sont chacun formés à proximité de cette bordure.
EP13177848.2A 2012-07-29 2013-07-24 Emetteur électrique pour signaux radio polarisés verticalement Active EP2693565B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012014913.1A DE102012014913A1 (de) 2012-07-29 2012-07-29 Elektrisch kleiner Strahler für vertikal polarisierte Funksignale

Publications (2)

Publication Number Publication Date
EP2693565A1 EP2693565A1 (fr) 2014-02-05
EP2693565B1 true EP2693565B1 (fr) 2019-11-27

Family

ID=48877069

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13177848.2A Active EP2693565B1 (fr) 2012-07-29 2013-07-24 Emetteur électrique pour signaux radio polarisés verticalement

Country Status (3)

Country Link
US (1) US9331388B2 (fr)
EP (1) EP2693565B1 (fr)
DE (1) DE102012014913A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9847571B2 (en) * 2013-11-06 2017-12-19 Symbol Technologies, Llc Compact, multi-port, MIMO antenna with high port isolation and low pattern correlation and method of making same
US10158178B2 (en) 2013-11-06 2018-12-18 Symbol Technologies, Llc Low profile, antenna array for an RFID reader and method of making same
EP3370305B1 (fr) * 2015-10-26 2020-12-09 Alps Alpine Co., Ltd. Dispositif d'antenne
JP7224716B2 (ja) * 2017-03-29 2023-02-20 株式会社ヨコオ アンテナ装置
DE102017003072A1 (de) * 2017-03-30 2018-10-04 Heinz Lindenmeier Antenne für den Empfang zirkular polarisierter Satellitenfunksignale für die Satelliten-Navigation auf einem Fahrzeug
DE102017010514A1 (de) * 2017-11-10 2019-05-16 Heinz Lindenmeier Empfangsantenne für die Satellitennavigation auf einem Fahrzeug
US11411321B2 (en) 2019-12-05 2022-08-09 Qualcomm Incorporated Broadband antenna system
US11450964B2 (en) * 2020-09-09 2022-09-20 Qualcomm Incorporated Antenna assembly with a conductive cage
WO2023173834A1 (fr) * 2022-03-18 2023-09-21 荣耀终端有限公司 Système d'antenne mimo
CN114976601B (zh) * 2022-06-30 2024-06-07 河南工业大学 一种宽带圆极化天线

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6602498A (fr) * 1966-02-25 1967-08-28
US6693598B1 (en) * 2000-09-27 2004-02-17 Tyco Electronics Logistics Ag Omni directional antenna with multiple polarizations
JP2003110337A (ja) * 2001-09-28 2003-04-11 Mitsumi Electric Co Ltd 4点給電ループアンテナ
DE10304909B4 (de) 2003-02-06 2014-10-09 Heinz Lindenmeier Antenne mit Monopolcharakter für mehrere Funkdienste
DE10304911B4 (de) 2003-02-06 2014-10-09 Heinz Lindenmeier Kombinationsantennenanordnung für mehrere Funkdienste für Fahrzeuge
DE102008003532A1 (de) 2007-09-06 2009-03-12 Lindenmeier, Heinz, Prof. Dr. Ing. Antenne für den Satellitenempfang
US8319688B2 (en) * 2009-02-18 2012-11-27 Harris Corporation Planar slot antenna having multi-polarization capability and associated methods
EP2458679B1 (fr) * 2009-09-10 2016-07-27 Delphi Delco Electronics Europe GmbH Antenne pour la réception de signaux satellite circulaires polarisés
DE102010035934A1 (de) 2010-08-31 2012-03-01 Heinz Lindenmeier Empfangsantenne für zirkular polarisierte Satellitenfunksignale

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102012014913A1 (de) 2014-05-15
US9331388B2 (en) 2016-05-03
EP2693565A1 (fr) 2014-02-05
US20140028512A1 (en) 2014-01-30

Similar Documents

Publication Publication Date Title
EP2693565B1 (fr) Emetteur électrique pour signaux radio polarisés verticalement
EP2256864B1 (fr) Antenne destinée à la polarisation circulaire et dotée d'une surface de base conductrice
EP1842262B1 (fr) Antenne a orifice couple
EP2664025B1 (fr) Antenne de réception multibande pour la réception combinée de signaux satellites et de signaux radiophoniques à émission terrestre
EP1138097B1 (fr) Demi-cadre
DE102010035932B4 (de) Antenne für den Empfang zirkular polarisierter Satellitenfunksignale
EP2784874B1 (fr) Antenne monopôle à large bande pour deux bandes de fréquences séparées par un écart de fréquence dans la plage d'ondes décimétriques pour des véhicules
EP3440738B1 (fr) Dispositif d'antenne
EP3178129B1 (fr) Antenne unipolaire à bande large à structure multiple pour deux bandes de fréquence séparées par un espace blanc dans la plage d'ondes décimétriques, destinée à des véhicules
EP0761021B1 (fr) Antenne de faible hauteur de construction electrique
WO1998038694A1 (fr) Antenne accordee
DE102016204868B4 (de) Antennenvorrichtung
DE10304911A1 (de) Kombinationsantennenanordnung für mehrere Funkdienste für Fahrzeuge
DE10022107A1 (de) Integrierte Antenne für Mobilfunktelefone
DE2136759C2 (de) Antenne mit metallischem Rahmen und den Rahmen erregendem Unipol
EP3499640B1 (fr) Antenne à fente
DE102007055234A1 (de) Mehrbandiges Empfangsantennenmodul
EP3483983A1 (fr) Antenne réceptrice pour la navigation par satellite sur un véhicule
WO2004102742A1 (fr) Antenne multibande
DE10204079A1 (de) Mehrbandantenne mit parasitären Strahlern
DE102007061740B4 (de) Mehrbereichsantenne sowie Verfahren
EP3827478B1 (fr) Antenne à carte de circuit imprimé
DE112010004247T5 (de) Antenne mit verteilter Reaktanz

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140708

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180726

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 7/00 20060101AFI20190430BHEP

Ipc: H01Q 1/32 20060101ALN20190430BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190606

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1207762

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013013963

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191127

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200227

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200227

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200228

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200327

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200419

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013013963

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200929

Year of fee payment: 8

Ref country code: GB

Payment date: 20200727

Year of fee payment: 8

Ref country code: FR

Payment date: 20200723

Year of fee payment: 8

26N No opposition filed

Effective date: 20200828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20200727

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200724

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1207762

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200724

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013013963

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210724

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191127