EP3827478B1 - Antenne à carte de circuit imprimé - Google Patents

Antenne à carte de circuit imprimé Download PDF

Info

Publication number
EP3827478B1
EP3827478B1 EP19734345.2A EP19734345A EP3827478B1 EP 3827478 B1 EP3827478 B1 EP 3827478B1 EP 19734345 A EP19734345 A EP 19734345A EP 3827478 B1 EP3827478 B1 EP 3827478B1
Authority
EP
European Patent Office
Prior art keywords
antenna
circuit board
antenna structure
electrically conductive
free space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19734345.2A
Other languages
German (de)
English (en)
Other versions
EP3827478A1 (fr
Inventor
Josef Reitner
Ludwig STÖCKL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Hausgeraete GmbH filed Critical BSH Hausgeraete GmbH
Publication of EP3827478A1 publication Critical patent/EP3827478A1/fr
Application granted granted Critical
Publication of EP3827478B1 publication Critical patent/EP3827478B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/106Microstrip slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point

Definitions

  • the invention relates to an antenna for transmitting or receiving radio signals, which can be implemented on a circuit board.
  • An electronic device that is set up to communicate via a wireless communication network typically includes at least one antenna for receiving and/or transmitting radio signals.
  • the electronic device can be set up to receive or send radio signals over a large number of different frequency bands, in particular over two different frequency bands or frequency ranges.
  • the device can include a multi-band antenna, in particular a dual-band antenna.
  • Example dual-band antennas can be provided, for example, for the frequency bands 2.4 - 2.5 GHz and 5.1 - 5.8 GHz, i.e. for WLAN (Wireless Local Area Network).
  • Antennas typically require a reference ground or reference plane to function.
  • the size and shape of such a reference mass typically have a significant influence on the function and radiation characteristics of an antenna.
  • An antenna is often intended to be used as a circuit board structure or as an attached metal structure (e.g. as a stamped and bent part) in circuit boards of different sizes.
  • the different sized circuit boards represent different reference masses for an antenna.
  • a new antenna tuning is typically required for each circuit board geometry. Such antenna tuning can be accomplished by changing the antenna structure and/or by using a so-called “matching circuit”.
  • Another PCB antenna is in the CN 105 591 196 A disclosed.
  • the present document deals with the technical task of providing a (dual-band) antenna that can be integrated efficiently (in particular without the need for dedicated antenna tuning) on circuit boards of different dimensions.
  • a circuit board antenna comprises an electrically conductive first antenna structure on a first outer layer (in particular a metal layer) of a circuit board.
  • the circuit board antenna also includes an electrically conductive first reference region on the first outer layer.
  • the circuit board antenna includes an electrically conductive feed line to the first antenna structure.
  • the first reference area completely encloses the first antenna structure, apart from an insulating recess for the feed line, so that an electrically insulating first free space is formed between the first antenna structure and the first reference area.
  • a household appliance in particular a household appliance, which comprises a communication unit for wireless communication (in particular via WLAN), the communication unit having the circuit board antenna described in this document.
  • the present document deals with the provision of a (dual-band) antenna that can be efficiently integrated on differently sized and/or designed circuit boards.
  • the (dual-band) antenna should be designed in particular for WLAN radio communication in the 2.4GHz and 5GHz frequency bands.
  • Figures 1a and 1b show an exemplary antenna 100, which is integrated on a circuit board 101. Show in particular Fig. 1a the (electrically conductive) upper layer 110 of the circuit board 101 and Fig. 1b the (electrically conductive) lower layer 120 of the circuit board. Like in the Figures 1c and 1d shown, there are one or more dielectric layers 130 and possibly one or more (electrically conductive) intermediate layers 140 between the upper layer 110 and the lower layer 120.
  • the electrically conductive layers 110, 120, 140 can be a layer made of metal, in particular copper , exhibit. The metal can be removed (eg, etched away) in portions of the layers 110, 120, 140 to form different electrically conductive portions within a layer 110, 120, 140, the portions being electrically isolated from one another.
  • the upper layer 110 has an electrically conductive (first) antenna structure 113, which is isolated from an electrically conductive (first) reference region 111 via an (electrically non-conductive) (first) free space 112.
  • the reference area 111 encloses the antenna structure 113 as completely as possible.
  • the reference area 111 surrounding the antenna structure 113 is preferably only interrupted at one point in order to form a free space or a recess 117 through which an electrically conductive feed line 115 can be guided to the antenna structure 113.
  • the antenna structure 113 has a rectangular shape.
  • the antenna structure 113 is composed of two rectangles 118, 119, each of which has a specific width and a specific length, the width being smaller than the length.
  • the two rectangles 118, 119 are arranged one behind the other along the length of the rectangles 118, 119, so that an antenna structure 113 results with a total length which corresponds to the sum of the length of the two rectangles 118, 119.
  • the width of the second rectangle 119 is smaller as the width of the first rectangle 118.
  • the antenna structure 113 can thus be used for transmitting or receiving signals in a specific frequency range (approximately 5.1 - 5.8 GHz).
  • the antenna structure 113 can form a ⁇ /4 radiator for a specific frequency range due to the total length of the antenna structure 113.
  • the free space 112 can be used as a (slot) antenna for a wider frequency range (approximately 2.4 - 2.5 GHz).
  • the free space 112 can have a certain length, so that the free space 112 forms a ⁇ /4 radiator for a further frequency range.
  • the antenna structure 113 can be electrically conductively connected to the reference area 111 via an electrically conductive web (in particular via a short-circuit web) 116.
  • the electrically conductive web 116 can be arranged at one end of the antenna structure 113, in particular at the narrowest edge of the antenna structure 113.
  • the antenna structure 113 can thus form a (planar) inverted-F antenna.
  • the impedance of the antenna structure 113 can be trimmed to the desired value (e.g. 50 ohms) via the distance between the web 116 and the feed point or feed line 115.
  • electrostatic discharges can largely be kept away from the transmitting/receiving electronics of the antenna 100 via this short-circuit web 116.
  • Fig. 1b shows the lower layer 120 of the circuit board 101.
  • the lower layer 120 is constructed essentially identically to the upper layer 110 (except that a feed line 112 and the free space 117 required for this are additionally provided on the upper layer 110).
  • This results in a (second) reference area 121 which can correspond to the (first) reference area 111 of the upper layer 110.
  • the (second) antenna structure 123 of the lower layer 120 can be dimensioned like the (first) antenna structure 113 of the upper layer 110.
  • he can (second) free space 122 of the lower layer 120 can be dimensioned like the (first) free space 112 of the upper layer 110.
  • the lower layer 120 can also have an electrically conductive web 126 between the antenna structure 123 and the reference area 121.
  • the reference area 111 of the upper layer 110 is electrically conductively connected to the reference area 121 of the lower layer 120 via one or more vias or plated-through holes 114.
  • the vias or plated-through holes 114 are in the Figures 1a and 1b shown as points.
  • the antenna structure 113 of the upper layer 110 is electrically conductively connected to the antenna structure 113 of the lower layer 120 via one or more vias or plated-through holes 114.
  • the web 116 of the upper layer 110 can also be electrically conductively connected to the web 126 of the lower layer 120 via one or more vias or plated-through holes 114.
  • the exact position of the one or more vias or plated-through holes 114 may vary depending on the via technology.
  • FIGS. 1c and 1d show exemplary cross sections through exemplary circuit boards 101 with antenna structures 113, 123.
  • a circuit board 101 has a dielectric and/or electrically insulating layer 130 between two electrically conductive layers 110, 120.
  • the circuit board 101 has (at least) an electrically conductive intermediate layer 140 between the upper layer 110 and the lower layer 120, which is separated from the upper layer 110 and the lower layer 120 by a dielectric layer 130.
  • Fig. 1d illustrates the area 141 in which the in the Figures 1a and 1b antenna structure 113, 123 shown including the free area 112, 122 are arranged.
  • This area 141 of an intermediate layer 140 is typically to be left out, so that the intermediate layer 140 has no electrically conductive material (in particular no copper) in this area 141.
  • the remaining region 142 of an intermediate layer 140 can be electrically conductively connected to the reference region 111, 121 of the upper layer 110 and the lower layer 120 via the vias or plated-through holes 114.
  • the above values can vary by up to ⁇ 10%. Furthermore, the values can be scaled with a common real-valued factor F.
  • a planar circuit board antenna structure 113, 123 is thus described, which is surrounded or surrounded by the reference ground (i.e. by a reference area 111, 121).
  • the reference areas 111, 121 can be electrically conductively coupled to mass or ground.
  • the properties of the antenna 100 become independent of the size of the reference ground of a circuit board 101.
  • the antenna 100 can be efficiently installed in circuit boards 101 of different sizes without having to change the antenna structure 113, 123 and/or a matching circuit. Consequently, a module approval for the described antenna 100 can be used for different overall devices regardless of the specific installation situation.
  • a printed circuit board 101 typically includes an electrically conductive first outer layer 110 (e.g. a front layer) and an electrically conductive second outer layer 120 (e.g. a bottom layer).
  • the one or more layers 110, 120 may be electrically isolated from one another by one or more dielectric layers 130.
  • the layers 110, 120 may comprise an electrically conductive material, in particular copper.
  • the electrically conductive material can be removed at least in areas from the respective layer 110, 120, in particular in order to form a free space 112 between an antenna structure 113 and a reference area 111.
  • the circuit board antenna 100 includes an electrically conductive first antenna structure 113 on the first outer layer 110 of the circuit board 101.
  • the first antenna structure 113 can have an elongated shape (eg like a dipole antenna).
  • the circuit board antenna 100 has an electrically conductive first reference region 111 on the first outer layer 110.
  • the first reference area 111 can be electrically conductively connected to a mass or ground of the circuit board 101.
  • the circuit board antenna 100 has an electrically conductive feed line 115 to the first antenna structure 113.
  • the feed line 115 can essentially be arranged perpendicular to the longitudinal orientation of the first antenna structure 113.
  • a radio signal received by the first antenna structure 113 can be coupled out via the feed line 115.
  • a radio signal to be sent from the first antenna structure 113 can be fed into the first antenna structure 113 via the feed line 115.
  • the first reference area 111 (essentially) completely encloses the first antenna structure 113 apart from an insulating recess 117 for the feed line 115. This results in an electrically insulating first free space 112 between the first antenna structure 113 and the first reference area 111.
  • the first free space 112 can be adapted to the shape of the first antenna structure 113.
  • the antenna structure 113 may have an elongated, rectangular shape.
  • the first free space can have an elongated, rectangular shape.
  • the first antenna structure 113 can thus be positioned in a defined manner over a defined first free space to a reference mass or reference plane (i.e. the first reference area 111).
  • the first reference area 111 can form a reference ground for the first antenna structure 113, so that the circuit board antenna 100 is independent of the size of the reference ground. This enables efficient integration of the first antenna structure 113 into different circuit board designs.
  • the circuit board antenna 100 may include an electrically conductive second antenna structure 123 on the second outer layer 120 of the circuit board 101. Furthermore, the circuit board antenna 100 may include an electrically conductive second reference region 121 on the second outer layer 120. The second reference area 121 can (essentially) completely enclose the second antenna structure 123, so that an electrically insulating second free space 112 results between the second antenna structure 123 and the second reference area 121.
  • the first antenna structure 113 can be electrically conductively connected to the second antenna structure 113 via one or more plated-through holes 114. Alternatively or additionally, the first reference area 111 can be electrically conductively connected to the second reference area 121 via one or more plated-through holes 114.
  • the second antenna structure 123 is dimensioned essentially identically to the first antenna structure 113, apart from the feed line 115.
  • the second free area 122 is dimensioned essentially identically to the first free area 112, apart from the insulating recess 117 for the feed line 115. In this way, the same radiation characteristics can be achieved on both sides of the circuit board 101.
  • the first antenna structure 113 can be essentially rectangular, wherein the length 203 of the first antenna structure 113 can be (significantly) larger than the width 201, 214 of the first antenna structure 113 (e.g. by a factor of 2, 3, 4 or more).
  • the first free space 112 can be essentially rectangular, wherein the length 212 of the first free space 112 can be greater than the width 211 of the first free space 112 (e.g. by a factor of 2, 3, 4 or more).
  • the first antenna structure 113 can form a dual-band antenna for a first frequency range and for a second frequency range.
  • the first frequency range can include or be in particular 2.4 - 2.5 GHz and the second frequency range in particular 5.1 - 5.8 GHz.
  • the first antenna structure 113 can have a first width 201 in a first area 118 and a (different) second width 214 in a second area 119, the second width 214 being smaller than the first width 201. Furthermore, the first antenna structure 113 can have a total length 213, and the first region 118 of the first antenna structure 113 can have a partial length. The total length 213 of the first antenna structure 113 may depend on the second frequency range in which the antenna 100 is intended to transmit and/or receive. In particular, the total length 213 of the first antenna structure 113 can be such that the first antenna structure 113 forms a ⁇ /4 radiator with respect to the second frequency range. In this way, a multi-band antenna can be provided in an efficient and precise manner.
  • the widths 201, 214 and/or the partial length of the first region 118 can be used to adjust the bandwidth of the antenna structure 113 to the bandwidth of the second frequency range.
  • the first free space 112 between the first antenna structure 113 and the first reference area 111 can be used as a (slot) antenna for the first frequency range.
  • the width 211 and/or the (total) length 212 of the first free space 112 can be adjusted.
  • the positioning of the first antenna structure 113 within the first free space 112 can be adjusted.
  • the first antenna structure 113 can have a first width 201 with a value of F*2.10mm ⁇ 10% in the first area 118.
  • the first antenna structure 113 in the second area 119 can have a second width 214 with a value of F*1.77mm ⁇ 10%.
  • the first antenna structure 113 can have a total length 203 with a value of F*12.52mm ⁇ 10%.
  • the second region 119 of the first antenna structure 113 can have a partial length 204 with a value of F*4.40mm ⁇ 10%.
  • the first free space 112 can have a total width 211 with a value of F*30.00mm ⁇ 10%.
  • the first free space 112 can have a total length 212 with a value of F*5.50mm ⁇ 10%.
  • a circuit board antenna 100 can be provided with one or more defined frequency bands, which can be efficiently integrated into different circuit board designs.
  • first outer layer 110 and the second outer layer 120 are typically each covered by an electrically conductive layer, in particular formed by a copper layer, a circuit board 101. Furthermore, the first outer layer 110 and the second outer layer 120 are typically insulated from each other by at least one dielectric layer 130.
  • a circuit board 101 may have at least one electrically conductive intermediate layer 140 (e.g. a copper layer) which is arranged between the first outer layer 110 and the second outer layer 120.
  • the intermediate layer 140 then preferably has no electrically conductive material (in particular no copper) in a region 141 of the first antenna structure 131 and the first free space 112.
  • the intermediate layer 140 can be electrically conductively connected to the first reference area 111 in an area 142 of the first reference area 111 via one or more plated-through holes 114. So even with a circuit board 101 with one or more intermediate layers 140, a circuit board antenna 100 can be provided in an efficient and precise manner.
  • the first antenna structure 113 can be electrically conductively connected to the first reference area 111 via an electrically conductive web 116.
  • the web 116 can have a significantly greater length than width, in particular by a factor of 10 or more.
  • the web 116 can run parallel to the feed line 115.
  • the web 116 can run perpendicular to the longitudinal direction of the first antenna structure 113.
  • the web 116 can be arranged at one end of the first antenna structure 113 (with respect to the longitudinal direction of the first antenna structure 113).
  • the present document further describes a household appliance, in particular a household appliance, which includes a communication unit for wireless communication, the communication unit having the circuit board antenna 100 described in this document.

Landscapes

  • Details Of Aerials (AREA)

Claims (13)

  1. Antenne de circuit imprimé (100), dans laquelle
    - l'antenne de circuit imprimé (100) comprend une première structure d'antenne électro-conductrice (113) sur une première couche externe (110) d'un circuit imprimé (101) ;
    - l'antenne de circuit imprimé (100) comprend une première zone de référence électro-conductrice (111) sur la première couche externe (110) ;
    - l'antenne de circuit imprimé (100) comprend une ligne d'alimentation électro-conductrice (115) vers la première structure d'antenne (113) ;
    - la première zone de référence (111) entoure entièrement la première structure d'antenne (113) à l'exception d'un évidement isolant (117) pour la ligne d'alimentation (115), de sorte que, entre la première structure d'antenne (113) et la première zone de référence (111), se forme un premier espace libre électriquement isolant (112) ;
    - l'antenne de circuit imprimé (100) comprend une deuxième structure d'antenne électro-conductrice (123) sur une deuxième couche externe (120) du circuit imprimé (101) ;
    - l'antenne de circuit imprimé (100) comprend une deuxième zone de référence électro-conductrice (121) sur la deuxième couche externe (120) ;
    - la deuxième zone de référence (121) entoure entièrement la deuxième structure d'antenne (123), de sorte que, entre la deuxième structure d'antenne (123) et la deuxième zone de référence (121), se forme un deuxième espace libre électriquement isolant (112) ;
    - la première structure d'antenne (113) est reliée de manière électro-conductrice avec la deuxième structure d'antenne (113) de l'antenne de circuit imprimé (100) par l'intermédiaire d'un ou plusieurs vias (114) ; et
    - la première zone de référence (111) est reliée de manière électro-conductrice avec la deuxième zone de référence (121) par l'intermédiaire d'un ou plusieurs vias (114) de l'antenne de circuit imprimé (100),
    - caractérisé en ce que
    - la première structure d'antenne (113) présente, dans une première zone (118), une première largeur (201) avec une valeur de F*2,10 mm ± 10 %; et
    - la première structure d'antenne (113) présente, dans une deuxième zone (119), une deuxième largeur (214) avec une valeur de F*1,77 mm ± 10 %; et
    - la première structure d'antenne (113) présente une longueur totale (203) avec une valeur de F*12,52 mm ± 10 %; et
    - la deuxième zone (119) de la première structure d'antenne (113) présente une longueur partielle (204) avec une valeur de F*4,40 mm ± 10 %; et
    - F est un facteur de mise à l'échelle à valeur réelle quelconque, plus particulièrement avec F = 1.
  2. Antenne de circuit imprimé (100) selon la revendication 1, dans laquelle
    - la deuxième structure d'antenne (123) est dimensionnée de manière globalement identique à la première structure d'antenne (113), excepté la ligne d'alimentation (115) ; et/ou
    - le deuxième espace libre (122) est dimensionné de manière globalement identique au premier espace libre (112), excepté l'évidement isolant (117) pour la ligne d'alimentation (115).
  3. Antenne de circuit imprimé (100) selon l'une des revendications précédentes, dans laquelle
    - la première structure d'antenne (113) est globalement rectangulaire et/ou
    - le premier espace libre (112) est globalement rectangulaire ; et
    - une longueur (212) du premier espace libre (112) est supérieure à une largeur (211) du premier espace libre (112).
  4. Antenne de circuit imprimé (100) selon l'une des revendications précédentes, dans laquelle
    - la première structure d'antenne (113) constitue une antenne bibande pour une première plage de fréquences et pour une deuxième plage de fréquences.
  5. Antenne de circuit imprimé (100) selon la revendication 4, dans laquelle
    - la première plage de fréquences est de 2,4 - 2,5 GHz et la deuxième plage de fréquences est de 5,1 - 5,8 GHz.
  6. Antenne de circuit imprimé (100) selon l'une des revendications précédentes, dans laquelle
    - le premier espace libre (112) présente une longueur totale (212) ; et
    - la longueur totale (212) du premier espace libre (112) dépend d'une première plage de fréquences dans laquelle l'antenne (100) doit émettre et/ou recevoir.
  7. Antenne de circuit imprimé (100) selon l'une des revendications précédentes, dans laquelle la longueur totale (203) de la première structure d'antenne (113) dépend d'une deuxième plage de fréquences dans laquelle l'antenne (100) doit émettre et/ou recevoir.
  8. Antenne de circuit imprimé (100) selon l'une des revendications précédentes, dans laquelle
    - le premier espace libre (112) présente une largeur totale (211) avec une valeur de F*30,00 mm ± 10 % ; et
    - le premier espace libre (112) présente une longueur totale (212) avec une valeur de F*5,50 mm ± 10 %.
  9. Antenne de circuit imprimé (100) selon l'une des revendications précédentes, dans laquelle
    - la première couche externe (110) et la deuxième couche externe (120) sont constituées chacune d'une couche électro-conductrice, plus particulièrement d'une couche de cuivre, du circuit imprimé (101) ; et/ou
    - la première couche externe (110) et la deuxième couche externe (120) sont isolées l'une de l'autre par au moins une couche diélectrique (130).
  10. Antenne de circuit imprimé (100) selon la revendication 9, dans laquelle
    - le circuit imprimé (101) comprend au moins une couche intermédiaire électro-conductrice (140) qui est disposée entre la première couche externe (110) et la deuxième couche externe (120) ; et
    - la couche intermédiaire (140) ne présente, dans une zone (141) de la première structure d'antenne (131) et du premier espace libre (112), aucun matériau électro-conducteur ; et/ou
    - la couche intermédiaire (140) est reliée de manière électro-conductrice, dans une zone (142) de la première zone de référence (111), avec la première zone de référence (111), par l'intermédiaire d'un ou plusieurs vias (114).
  11. Antenne de circuit imprimé (100) selon l'une des revendications précédentes, dans laquelle
    - la première structure d'antenne (113) est reliée de manière électro-conductrice avec la première zone de référence (111) par l'intermédiaire d'une entretoise électro-conductrice (116) ;
    - l'entretoise (116) présente une longueur nettement supérieure à la largeur, plus particulièrement avec un facteur de 10 ou plus ;
    - l'entretoise (116) s'étend parallèlement à la ligne d'alimentation (115) ;
    - la ligne d'alimentation (115) s'étend perpendiculairement à une direction longitudinale de la première structure d'antenne (113) ; et
    - l'entretoise (116) est disposée à une extrémité de la première structure d'antenne (113).
  12. Antenne de circuit imprimé (100) selon l'une des revendications précédentes, dans laquelle la première zone de référence (111) constitue une masse de référence pour la première structure d'antenne (113), de sorte que l'antenne de circuit imprimé (100) est indépendante d'une valeur de la masse de référence.
  13. Appareil domestique qui comprend une unité de communication avec une antenne de circuit imprimé (100) selon l'une des revendications précédentes.
EP19734345.2A 2018-07-24 2019-06-25 Antenne à carte de circuit imprimé Active EP3827478B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018212319.5A DE102018212319A1 (de) 2018-07-24 2018-07-24 Leiterplatten-Antenne
PCT/EP2019/066813 WO2020020556A1 (fr) 2018-07-24 2019-06-25 Antenne à carte de circuit imprimé

Publications (2)

Publication Number Publication Date
EP3827478A1 EP3827478A1 (fr) 2021-06-02
EP3827478B1 true EP3827478B1 (fr) 2023-09-27

Family

ID=67107422

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19734345.2A Active EP3827478B1 (fr) 2018-07-24 2019-06-25 Antenne à carte de circuit imprimé

Country Status (3)

Country Link
EP (1) EP3827478B1 (fr)
DE (1) DE102018212319A1 (fr)
WO (1) WO2020020556A1 (fr)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105591196A (zh) * 2015-12-12 2016-05-18 浙江利尔达物联网技术有限公司 一种多面pcb天线

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2783115B1 (fr) * 1998-09-09 2000-12-01 Centre Nat Rech Scient Antenne perfectionnee
AU2012330892B2 (en) * 2011-11-04 2017-02-02 Dockon Ag Capacitively coupled compound loop antenna
TW201427181A (zh) * 2012-12-25 2014-07-01 Compal Electronics Inc 多頻天線
KR20160137550A (ko) * 2014-03-26 2016-11-30 톰슨 라이센싱 유전체 로딩에 의한 안테나 구조물
JP5824563B1 (ja) * 2014-09-22 2015-11-25 学校法人智香寺学園 小型スロット型アンテナ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105591196A (zh) * 2015-12-12 2016-05-18 浙江利尔达物联网技术有限公司 一种多面pcb天线

Also Published As

Publication number Publication date
EP3827478A1 (fr) 2021-06-02
DE102018212319A1 (de) 2020-01-30
WO2020020556A1 (fr) 2020-01-30

Similar Documents

Publication Publication Date Title
EP1829158B1 (fr) Structure d'antenne disque unipolaire
EP1195845B1 (fr) Antenne radioélectrique miniaturisée
EP0952625B1 (fr) Antenne pour plusieurs services radio
DE69628392T2 (de) Antenne mit zwei Resonanzfrequenzen
DE69835246T2 (de) Doppelresonanzantennenstruktur für mehrere Frequenzbereiche
DE102005010894B4 (de) Planare Mehrbandantenne
EP2256864B1 (fr) Antenne destinée à la polarisation circulaire et dotée d'une surface de base conductrice
EP1204160B1 (fr) Antenne hyperfréquence multibandes
DE102007056258B4 (de) Chipantenne und zugehörige Leiterplatte für ein mobiles Telekommunikationsgerät
DE60211889T2 (de) Breitbandantenne für die drahtlose kommunikation
EP3440738B1 (fr) Dispositif d'antenne
DE602005002330T2 (de) Logarithmisch periodische Mikrostreifengruppenantenne mit geerdetem halbkoplanaren Übergang von Wellenleiter auf Mikrostreifenleitung
DE102005015561A1 (de) Interne Breitbandantenne
EP2693565B1 (fr) Emetteur électrique pour signaux radio polarisés verticalement
DE60213902T2 (de) M-förmige Antenne
DE10205358A1 (de) Mäanderförmige Dualband-Antenne
DE10143168A1 (de) Schaltungsplatine und SMD-Antenne hierfür
EP1024552A2 (fr) Antenne pour terminaux de radiocommunication sans fil
DE10304911A1 (de) Kombinationsantennenanordnung für mehrere Funkdienste für Fahrzeuge
EP1955406B1 (fr) Antenne omnidirectionnelle multibande
DE112013002000T5 (de) Antennenvorrichtung
DE60212429T2 (de) Dielektrische antenne
DE19729664C2 (de) Planare Breitbandantenne
EP1619751B1 (fr) Antenne à large bande et à profil bas
DE102007055327A1 (de) Externes mehrbandiges Funkantennenmodul

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210224

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220509

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230512

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019009497

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231227

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231228

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240127

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240129

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230927