EP2247662A2 - Compositions thermoplastiques a base d'amidon soluble et procede de preparation de telles compositions - Google Patents

Compositions thermoplastiques a base d'amidon soluble et procede de preparation de telles compositions

Info

Publication number
EP2247662A2
EP2247662A2 EP09706042A EP09706042A EP2247662A2 EP 2247662 A2 EP2247662 A2 EP 2247662A2 EP 09706042 A EP09706042 A EP 09706042A EP 09706042 A EP09706042 A EP 09706042A EP 2247662 A2 EP2247662 A2 EP 2247662A2
Authority
EP
European Patent Office
Prior art keywords
starch
composition according
starches
weight
biodegradable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09706042A
Other languages
German (de)
English (en)
Inventor
Léon Mentink
Didier Lagneaux
Jérôme GIMENEZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roquette Freres SA
Original Assignee
Roquette Freres SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roquette Freres SA filed Critical Roquette Freres SA
Publication of EP2247662A2 publication Critical patent/EP2247662A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0895Manufacture of polymers by continuous processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • C08G18/6484Polysaccharides and derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/04Starch derivatives, e.g. crosslinked derivatives

Definitions

  • the present invention relates to novel starch-based compositions and thermoplastic starch compositions obtained therefrom, as well as processes for the preparation thereof.
  • thermoplastic composition in the present invention means a composition which reversibly softens under the action of heat and hardens on cooling. It has at least one so-called glass transition temperature (Tg) below which the amorphous fraction of the composition is in the brittle glassy state, and above which the composition can undergo reversible plastic deformations.
  • Tg glass transition temperature
  • the glass transition temperature or at least one of the glass transition temperatures of the starch-based thermoplastic composition of the present invention is preferably from -50 to 150 ° C.
  • This starch-based composition can, of course, be shaped by the processes traditionally used in plastics (extrusion, injection, molding, blowing, calendering, etc.). Its viscosity, measured at a temperature of 100 0 C to 200 0 C, is generally between 10 and 10 6 Pa. S.
  • said composition is "hot melt”, that is to say that it can be shaped without applying significant shear forces, that is to say by simple flow or by simply pressing the melt.
  • Its viscosity measured at a temperature of 100 0 C to 200 0 C, is generally between 10 and 10 3 Pa. S.
  • soluble starch means any polysaccharide material derived from starch, having, at 20 ° C., a fraction soluble in a solvent chosen from demineralized water, ethyl acetate, propyl acetate, butyl acetate, diethyl carbonate, propylene carbonate, dimethyl glutarate, triethyl citrate, dibasic esters, dimethyl sulfoxide (DMSO), dimethyl isosorbide, glycerol triacetate, diacetate isosorbide, isosorbide dioleate and methyl esters of vegetable oils, at least 5% by weight.
  • This soluble fraction is preferably greater than 20% by weight and in particular greater than 50% by weight.
  • Soluble starch is used according to the invention in solid form, preferably substantially anhydrous, that is to say not dissolved in an aqueous or organic solvent. It is therefore important not to confuse, throughout the description that follows, the term “soluble” with the term “dissolved”.
  • plasticizer of starch means any molecule, preferably organic, of low molecular weight, that is to say preferably having a molecular weight of less than 5000, in particular less than 1000, which, when it is incorporated into the starch by thermomechanical treatment at a temperature between 20 and 200 ° C. results in a decrease in the glass transition temperature and / or a reduction in the crystallinity of this starch.
  • a soluble starch in the meaning of the invention, generally weakly crystalline, the incorporation of the plasticizer leads to a disappearance of a possible crystallinity residual and to obtain a totally amorphous state.
  • the plasticizer preferably does not include water.
  • non-biodegradable non-starchy polymer means any organic polymer other than starch or starch derivatives, considered as non-biodegradable or non-compostable in the sense of EN standards.
  • This non-biodegradable non-starchy polymer does not include, in particular, natural polymers extracted from plants, animal tissues or microorganisms, polyvinyl alcohol and biodegradable polyesters such as poly (lactic acid) (PLA), polycaprolactones (PCL), poly (butylene succinate adipate) (PBSA), poly (butylene adipate terephthalate) (PBAT), polyhydroxyalkanoate (PHA), especially polyhydroxybutyrate (PHB) and polyhydroxybutyrate-co-hydroxyvalerate (PHBV).
  • PLA poly (lactic acid)
  • PCL polycaprolactones
  • PBSA poly (butylene succinate adipate)
  • PBAT poly (butylene adipate terephthalate)
  • PHA polyhydroxyalkanoate
  • PHB polyhydroxybutyrate
  • PHBV polyhydroxybutyrate-co-hydroxyvalerate
  • the non-biodegradable non-starchy polymer carries active hydrogen functions, that is to say functions having at least one hydrogen atom that can be displaced if a chemical reaction takes place between the carrier atom. of this hydrogen atom and another reactive function.
  • the functions with active hydrogen are, for example, hydroxyl, protonic acid, urea, urethane, amide, amine or thiol functions.
  • This definition also encompasses in the present invention any non-starchable non-biodegradable polymer carrying functional groups capable of giving, in particular by hydrolysis, such active hydrogen functions.
  • binding agent any molecule carrying at least two functional groups, free or masked, capable of reacting with molecules carrying active hydrogen functions, such as, in particular, macromolecules of starch. This binding agent therefore allows, by formation of covalent bonds, the bridging of at least a portion of the soluble starch macromolecules with each other and optionally with the non-starchable non-starchy polymer present in the composition.
  • the binding agent is advantageously capable of reacting with this plasticizer to fix it on the starch and / or on the non-biodegradable non-starchy polymer.
  • This binding agent is distinguished from adhesion agents, physical compatibilizers or grafting agents in that they either create weak bonds (non-covalent) or carry only a single reactive function .
  • Starch is a raw material with the advantages of being renewable, biodegradable and available in large quantities at an economically attractive price compared to the oil and gas used as raw materials for today's plastics.
  • the first starch-based compositions developed were about thirty years ago.
  • the starches were then employed in the form of mixtures with synthetic polymers such as polyethylene, as filler, in the native granular state.
  • the native starch is then preferably dried to a moisture content of less than 1% by weight, to reduce its hydrophilicity.
  • it can also be coated with fatty substances (fatty acids, silicones, siliconates) or be modified on the surface of the grains by siloxanes or isocyanates.
  • the materials thus obtained generally contained approximately 10%, at most 20% by weight of granular starch, because beyond this value, the mechanical properties of the composite materials obtained became too imperfect and lowered compared with those of the synthetic polymers forming the matrix.
  • polyethylene-based compositions are only biodegradable and non-biodegradable as expected, so that the expected growth of these compositions has not occurred.
  • biodegradable polyesters such as polyhydroxybutyrate-co-hydroxyvalerate (PHBV) or poly (lactic acid) (PLA).
  • thermoplastic starches although they may be to some extent modulated by the choice of starch, plasticizer and the rate of use of the latter, are generally rather poor because the materials thus obtained are always very highly viscous at high temperature (120 0 C to 170 0 C) and very fragile, too brittle and very hard and low film-forming at low temperature, that is to say below the temperature of glass transition or the highest glass transition temperature.
  • thermoplastic starches are very low, still less than about 10%, and this even with a very high plasticizer content of the order of 30%.
  • the elongation at break of low density polyethylenes is generally between 100 and 1000%.
  • thermoplastic starches decreases dramatically as the level of plasticizer increases. It has an acceptable value, of the order of 15 to 60 MPa, for a plasticizer content of 10 to 25%, but decreases unacceptably beyond 30%.
  • these thermoplastic starches have been the subject of numerous studies aimed at developing biodegradable and / or water-soluble formulations having better mechanical properties by physical mixing of these thermoplastic starches, or with polymers of petroleum origin such as polyvinyl acetate (PVA), polyvinyl alcohol
  • PVOH polycaprolactones
  • PBAT poly (butylene adipate terephthalate)
  • PBS poly (butylene succinate adipate)
  • polyesters of renewable origin such as poly (lactic acid) (PLA) or microbial polyhydroxyalkanoates (PHA, PHB and PHBV), or with natural polymers extracted from plants or animal tissues.
  • thermoplastic starches are very hydrophilic and are therefore very incompatible with synthetic polymers. It follows that the mechanical properties of such mixtures, even with the addition of compatibilizing agents such as, for example, copolymers comprising hydrophobic units and alternating hydrophilic units such as ethylene / acrylic acid (EAA) copolymers, or even cyclodextrins. or organosilanes, remain quite limited.
  • compatibilizing agents such as, for example, copolymers comprising hydrophobic units and alternating hydrophilic units such as ethylene / acrylic acid (EAA) copolymers, or even cyclodextrins. or organosilanes, remain quite limited.
  • the commercial product MATER-BI grade Y has, according to the information given by its manufacturer, an elongation at break of 27% and a maximum breaking stress of 26 MPa.
  • these composite materials today find limited use, that is to say, limited mainly to the sectors of the overpack, trash bags, crate bags and certain rigid mass objects, biodegradable.
  • thermoplastic amorphous starches can be carried out in a medium that is poorly hydrated by the extrusion processes. Obtaining a melted phase from the starch granules requires not only a large supply of mechanical energy and thermal energy but also the presence of a plasticizer at the risk, otherwise, to carbonize the starch.
  • plasticizers may be sugars, polyols or other low molecular weight organic molecules.
  • the amount of energy to be applied to plasticize the starch can be advantageously reduced by increasing the amount of plasticizer.
  • the use of a plasticizer at a high level relative to the starch induces various technical problems among which may be mentioned the following: a release of the plasticizer from the plasticized matrix at the end of manufacture or at the end of the manufacturing process; during the storage, so that it is impossible to retain a quantity of plasticizer as high as desired and therefore to obtain a sufficiently flexible and film-forming material, o a strong instability of the mechanical properties of the plasticized starch which hardens or softens depending on the humidity of the air, respectively when its water content decreases or increases, o whitening or opacification of the surface of the composition by crystallization of the plasticizer used at high dose, such as by example in the case of xylitol, o a tacky or oily nature of the surface, as in the case of glycerol for example, o very poor resistance to water, all the more It is problematic that the plasticizer content is high
  • the present invention provides an effective solution to the problems stated above.
  • a starch composition comprising: (a) at least 45% by weight of at least one soluble starch,
  • a binding agent carrying at least two functional groups capable of reacting with molecules carrying active hydrogen functions, these amounts being expressed as solids and based on the sum of (a) and (b).
  • the present invention also relates to a process for preparing a starch-based composition as described above. This process comprises the following steps:
  • step (iii) incorporation into the composition thus obtained of at least one linking agent carrying at least two functional groups capable of reacting with molecules carrying active hydrogen functions
  • step (ii) can be implemented before, during or after step (iii), that is to say after intermediate storage of the compositions obtained at the end of one or the other of these steps.
  • the process according to the invention preferably comprises drying the composition obtained in step (ii), before the incorporation of the binding agent, to a residual moisture content of less than 5%, preferably less than 1%, in particular less than 0.1% by weight. Depending on the amount of water to be removed, this drying step can be carried out batchwise or continuously during the process.
  • the starch-based compositions obtained by this process contain the various ingredients, namely starch, non-starchable, non-biodegradable polymer, binding agent and optionally plasticizer, intimately mixed with each other.
  • the binding agent has, in principle, not yet reacted with the other ingredients carrying active hydrogen functions.
  • thermoplastic starch compositions of the present invention are then used to prepare compositions in which at least a portion of the binding agent has reacted with the non-biodegradable starch and / or non-starchy polymer and optionally with the plasticizer. It is this binding of the various ingredients to one another which gives the thermoplastic starch compositions of the present invention the interesting properties specified hereinafter.
  • compositions of the present invention contain starch and have a thermoplastic character
  • the compositions before The reaction of the linking agent will hereinafter be referred to systematically as “starch-based compositions” while the compositions obtained by heating thereof and containing the reaction product of the binding agent, starch and / or or non-biodegradable non-starchy polymer, and optionally plasticizer, will be called “thermoplastic compositions” or “thermoplastic starch compositions”.
  • the subject of the present invention is therefore also a process for the preparation of such a "thermoplastic starchy composition” comprising the heating of a starch-based composition, as defined above, to a sufficient temperature and during a period of time. sufficient time to react the binding agent with the soluble starch (a) and / or the non-biodegradable non-starchy polymer (b), and a thermoplastic starchy composition obtainable by such a method.
  • compositions mentioned above before and after reaction of the binding agent have a structure of "solid dispersion" type.
  • the compositions of the present invention despite their high starch content, contain this starch in the form of domains dispersed in a continuous polymer matrix.
  • This dispersion-type structure must be distinguished in particular from a structure in which the starch and the non-starchy polymer are perfectly miscible or compatible with each other, or else compositions containing two co-continuous starch networks. and polymer.
  • the object of the present invention is indeed not to prepare biodegradable materials but bio-sourced plastics with high starch content having excellent rheological and mechanical properties.
  • the starch-based composition comprises at least 49% by weight of at least one soluble starch (a) and at most 51% by weight of at least one non-biodegradable non-starchy polymer (b).
  • the amount of soluble starch (a), expressed as solids and based on the sum of (a) and (b), is advantageously between 51% and 99.8% by weight, preferably between 55% and 99%, 5% by weight, and in particular between 60% and 99% by weight, the ideal being an even greater quantity, which can even reach 70%.
  • Fillers and other additives, detailed below, may be incorporated into the starch compositions of the present invention. Although the proportion of these additional ingredients may be quite large, the total amount of the sum of soluble starch (a) and non-starchy non-biodegradable polymer
  • starch-based composition expressed in dry matter, is at least 25%, preferably at least equal to
  • non-starchy non-starchy polymer (s) (s) (b) is preferably between 0.1 and 49%, in particular between 0.2 and 45% and more preferably between 1 and 40%, these values being expressed in dry matter and referred to the sum of (a) and (b).
  • thermoplastic composition advantageously improves the properties of the thermoplastic composition and that, moreover, against all odds, thanks to the use of a binding agent, the final thermoplastic composition obtained had a very good resistance to water and steam, while remaining sufficiently flexible and truly thermoplastic in the sense of the present invention.
  • the amount of binding agent depends in particular on the type of soluble starch used. This quantity, expressed as solids and based on the sum of (a) and (b), is preferably between 0.1 and 15% by weight, preferably between 0.1 and 12% by weight, better still between 0.2 and 9% by weight and in particular between 0.5 and 5% by weight. This amount of binding agent is for example between 0.5 and 3% by weight.
  • the molecular weight of the binding agent is preferably less than 5000, in particular less than 1000. In fact, the low molecular weight of the binding agent enables its quick and easy incorporation into the plasticized starch composition. plasticizer.
  • the binding agent preferably has a molecular weight of between 50 and 5000, in particular between 90 and 300.
  • binding agent considerably reduce the sensitivity to water and water vapor of the final thermoplastic composition obtained according to the invention and thus make it possible to to cool it rapidly at the end of manufacture by immersion in water, which is not possible without the use of a binding agent capable of forming bonds between the soluble starch molecules and between them and the non-starchy polymer.
  • the binding agent may be chosen for example from compounds carrying at least two functions, free or masked, identical or different, chosen from isocyanate, carbamoylcaprolactam, epoxide, halogen, protonic acid, acid anhydride and halide functions. acyl, oxychloride, trimetaphosphate and alkoxysilane. It may advantageously be the following compounds:
  • diisocyanates and polyisocyanates preferably 4,4'-dicyclohexylmethane diisocyanate (H12MDI), methylenediphenyl diisocyanate (MDI), toluene diisocyanate (TDI), naphthalene diisocyanate (NDI), hexamethylene diisocyanate; (HMDI) and lysine diisocyanate (LDI), dicarbamoyl caprolactams, preferably 1-1'-carbonyl bis caprolactam,
  • halohydrins preferably epichlorohydrin, organic diacids, preferably succinic acid, adipic acid, glutaric acid, oxalic acid, malonic acid, maleic acid and the corresponding anhydrides, - the oxychlorides, preferably phosphorus oxychloride,
  • trimetaphosphates preferably sodium trimetaphoshate
  • alkoxysilanes preferably tetraethoxysilane, and any mixtures of these compounds.
  • the linking agent is a diisocyanate, in particular methylenediphenyl diisocyanate (MDI) and 4,4'-dicyclohexylmethane diisocyanate (H12MDI).
  • MDI methylenediphenyl diisocyanate
  • H12MDI 4,4'-dicyclohexylmethane diisocyanate
  • Application FR 2 640 274 describes the preparation of a film of polyvinyl alcohol and of starch.
  • a crosslinking agent comprising at least two functions capable of reacting with the hydroxyl groups of starch and PVA can be added to the composition.
  • PVA a biodegradable polymer, however, does not provide materials having the rheological performance of the present invention, nor its high stability with respect to water.
  • thermoplastic composition similar to that of the present invention comprising a reactive at least bifunctional binding agent in a composition comprising a substantial fraction of a soluble starch and a non-starch-free polymer.
  • biodegradable having rheological and mechanical properties and water resistance comparable to those of the present invention.
  • the soluble starch according to the invention is a polysaccharide material derived from starch, in particular granular starches, by means of a suitable solubilization treatment of a physical, chemical and / or enzymatic nature.
  • starches In the native state, that is to say, as naturally occurring in the reserve organs and tissues of higher plants, the starches are in the form almost insoluble in water and organic solvents because of their semi structure. - crystalline granules. Their level of solubles in demineralised water or in organic solvents is in fact still well below 5%.
  • the semi-crystalline state within the starch granules is essentially due to amylopectin and the degree of crystallinity generally varies from 15 to 45%, essentially depending on the botanical origin of the starch.
  • the native granular starch placed under polarized light, presents under the microscope a characteristic black cross, called "Maltese Cross", typical of the crisalline granular state.
  • Mealtese Cross characteristic black cross
  • soluble starch in the sense of the invention can be in the form of granules, but the granules then appear without visible Maltese cross in polarized light.
  • the amylopectin crystallinity level of the soluble starch is therefore always less than 15% and preferably close to 0%.
  • this soluble starch generally has an average molecular weight between 500 and 10 7 Daltons, preferably between 800 and 500 000 daltons and in particular between 2000 and 500 000 daltons.
  • the soluble starch according to the invention can come from all botanical origins. It can be a starch obtained by physical, chemical or enzymatic treatment of granular native starch of cereals such as wheat, maize, barley, triticale, sorghum or rice, tubers such as potato or cassava or legumes such as pea and soy, and mixtures of such starches.
  • this soluble starch is obtained from a starch which has undergone acid, oxidizing or enzymatic hydrolysis, an oxidation, a chemical modification, in particular an esterification and / or etherification, acetylation, hydroxypropylation, cationisation, crosslinking, phosphating, or succinylation, or a low temperature aqueous treatment ("annealing"), or from a mixture of such starches.
  • soluble starch obtained from a granular starch chosen from fluidized starches, oxidized starches, physicochemically modified starches, white dextrins, and mixtures thereof.
  • the soluble starch is a derivative of native or modified starches, wheat or peas.
  • the soluble starch according to the invention can be rendered soluble, in particular by the application of a pre-gelatinization treatment on a drum, atomization, hydrothermal cooking or chemical functionalization.
  • This starch soluble in water or organic solvents is preferably a pregelatinized starch, a highly converted dextrin usually called yellow dextrin, maltodextrin, highly functionalized starch or a mixture of these starches.
  • the pregelatinized starches can be obtained by hydrothermal treatment of gelatinization of native starches or modified starches, in particular by steam cooking, jet-cooker cooking, cooking on drums, cooking in kneader / extruder systems and then dried for example in an oven, by hot air on a fluidized bed, on rotating drums, by atomization, by extrusion or by lyophilization.
  • Such starches usually have a solubility in demineralized water at 20 0 C greater than 5% and more generally between 10 and 100%.
  • the products manufactured and sold by the Applicant under the trade name PREGEFLO ®, having a water content of less than 10% and generally between 4 and 8%.
  • Dextrins can be prepared from native starches or modified starches by dextrinification in acid medium with little hydration. It may be in particular soluble white dextrins or yellow dextrins. By way of example, mention may be made of the STABILYS ® A 053 or TACKIDEX ® C072 products manufactured and marketed by the Applicant. Such dextrins present in demineralized water at 20 ° C., a solubility of usually between 10 and 95%.
  • Maltodextrins can be obtained by acid, oxidative or enzymatic hydrolysis of starches in an aqueous medium. They may have in particular an equivalent dextrose of between 0.5 and 40, preferably between 0.5 and 20 and better still between 2 and 19. Such maltodextrins are for example manufactured and marketed by the Applicant under the trade name GLUCIDEX ® . They present in the water demineralized at 20 ° C., a solubility generally greater than 90%, or even close to 100%.
  • Highly functionalized starches can be obtained from a native or modified starch.
  • the high functionalization may be carried out for example by esterification or etherification to a sufficiently high level to make it soluble in the sense defined above.
  • Such functionalized starches have a solubility at 20 ° C.
  • demineralized water or in an organic solvent for example in ethyl acetate, propyl acetate, butyl acetate, diethyl carbonate, propylene carbonate, glutarated dimethyl, triethyl citrate, dibasic esters (DBE), dimethylisosorbide, glycerol triacetate or isosorbide diacetate, isosorbide dioleate and methyl esters of vegetable oils.
  • the high functionalization can be obtained in particular by acetylation in solvent phase of acetic anhydride and acetic acid, grafting by use for example of acid anhydrides, mixed anhydrides, fatty acid chlorides, oligomers of caprolactones or lactides, hydroxypropylation in glue phase, cationization in dry phase or glue phase, anionization in dry phase or glue phase by phosphatation or succinylation.
  • These highly functionalized starches can be water-soluble and then have a degree of substitution of between 0.1 and 3, and more preferably between 0.25 and 3.
  • the degree of substitution is usually higher and greater than 0.1, preferably between 0.2 and 3, more preferably between 0.80 and 2.80 and most preferably between 1.5 and 2.7.
  • the reagents for modifying or functionalizing the starch are of renewable origin.
  • the soluble starch has a low water content, less than 10%, in particular less than 8%, better still less than 5% and ideally less than 2%, if possible less than 0.5%, or even less at 0.2%.
  • the soluble starch has a low content of reducing sugars, that is to say an equivalent dextrose (DE) of less than 0.5, preferably less than 0.2.
  • DE equivalent dextrose
  • This low content of reducing sugars can be obtained in a known manner by reducing the soluble starch, for example by catalytic hydrogenation or by treatment with sodium borohydride.
  • Such hydrogenated or reduced soluble starches advantageously have a better heat stability.
  • the soluble starch (a) is partially replaced by a plasticized starchy composition, consisting of starch and a plasticizer thereof, and obtained by mixing thermomechanical process of a granular starch selected from native starches, fluidized starches, oxidized starches, chemically modified starches, white dextrins and mixtures of these starches and a plasticizer of this granular starch.
  • Soluble starch can itself be plasticized by a plasticizer.
  • the starch-based composition can therefore be any mixture of soluble and insoluble starch (s) and plasticizer (s) thereof.
  • the plasticizer is preferably chosen from diols, triols and polyols such as glycerol, polyglycerols, isosorbide, sorbitans, sorbitol, mannitol, hydrogenated glucose syrups, organic acid salts such as sodium lactate, the methyl, ethyl or fatty esters of organic acids such as lactic, citric, succinic, adipic or glutaric acids or the acetic or fatty esters of monoalcohols, diols, triols or polyols such as ethanol, diethylene glycol, glycerol or sorbitol, and mixtures of these products.
  • diols, triols and polyols such as glycerol, polyglycerols, isosorbide, sorbitans, sorbitol, mannitol, hydrogenated glucose syrups, organic acid salts such as sodium lactate, the methyl, ethyl or fatty esters of
  • the plasticizer is preferably chosen from the methyl, ethyl or fatty esters of organic acids such as lactic, citric, succinic, adipic or glutaric acids or the acetic or fatty esters of mono-alcohols, diols, triols or polyols such as ethanol, diethylene glycol, glycerol or sorbitol.
  • organic acids such as lactic, citric, succinic, adipic or glutaric acids
  • the acetic or fatty esters of mono-alcohols diols, triols or polyols such as ethanol, diethylene glycol, glycerol or sorbitol.
  • diols diols
  • triols or polyols such as ethanol, diethylene glycol, glycerol or sorbitol.
  • glycerol diacetate diacetin
  • triacetin triacetate
  • isosorbide diacetate isosorb
  • the plasticizer advantageously has a molar mass of less than 5000, preferably less than 1000, and in particular less than 400.
  • the plasticizer preferably has a molar mass greater than 18, that is, it preferably does not include 'water.
  • the plasticizer is incorporated in the starch preferably in a ratio by weight, on a dry basis, of plasticizer with soluble starch between 1/100 and 150/100, preferably between 5/100 and 120/100 and better including 10/100 and 60/100.
  • the amount of plasticizer used in the context of the invention may be zero or low, especially when using fluidized soluble starches, dextrins or maltodextrins.
  • the non-starchable non-biodegradable polymer can be of any kind and be a mixture of polymers.
  • It may be synthetic polymers obtained from monomers of fossil origin but also, and preferably, from monomers of biological origin
  • biobased monomers are preferably of the polyolefin, polystyrenic, polyvinyl, polyacrylic, fluorinated, polyacetal, polyester, polycarbonate, polyether, polyamide, polyimide, polyurethane, polysulfone, silicone and epoxy type.
  • This non-starchy, non-biodegradable polymer may be chosen from synthetic polymers of polyester, polyacrylic, polyacetal, polycarbonate, polyamide, polyimide, polyurethane, functionalized polyolefin, functionalized styrenic, functionalized vinylic, functionalized fluorinated, functionalized polysulfone, functionalized poly (phenylene ether) functionalized poly (phenylene sulfide), functionalized silicone and functionalized polyether.
  • PETs polyamides 6, 6-6, 6-10, 6-12, 11 and 12, polyacrylates, polyvinyl acetate, ethylenevinylacetates ( EVA), ethylene-methyl acrylate (EMA) copolymers, ethylene-alcohol copolymers vinylic acid (EVOH), polyoxymethylenes (POM), acrylonitrile-styrene-acrylate copolymers (ASA), thermoplastic polyurethanes (TPU), polyethylenes or polypropylenes functionalized for example with silane, acrylic or maleic anhydride units and styrene block copolymers -ethylene-butylene-styrenes
  • SEBS functionalized for example by maleic anhydride units, and mixtures of these polymers.
  • the non-biodegradable, preferably functionalized, non-starchy polymer is advantageously a polymer synthesized or functionalized, partially or totally, by using biosourced monomers, that is to say from short-term natural renewable resources such as plants, microorganisms or gases, especially from sugars, glycerin, oils or their derivatives such as alcohols or acids, mono-, di- or polyfunctional.
  • It may be in particular polyethylene obtained from bioethanol, polypropylene derived from bio-propanediol, non-biodegradable polyesters based on lactic acid or succinic acid biosourced, non-biodegradable polyesters based on butane-diol, biosourced isosorbide or succinic acid, SORONA ® type polyesters based on 1,3-propanediol biosourced, polycarbonates containing isosorbide, polyethylene glycols based on bio-ethylene glycol, polyamides based on castor oil or plant polyols, and polyurethanes based on diols or diacids derived from vegetable or animal fats, glycerol, isosorbide, sorbitol or sucrose.
  • the non-starchy non-biodegradable polymer may also be chosen from polymers of natural origin obtained directly by extraction from plants, algae, microorganisms or animal tissues and modified or functionalized so as to lose their biodegradability. It may be in particular protein polymers, cellulosic, lignocellulosic, chitosan type and natural rubbers.
  • non-biodegradable non-starchy polymer can be chosen from flour, modified proteins, celluloses modified in particular by carboxymethylation, ethoxylation, hydroxypropylation, cationization, acetylation, alkylation, hemicelluloses, modified lignins and guars, chitins and chitosans, gums and natural resins such as natural rubbers, rosins, shellacs and terpene resins, polysaccharides extracted from algae such as alginates and carrageenans, polysaccharides of bacterial origin such as modified xanthanes or modified PHAs, lignocellulosic fibers such as flax, hemp, sisal, coconut or miscanthus fibers.
  • the non-starchy non-biodegradable polymer is chosen from ethylene-vinyl acetate copolymers (EVA), polyethylenes (PE) and polypropylenes (PP), polyethylenes (PE) and polypropylenes (PP) functionalized with silane units, acrylic or maleic anhydride, thermoplastic polyurethanes (TPU), styrene-ethylene-butylene-styrene block copolymers (SEBS) functionalized with maleic anhydride units, synthetic polymers obtained from biosourced monomers and extraction polymers of natural resources (secretion or extracts of plants, tissues animals and microorganisms), modified or functionalized, and mixtures thereof.
  • EVA ethylene-vinyl acetate copolymers
  • PE polyethylenes
  • PP polypropylenes
  • PE polyethylenes
  • PE polypropylenes
  • SEBS styrene-ethylene-butylene-styrene block copolymers
  • non-starchable, non-biodegradable polymers that can be used in the present invention are polyethylenes.
  • PE polypropylenes
  • PP polypropylenes
  • SEBS styrene-ethylene / butylene-styrene triblock block copolymers
  • PETG amorphous poly (ethylene terephthalate)
  • the non-biodegradable non-starchy polymer has a weight average molecular weight of between 8500 and 10,000,000 daltons, in particular between 15,000 and 1,000,000 daltons.
  • the starch composition according to the invention may also comprise various other additional products. It may be products intended to improve its physico-chemical properties, in particular its implementation behavior and its durability or its mechanical, thermal, conductive, adhesive or organoleptic properties.
  • the additional product may be an improving or adjusting agent for the mechanical or thermal properties chosen from minerals, salts and organic substances, in particular from nucleating agents such as talc, compatibilizing agents such as surfactants, impact or scratch-resistant improvers such as calcium silicate, shrinkage control agents such as magnesium silicate, scavengers or deactivators of water, acids, catalysts, metals, oxygen , infra-red rays, UV rays, hydrophobic agents such as oils and fats, hygroscopic agents such as pentaerythritol, flame retardants and fireproofing agents, such as halogenated derivatives, anti-smoke agents, reinforcing fillers, mineral or organic, such as clays, carbon black, talc, vegetable fibers, glass fibers , polyacrylonitrile or Kevlar.
  • nucleating agents such as talc
  • compatibilizing agents such as surfactants, impact or scratch-resistant improvers such as calcium silicate
  • shrinkage control agents such as
  • the additional product may also be an improving agent or an adjustment of the conductive or insulating properties with respect to electricity or heat, for example sealing against air, water or gases.
  • an improving agent or an adjustment of the conductive or insulating properties with respect to electricity or heat, for example sealing against air, water or gases.
  • solvents to fatty substances, to essences, to aromas, to perfumes, chosen in particular from minerals, salts and organic substances, in particular from nucleating agents such as talc, compatibilizing agents such as surfactants, agents trapping or deactivating water, acids, catalysts, metals, oxygen or infrared radiation, hydrophobic agents such as oils and fats, pearling agents, hygroscopic agents such as pentaerythritol, heat conduction or dissipation agents such as metal powders, graphites and salts, and micrometric reinforcing fillers such as clays and carbon black.
  • nucleating agents such as talc
  • compatibilizing agents such as surfactants, agents trapping or deactivating
  • the additional product may be an agent that improves the organoleptic properties, in particular:
  • odorant properties perfumes or odor masking agents
  • optical properties glossing agents, whitening agents such as titanium dioxide, dyes, pigments, dye enhancers, opacifiers, matting agents such as carbonate calcium, thermochromic agents, phosporescence and fluorescence agents, metallizing or marbling agents and anti-fogging agents), sound properties (barium sulphate and barytes), and
  • the additional product may also be an enhancing or adjusting agent for adhesive properties, including adhesion to cellulosic materials such as paper or wood, metal materials such as aluminum and steel, glass or ceramic materials, textiles and mineral materials, such as pine resins, rosin, ethylene / vinyl alcohol copolymers, fatty amines, lubricating agents, mold release agents, antistatic agents and anti-blocking agents.
  • the additional product may be an agent improving the durability of the material or an agent for controlling its (bio) degradability, especially chosen from hydrophobing agents such as oils and greases, anti-corrosion agents, antimicrobial agents such as Ag, Cu and Zn, degradation catalysts such as oxo-catalysts and enzymes such as amylases.
  • the incorporation of the binding agent into the thermoplastic composition and the reaction with the starch and / or the functional polymer is preferably carried out by hot kneading at a temperature of between 60 ° C. and 200 ° C., and better still 100 to 160 ° C.
  • thermomechanical mixture of the soluble starch and the optional plasticizer is made hot, at a temperature preferably between 60 and 200 0 C, more preferably between 100 and 160 0 C, discontinuously, for example by kneading mixing, or continuously, for example by extrusion.
  • the duration of this mixture can be of some seconds to a few hours, depending on the mix mode selected.
  • step (ii) or step (iii), of the non-starchy polymer or of the binding agent in the composition may be carried out by thermomechanical mixing, batchwise or continuously and in particular online, by reactive extrusion.
  • the mixing time can be short, from a few seconds to a few minutes.
  • the invention relates both to the starch-based composition obtainable by the process before reaction by heating and the thermoplastic composition that can be obtained after reaction by heating.
  • thermoplastic compositions of the present invention are those of the compositions obtained after heating to a temperature sufficient to react the binding agent with the starch and / or with the non-starchy polymer.
  • thermoplastic starch compositions according to the invention have a lower sensitivity to water than the plasticized starches of the prior art.
  • the latter which are very sensitive to water, must necessarily be cooled in the air, which requires a lot more time than cooling with water.
  • this characteristic of water stability opens many new potential uses for the thermoplastic starchy composition according to the invention.
  • composition according to the invention is thermoplastic in the sense defined above and therefore advantageously has a complex viscosity, measured on rheometer PHYSICA type MCR 501 or equivalent, between 10 and 10 6 Pa. s, for a temperature between 100 and 200 0 C. For injection uses for example, its viscosity at these temperatures can be rather low and the composition is then preferentially heat fusible in the sense specified above.
  • thermoplastic compositions according to the invention have the advantage of being sparingly soluble, preferably insoluble in water, of hydrating with difficulty and of maintaining a good physical integrity after immersion in water.
  • Their insoluble content after 24 hours in water at 20 ° C. is preferably greater than 72%, in particular greater than 80%, more preferably greater than 90%. Very advantageously, it may be greater than 92%, especially greater than 95%. Ideally, this level of insolubles can be at least 98% and in particular be close to 100%.
  • the degree of swelling of the thermoplastic compositions according to the invention is preferably less than 20%, in particular less than 12%, more preferably less than at 6%. Very advantageously, it may be less than 5%, especially less than 3%. Ideally, this swelling rate is at most equal to 2% and may especially be close to 0%.
  • thermoplastic composition according to the invention advantageously has stress / strain curves characteristic of a ductile material, and not of a fragile type material.
  • the elongation at break, measured for the compositions of the present invention is greater than 40%, preferably greater than 80%, more preferably greater than 100%.
  • This elongation at break can advantageously be at least 95%, especially at least equal to 120%. It can even reach or exceed 180% or even 250%. It is generally reasonably less than 500%.
  • the maximum tensile strength of the compositions of the present invention is generally greater than 4 MPa, preferably greater than 6 MPa, more preferably greater than 10 MPa. It can even reach or exceed 15 MPa, even 20 MPa. It is generally reasonably less than 80 MPa.
  • thermoplasticity suitable thermoplasticity, melt viscosity and glass transition temperature, in the usual ranges of known values of current polymers (Tg of -50 ° to 150 ° C.), allowing an implementation thanks to the existing industrial installations and conventionally used for the usual synthetic polymers,
  • thermoplastic compositions of starch the prior art (flexibility, elongation at break, maximum breaking stress)
  • starch-based thermoplastic composition according to the invention can, in particular, present simultaneously:
  • thermoplastic composition according to the invention can be used as is or in admixture with synthetic, artificial or naturally occurring polymers, which may or may not be biodegradable.
  • the composition according to the invention is preferably non-biodegradable or non-compostable in the sense of the standards EN 13432, ASTM D6400 and ASTM 6868, and then comprises, for example, known synthetic polymers or highly functionalized starches or extraction polymers. crosslinked or etherified. It is possible to modulate the lifetime and the stability of the composition according to the invention by adjusting in particular its affinity for water, so as to suit the intended uses as material and the methods of recovery considered at the end of life.
  • the composition according to the invention usually contains at least 33%, preferably at least 50%, in particular at least 60%, more preferably at least 70%, or more than 80% of renewable carbon in the sense of ASTM D6852 relative to the total carbon of the composition.
  • This carbon of renewable origin is essentially that constitutive of the starch necessarily present in the composition according to the invention but can also be advantageously, by a judicious choice of the constituents of the composition, that present in the plasticizer of the starch as in the case for example glycerol or sorbitol, but also that present in the non-starch polymer (s) or any other constituent of the thermoplastic composition, when they come from renewable natural resources such as those defined preferentially above.
  • thermoplastic compositions based on starch according to the invention as barrier films for oxygen, carbon dioxide, flavorings, fuels and / or fats, alone or in multilayer structures obtained by coextrusion for the field of food packaging in particular.
  • compositions of the present invention can also be used to increase the hydrophilicity, electrical conductivity, permeability to water and / or water vapor or resistance to organic solvents and / or fuels, synthetic polymers in the context of, for example, the manufacture of membranes, films or printable electronic labels, textile fibers, containers or reservoirs, or to improve the adhesive properties of synthetic hot melt films on hydrophilic supports.
  • thermoplastic composition according to the invention considerably reduces the risk of bioaccumulation in the adipose tissue of living organisms and therefore also in the food chain.
  • composition according to the invention may be in pulverulent, granular or bead form and form the matrix of a dilutable masterbatch in a bio-sourced matrix or not.
  • the invention also relates to a plastic or elastomeric material comprising the thermoplastic composition of the present invention or a finished or semi-finished product obtained therefrom.
  • soluble starches various maltodextrins marketed by the Applicant under the brand name GLUCIDEX 1, GLUCIDEX 2, GLUCIDEX 6, GLUCIDEX 12 and GLUCIDEX 19, having a water content of about 4%.
  • These maltodextrins have a fraction soluble in water at 20 0 C close to 100%;
  • a non-biodegradable non-starchy polymer a thermoplastic polyurethane (TPU) marketed by LUBRISOL under the name ESTANE 58300, and and as a linking agent, methylene diphenyl diisocyanate (MDI) sold under the name Suprasec 1400 by the company Hunstman.
  • TPU thermoplastic polyurethane
  • MDI methylene diphenyl diisocyanate
  • a TSA twin-screw extruder (diameter (D) 26 mm, length 56D) is fed with a 50/50 maltodextrin (undried) / TPU mixture at a total material flow rate of 15 kg / h.
  • the extrusion conditions are as follows: - Temperature profile (ten heating zones Zl to
  • compositions obtained under these conditions are weakly hydrophilic and can be cooled in a cold water tank although they then become slightly tacky on the surface.
  • extruded and cooled rods are dried at 80 0 C in a vacuum oven for 24 hours and then granulated.
  • compositions according to the invention are or in the presence of 1 part of MDI per 100 parts of granules (phr) (compositions according to the invention).
  • the rate of water uptake is determined by measuring the mass of the comparative compositions and compositions according to the invention above, after one month of storage, before drying (M h ) and after drying under vacuum at 80 ° C. for 24 hours. (M s ). Humidity rate
  • compositions according to the invention GLUCIDEX / TPU 58300 containing 1 phr of MDI (results in bold) are practically insoluble in water (levels of insoluble greater than 95%) and hydrophobic, whereas compositions according to prior art, free of MDI, are very hydrophilic and disintegrate.
  • compositions thus prepared in accordance with the invention using a binding agent contain specific entities attesting to the binding of starchy chains to each other. contained in the maltodextrin used and this via the binding agent.
  • maltodextrins Glucidex 12 and Glucidex 19 gives starchy compositions having particularly advantageous mechanical properties. These two maltodextrins have weight average molecular weights between 800 and 1600, lower than the other three dextrins, which are between 3000 and 20,000. These results clearly show the very beneficial effect of the use of a binding agent in the preparation of a thermoplastic composition based on soluble starchy material such as maltodextrin, in terms of improving the stability of the moisture and water and improvement of mechanical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Medicinal Preparation (AREA)

Abstract

La présente invention a pour objet une nouvelle composition à base d'amidon comprenant: (a) au moins 45 % en poids d'au moins un amidon soluble, (b) au plus 55 % en poids d'au moins un polymère non amylacénon biodégradable,et (c) un agent de liaison porteur d'au moins deux groupements fonctionnels capables de réagir avec des molécules porteuses de fonctions à hydrogène actif, ces quantités étant exprimées en matières sèches et rapportées à la somme de (a) et (b). Elle concerne également un procédé de préparation d'une telle composition à base d'amidon et une composition thermoplastique préparée par chauffage d'une telle composition.

Description

COMPOSITIONS THERMOPLASTIQUES A BASE D'AMIDON SOLUBLE ET PROCEDE DE PREPARATION DE TELLES COMPOSITIONS
La présente invention concerne de nouvelles compositions à base d'amidon et des compositions amylacées thermoplastiques obtenues à partir de celles- ci, ainsi que les procédés de préparation de ces compositions .
On entend par « composition thermoplastique » dans la présente invention une composition qui, de manière réversible, se ramollit sous l'action de la chaleur et se durcit en se refroidissant. Elle présente au moins une température dite de transition vitreuse (Tg) en dessous de laquelle la fraction amorphe de la composition est à l'état vitreux cassant, et au-dessus de laquelle la composition peut subir des déformations plastiques réversibles. La température de transition vitreuse ou l'une, au moins, des températures de transition vitreuse de la composition thermoplastique à base d'amidon de la présente invention est de préférence comprise entre -50 et 1500C. Cette composition à base d'amidon peut, bien entendu, être mise en forme par les procédés utilisés traditionnellement en plasturgie (extrusion, injection, moulage, soufflage, calandrage etc.). Sa viscosité, mesurée à une température de 100 0C à 2000C, est généralement comprise entre 10 et 106 Pa. s.
De préférence, ladite composition est «thermofusible», c'est-à-dire qu'elle peut être mise en forme sans application de forces de cisaillement importantes, c'est à dire par simple écoulement ou par simple pressage de la matière fondue. Sa viscosité, mesurée à une température de 100 0C à 2000C, est généralement comprise entre 10 et 103 Pa. s. On entend au sens de l'invention par « amidon soluble», toute matière polysaccharidique dérivée d'amidon, présentant à 200C, une fraction soluble dans un solvant choisi parmi l'eau déminéralisée, l'acétate d'éthyle, l'acétate de propyle, l'acétate de butyle, le carbonate de diéthyle, le carbonate de propylène, le glutarate de diméthyle, le citrate de triéthyle, les esters dibasiques, le diméthylsulfoxide (DMSO) , le diméthylisosorbide, le triacétate de glycérol, le diacétate d' isosorbide, le dioléate d' isosorbide et les esters méthyliques d'huiles végétales, au moins égale à 5 % en poids. Cette fraction soluble est de préférence supérieure à 20 % en poids et en particulier supérieure à 50 % en poids. Bien entendu, l'amidon soluble peut être totalement soluble dans l'un ou plusieurs des solvants indiqués ci-dessus (fraction soluble = 100 %) .
L'amidon soluble est utilisé selon l'invention sous forme solide, de préférence essentiellement anhydre, c'est-à-dire non dissoute dans un solvant aqueux ou organique. Il est donc important de ne pas confondre, tout au long de la description qui suit, le terme « soluble » avec le terme « dissous ».
On entend par « plastifiant de l'amidon », toute molécule, de préférence organique, de faible masse moléculaire, c'est-à-dire ayant de préférence une masse moléculaire inférieure à 5000, en particulier inférieure à 1000, qui, lorsqu'elle est incorporée à l'amidon par un traitement thermomécanique à une température comprise entre 20 et 2000C aboutit à une diminution de la température de transition vitreuse et/ou à une réduction de la cristallinité de cet amidon. Dans le cas d'un amidon soluble au sens de l'invention, généralement faiblement cristallin, l'incorporation du plastifiant aboutit à une disparition d'une éventuelle cristallinité résiduelle et à l'obtention d'un état totalement amorphe. L'agent plastifiant n'englobe de préférence pas l'eau.
On entend par « polymère non amylacé non biodégradable», tout polymère organique autre que l'amidon ou les dérivés d'amidon, considéré comme non biodégradable ou non compostable au sens des normes EN
13432, ASTM D6400 et ASTM 6868.
Ce polymère non amylacé non biodégradable n'englobe en particulier pas les polymères naturels extraits de plantes, de tissus animaux ou de microorganismes, le poly (alcool vinylique) et les polyesters biodégradables tels que le poly (acide lactique) (PLA), les polycaprolactones (PCL), les poly (butylène succinate adipate) (PBSA), les poly (butylène adipate téréphtalate) (PBAT) , les polyhydroxyalcanoates (PHA) , notamment les polyhydroxybutyrates (PHB) et polyhydroxybutyrate-co- hydroxyvalérates (PHBV) .
De préférence, le polymère non amylacé non biodégradable est porteur de fonctions à hydrogène actif, c'est-à-dire de fonctions présentant au moins un atome d'hydrogène susceptible d'être déplacé si une réaction chimique a lieu entre l'atome porteur de cet atome d'hydrogène et une autre fonction réactive. Les fonctions à hydrogène actif sont par exemple des fonctions hydroxyle, acide protonique, urée, uréthanne, amide, aminé ou thiol. Cette définition englobe également dans la présente invention tout polymère non amylacé non biodégradable porteur de fonctions susceptibles de donner, notamment par hydrolyse, de telles fonctions à hydrogène actif. Les fonctions qui peuvent donner, notamment par hydrolyse, de telles fonctions à hydrogène actif sont par exemple les fonctions alcoxy, en particulier les alcoxysilanes, ou les fonctions chlorure d'acyle, anhydride d'acide, époxyde ou ester. On entend par « agent de liaison », toute molécule porteuse d'au moins deux groupements fonctionnels, libres ou masquées, capables de réagir avec des molécules porteuses de fonctions à hydrogène actif, comme en particulier les macromolécules de l'amidon. Cet agent de liaison permet par conséquent, par formation de liaisons covalentes, le pontage d'au moins une partie des macromolécules d'amidon soluble entre elles et éventuellement avec le polymère non amylacé non biodégradable présent dans la composition. Lorsque la composition contient un agent plastifiant porteur de fonctions à hydrogène actif, l'agent de liaison est avantageusement capable de réagir avec ce plastifiant pour le fixer sur l'amidon et/ou sur le polymère non amylacé non biodégradable. Cet agent de liaison se distingue des agents d'adhésion, des agents de compatibilisation physique ou des agents de greffage par le fait que ces derniers soit créent uniquement des liaisons faibles (non covalentes) , soit ne sont porteurs que d'une seule fonction réactive.
Dans le contexte actuel de perturbations climatiques dues à l'effet de serre et au réchauffement planétaire, de l'évolution à la hausse des coûts des matières premières fossiles, en particulier du pétrole dont sont issues les matières plastiques, de l'état de l'opinion publique en quête d'un développement durable, de produits plus naturels, plus propres, plus sains et moins dispendieux en énergie, et de l'évolution des réglementations et des fiscalités, il est nécessaire de disposer de nouvelles compositions issues de ressources renouvelables, qui conviennent en particulier au domaine des matériaux plastiques, et qui soient à la fois compétitives, conçues dès l'origine pour n'avoir que peu ou pas d'impacts négatifs sur l'environnement, et techniquement aussi performantes que les polymères préparés à partir de matières premières d' origine fossiles .
L'amidon constitue une matière première présentant les avantages d'être renouvelable, biodégradable et disponible en grandes quantités à un prix économiquement intéressant par rapport au pétrole et au gaz utilisés comme matières premières pour les plastiques actuels.
Le caractère biodégradable de l'amidon a déjà été exploité dans la fabrication de matières plastiques, et cela selon deux solutions techniques principales.
Les premières compositions à base d'amidon développées l'ont été il y a une trentaine d'années environ. Les amidons ont été alors employés sous forme de mélanges avec des polymères synthétiques tels que le polyéthylène, en tant que charge, à l'état natif granulaire. Avant dispersion dans le polymère synthétique constituant la matrice, ou phase continue, l'amidon natif est alors de préférence séché jusqu'à un taux d'humidité inférieur à 1% en poids, pour réduire son caractère hydrophile. Dans ce même but, il peut également être enrobé par des corps gras (acides gras, silicones, siliconates) ou encore être modifié à la surface des grains, par des siloxanes ou des isocyanates. Les matériaux ainsi obtenus contenaient généralement environ 10 %, tout au plus 20% en poids d'amidon granulaire, car au-delà de cette valeur, les propriétés mécaniques des matériaux composites obtenus devenaient trop imparfaites et abaissées par rapport à celles des polymères synthétiques formant la matrice. De plus, il est apparu que de telles compositions à base de polyéthylène étaient seulement bio-fragmentables et non biodégradables comme escompté, de sorte que l'essor attendu de ces compositions n'a pas eu lieu. Pour pallier au défaut de biodégradabilité, des développements ont été également menés par la suite sur le même principe mais en remplaçant seulement le polyéthylène classique par des polyéthylènes dégradables par oxydation ou par des polyesters biodégradables tels que le polyhydroxybutyrate-co-hydroxyvalérate (PHBV) ou le poly (acide lactique) (PLA). Là encore, les propriétés mécaniques de tels composites obtenus par mélange avec de l'amidon granulaire se sont avérées être insuffisantes. On pourra se référer au besoin à l'excellent livre « La Chimie Verte », Paul Colonna, Edition TEC & DOC, Janvier 2006, chapitre 6 intitulé « Matériaux à base d'amidons et de leurs dérivés » de Denis Lourdin et Paul Colonna, pages 161 à 166. Par la suite, l'amidon a été utilisé dans un état essentiellement amorphe et thermoplastique. Cet état est obtenu par plastification de l'amidon à l'aide d'un plastifiant approprié incorporé dans l'amidon à un taux compris généralement entre 15 et 25 % par rapport à l'amidon granulaire, par apport d'énergie à la fois mécanique et thermique. Les brevets US 5 095 054 de la société Warner Lambert et EP 0 497 706 Bl de la Demanderesse décrivent en particulier cet état déstructuré, à cristallinité réduite ou absente, et des moyens pour obtenir de tels amidons thermoplastiques.
Toutefois, les propriétés mécaniques des amidons thermoplastiques, bien qu'elles puissent être dans une certaine mesure modulées par le choix de l'amidon, du plastifiant et du taux d'emploi de ce dernier, sont globalement assez médiocres car les matières ainsi obtenues sont toujours très hautement visqueuses à haute température (1200C à 1700C) et très fragiles, trop cassantes et très dures et peu filmogènes à basse température, c'est-à-dire en dessous de la température de transition vitreuse ou de la température de transition vitreuse la plus élevée.
Ainsi, l'allongement à la rupture de tels amidons thermoplastiques est très faible, toujours inférieur à environ 10%, et cela même avec une teneur en plastifiant très élevée de l'ordre de 30%. A titre de comparaison, l'allongement à la rupture de polyéthylènes basse densité est généralement compris entre 100 et 1000 %.
De plus, la contrainte maximale à la rupture des amidons thermoplastiques diminue très fortement lorsque que le taux de plastifiant augmente. Elle a une valeur acceptable, de l'ordre de 15 à 60 MPa, pour une teneur en plastifiant de 10 à 25 %, mais diminue de manière inacceptable au-delà de 30 %. De ce fait, ces amidons thermoplastiques ont fait l'objet de nombreuses recherches visant à mettre au point des formulations biodégradables et/ou hydrosolubles présentant de meilleures propriétés mécaniques par mélange physique de ces amidons thermoplastiques, soit avec des polymères d'origine pétrolière comme le poly (acétate de vinyle) (PVA), les poly (alcool vinylique)
(PVOH) , les copolymères éthylène/alcool vinylique (EVOH) , des polyesters biodégradables tels que les polycaprolactones (PCL), les poly (butylène adipate téréphtalate) (PBAT) et les poly (butylène succinate adipate) (PBS), soit avec des polyesters d'origine renouvelable comme les poly (acide lactique) (PLA) ou des polyhydroxyalkanoates microbiens (PHA, PHB et PHBV) , soit encore avec des polymères naturels extraits de plantes ou de tissus d'animaux. On pourra se référer à nouveau au livre « La Chimie Verte », Paul Colonna, Edition TEC & DOC, pages 161 à 166, mais aussi par exemple aux brevets EP 0 579 546 Bl, EP 0 735 104 Bl et FR 2 697 259 de la Demanderesse qui décrivent des compositions contenant des amidons thermoplastiques.
Au microscope, ces résines biodégradables apparaissent comme très hétérogènes et présentent de gros îlots d'amidon plastifié dans une phase continue de polymères synthétiques. Ceci est dû au fait que les amidons thermoplastiques sont très hydrophiles et sont en conséquence très peu compatibles avec les polymères synthétiques. Il en découle que les propriétés mécaniques de tels mélanges, même avec ajout d'agents de compatibilisation tels que par exemple des copolymères comportant des motifs hydrophobes et des motifs hydrophiles en alternance comme des copolymères éthylène/acide acrylique (EAA) , ou encore des cyclodextrines ou des organosilanes, restent assez limitées .
A titre d'exemple, le produit commercial MATER-BI de grade Y présente, selon les renseignements donnés par son fabricant, un allongement à la rupture de 27% et une contrainte maximale à la rupture de 26 MPa. En conséquence, ces matières composites trouvent aujourd'hui des usages restreints, c'est-à-dire limités essentiellement aux seuls secteurs du suremballage, des sacs poubelle, des sacs de caisses et de certains objets massiques rigides, biodégradables.
La déstructuration de l'état granulaire natif semi- cristallin de l'amidon pour obtenir des amidons amorphes thermoplastiques peut être réalisée en milieu peu hydraté par les procédés d'extrusion. L'obtention d'une phase fondue à partir des granules d'amidon nécessite non seulement un apport important d' énergie mécanique et d'énergie thermique mais également la présence d'un agent plastifiant au risque, sinon, de carboniser l'amidon. De tels agents plastifiants peuvent être les sucres, les polyols ou d'autres molécules organiques de faible masse moléculaire.
La quantité d'énergie à appliquer pour plastifier l'amidon peut être avantageusement réduite en augmentant la quantité de plastifiant. En pratique, l'usage d'un plastifiant à un taux important par rapport à l'amidon induit toutefois différents problèmes techniques parmi lesquels on peut citer les suivants : o un relargage du plastifiant de la matrice plastifiée dès la fin de la fabrication ou au cours du temps lors du stockage, de sorte qu'il est impossible de retenir une quantité de plastifiant aussi élevée que souhaité et par conséquent d' obtenir une matière suffisamment souple et filmogène, o une forte instabilité des propriétés mécaniques de l'amidon plastifié qui se durcit ou se ramollit en fonction de l'humidité de l'air, respectivement lorsque sa teneur en eau diminue ou augmente, o le blanchissement ou l' opacification de la surface de la composition par cristallisation du plastifiant utilisé à haute dose, comme par exemple dans le cas du xylitol, o un caractère collant ou huileux de la surface, comme dans le cas du glycérol par exemple, o une très mauvaise tenue à l'eau, d'autant plus problématique que la teneur en plastifiant est élevée. Une perte d'intégrité physique est constatée dans l'eau, de sorte que l'amidon plastifié ne peut pas, en fin de fabrication, être refroidi par immersion dans un bain d'eau comme pour les polymères traditionnels. De ce fait, ses usages sont très limités. Pour étendre ses possibilités d'usage, il est nécessaire de le mélanger avec des quantités importantes, généralement supérieures ou égales à 60 %, de polyesters ou d'autres polymères coûteux . o une hydrolyse prématurée possible des polyesters (PLA, PBAT, PCL, PET) éventuellement associés à l'amidon thermoplastique.
La présente invention apporte une solution efficace aux problèmes énoncés ci-dessus.
Elle a pour objet, en premier lieu, une composition à base d'amidon comprenant: (a) au moins 45 % en poids d'au moins un amidon soluble,
(b) au plus 55 % en poids d'au moins un polymère non amylacé non biodégradable, et
(c) un agent de liaison porteur d'au moins deux groupements fonctionnels capables de réagir avec des molécules porteuses de fonctions à hydrogène actif, ces quantités étant exprimées en matières sèches et rapportées à la somme de (a) et (b) .
La présente invention a également pour objet un procédé de préparation d'une composition à base d'amidon telle que décrite ci-dessus. Ce procédé comprend les étapes suivantes :
(i) sélection d'au moins un amidon soluble (a), (ii) incorporation, dans cet amidon soluble (a), d'un polymère non amylacé non biodégradable (b) en une quantité telle que l'amidon soluble (a) représente au moins 45 % en poids et le polymère non amylacé non biodégradable (b) représente au plus 55% en poids, ces quantités étant exprimées en matières sèches et rapportées à la somme de (a) et (b) , et
(iii) incorporation, dans la composition ainsi obtenue, d'au moins un agent de liaison porteur d'au moins deux groupements fonctionnels capables de réagir avec des molécules porteuses de fonctions à hydrogène actif, l'étape (ii) pouvant être mise en œuvre avant, pendant ou après l'étape (iii) , c'est à dire après un stockage intermédiaire des compositions obtenues à l'issue de l'une ou de l'autre de ces étapes. Le procédé selon l'invention comprend de préférence le séchage de la composition obtenue à l'étape (ii) , avant l'incorporation de l'agent de liaison, jusqu'à un taux d'humidité résiduelle inférieur à 5 %, de préférence inférieur à 1 %, en particulier inférieur à 0,1 % en poids. En fonction de la quantité d'eau à éliminer, cette étape de séchage peut être conduite par lots (batch) ou en continu au cours du procédé.
Les compositions à base d'amidon obtenues par ce procédé contiennent les différents ingrédients, à savoir l'amidon, le polymère non amylacé non biodégradable, l'agent de liaison et éventuellement le plastifiant, mélangés intimement les uns aux autres. Dans ces compositions, l'agent de liaison n'a, en principe, pas encore réagi avec les autres ingrédients porteurs de fonctions à hydrogène actif.
Ces compositions à base d'amidon servent ensuite à préparer des compositions dans lesquelles au moins une partie de l'agent de liaison a réagi avec l'amidon et/ou le polymère non amylacé non biodégradable et éventuellement avec le plastifiant. C'est cette liaison des différents ingrédients entre eux qui confère aux compositions amylacées thermoplastiques de la présente invention les propriétés intéressantes précisées par la suite . La Demanderesse souhaite simplement souligner ici que, bien que les deux types de compositions de la présente invention (avant et après réaction de l'agent de liaison) contiennent de l'amidon et présentent un caractère thermoplastique, les compositions avant réaction de l'agent de liaison seront appelées ci-après systématiquement « compositions à base d'amidon » alors que les compositions obtenues par chauffage de celles-ci et contenant le produit réactionnel de l'agent de liaison, de l'amidon et/ou du polymère non amylacé non biodégradable, et éventuellement du plastifiant, seront appelées « compositions thermoplastiques » ou « compositions amylacées thermoplastique ».
La présente invention a donc également pour objet un procédé de préparation d'une telle « composition amylacée thermoplastique » comprenant le chauffage d'une composition à base d'amidon, telle que définie ci-dessus, jusqu'à une température suffisante et pendant une durée suffisante pour faire réagir l'agent de liaison avec l'amidon soluble (a) et/ou le polymère non amylacé non biodégradable (b) , ainsi qu'une composition amylacée thermoplastique susceptible d'être obtenue par un tel procédé .
Les deux types de compositions mentionnées ci- dessus (avant et après réaction de l'agent de liaison) ont une structure de type « dispersion solide ». Autrement dit les compositions de la présente invention, malgré leur teneur importante en amidon, contiennent cet amidon sous forme de domaines dispersés dans une matrice polymérique continue. Cette structure de type dispersion doit être distinguée en particulier d'une structure où l'amidon et le polymère non-amylacé seraient parfaitement miscibles ou compatibles l'un avec l'autre, ou encore des compositions contenant deux réseaux co-continus d'amidon et de polymère. Le but de la présente invention n'est en effet pas de préparer des matériaux biodégradables mais des matières plastiques bio-sourcées à forte teneur en amidon ayant d'excellentes propriétés rhéologiques et mécaniques . A la meilleure connaissance de la Demanderesse, de tels amidons solubles n'ont pas fait, en tant que tels, l'objet de travaux importants de développement de compositions thermoplastiques, ou seulement très peu. Ceci était dû à l'existence d'un préjugé défavorable et largement répandu selon lequel leurs propriétés mécaniques et leurs tenues à l'eau seraient nécessairement particulièrement médiocres.
De préférence, la composition à base d'amidon comprend au moins 49% en poids d'au moins un amidon soluble (a) et au plus 51 % en poids d'au moins un polymère non amylacé non biodégradable (b) .
La quantité d'amidon soluble (a) , exprimée en matières sèches et rapportée à la somme de (a) et (b) , est avantageusement comprise entre 51 % et 99, 8 % en poids, de préférence entre 55 % et 99,5 % en poids, et en particulier entre à 60 % et 99 % en poids, l'idéal étant une quantité plus importante encore, pouvant même atteindre 70%. Des charges et autres additifs, détaillés ci-après, peuvent être incorporés dans les compositions à base d'amidon de la présente invention. Bien que la proportion de ces ingrédients supplémentaires puisse être assez importante, la quantité totale de la somme d'amidon soluble (a) et de polymère non amylacé non-biodégradable
(b) des composition à base d'amidon, exprimée en sec, est au moins égale à 25 %, de préférence au moins égale à
30 % et plus préférentiellement au mois égale à 40 % en poids de la matière sèche de celle-ci. La quantité totale en polymère (s) non amylacé (s) non-biodégradable (b) , est de préférence comprise entre 0,1 et 49 %, en particulier entre 0,2 et 45 % et mieux encore entre 1 et 40%, ces valeurs étant exprimées en matières sèches et rapportées à la somme de (a) et (b) .
Il convient de noter que la Demanderesse a constaté après de nombreux travaux que, de façon surprenante, la présence d'un agent de liaison améliorait avantageusement les propriétés de la composition thermoplastique et que de plus, contre toute attente, grâce à l'emploi d'un agent de liaison, la composition thermoplastique finale obtenue présentait une très bonne tenue à l'eau et à la vapeur d'eau, tout en restant suffisamment souple et véritablement thermoplastique au sens de la présente invention .
La quantité d'agent de liaison dépend notamment du type d'amidon soluble utilisé. Cette quantité, exprimée en matières sèches et rapportée à la somme de (a) et (b) , est de préférence comprise entre 0,1 et 15 % en poids, de préférence entre 0,1 et 12 % en poids, mieux encore entre 0,2 et 9 % en poids et en particulier entre 0,5 et 5 % en poids. Cette quantité d'agent de liaison est comprise par exemple entre 0,5 et 3 % en poids.
La masse moléculaire de l'agent de liaison est de préférence inférieure à 5000, en particulier inférieure à 1000. En effet, le faible poids moléculaire de l'agent de liaison permet son incorporation rapide et facile dans la composition d'amidon plastifié par le plastifiant. L'agent de liaison présente de préférence une masse moléculaire comprise entre 50 et 5000, en particulier entre 90 et 300.
Contre toute attente, de très faibles quantités d'agent de liaison réduisent considérablement la sensibilité à l'eau et à la vapeur d'eau de la composition thermoplastique finale obtenue selon l'invention et permettent notamment de ce fait de refroidir celle-ci rapidement en fin de fabrication par immersion dans l'eau, ce qui n'est pas possible sans utilisation d'un agent de liaison capable de former des liaisons entre les molécules de l'amidon soluble et entre celles-ci et le polymère non amylacé.
L'agent de liaison peut être choisi par exemple parmi les composés porteurs d'au moins deux fonctions, libres ou masquées, identiques ou différentes, choisies parmi les fonctions isocyanate, carbamoylcaprolactame, époxyde, halogéno, acide protonique, anhydride d'acide, halogénure d'acyle, oxychlorure, trimétaphosphate et alcoxysilane . Il peut s'agir avantageusement des composés suivants :
- les diisocyanates et polyisocyanates, de préférence le 4, 4' -dicyclohexylméthane-diisocyanate (H12MDI), le méthylènediphényl-diisocyante (MDI), le toluène- diisocyanate (TDI), le naphthalène-diisocyanate (NDI), 1' hexaméthylène-diisocyanate (HMDI) et la lysine- diisocyanate (LDI), - les dicarbamoylcaprolactames, de préférence le 1-1' carbonyl bis caprolactame,
- les diépoxydes,
- les composés comportant une fonction époxyde et une fonction halogène (= halogénhydrines) , de préférence 1' épichlorhydrine, les diacides organiques, de préférence l'acide succinique, l'acide adipique, l'acide glutarique, l'acide oxalique, l'acide malonique, l'acide maléique et les anhydrides correspondants, - les oxychlorures, de préférence l' oxychlorure de phosphore,
- les trimétaphosphates, de préférence le trimétaphoshate de sodium,
- les alcoxysilanes, de préférence le tétraéthoxysilane, - et les mélanges quelconques de ces composés.
Dans un mode de réalisation préféré de l'invention, l'agent de liaison est un diisocyanate, en particulier le méthylènediphényl-diisocyanate (MDI) et le 4,4'- dicyclohexylméthane-diisocyanate (H12MDI).
L'usage de diisocyanates en présence d'amidon et de polymères non-amylacés a certes déjà été décrit mais dans des conditions et dans des buts très différents de ceux de la présente invention. Les polymères non-amylacés étaient généralement des polymères biodégradables ne permettant pas, pour des teneurs importantes en amidon, l'obtention de compositions thermoplastiques présentant les mêmes performances que celles de la présente invention . Ainsi, la demande internationale WO 97/03120 décrit la préparation de dérivés d' amidon par greffage de polyesters biodégradables (poly (acide lactique) et polycaprolactone) via des diisocyanates. Les compositions biodégradables obtenues sont parfaitement monophasiques, l'amidon ayant été rendu totalement compatible avec le polyester biodégradable greffé.
L'article de Yu et al., intitulé Green Polymeric Blends and Composites from Renewable Resources, Macromol. Sym. 2007, 249-250, 535-539, divulgue la préparation de matériaux biodégradables par extrusion d'un mélange d'amidon gélatinisé et de polyesters biodégradables (PLA, PCL et PBSA) contenant du méthylène-diisocyanate introduit soit en mélange avec l'amidon soit en mélange avec le polyester biodégradable. La proportion d'amidon des compositions est significativement inférieure à celles des compositions de la présente invention.
La demande FR 2 640 274 décrit la préparation d'un film de poly (alcool vinylique) et d'amidon. Au cours de la préparation du film, un agent de réticulation comportant au moins deux fonctions capables de réagir avec les groupes hydroxyle de l'amidon et du PVA peut être ajouté à la composition. Le PVA, un polymère biodégradable, ne permet toutefois pas l'obtention de matériaux ayant les performances rhéologiques de la présente invention, ni sa grande stabilité vis-à-vis de 1' eau .
La demande internationale WO 2004/005365 décrit des mousses rigides de polyisocyanurates obtenues par réaction d'une composition contenant un polyester-polyol aromatique, un polyisocyanate, un hydrate de carbone ayant une masse moléculaire inférieure à 2000 et un agent d'expansion. Le seul exemple d'application utilisant un amidon soluble est l'exemple 11 dans lequel une maltodextrine (Maltrin M150) est utilisée à raison de quelques pour-cent seulement.
Aucun des documents ci-dessus ne décrit ni ne suggère une composition thermoplastique similaire à celle de la présente invention comprenant un agent de liaison réactif, au moins bifonctionnel, dans une composition comprenant une fraction importante d'un amidon soluble et un polymère non amylacé non biodégradable présentant des propriétés rhéologiques et mécaniques ainsi qu'une résistance à l'eau comparables à celles de la présente invention.
L'amidon soluble selon l'invention est une matière polysaccharidique dérivée d'amidon, notamment d'amidons granulaires, grâce à un traitement de solubilisation approprié, de nature physique, chimique et/ou enzymatique. A l'état natif, c'est-à-dire tels que naturellement présents dans les organes et tissus de réserve des végétaux supérieurs, les amidons se présentent sous forme quasiment insoluble dans l'eau et les solvants organiques en raison de leur structure semi- cristalline en granules. Leur taux de solubles dans l'eau déminéralisée ou dans les solvants organiques est en effet toujours largement inférieur à 5 %. L'état semi- cristallin au sein des granules d'amidon est essentiellement dû à l' amylopectine et le taux de cristallinité varie généralement de 15 à 45 %, essentiellement en fonction de l'origine botanique de l'amidon. L'amidon granulaire natif, placé sous lumière polarisée, présente au microscope une croix noire caractéristique, dite « Croix de Malte », typique de l'état granulaire crisallin. Pour une description plus détaillée de l'amidon granulaire, on pourra se référer au besoin au chapitre II intitulé « Structure et morphologie du grain d'amidon » de S.Perez, dans l'ouvrage « Initiation à la chimie et à la physico-chimie macromoléculaires », Première édition 2000, Volume 13, pages 41 à 86, Groupe Français d'Etudes et d'Applications des Polymères.
Le traitement de solubilisation de l'amidon s'accompagne d'ordinaire d'une réduction importante de la cristallinité due à l' amylopectine . De ce fait, l'amidon soluble au sens de l'invention peut se présenter à l'état de granules, mais les granules apparaissent alors sans Croix de Malte visible en lumière polarisée. En tout état de cause, le taux de cristallinité en amylopectine de l'amidon soluble est donc toujours inférieur à 15 % et de préférence voisin de 0%.
Par ailleurs, cet amidon soluble présente généralement un poids moléculaire moyen en poids compris entre 500 et 107 Daltons, de préférence compris entre 800 et 500 000 Daltons et en particulier compris entre 2000 et 500 000 Daltons.
L'amidon soluble selon l'invention peut provenir de toutes origines botaniques. Il peut s'agir d'un amidon obtenu par un traitement physique, chimique ou enzymatique, d'un amidon natif granulaire de céréales telles que le blé, le maïs, l'orge, le triticale, le sorgo ou le riz, de tubercules tels que la pomme de terre ou le manioc, ou de légumineuses telles que le pois et le soja, et des mélanges de tels amidons.
Selon une variante préférée, cet amidon soluble, est obtenu à partir d'un amidon ayant subi une hydrolyse acide, oxydante ou enzymatique, une oxydation, une modification chimique, notamment une estérification et/ou éthérification, acétylation, hydroxypropylation, cationisation, réticulation, phosphatation, ou succinylation, ou un traitement en milieu aqueux à basse température (« annealing ») , ou à partir d'un les mélange de tels amidons.
Il peut s'agir en particulier d'un amidon soluble obtenu à partir qu'un amidon granulaire choisi parmi les amidons fluidifiés, les amidons oxydés, les amidons modifiés par voie physico-chimique, les dextrines blanches, et leurs mélanges.
Il peut enfin être obtenu à partir d'un amidon modifié par une combinaison des traitements énoncés ci- dessus ou d'un mélange quelconque de ces amidons natifs, amidons modifiés par hydrolyse, amidons modifiés par oxydation et amidons modifiés par voie physico-chimique. De préférence, l'amidon soluble est un dérivé d'amidons natifs ou modifiés, de blé ou de pois.
L'amidon soluble selon l'invention, peut être rendu soluble en particulier par l'application d'un traitement de pré-gélatinisation sur tambour, d' atomisation, de cuisson hydrothermique ou de fonctionnalisation chimique.
Cet amidon soluble dans l'eau ou les solvants organiques, est de préférence un amidon prégélatinisé, une dextrine hautement transformée d'ordinaire appelée dextrine jaune, une maltodextrine, un amidon hautement fonctionnalisé ou un mélange des ces amidons.
Les amidons prégélatinisés peuvent être obtenus par traitement hydro-thermique de gélatinisation d'amidons natifs ou d'amidons modifiés, en particulier par cuisson vapeur, cuisson jet-cooker, cuisson sur tambours, cuisson dans des systèmes de malaxeur/extrudeur puis séchés par exemple en étuve, par air chaud sur lit fluidisé, sur tambours rotatifs, par atomisation, par extrusion ou par lyophilisation. De tels amidons présentent d'ordinaire une solubilité dans l'eau déminéralisée à 200C supérieure à 5 % et plus généralement entre 10 et 100 %. A titre d'exemple, on peut citer les produits fabriqués et commercialisés par la Demanderesse sous le nom de marque PREGEFLO®, présentant une teneur en eau inférieure à 10 % et généralement comprise entre 4 et 8 % .
Les dextrines peuvent être préparées à partir d'amidons natifs ou d'amidons modifiés, par dextrinification en milieu acide peu hydraté. Il peut s'agir en particulier de dextrines blanches solubles ou des dextrines jaunes. A titre d'exemple, on peut citer les produits STABILYS® A 053 ou TACKIDEX® C072 fabriqués et commercialisés par la Demanderesse. De telles dextrines présentent dans l'eau déminéralisée à 200C, une solubilité comprise d'ordinaire entre 10 et 95 %.
Les maltodextrines peuvent être obtenues par hydrolyse acide, oxydante ou enzymatique d'amidons en milieu aqueux. Elles peuvent présenter en particulier un dextrose équivalent compris entre 0,5 et 40, de préférence entre 0,5 et 20 et mieux encore entre 2 et 19. De telles maltodextrines sont par exemple fabriquées et commercialisées par la Demanderesse sous l'appellation commerciale GLUCIDEX®. Elles présentent dans l'eau déminéralisée à 200C, une solubilité généralement supérieure à 90%, voire proche de 100%.
Les amidons hautement fonctionnalisés peuvent s'obtenir à partir d'un amidon natif ou modifié. La haute fonctionnalisation peut être réalisée par exemple par estérification ou éthérification à un niveau suffisamment élevé pour le rendre soluble au sens défini ci-dessus. De tels amidons fonctionnalisés présentent une solubilité à 20 0C supérieure à 5 %, de préférence supérieure à 10 %, mieux encore supérieure à 50% et sont idéalement totalement solubles dans l'eau déminéralisée ou bien dans un solvant organique comme par exemple dans l'acétate d'éthyle, l'acétate de propyle, l'acétate de butyle, le carbonate de diéthyle, le carbonate de propylène, le glutaratediméthyle, le citrate de triéthyle, les esters dibasiques (DBE) , le diméthylisosorbide, la triacétate de glycérol ou le diacétate d' isosorbide, le dioléate d' isosorbide et les esters méthyliques d'huiles végétales . La haute fonctionnalisation peut s'obtenir en particulier par acétylation en phase solvant d'anhydride acétique et d'acide acétique, greffage par emploi par exemple d'anhydrides d'acides, d'anhydrides mixtes, de chlorures d'acides gras, d' oligomères de caprolactones ou de lactides, hydroxypropylation en phase colle, cationisation en phase sèche ou phase colle, anionisation en phase sèche ou phase colle par phosphatation ou succinylation . Ces amidons hautement fonctionnalisés peuvent être hydrosolubles et présenter alors un degré de substitution compris entre 0,1 et 3, et mieux encore compris entre 0,25 et 3.
Dans le cas des amidons hautement fonctionnalisés organosolubles, tels que les acétates d'amidon, de dextrine ou de maltodextrine, le degré de substitution est d'ordinaire plus élevé et supérieur à 0,1, de préférence compris entre 0,2 et 3, mieux encore entre 0,80 et 2,80 et idéalement entre 1,5 et 2,7.
De préférence, les réactifs de modification ou de fonctionnalisation de l'amidon sont d'origine renouvelable .
De préférence, l'amidon soluble présente une faible teneur en eau, inférieure à 10%, en particulier inférieure à 8 %, mieux encore inférieure à 5% et idéalement inférieure à 2 %, si possible inférieure à 0,5%, voire inférieure à 0,2%.
Selon une variante avantageuse, l'amidon soluble présente une teneur faible en sucres réducteurs, c'est-à- dire un dextrose équivalent (DE) inférieur à 0,5, de préférence inférieur à 0,2. Cette faible teneur en sucres réducteurs peut être obtenue de manière connue par réduction de l'amidon soluble, par exemple par hydrogénation catalytique ou par un traitement au borohydrure de sodium. De tels amidons solubles hydrogénés ou réduits présentent avantageusement une meilleure stabilité à la chaleur.
Selon une variante de la composition à base d'amidon de la présente invention, l'amidon soluble (a) est remplacé partiellement par une composition amylacée plastifiée, constituée d'amidon et d'un plastifiant de celui-ci, et obtenue par mélange thermomécanique d'un amidon granulaire choisi parmi les amidons natifs, les amidons fluidifiés, les amidons oxydés, les amidons ayant subi une modification chimique, les dextrines blanches et les mélanges de ces amidons et d'un agent plastifiant de cet amidon granulaire.
L'amidon soluble peut être lui même plastifié par un plastifiant. La composition à base d'amidon peut donc être un mélange quelconque d'amidon (s) soluble(s) et insolubles et de plastifiant (s) de ceux-ci.
Le plastifiant est de préférence choisi parmi les diols, les triols et les polyols tels que le glycérol, les polyglycérols, l' isosorbide, les sorbitans, le sorbitol, le mannitol, les sirops de glucose hydrogénés, les sels d'acides organiques comme le lactate de sodium, les esters méthyliques, éthyliques ou gras d'acides organiques tels que les acides lactique, citrique, succinique, adipique ou glutarique ou les esters acétiques ou gras de mono-alcools, diols, triols ou polyols tels que l'éthanol, le diéthylèneglycol, le glycérol ou le sorbitol, et les mélanges de ces produits.
Lorsque l'amidon soluble est un amidon hautement fonctionnalisé organosoluble, le plastifiant est choisi de préférence parmi les esters méthyliques, éthyliques ou gras d'acides organiques tels que les acides lactique, citrique, succinique, adipique ou glutarique ou les esters acétiques ou gras de mono-alcools, diols, triols ou polyols tels que l'éthanol, le diéthylène glycol, le glycérol ou le sorbitol. A titre d'exemple, on peut citer le diacétate de glycérol (diacétine) , le triacétate de glycérol (triacétine) , le diacétate d' isosorbide, le dioctanoate d' isosorbide, le dioléate d' isosorbide et le DBE.
Le plastifiant présente de façon avantageuse une masse molaire inférieure à 5000, de préférence inférieure à 1000, et en particulier inférieur à 400. L'agent plastifiant a de préférence une masse molaire supérieure à 18, autrement dit il n'englobe de préférence pas l'eau. Le plastifiant est incorporé à l'amidon de préférence dans un rapport en poids, sur base sèche, d'agent plastifiant à l'amidon soluble compris entre 1/100 et 150/100, de préférence compris entre 5/100 et 120/100 et mieux de compris 10/100 et 60/100.
La quantité de plastifiant employée dans le cadre de l'invention peut être nulle ou faible, notamment lors de l'emploi d'amidons solubles fluidifiés, de dextrines ou de maltodextrines .
Le polymère non amylacé non biodégradable peut être de toute nature et être un mélange de polymères.
Il s'agit avantageusement d'un polymère fonctionnel porteur de fonctions à hydrogène actif et/ou de fonctions qui donnent, notamment par hydrolyse, de telles fonctions à hydrogène actif.
Il peut s'agir de polymères synthétiques obtenus à partir de monomères d'origine fossile mais aussi, et de manière préférée, de monomères d'origine biologique
(monomères biosourcés) . Ces polymères synthétiques sont de préférence de type polyoléfine, polystyrénique, polyvinylique, polyacrylique, fluoré, polyacétal, polyester, polycarbonate, polyéther, polyamide, polyimide, polyuréthane, polysulfone, silicone et époxy.
Ce polymère non amylacé non biodégradable peut être choisi parmi les polymères synthétiques de type polyester, polyacrylique, polyacétal, polycarbonate, polyamide, polyimide, polyuréthane, polyoléfine fonctionnalisée, styrénique fonctionnalisé, vinylique fonctionnalisé, fluoré fonctionnalisé, polysulfones fonctionnalisé, poly (phénylène éther) fonctionnalisé, poly (phénylène sulfure) fonctionnalisé, silicone fonctionnalisée et polyéther fonctionnalisée. A titre d'exemple, on peut citer les PET , les polyamides 6, 6-6, 6-10 , 6-12, 11 et 12, les polyacrylates, les poly (acétate de vinyle) , les éthylène- vinyl-acétates (EVA) , les copolymères éthylène-acrylate de méthyle (EMA) , les copolymères éthylène-alcool vinylique (EVOH) , les polyoxyméthylènes (POM) , les copolymères acrylonitrile-styrène-acrylates (ASA) , les polyuréthanes thermoplastiques (TPU) , les polyéthylènes ou polypropylènes fonctionnalisés par exemple par des motifs silane, acryliques ou anhydride maléique et les copolymères séquences styrène-éthylène-butylène-styrènes
(SEBS) fonctionnalisés par exemple par des motifs anhydride maléique, et les mélanges de ces polymères.
Le polymère non amylacé non biodégradable, de préférence fonctionnalisé, est avantageusement un polymère synthétisé ou fonctionnalisé, partiellement ou totalement, en utilisant des monomères biosourcés, c'est- à-dire issus de ressources naturelles renouvelables à brève échéance comme les plantes, les microorganismes ou les gaz, notamment à partir de sucres, de glycérine, d'huiles ou de leurs dérivés tels que des alcools ou des acides, mono-, di- ou polyfonctionnels .
Il peut être notamment du polyéthylène issu de bio- éthanol, du polypropylène issu de bio-propanediol, des polyesters non biodégradables à base d'acide lactique ou d'acide succinique biosourcés, des polyesters non biodégradables à base de butane-diol, d' isosorbide ou d'acide succinique biosourcés, de polyesters de type SORONA® à base de 1, 3-propanediol biosourcé, des polycarbonates contenant de l' isosorbide, des polyéthylèneglycols à base bio-éthylèneglycol, des polyamides à base d'huile de ricin ou de polyols végétaux, et des polyuréthanes à base de diols ou de diacides issus de matières grasses de végétaux ou d'animaux, de glycérol, d' isosorbide, de sorbitol ou de saccharose .
Le polymère non amylacé non biodégradable peut également être choisi parmi les polymères d'origine naturelle obtenus directement par extraction à partir de plantes, d'algues, de microorganismes ou de tissus animaux et modifiés ou fonctionnalisés de manière à perdre leur biodégradabilité . Il peut s'agir en particulier de polymères protéiques, cellulosiques, lignocellulosiques, de type chitosan et de caoutchoucs naturels .
Un tel polymère non amylacé non biodégradable, modifié ou fonctionnalisé, peut être choisi parmi les farines, les protéines modifiées, les celluloses modifiées en particulier par carboxyméthylation, éthoxylation, hydroxypropylation, cationisation, acétylation, alkylation, les hémicelluloses, les lignines et guars modifiés, les chitines et chitosans, les gommes et les résines naturelles telles que les caoutchoucs naturels, les colophanes, les shellacs et les résines terpéniques, les polysaccharides extraits d'algues tels que les alginates et les carraghénanes, les polysaccharides d'origine bactérienne tels que les xanthanes modifiés ou les PHA modifiés, les fibres ligno-cellulosiques telles que les fibres de lin, de chanvre, de sisal, de coco ou de miscanthus .
De préférence, le polymère non amylacé non biodégradable est choisi parmi les copolymères éthylène- acétate de vinyle (EVA) , les polyéthylènes (PE) et polypropylènes (PP) , les polyéthylènes (PE) et polypropylènes (PP) fonctionnalisés par des motifs silane, acryliques ou anhydride maléique, les polyuréthanes thermoplastiques (TPU) , les copolymères séquences styrène-éthylène-butylène-styrène (SEBS) fonctionnalisés par des motifs anhydride maléique, les polymères de synthèse obtenus à partir de monomères bio- sourcés et les polymères d'extraction de ressources naturelles (sécrétion ou extraits de plantes, de tissus animaux et de microorganismes) , modifiés ou fonctionnalisés, ainsi que leurs mélanges.
On peut citer à titre d'exemples particulièrement préférés de polymères non amylacés non biodégradables utilisables dans la présente invention, les polyéthylènes
(PE) et polypropylènes (PP) , de préférence fonctionnalisés, les polyuréthanes thermoplastiques, les polyamides, les copolymères à blocs triséquencés styrène- ethylène/butylène-styrène (SEBS) et les poly (éthylène téréphtalate) amorphes (PETG) .
Avantageusement, le polymère non amylacé non biodégradable présente un poids moléculaire moyen en poids compris entre 8500 et 10 000 000 daltons, en particulier entre 15 000 et 1 000 000 daltons. La composition à base d'amidon selon l'invention peut également comprendre différents autres produits additionnels. Il peut s'agir de produits visant à améliorer ses propriétés physico-chimiques, en particulier son comportement de mise en œuvre et sa durabilité ou bien ses propriétés mécaniques, thermiques, conductrices, adhésives ou organoleptiques .
Le produit additionnel peut être un agent améliorateur ou d'ajustement des propriétés mécaniques ou thermiques choisi parmi les minéraux, les sels et les substances organiques, en particulier parmi les agents de nucléation comme le talc, les agents compatibilisants comme les agents tensio-actifs, les agents améliorateurs de la résistance aux chocs ou aux rayures comme le silicate de calcium, les agents régulateurs de retrait comme le silicate de magnésium, les agents piégeurs ou désactivateurs d'eau, d'acides, de catalyseurs, de métaux, d'oxygène, de rayons infra-rouges, de rayons UV, les agents hydrophobants comme les huiles et graisses, les agents hygroscopiques comme le pentaérythritol, les agents retardateurs de flamme et les agents anti-feu comme les dérivés halogènes, les agents anti-fumée, les charges de renforcement, minérales ou organiques, comme les argiles, le noir de carbone, le talc, les fibres végétales, les fibres de verre, de polyacrylonitrile ou de kevlar.
Le produit additionnel peut être également un agent améliorateur ou d'ajustement des propriétés conductrices ou isolantes vis-à-vis de l'électricité ou de la chaleur, de l'étanchéité par exemple à l'air, à l'eau, aux gaz, aux solvants, aux corps gras, aux essences, aux arômes, aux parfums, choisi notamment parmi les minéraux, les sels et les substances organiques, en particulier parmi les agents de nucléation comme le talc, les agents compatibilisants comme le tensio-actifs, les agents piégeurs ou désactivateurs d'eau, d'acides, de catalyseurs, de métaux, d'oxygène ou du rayonnement infra-rouge, les agents hydrophobants comme les huiles et graisses, les agents perlants, les agents hygroscopiques comme le pentaérythritol, les agents de conduction ou de dissipation de la chaleur comme les poudres métalliques, les graphites et les sels, et les charges de renforcement micrométriques comme les argiles et le noir de carbone.
Le produit additionnel peut être encore un agent améliorateur des propriétés organoleptiques, notamment :
- des propriétés odorantes (parfums ou agents de masquage d'odeur), des propriétés optiques (agents de brillance, agents de blancheur tels que le dioxyde de titane, colorants, pigments, exhausteurs de colorants, opacifiants, agents de matité tels que le carbonate de calcium, agents thermochromes, agents de phosporescence et de fluorescence, agents métallisants ou marbrants et agents anti-buée) , des propriétés sonores (sulfate de baryum et barytes) , et
- des propriétés tactiles (matières grasses) .
Le produit additionnel peut être aussi un agent améliorateur ou d'ajustement des propriétés adhésives, notamment de l'adhésion vis-à-vis des matières cellulosiques comme le papier ou le bois, des matières métalliques comme l'aluminium et l'acier, des matériaux en verre ou céramiques, des matières textiles et des matières minérales, comme notamment les résines de pin, le colophane, les copolymères d' éthylène/alcool vinylique, les aminés grasses, les agents lubrifiants, les agents de démoulage, les agents antistatiques et les agents anti-blocking. Enfin, le produit additionnel peut être un agent améliorateur de la durabilité du matériau ou un agent de contrôle de sa (bio) dégradabilité, notamment choisi parmi les agents hydrophobants comme les huiles et graisses, les agents anticorrosion, les agents antimicrobiens comme Ag, Cu et Zn, les catalyseurs de dégradation comme les oxo-catalyseurs et les enzymes comme les amylases.
L'incorporation de l'agent de liaison dans la composition thermoplastique et la réaction avec l'amidon et/ou le polymère fonctionnel se fait de préférence par malaxage à chaud à une température comprise entre 60 0C et 200 0C, et mieux de 100 à 1600C.
De préférence, le mélange thermomécanique de l'amidon soluble et du plastifiant éventuel est réalisé à chaud, à une température de préférence comprise entre 60 et 200 0C, plus préférentiellement entre 100 et 1600C, de façon discontinue, par exemple par pétrissage/malaxage, ou de façon continue par exemple par extrusion. La durée de ce mélange peut être de quelques secondes à quelques heures, selon le mode de mélange retenu .
De façon similaire, l'incorporation, lors de l'étape (ii) ou de l' étape (iii) , du polymère non amylacé ou de l'agent de liaison dans la composition peut être réalisée par mélange thermomécanique, de façon discontinue ou de façon continue et en particulier en ligne, par extrusion réactive. Dans ce cas, la durée de mélange peut être courte, de quelques secondes à quelques minutes.
Comme expliqué précédemment, l'invention vise à la fois la composition à base d'amidon susceptible d'être obtenue selon le procédé avant réaction par chauffage et la composition thermoplastique susceptible d'être obtenue après réaction par chauffage.
Bien entendu, les propriétés les plus intéressantes des compositions thermoplastiques de la présente invention sont celles des compositions obtenues après chauffage à une température suffisante pour faire réagir l'agent de liaison avec l'amidon et/ou avec le polymère non amylacé.
La Demanderesse a constaté que les compositions amylacées thermoplastiques selon l'invention, présentaient une moindre sensibilité à l'eau que les amidons plastifiés de l'art antérieur. Ces derniers, très sensibles à l'eau, doivent être nécessairement refroidis à l'air, ce qui nécessite beaucoup plus de temps qu'un refroidissement à l'eau. Par ailleurs, cette caractéristique de stabilité à l'eau ouvre de nombreux usages potentiels nouveaux à la composition amylacée thermoplastique selon l'invention.
La composition conforme à l'invention est thermoplastique au sens défini plus haut et présente de ce fait avantageusement, une viscosité complexe, mesurée sur rhéomètre de type PHYSICA MCR 501 ou équivalent, comprise entre 10 et 106 Pa. s, pour une température comprise entre 100 et 2000C. Pour des usages en injection par exemple, sa viscosité à ces températures peut être plutôt faible et la composition est alors préférentiellement thermo-fusible au sens précisé plus haut .
Ces compositions thermoplastiques selon l'invention présentent l'avantage d'être peu solubles, de préférence insolubles dans l'eau, de s'hydrater difficilement et de conserver une bonne intégrité physique après immersion dans l'eau. Leur taux d'insolubles après 24 heures dans l'eau à 20 0C, est de préférence supérieur à 72 %, en particulier supérieur à 80 %, mieux encore supérieur à 90 %. De manière très avantageuse, il peut être supérieur à 92 %, notamment supérieur à 95 %. Idéalement, ce taux d' insolubles peut être au moins égal à 98 % et notamment être proche de 100%.
Par ailleurs, le taux de gonflement des compositions thermoplastiques selon l'invention, après immersion dans l'eau à 20 0C pendant une durée de 24 heures, est de préférence inférieur à 20 %, en particulier inférieur à 12 %, mieux encore inférieur à 6 %. De manière très avantageuse, il peut être inférieur à 5%, notamment inférieur à 3%. Idéalement, ce taux de gonflement est au plus égal à 2 % et peut notamment être proche de 0%.
Contrairement aux compositions à hautes teneurs en amidon thermoplastique de l'art antérieur, la composition thermoplastique selon l'invention présente avantageusement des courbes contrainte/déformation caractéristiques d'un matériau ductile, et non pas d'un matériau de type fragile. L'allongement à la rupture, mesuré pour les compositions de la présente invention, est supérieur à 40 %, de préférence supérieur à 80 %, mieux encore supérieur à 100%. Cet allongement à la rupture peut avantageusement être au moins égal à 95 %, notamment au moins égal à 120 %. Il peut même atteindre ou dépasser 180 %, voire 250 %. Il est en général raisonnablement inférieur à 500 %.
La contrainte maximale à la rupture des compositions de la présente invention est généralement supérieure à 4 MPa, de préférence supérieure à 6 MPa, mieux encore supérieure à 10 MPa. Elle peut même atteindre ou dépasser 15 MPa, voire 20 MPa. Elle est en général raisonnablement inférieure à 80 MPa.
La composition thermoplastique de la présente invention présente en outre l'avantage d'être constituée de matières premières essentiellement renouvelables
(amidon soluble) et de présenter, après ajustement de la formulation, les propriétés suivantes, utiles dans de multiples applications en plasturgie ou dans d'autres domaines : - thermoplasticité, viscosité à l'état fondu et température de transition vitreuse appropriées, dans les gammes de valeur habituelles connues des polymères courants (Tg de -50° à 1500C), permettant une mise en œuvre grâce aux installations industrielles existantes et utilisées classiquement pour les polymères synthétiques habituels,
- une miscibilité suffisante à une grande variété de polymères d'origine fossile ou d'origine renouvelable du marché ou en développement, - une stabilité physicochimique satisfaisante aux conditions de mise en œuvre,
- faible sensibilité à l'eau et à la vapeur d'eau,
- performances mécaniques très nettement améliorées par rapport aux compositions thermoplastiques d'amidon de l'art antérieur (souplesse, allongement à la rupture, contrainte maximale à la rupture)
- bon effet de barrière à l'eau, à la vapeur d'eau, à l'oxygène, au gaz carbonique, aux UV, aux corps gras, aux arômes, aux essences, aux carburants,
- opacité, translucidité ou transparence modulables en fonction des usages,
- bonne imprimabilité et aptitude à être mise en peinture, notamment par des encres et peintures en phase aqueuse,
- retrait contrôlable,
- stabilité dans le temps suffisante,
- recyclabilité ajustable.
De manière tout à fait remarquable, la composition thermoplastique à base d'amidon selon l'invention peut, en particulier, présenter simultanément :
- un taux d'insolubles au moins égal à 98 %,
- un allongement à la rupture au moins égal à 100 %, de préférence au moins égal à 200%, et - une contrainte maximale à la rupture supérieure à
10 MPa.
La composition thermoplastique selon l'invention peut être utilisée telle quelle ou en mélange avec des polymères synthétiques, artificiels ou d'origine naturelle, biodégradable ou non.
La composition selon l'invention est de préférence non biodégradable ou non compostable au sens des normes EN 13432, ASTM D6400 et ASTM 6868, et comprend alors, par exemple, des polymères synthétiques connus ou des amidons ou des polymères d'extraction hautement fonctionnalisés, réticulés ou éthérifiés. Il est possible de moduler la durée de vie et la stabilité de la composition conforme à l'invention en ajustant en particulier son affinité pour l'eau, de manière à convenir aux usages attendus en tant que matériau et aux modes de valorisation envisagés en fin de vie.
La composition selon l'invention contient d'ordinaire au moins 33%, de préférence au moins 50 %, en particulier au moins 60 %, mieux encore au moins 70 %, voir plus de 80 % de carbone d'origine renouvelable au sens de la norme ASTM D6852 par rapport au carbone total de la composition. Ce carbone d'origine renouvelable est essentiellement celui constitutif de l'amidon nécessairement présent dans la composition conforme à l'invention mais peut être aussi avantageusement, par un choix judicieux des constituants de la composition, celui présent dans le plastifiant de l'amidon comme dans le cas par exemple du glycérol ou du sorbitol, mais encore de celui présent dans le ou les polymère (s) non amylacé (s) ou tout autre constituant de la composition thermoplastique, lorsqu'ils proviennent de ressources naturelles renouvelables comme ceux définis préférentiellement ci-dessus. II est en particulier envisageable d'utiliser les compositions thermoplastiques à base d'amidon selon l'invention, en tant que films barrière à l'oxygène, au gaz carbonique, aux arômes, aux carburants et/ou aux corps gras, seuls ou dans des structures multi-couches obtenues par co-extrusion pour le domaine de l'emballage alimentaire notamment.
Les compositions de la présente invention peuvent aussi être utilisées pour augmenter le caractère hydrophile, l'aptitude à la conduction électrique, la perméabilité à l'eau et/ou à la vapeur d'eau ou la résistance aux solvants organiques et/ou carburants, de polymères synthétiques dans le cadre par exemple de la fabrication de membranes, de films ou d'étiquettes électroniques imprimables, de fibres textiles, de contenants ou réservoirs, ou encore d'améliorer les propriétés adhésives de films thermofusibles synthétiques sur supports hydrophiles.
Il convient de noter que le caractère hydrophile de la composition thermoplastique selon l'invention réduit considérablement les risques de bio-accumulation dans les tissus adipeux des organismes vivants et donc également dans la chaîne alimentaire.
La composition selon l'invention peut se présenter sous forme pulvérulente, granulée ou en billes et constituer la matrice d'un mélange maître diluable dans une matrice bio-sourcée ou non.
L' invention concerne aussi une matière plastique ou élastomérique comprenant la composition thermoplastique de la présente invention ou un produit fini ou semi-fini obtenu à partir de celle-ci.
EXEMPLES
Comparaison de compositions amylacées à base de maltodextrines hydrosolubles selon l'art antérieur (sans agent de liaison) et selon l'invention (avec agent de liaison)
On utilise pour ces exemples : en tant qu'amidons solubles, différentes maltodextrines commercialisées par la Demanderesse sous le nom de marque GLUCIDEX 1, GLUCIDEX 2, GLUCIDEX 6, GLUCIDEX 12 et GLUCIDEX 19, présentant une teneur en eau voisine de 4 %. Ces maltodextrines présentent une fraction soluble dans l'eau à 200C proche de 100 % ; - en tant que polymère non amylacé non biodégradable, un polyuréthane thermoplastique (TPU) commercialisé par la société LUBRISOL sous la dénomination ESTANE 58300, et et en tant qu'agent de liaison, du méthylène- diphényl-diisocyanate (MDI) commercialisé sous la dénomination Suprasec 1400 par la société HUNSTMAN.
On alimente une extrudeuse bi-vis de marque TSA (diamètre (D) 26 mm, longueur 56D) avec un mélange 50/50 maltodextrine (non séchée) /TPU à un débit matière total de 15 kg/h.
Les conditions d'extrusion sont les suivantes : - Profil de température (dix zones de chauffe Zl à
ZlO) : 1600C
- Vitesse de vis : 400 tr/min.
En sortie d' extrudeuse, on constate, dans tous les cas, que les compositions obtenues dans ces conditions sont faiblement hydrophiles et peuvent être refroidies dans un bac d'eau froide bien qu'elles deviennent alors légèrement collantes en surface.
Pour éliminer ce caractère collant en surface, les joncs extrudés et refroidis, sont séchés à 800C en étuve sous vide pendant 24 heures puis granulés.
On soumet ces compositions amylacées granulées à une deuxième extrusion, dans les mêmes conditions que précédemment,
- soit en l'absence d'agent de liaison (compositions comparatives) ,
- soit en présence de 1 part de MDI pour 100 parts de granulés (pcr) (compositions selon l'invention).
Tests de stabilité à l'eau : Des tests sont réalisés pour mesurer la sensibilité à l'eau et à l'humidité de ces mêmes compositions. Ces tests permettent d'évaluer assez précisément le caractère hydrophile ou hydrophobe des compositions ainsi préparées . Taux de reprise en eau :
On détermine le taux de reprise en eau en mesurant la masse des compositions comparatives et des compositions selon l'invention ci-dessus, après un mois de stockage, avant séchage (Mh) et après séchage sous vide à 800C pendant 24 heures (Ms) . Le taux d'humidité
(exprimé en pour-cent) est calculé selon la formule suivante :
Taux d'humidité (%) = (1-Ms/Mh) x 100. Taux d'insolubles et taux de gonflement:
On détermine le taux d' insolubles et le taux de gonflement dans l'eau des compositions obtenues selon le protocole suivant :
(i) Sécher l'échantillon à caractériser (12 heures à 800C sous vide)
(ii) Mesurer la masse de l'échantillon (= MsI) avec une balance de précision.
(iii) Immerger l'échantillon dans l'eau, à 200C (volume d'eau en ml égal à 100 fois la masse en g d'échantillon) . (iv) Prélever l'échantillon après un temps défini de plusieurs heures.
(v) Eliminer l'excès d'eau en surface avec un papier absorbant, le plus rapidement possible.
(vi) Poser l'échantillon sur une balance de précision et suivre la perte de masse pendant 2 minutes (mesure de la masse toute les 20 secondes)
(vii) Déterminer la masse de l'échantillon gonflé par représentation graphique des prises de mesure précédentes en fonction du temps et extrapolation à t=0 de la masse (= Mg) .
(viii) Sécher l'échantillon (pendant 24 heures à 80°C sous vide) . Mesurer la masse de l'échantillon sec (= Ms2)
(ix) Calculer le taux d'insoluble, exprimé en pour-cents, suivant la formule Ms2/Msl. (x) Calculer le taux de gonflement, en pour-cents, selon la formule (Mg-MsI) /MsI .
Les résultats obtenus sont résumés dans le tableau 1 ci- après .
Tableau 1 :
Taux de reprise d'humidité et taux d'insolubles mesurés pour les compositions GLUCIDEXΘ/TPU 58300
On constate que les compositions selon l'invention GLUCIDEX/TPU 58300 contenant 1 pcr de MDI (résultats en gras) sont pratiquement insolubles dans l'eau (taux d'insolubles supérieurs à 95%) et hydrophobes, alors que les compositions selon l'art antérieur, exemptes de MDI, sont très hydrophiles et se délitent.
Propriétés mécaniques : On détermine les caractéristiques mécaniques en traction des différents échantillons selon la norme NF T51-034 (Détermination des propriétés en traction) en utilisant un banc d'essai Lloyd Instrument LR5K, une vitesse de traction de 300 mm/min et des éprouvettes normalisées type H2. Tableau 2 : Contrainte et allongement à la rupture des compositions GLUCIDEX®/TPU 58300
Ces résultats montrent que l'utilisation d'un agent de liaison difonctionnel (MDI) entraîne une augmentation des contraintes à la rupture d'environ 50% par rapport aux compositions correspondantes exemptes de MDI. Les allongements à la rupture de toutes les compositions préparées en présence de MDI sont supérieurs à 200%. Ces valeurs sont équivalentes de celles obtenues avec des polyéthylènes basse densité.
L'analyse par spectrométrie de masse a par ailleurs montré que les compositions ainsi préparées conformément à l'invention avec mise en œuvre d'un agent de liaison (MDI), contiennent des entités spécifiques attestant de la liaison, entre elles, des chaînes amylacées contenues dans la maltodextrine utilisée et ce via l'agent de liaison .
L'utilisation des maltodextrines Glucidex 12 et Glucidex 19 donne des compositions amylacées présentant des propriétés mécaniques particulièrement intéressantes. Ces deux maltodextrines présentent des poids moléculaires moyens en poids compris entre 800 et 1600, plus faibles que les trois autres dextrines, lesquelles se situent entre 3000 et 20 000. Ces résultats montrent clairement l'effet très bénéfique de l'utilisation d'un agent de liaison lors de la préparation d'une composition thermoplastique à base de matière amylacée soluble telle qu'une maltodextrine, en termes d'amélioration de la stabilité à l'humidité et à l'eau et d'amélioration des propriétés mécaniques.

Claims

REVENDICATIONS
1. Composition à base d'amidon comprenant:
(a) au moins 45 %, de préférence au moins 49% en poids d'au moins un amidon soluble,
(b) au plus 55 %, de préférence au plus 51% en poids d' au moins un polymère non amylacé non biodégradable, et
(c) un agent de liaison porteur d'au moins deux groupements fonctionnels capables de réagir avec des molécules porteuses de fonctions à hydrogène actif, ces quantités étant exprimées en matières sèches et rapportées à la somme de (a) et (b) .
2. Composition selon la revendication 1, caractérisée en ce que l'amidon soluble est obtenu par traitement physique, chimique ou enzymatique, à partir d'un amidon granulaire choisi parmi les amidons natifs, les amidons ayant subi une hydrolyse acide, oxydante ou enzymatique, une oxydation ou une modification chimique, notamment une acétylation, hydroxypropylation, cationisation, réticulation, phosphatation, ou succinylation, ou les amidons traités en milieu aqueux à basse température (« annealing ») , et les mélanges ces amidons .
3. Composition selon les revendications 1 ou 2, caractérisée en ce que l'amidon soluble est obtenu à partir d'un amidon granulaire choisi parmi les amidons fluidifiés, les amidons oxydés, les amidons modifiés par voie physico-chimique, les dextrines blanches et les mélanges de ces amidons.
4. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce que l'amidon soluble est choisi parmi les amidons pré- gélatinisés, les dextrines hautement transformées, les maltodextrines, les amidons hautement fonctionnalisés et les mélanges de ces amidons.
5. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce que l'amidon soluble (a) est remplacé partiellement par une composition amylacée plastifiée, constituée d'amidon et d'un plastifiant de celui-ci, et obtenue par mélange thermomécanique d'un amidon granulaire choisi parmi les amidons natifs, les amidons fluidifiés, les amidons oxydés, les amidons ayant subi une modification chimique, les dextrines blanches et les mélanges de ces amidons et d'un agent plastifiant de cet amidon granulaire.
6. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait qu'elle comprend en outre un plastifiant choisi parmi le glycérol, les polyglycérols, l' isosorbide, les sorbitans, le sorbitol, le mannitol, les sirops de glucose hydrogénés, le lactate de sodium, les esters méthyliques, éthyliques ou gras d'acides organiques tels que les acides lactique, citrique, succinique, adipique ou glutarique ou les esters acétiques ou gras de monoalcools, diols, triols ou polyols tels que l'éthanol, le diéthylèneglycol, le glycérol ou le sorbitol et les mélanges de ces produits.
7. Composition selon l'une quelconque des revendications précédentes, caractérisée par le fait que le rapport en poids, de l'agent plastifiant à l'amidon soluble est compris entre 1/100 et 150/100, de préférence entre 5/100 et 120/100. 8. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce que la quantité d'amidon soluble (a), exprimée en matières sèches et rapportée à la somme de (a) et (b) , est comprise entre 51 % et 99,
8 % en poids, de préférence entre 55 % et 99,5 % en poids, et en particulier entre à 60 % et 99 % en poids.
9. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce que l'agent de liaison est choisi parmi les composés porteurs d'au moins deux fonctions, libres ou masquées, identiques ou différentes, choisies parmi les fonctions isocyanate, carbamoylcaprolactame, époxyde, halogéno, acide protonique, anhydride d'acide, halogénure d'acyle, oxychlorure, trimétaphosphate, alcoxysilane et les mélanges de ceux-ci.
10. Composition selon la revendication 9, caractérisée par le fait que l'agent de liaison est choisi parmi les composés suivants: - les diisocyanates et polyisocyanates, de préférence le 4, 4' -dicyclohexylméthane-diisocyanate (H12MDI), le méthylènediphényl-diisocyante (MDI), le toluène- diisocyanate (TDI), le naphthalène-diisocyanate (NDI), 1' hexaméthylène-diisocyanate (HMDI) et la lysine- diisocyanate (LDI), les dicarbamoylcaprolactames, de préférence le 1,1'- carbonyl-biscaprolactame,
- les diépoxydes,
- les composés comportant une fonction époxyde et une fonction halogène, de préférence l' épichlorohydrine, les diacides organiques, de préférence l'acide succinique, l'acide adipique, l'acide glutarique, l'acide oxalique, l'acide malonique, l'acide maléique et les anhydrides correspondants, - les oxychlorures, de préférence l' oxychlorure de phosphore,
- les trimétaphosphates, de préférence le trimétaphoshate de sodium,
- les alcoxysilanes, de préférence le tétraéthoxysilane, - et les mélanges de ces composés.
11. Composition selon la revendication 10, caractérisée en ce que l'agent de liaison est un diisocyanate, de préférence du méthylènediphényl- diisocyante.
12. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce que la quantité d'agent de liaison, exprimée en matières sèches et rapportée à la somme de (a) et (b) , est comprise entre 0,1 et 15 % en poids, de préférence entre 0,1 et 12 % en poids, mieux encore entre 0,2 et 9 % en poids et en particulier entre 0,5 et 5 % en poids.
13. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce que le polymère non amylacé non biodégradable est choisi parmi les copolymères éthylène-acétate de vinyle (EVA) , les polyéthylènes (PE) et polypropylènes (PP) , les polyéthylènes (PE) et polypropylènes (PP) fonctionnalisés par des motifs silane, des motifs acryliques ou des motifs anhydride maléique, les polyuréthanes thermoplastiques (TPU) , les copolymères styrène- éthylène/butylène-styrène (SEBS) fonctionnalisés par des motifs anhydride maléique, les polymères de synthèse non biodégradables obtenus par emploi de monomères bio- sources et els polymères d'extraction de ressources naturelles modifiés ou fonctionnalisés, ainsi que des mélange de ces polymères.
14. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle contient au moins 33% de carbone d'origine renouvelable au sens de la norme ASTM D6852.
15. Procédé de préparation d'une composition à base d'amidon selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend les étapes suivantes :
(i) sélection d'au moins un amidon soluble (a),
(ii) incorporation, dans cet amidon soluble (a) , d'un polymère non amylacé non biodégradable (b) en une quantité telle que l'amidon soluble (a) représente au moins 45 % en poids et le polymère non amylacé non biodégradable (b) représente au plus 55 % en poids, ces quantités étant exprimées en matières sèches et rapportées à la somme de (a) et (b) , et
(iii) incorporation, dans la composition ainsi obtenue, d'au moins un agent de liaison porteur d'au moins deux groupements fonctionnels capables de réagir avec des molécules porteuses de fonctions à hydrogène actif, l'étape (ii) pouvant être mise en œuvre avant, pendant ou après l'étape (iii).
16. Procédé selon la revendication 15, caractérisé par le fait qu' il comprend en outre le séchage de la composition obtenue à l'étape (ii) , avant l'incorporation de l'agent de liaison, jusqu'à un taux d'humidité résiduelle inférieur à 5 %, de préférence inférieur à 1 %, en particulier inférieur à 0,1 % en poids.
17. Procédé de préparation d'une composition thermoplastique comprenant le chauffage d'une composition à base d'amidon selon l'une quelconque des revendications 1 à 14 jusqu'à une température suffisante et pendant une durée suffisante pour faire réagir l'agent de liaison avec l'amidon soluble (a) et/ou le polymère non amylacé non biodégradable (b) .
18. Composition thermoplastique susceptible d'être obtenue selon le procédé de la revendication 17.
19. Composition thermoplastique selon la revendication 18, caractérisée en ce qu'elle présente un allongement à la rupture supérieur à 40%, de préférence supérieur à 80% et en particulier supérieur à 100%.
20. Composition thermoplastique selon la revendication 18 ou 19, caractérisée en ce qu'elle présente une contrainte maximale à la rupture supérieure à 4 MPa, de préférence supérieure à 6 MPa et en particulier supérieure à 10 MPa.
21. Composition thermoplastique selon l'une quelconque des revendications 18 à 20, caractérisée par le fait qu'elle présente un taux d'insolubles, après 24 heures d'immersion dans de l'eau à 20 0C, au moins égal à 90 % en poids, de préférence au moins égal à 95 % en poids, et en particulier au moins égal à 98 % en poids.
22. Composition thermoplastique selon l'une quelconque des revendications 18 à 21, caractérisée en ce qu'elle présente, après immersion dans l'eau à 20 0C pendant 24 heures, un taux de gonflement inférieur à 20 %, de préférence inférieur à 12 %, mieux encore inférieur à 6 %.
23. Composition thermoplastique selon l'une quelconque des revendications 18 à 22, caractérisée en ce qu'elle présente :
- un taux d'insolubles au moins égal à 98 %,
- un allongement à la rupture au moins égal à 100%, et
- une contrainte maximale à la rupture supérieure à 10 MPa.
24. Composition thermoplastique selon l'une quelconque des revendications 18 à 23, caractérisée en ce qu'elle est non biodégradable ou non compostable au sens des normes EN 13432, ASTM D6400 et ASTM 6868.
25. Composition thermoplastique selon l'une quelconque des revendications 18 à 24, caractérisée en ce qu'elle contient au moins 33% de carbone d'origine renouvelable au sens de la norme ASTM D6852.
EP09706042A 2008-02-01 2009-01-29 Compositions thermoplastiques a base d'amidon soluble et procede de preparation de telles compositions Withdrawn EP2247662A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0850657A FR2927087B1 (fr) 2008-02-01 2008-02-01 Compositions thermoplastiques a base d'amidon soluble et procede de preparation de telles compositions.
PCT/FR2009/050130 WO2009095617A2 (fr) 2008-02-01 2009-01-29 Compositions thermoplastiques a base d'amidon soluble et procede de preparation de telles compositions

Publications (1)

Publication Number Publication Date
EP2247662A2 true EP2247662A2 (fr) 2010-11-10

Family

ID=39671996

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09706042A Withdrawn EP2247662A2 (fr) 2008-02-01 2009-01-29 Compositions thermoplastiques a base d'amidon soluble et procede de preparation de telles compositions

Country Status (12)

Country Link
US (1) US8916628B2 (fr)
EP (1) EP2247662A2 (fr)
JP (1) JP5544301B2 (fr)
KR (1) KR20100113611A (fr)
CN (1) CN101932648A (fr)
AU (1) AU2009208825B2 (fr)
BR (1) BRPI0907405A2 (fr)
CA (1) CA2712818A1 (fr)
FR (1) FR2927087B1 (fr)
MX (1) MX2010008452A (fr)
RU (1) RU2010136735A (fr)
WO (1) WO2009095617A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102585485A (zh) * 2012-01-06 2012-07-18 华南理工大学 高机械性能淀粉/热塑性聚氨酯复合材料及制备方法

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA200800129A1 (ru) 2003-11-20 2008-04-28 Солвей (Сосьете Аноним) Псевдоазеотропная композиция, содержащая дихлорпропанол, и способ ее получения
US8067645B2 (en) 2005-05-20 2011-11-29 Solvay (Societe Anonyme) Process for producing a chlorhydrin from a multihydroxylated aliphatic hydrocarbon and/or ester thereof in the presence of metal salts
FR2918058A1 (fr) * 2007-06-28 2009-01-02 Solvay Produit a base de glycerol, procede pour sa purification et son utilisation dans la fabrication de dichloropropanol
EP2207617A1 (fr) 2007-10-02 2010-07-21 SOLVAY (Société Anonyme) Utilisation de compositions contenant du silicium pour améliorer la résistance à la corrosion de récipients
TWI478875B (zh) 2008-01-31 2015-04-01 Solvay 使水性組成物中之有機物質降解之方法
FR2927088B1 (fr) * 2008-02-01 2011-02-25 Roquette Freres Compositions thermoplastiques a base d'amidon plastifie et procede de preparation de telles compositions.
FR2927084B1 (fr) * 2008-02-01 2011-02-25 Roquette Freres Procede de preparation de compositions thermoplastiques a base d'amidon plastifie et compositions ainsi obtenues.
FR2934272B1 (fr) * 2008-07-24 2013-08-16 Roquette Freres Procede de preparation de compositions a base de matiere amylacee et de polymere synthetique.
FR2935968B1 (fr) 2008-09-12 2010-09-10 Solvay Procede pour la purification de chlorure d'hydrogene
US9718729B2 (en) 2009-05-15 2017-08-01 Owens Corning Intellectual Capital, Llc Biocides for bio-based binders, fibrous insulation products and wash water systems
US20110003522A1 (en) * 2009-05-15 2011-01-06 Liang Chen Bio-based aqueous binder for fiberglass insulation materials and non-woven mats
US20110021101A1 (en) * 2009-06-29 2011-01-27 Hawkins Christopher M Modified starch based binder
US11173106B2 (en) 2009-10-07 2021-11-16 Johnson & Johnson Consumer Inc. Compositions comprising a superhydrophilic amphiphilic copolymer and a micellar thickener
US8399590B2 (en) * 2009-10-07 2013-03-19 Akzo Nobel Chemicals International B.V. Superhydrophilic amphiphilic copolymers and processes for making the same
US20110223364A1 (en) * 2009-10-09 2011-09-15 Hawkins Christopher M Insulative products having bio-based binders
WO2011044490A1 (fr) * 2009-10-09 2011-04-14 Owens Corning Intellectual Capital, Llc Liants biologiques pour l'isolation et mats non tissés
FR2954331B1 (fr) 2009-12-22 2012-05-25 Roquette Freres Compositions a base de matiere vegetale et de fibres synthetiques et procede de preparation de telles compositiions
FR2957928B1 (fr) * 2010-03-25 2013-07-05 Roquette Freres Compositions a base de matiere vegetale et procede de preparation de telles compositions
WO2011146848A1 (fr) 2010-05-21 2011-11-24 Cargill, Incorporated Mélange soufflé et rectifié d'huile de soja et d'huile de distillation du maïs
KR20140009163A (ko) 2010-09-30 2014-01-22 솔베이(소시에떼아노님) 천연유래 에피클로로히드린의 유도체
WO2012138723A1 (fr) 2011-04-07 2012-10-11 Cargill, Incorporated Liants d'origine biologique comprenant des glucides et un produit ayant préalablement réagi d'un alcool ou polyol et d'un acide polycarboxylique monomère ou polymère
CA2837073C (fr) 2011-05-27 2020-04-07 Cargill, Incorporated Systemes liants biosources
US9957409B2 (en) 2011-07-21 2018-05-01 Owens Corning Intellectual Capital, Llc Binder compositions with polyvalent phosphorus crosslinking agents
JP6196978B2 (ja) 2011-11-18 2017-09-13 ロケット フレールRoquette Freres 高分子量の部分的に可溶性のデキストリン
US9327438B2 (en) 2011-12-20 2016-05-03 Kimberly-Clark Worldwide, Inc. Method for forming a thermoplastic composition that contains a plasticized starch polymer
US9718258B2 (en) 2011-12-20 2017-08-01 Kimberly-Clark Worldwide, Inc. Multi-layered film containing a biopolymer
MY163937A (en) * 2012-03-13 2017-11-15 Texchem Polymers Sdn Bhd Thermoplastic Starch Composition Derives From Agricultural Waste
US20130253102A1 (en) * 2012-03-26 2013-09-26 Sung-Yuan LIU Biodegradable plastic material
JP2013203824A (ja) * 2012-03-28 2013-10-07 Sekisui Plastics Co Ltd 熱可塑性ポリウレタン発泡成形体及び熱可塑性ポリウレタン発泡成形体の製造方法
TWI445755B (zh) * 2012-06-27 2014-07-21 Ind Tech Res Inst 阻燃性熱可塑性澱粉材料、生質複材及其製備方法
CN103122133B (zh) * 2013-03-19 2015-02-11 宁波家塑生物材料科技有限公司 一种聚乳酸/植物多糖环保型复合材料及其制备方法
CN103450618A (zh) * 2013-08-22 2013-12-18 吴江龙硕金属制品有限公司 一种具有抗菌作用的可吸水塑料
US11649382B2 (en) 2014-09-26 2023-05-16 Ahlstrom Oyj Biodegradable cellulose fiber-based substrate, its manufacturing process, and use in an adhesive tape
FR3026345B1 (fr) * 2014-09-26 2016-09-30 Ahlstroem Oy Support a base de fibres cellulosiques, son procede de fabrication et son utilisation en tant que ruban de masquage
CN105399838A (zh) * 2015-12-12 2016-03-16 廖芳 一种添加顺丁烯二酸制备交联淀粉的工艺方法
CN105832696A (zh) * 2016-03-24 2016-08-10 郭帅达 一种淀粉空心胶囊的制备方法
CN106633201A (zh) * 2016-10-07 2017-05-10 河南工业大学 一种高刚性热塑性淀粉注塑专用料的制备方法
CN109135252B (zh) * 2018-06-27 2020-11-03 安徽嘉明新材料科技有限公司 一种可降解tpu膜及其制备工艺
KR20200122649A (ko) 2019-04-18 2020-10-28 (주)이진통상 친환경 tpu 복합소재 조성물 및 이를 이용하여 제조되는 친환경 tpu 필름
CN110106740B (zh) * 2019-05-29 2022-04-22 福建中烟工业有限责任公司 一种组合物、烟用内衬纸及其应用
CN112266728A (zh) * 2020-10-28 2021-01-26 连山万林树脂有限公司 一种淀粉改性松香树脂及其制备方法
CN115260320B (zh) * 2021-04-30 2023-05-05 中国科学院化学研究所 离子型多糖衍生物用作防冰涂层材料的应用
CN113480836A (zh) * 2021-06-15 2021-10-08 上海乐亿塑料制品有限公司 一种全生物降解包装袋及其制备方法
CN113929858A (zh) * 2021-10-20 2022-01-14 长春工业大学 一种生物基聚氨酯材料的制备方法
US20230383051A1 (en) * 2022-04-20 2023-11-30 Dizolv, Inc. Biodegradable thermoplastic materials
CN114854098B (zh) * 2022-05-17 2022-12-09 宁波家和新材料科技有限公司 一种玉米淀粉基可降解一次性塑料餐具及其制备方法
CN115252909B (zh) * 2022-09-29 2022-12-09 江苏贝耐德医疗科技有限公司 一种医用可降解复合材料及其制备方法
CN116180452B (zh) * 2023-05-04 2023-07-18 张家港市德宝化工有限公司 一种多功能整理剂及其制备方法和在涤棉工装面料中的应用

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3939721C2 (de) * 1988-12-05 2002-08-01 Nippon Synthetic Chem Ind Polyvinylalkohol-Stärke-Film
DE4116404A1 (de) * 1991-05-18 1992-11-19 Tomka Ivan Polymermischung fuer die herstellung von folien
DE4419572A1 (de) * 1994-05-11 1995-11-16 Bayer Ag Mehrkomponenten-Systeme für die Papierveredelung
DE69631884T2 (de) * 1995-07-12 2005-03-10 Valtion Teknillinen Tutkimuskeskus Thermoplastifizierte stärke und verfahren zur herstellung
DE19822979A1 (de) * 1998-05-25 1999-12-02 Kalle Nalo Gmbh & Co Kg Folie mit Stärke oder Stärkederivaten und Polyesterurethanen sowie Verfahren zu ihrer Herstellung
EP1108726A1 (fr) * 1999-12-14 2001-06-20 Tiense Suikerraffinaderij N.V. Alkylurethanes de glucosides comme agents de surface
US6231970B1 (en) * 2000-01-11 2001-05-15 E. Khashoggi Industries, Llc Thermoplastic starch compositions incorporating a particulate filler component
WO2004005365A1 (fr) * 2002-07-02 2004-01-15 Stepan Company Mousses de polyisocyanurate a stabilite thermique amelioree
US6830810B2 (en) * 2002-11-14 2004-12-14 The Procter & Gamble Company Compositions and processes for reducing water solubility of a starch component in a multicomponent fiber
JP2005255743A (ja) * 2004-03-10 2005-09-22 Agri Future Joetsu Co Ltd ポリオレフィン樹脂組成物、その製造方法、その成形品及びこの成形品の成形方法
JP2006022424A (ja) * 2004-07-07 2006-01-26 Tajima Roofing Co Ltd アスファルトルーフィング用不織布補強剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009095617A3 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102585485A (zh) * 2012-01-06 2012-07-18 华南理工大学 高机械性能淀粉/热塑性聚氨酯复合材料及制备方法
CN102585485B (zh) * 2012-01-06 2014-04-02 华南理工大学 高机械性能淀粉/热塑性聚氨酯复合材料及制备方法

Also Published As

Publication number Publication date
FR2927087A1 (fr) 2009-08-07
WO2009095617A2 (fr) 2009-08-06
US8916628B2 (en) 2014-12-23
WO2009095617A3 (fr) 2009-09-24
MX2010008452A (es) 2010-12-02
US20100305271A1 (en) 2010-12-02
CN101932648A (zh) 2010-12-29
KR20100113611A (ko) 2010-10-21
AU2009208825B2 (en) 2014-06-05
BRPI0907405A2 (pt) 2015-07-21
CA2712818A1 (fr) 2009-08-06
FR2927087B1 (fr) 2011-02-11
JP2011511119A (ja) 2011-04-07
AU2009208825A1 (en) 2009-08-06
RU2010136735A (ru) 2012-03-10
JP5544301B2 (ja) 2014-07-09

Similar Documents

Publication Publication Date Title
EP2247662A2 (fr) Compositions thermoplastiques a base d'amidon soluble et procede de preparation de telles compositions
FR2927088A1 (fr) Compositions thermoplastiques a base d'amidon plastifie et procede de preparation de telles compositions.
EP2337815B1 (fr) Compositions thermoplastiques ou elastomeriques a base d'esters d'une matiere amylacee et procede de preparation de telles compositions
FR2927083A1 (fr) Procede de preparation de compositions thermoplastiques a base de matiere amylacee soluble.
WO2009095618A2 (fr) Procede de preparation de compositions thermoplastiques a base d'amidon plastifie et compositions ainsi obtenues
EP2310447B1 (fr) Procede de preparation de compositions a base de composant amylace et de polymere synthetique
FR2937039A1 (fr) Compositions elastomeriques a base d'esters d'une matiere amylacee et procede de preparation de telles compositions
CA2726860A1 (fr) Compositions thermoplastiques ou elastomeriques a base d'amidon et procede de preparation de telles compositions
WO2011117549A1 (fr) Compositions à base de matière végétale et procédé de préparation de telles compositions
WO2011086292A1 (fr) Compositions a base de matiere vegetale et de fibres synthetiques et procede de preparation de telles compositions
WO2011086334A1 (fr) Procédé de préparation de compositions thermoplastiques à base d'amidon plastifié et compositions
EP2558512A1 (fr) Thermoplastioues a base de farine vegetale plastifiee et compositions ainsi obtenues

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100824

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160802