WO2009095618A2 - Procede de preparation de compositions thermoplastiques a base d'amidon plastifie et compositions ainsi obtenues - Google Patents

Procede de preparation de compositions thermoplastiques a base d'amidon plastifie et compositions ainsi obtenues Download PDF

Info

Publication number
WO2009095618A2
WO2009095618A2 PCT/FR2009/050131 FR2009050131W WO2009095618A2 WO 2009095618 A2 WO2009095618 A2 WO 2009095618A2 FR 2009050131 W FR2009050131 W FR 2009050131W WO 2009095618 A2 WO2009095618 A2 WO 2009095618A2
Authority
WO
WIPO (PCT)
Prior art keywords
starch
plasticizer
composition
binding agent
thermoplastic
Prior art date
Application number
PCT/FR2009/050131
Other languages
English (en)
Other versions
WO2009095618A3 (fr
Inventor
Léon Mentink
Didier Lagneaux
Jérôme GIMENEZ
Original Assignee
Roquette Freres
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roquette Freres filed Critical Roquette Freres
Priority to EP09705602A priority Critical patent/EP2247660A2/fr
Priority to MX2010008454A priority patent/MX2010008454A/es
Priority to BRPI0906981-0A priority patent/BRPI0906981A2/pt
Priority to CA2712898A priority patent/CA2712898A1/fr
Priority to US12/864,765 priority patent/US20100311905A1/en
Priority to JP2010544762A priority patent/JP5544302B2/ja
Priority to CN200980103896.3A priority patent/CN101932646B/zh
Priority to RU2010136737/05A priority patent/RU2524382C2/ru
Priority to AU2009208826A priority patent/AU2009208826B2/en
Publication of WO2009095618A2 publication Critical patent/WO2009095618A2/fr
Publication of WO2009095618A3 publication Critical patent/WO2009095618A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0895Manufacture of polymers by continuous processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • C08G18/6484Polysaccharides and derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/6505Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen the low-molecular compounds being compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6511Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen the low-molecular compounds being compounds of group C08G18/32 or polyamines of C08G18/38 compounds of group C08G18/3203
    • C08G18/6517Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen the low-molecular compounds being compounds of group C08G18/32 or polyamines of C08G18/38 compounds of group C08G18/3203 having at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2230/00Compositions for preparing biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds

Definitions

  • the present invention relates to a new process for the preparation of starch-based thermoplastic compositions and the compositions thus obtained.
  • thermoplastic composition in the present invention means a composition which reversibly softens under the action of heat and hardens on cooling. It has at least one so-called glass transition temperature (Tg) below which the amorphous fraction of the composition is in the brittle glassy state, and above which the composition can undergo reversible plastic deformations.
  • Tg glass transition temperature
  • the glass transition temperature or at least one of the glass transition temperatures of the starch-based thermoplastic composition of the present invention is preferably from -50 to 150 ° C.
  • This starch-based composition can, of course, be shaped by the processes traditionally used in plastics (extrusion, injection, molding, blowing, calendering, etc.). Its viscosity, measured at a temperature of 100 0 C to 200 0 C, is generally between 10 and 10 6 Pa. S.
  • said composition is "hot melt”, that is to say that it can be shaped without applying significant shear forces, that is to say by simple flow or by simply pressing the melt.
  • Its viscosity measured at a temperature of 100 0 C to 200 0 C, is generally between 10 and 10 3 Pa. S.
  • Starch is a raw material with the advantages of being renewable, biodegradable and available in large quantities at an economically attractive price compared to the oil and gas used as raw materials for today's plastics.
  • the first starch-based compositions developed were about thirty years ago.
  • the starches were then used in the form of mixtures with synthetic polymers such as polyethylene, as filler, in the native granular state.
  • the native starch is then preferably dried to a moisture content of less than 1% by weight, to reduce its hydrophilicity.
  • it can also be coated with fatty substances (fatty acids, silicones, siliconates) or to be modified on the surface of the grains by siloxanes or isocyanates.
  • the materials thus obtained generally contained approximately 10%, at most 20% by weight of granular starch, because beyond this value, the mechanical properties of the composite materials obtained became too imperfect and lowered compared with those of the synthetic polymers forming the matrix.
  • polyethylene-based compositions are only biodegradable and non-biodegradable as expected, so that the expected growth of these compositions has not occurred.
  • PHBV polyhydroxybutyrate-co-hydroxyvalerate
  • PLA poly (lactic acid)
  • the starch was used in a substantially amorphous and thermoplastic state.
  • This state is obtained by plastification of the starch using a suitable plasticizer incorporated into the starch at a level generally between 15 and 25% relative to the granular starch, by supply of energy at a time. mechanical and thermal.
  • U.S. Patent 5,095,054 to Warner Lambert and EP 0 497 706 B1 to Applicants describe in particular this destructured state, with reduced or absent crystallinity, and means for obtaining such thermoplastic starches.
  • thermoplastic starches although they may be to some extent modulated by the choice of starch, plasticizer and the rate of use of the latter, are generally rather poor because the materials and obtained are still very highly viscous at high temperature (120 0 C to 170 0 C) and very brittle, too brittle, and very hard at low temperature, that is to say below the glass transition temperature or the temperature. highest glass transition temperature.
  • thermoplastic starches are very low, still less than about 10%, and this even with a very high plasticizer content of the order of 30%.
  • the elongation at break of low density polyethylenes is generally between 100 and 1000%.
  • thermoplastic starches decreases dramatically as the level of plasticizer increases. It has an acceptable value, of the order of 15 to 60 MPa, for a plasticizer content of 10 to 25%, but decreases unacceptably beyond 30%.
  • thermoplastic starches have been the subject of numerous studies aimed at developing biodegradable and / or water-soluble formulations having better mechanical properties by physical mixing of these thermoplastic starches, or with polymers of petroleum origin such as polyvinyl acetate (PVA), polyvinyl alcohol (PVOH), ethylene / vinyl alcohol copolymers (EVOH), biodegradable polyesters such as polycaprolactones (PCL), poly (butylene adipate terephthalate) (PBAT) and poly (butylene succinate adipate) (PBS), or with polyesters of renewable origin such as poly (lactic acid) (PLA) ) or microbial polyhydroxyalkanoates (PHA, PHB and PHBV), or with natural polymers extracted from plants or animal tissues.
  • PVA polyvinyl acetate
  • PVH polyvinyl alcohol
  • EVOH ethylene / vinyl alcohol copolymers
  • PCL polycaprolactones
  • PBAT poly (butylene adipate ter
  • thermoplastic starches are very hydrophilic and are therefore very incompatible with synthetic polymers. It follows that the mechanical properties of such mixtures, even with the addition of compatibilizing agents such as, for example, copolymers comprising hydrophobic units and alternating hydrophilic units such as ethylene / acrylic acid (EAA) copolymers, or even cyclodextrins. or organosilanes, remain quite limited.
  • compatibilizing agents such as, for example, copolymers comprising hydrophobic units and alternating hydrophilic units such as ethylene / acrylic acid (EAA) copolymers, or even cyclodextrins. or organosilanes, remain quite limited.
  • the commercial product MATER-BI grade Y has, according to the information given by its manufacturer, an elongation at break of 27% and a maximum breaking stress of 26 MPa.
  • these composite materials today find limited use, that is to say, limited essentially to the sectors of the overpack, trash bags, crate bags and some rigid, biodegradable mass objects.
  • thermoplastic amorphous starches can be carried out in a medium that is poorly hydrated by the extrusion processes. Obtaining a melted phase from the starch granules requires not only a large supply of mechanical energy and thermal energy but also the presence of a plasticizer at the risk, otherwise, to carbonize the starch.
  • Water is the most natural plasticizer of starch and is therefore commonly used, but other molecules are also very effective, including sugars such as glucose, maltose, fructose or sucrose; polyols such as ethylene glycol, propylene glycol, polyethylene glycols (PEG), glycerol, sorbitol, xylitol, maltitol or hydrogenated glucose syrups; urea, salts of organic acids such as sodium lactate and mixtures of these products.
  • the amount of energy to be applied to plasticize the starch can be advantageously reduced by increasing the amount of plasticizer.
  • a plasticizing agent at a high level relative to the starch induces various technical problems among which may be mentioned the following: a release of the plasticizer of the plasticized matrix at the end of manufacture or over time during storage, so that it is impossible to retain a quantity of plasticizer as high as desired and therefore obtain a sufficiently flexible and film-forming material, o high instability of the mechanical properties of the plasticized starch that hardens or softens depending on the humidity of the air, respectively when its water content decreases or increases, o the whitening or opacification of the surface of the composition by crystallization of the plasticizer used at high dose, as for example in the case of xylitol o a tacky or oily nature of the surface, as in the case of glycerol for example, o a very poor resistance to water, all the more problematic that the plasticizer content is high.
  • the present invention provides an effective solution to the problems stated above.
  • the present invention relates to a process for preparing a thermoplastic composition based on starch comprising the following steps:
  • step (b) preparing a plasticized composition by thermomechanical mixing of this starch and this organic plasticizer, (c) optionally incorporating into the plasticized composition obtained in step (b), at least one functional substance (optional component 4), other than granular starch and carrying active hydrogen functions and / or hydrolysis functions of such active hydrogen functions, and
  • step (d) incorporating, in the plasticized composition obtained, at least one binding agent (component 3) bearing at least two functional groups capable of reacting with molecules carrying active hydrogen functions and capable of allowing fixation, by covalent bonds, at least a portion of the plasticizer on the starch and / or on the functional substance optionally added in step (c), said binding agent having a molar mass of less than 5000, and being chosen from diacids and compounds bearing at least two functions, free or masked, identical or different, chosen from the functions isocyanate, carbamoyl-caprolactam, epoxide, halogeno, acid anhydride, acyl halide, oxychloride, trimetaphosphate and alkoxysilane.
  • at least one binding agent (component 3) bearing at least two functional groups capable of reacting with molecules carrying active hydrogen functions and capable of allowing fixation, by covalent bonds, at least a portion of the plasticizer on the starch and / or on the functional substance optionally added in step
  • the term "granular starch” means a starch that is native or physically modified, chemically or enzymatically, having retained, within the starch granules, a semicrystalline structure similar to that evidenced in FIG. starch grains naturally present in reserve organs and tissues of higher plants, particularly in cereal grains, legume seeds, potato or cassava tubers, roots, bulbs, stems and the fruits.
  • This semi-crystalline state is essentially due to macromolecules of amylopectin, one of the two main constituents of starch.
  • the grains of starch In the native state, the grains of starch have a degree of crystallinity which varies from 15 to 45%, and which depends essentially on the botanical origin of the starch and the possible treatment it has undergone.
  • Granular starch placed under polarized light, has a characteristic black cross, so-called Maltese cross, typical of the granular state.
  • Maltese cross typical of the granular state.
  • starch plasticizer any organic molecule of low molecular weight, i.e. preferably having a molecular weight of less than 5000, in particular less than 1000, which, when incorporated in the starch by thermomechanical treatment at a temperature of between 20 and 200 ° C. results in a decrease in the glass transition temperature and / or a reduction in the crystallinity of a granular starch to a value of less than 15% or even an essentially amorphous state.
  • This definition of the plasticizer does not include water, which, although having a starch plasticizing effect, has the major disadvantage of inactivating most of the functions likely to be present on the surface.
  • crosslinking agent such as epoxide or isocyanate functions.
  • “Functional substance” is understood to mean any molecule, other than granular starch, the binding agent and the plasticizer, carrying active hydrogen functions, that is to say functions having at least one hydrogen atom likely to be displaced if a chemical reaction takes place between the atom carrying this hydrogen atom and another reactive function.
  • Active hydrogen functions are, for example, hydroxyl, protonic acid, urea, urethane, amide, amine or thiol functions.
  • This definition also encompasses in the present invention any molecule, other than granular starch, the binding agent and the plasticizer, carrying functions capable of giving, in particular by hydrolysis, such active hydrogen functions.
  • the functions which can give such functions to active hydrogen are, for example, the alkoxy functions, in particular the alkoxysilanes, or the acyl chloride, acid anhydride, epoxide or ester functions.
  • the functional substance is preferably an oligomer or organic polymer having a weight average molecular weight of between 5,000 and 5,000,000, in particular between 8500 and 3,000,000, in particular between 15,000 and 1,000,000 daltons.
  • binding agent means any molecule carrying at least two functional groups, free or masked, capable of reacting with molecules carrying active hydrogen functions, such as in particular the plasticizer of starch. This binding agent therefore allows the attachment, by covalent bonds, of at least a portion of the plasticizer on the starch and / or on the functional substance.
  • This binding agent is distinguished from adhesion agents, physical compatibilizers or grafting agents in that they either create weak bonds (non-covalent) or carry only a single reactive function .
  • the molecular weight of the binding agent is preferably less than 5000 and most preferably less than 1000. Indeed, the low molecular weight of the binding agent allows its quick and easy incorporation into the plasticized starch composition by the plasticizer.
  • said binding agent has a molecular weight of between 50 and 500, in particular between 90 and 300.
  • the process comprises step (c) of incorporating at least one functional substance into the thermoplastic composition containing the starch and the plasticizer.
  • the binding agent used is preferably chosen so that one of its reactive functional groups is capable of reacting with the reactive functions of this functional group. functional substance. This makes it possible to at least partially fix the plasticizer by covalent bonding to the functional substance.
  • the plasticizer can therefore be fixed at least in part, either on the starch or on the functional substance or on these two components at the same time.
  • the process of the present invention preferably further comprises a step (e) of heating the mixture obtained in step (d) to a temperature sufficient to react the binding agent with, on the one hand, the plasticizer and, secondly, with the starch and / or the functional substance possibly present.
  • Steps (d) and (e) can be implemented simultaneously or one after the other after a very variable time.
  • the incorporation of the binding agent into the thermoplastic composition and the reaction with the starch and / or the functional substance is preferably carried out by hot kneading at a temperature of between 60.degree. and 200 ° C., and better still between 100 and 160 ° C.
  • the binding agent may be chosen for example from compounds carrying at least two functions, free or masked, identical or different, chosen from isocyanate, carbamoylcaprolactam, epoxide, halogeno, acid anhydride, acyl halide functions. , oxychloride, trimetaphosphate and alkoxysilane.
  • the binding agent may also be an organic diacid.
  • diisocyanates and polyisocyanates preferably 4,4'-dicyclohexylmethane diisocyanate (H12MDI), methylenediphenyl diisocyanate (MDI), toluene diisocyanate (TDI), naphthalene diisocyanate (NDI), hexamethylene diisocyanate; (HMDI) and lysine diisocyanate (LDI), dicarbamoylcaprolactams, preferably 1,1 'carbonyl-biscaprolactam,
  • diepoxides halohydrins, that is to say compounds having an epoxide function and a halogen function, preferably epichlorohydrin, organic diacids, preferably succinic acid, adipic acid, acid glutaric acid, oxalic acid, malonic acid, maleic acid and the corresponding anhydrides, oxychlorides, preferably phosphorus oxychloride,
  • trimetaphosphates preferably sodium trimetaphoshate
  • alkoxysilanes preferably tetraethoxysilane
  • the binding agent is chosen from the diepoxides, diisocyanates and halohydrins. It is particularly preferred to use a linking agent selected from diisocyanates, methylenediphenyl diisocyanate (MDI) and 4,4'-dicyclohexylmethane diisocyanate (H12MDI) being particularly preferred.
  • a linking agent selected from diisocyanates, methylenediphenyl diisocyanate (MDI) and 4,4'-dicyclohexylmethane diisocyanate (H12MDI) being particularly preferred.
  • the appropriate amount of binding agent depends in particular on the plasticizer content. Surprisingly and surprisingly, the higher the amount of plasticizer introduced, the greater the amount of binding agent can be increased without the end material becoming hard and losing its thermoplastic properties.
  • the amount of binding agent used is preferably between 0.01 and 15 parts, in particular between 0.1 and 12 parts and better still between 0.1 and 9 parts per 100 parts of plasticized composition of the step ( b), optionally containing the functional substance.
  • this amount of binding agent can be between 0.5 and 5 parts, especially between 0.5 and 3 parts, per 100 parts by weight of plasticized composition of step (b), containing possibly the functional substance.
  • triethylcitrate acts as a plasticizing agent only for the PLA phase but not for the amylaceous phase which remains in the form of pelletized granules. starch dispersed in a PLA matrix plasticized with triethyl citrate.
  • thermoplastic starch / linear low-density polyethylene blends The article entitled "The influence of citric acid on the properties of thermoplastic starch / linear low-density polyethylene blends" by Ning et al. Carbohydrate Polymers, 67, (2007), 446-453, investigates the effect of the presence of citric acid on thermoplastic starch / polyethylene blends. This document does not envisage at any time the fixing of the plasticizer used (glycerol) on the starch via a bi- or polyfunctional compound. The spectroscopy results show no covalent bond between citric acid and starch or polyethylene. It is simply observed that the physical bonds (hydrogen bonds) between starch and glycerol are reinforced by the presence of citric acid.
  • the granular starch can come from any botanical origin. It may be starch native to cereals such as wheat, maize, barley, triticale, sorghum or rice, tubers such as potato or cassava, or legumes such as peas and soybeans, and mixtures of such starches.
  • the granular starch is an acid hydrolyzed starch, oxidizing or enzymatic, or an oxidized starch. It can be a starch commonly called fluidized starch or a white dextrin.
  • starch modified physico-chemically but having essentially retained the structure of the native starch starting such as starches esterified and / or etherified, in particular modified by acetylation, hydroxypropylation, cationization, crosslinking, phosphatation, or succinylation, or starches treated in aqueous medium at low temperature ("annealing"), treatment which is known to increase the crystallinity of starch.
  • the granular starch is a native, hydrolyzed, oxidized or modified starch of wheat or pea.
  • the granular starch generally has a degree of solubles at 20 ° C. in demineralized water, less than 5% by weight. It is preferably almost insoluble in cold water.
  • the plasticizer of the starch is preferably chosen from diols, triols and polyols such as glycerol, polyglycerol, isosorbide, sorbitans, sorbitol, mannitol, and hydrogenated glucose syrups. organic acids such as sodium lactate, urea and mixtures of these products.
  • the plasticizer advantageously has a molar mass of less than 5000, preferably less than 1000, and in particular less than 400.
  • the organic plasticizer naturally has a molar mass greater than 18, ie it does not encompass the water.
  • the amount of plasticizer used in the present invention may advantageously be relatively high relative to the amount of plasticizer used in the plasticized starches of the prior art.
  • the plasticizer is incorporated into the granular starch preferably in the proportion of 10 to 150 parts by weight, preferably in the proportion of 25 to 120 parts by weight and in particular in the proportion of 40 to 120 parts by weight per 100 parts by weight. starch weight.
  • the functional substance carrying active hydrogen functional groups and / or functions which, in particular by hydrolysis of such active hydrogen functions may be a polymer of natural origin, or a synthetic polymer obtained from monomers of fossil origin and / or monomers from renewable natural resources.
  • Polymers of natural origin can be obtained by extraction from plants or animal tissues. They are preferably modified or functionalized, and are in particular of the protein type, cellulosic, lignocellulosic, chitosan and natural rubbers.
  • PHAs polyhydroxyalkanoates
  • Such a polymer of natural origin may be chosen from flours, modified or unmodified proteins, unmodified or modified celluloses, for example by carboxymethylation, ethoxylation, hydroxypropylation, cationization, acetylation, alkylation, hemicelluloses, lignins, guars. modified or unmodified chitins and chitosans, gums and natural resins such as natural rubbers, rosins, shellacs and terpene resins, polysaccharides extracted from algae such as alginates and carrageenans, polysaccharides bacterial origin such as xanthans or PHAs, lignocellulosic fibers such as flax fibers.
  • the synthetic polymer obtained from monomers of fossil origin, preferably comprising active hydrogen functions may be chosen from synthetic polymers of polyester, polyacrylic type, polyacetal, polycarbonate, polyamide, polyimide, polyurethane, polyolefin, functionalized polyolefin, styrenic, functionalized styrene, vinyl, functionalized vinylic, functionalized fluorinated, functionalized polysulfone, functionalized polyphenyl ether, functionalized polyphenylsulfide, functionalized silicone and functionalized polyether.
  • PLA polyamides
  • PA polyamides
  • EVA polyvinyl alcohol
  • EMA ethylene-methyl acrylate copolymers
  • EMA ethylene-vinyl alcohol copolymers
  • ASA polyoxymethylenes
  • TPU thermoplastic polyurethanes
  • SBS acrylic or maleic anhydride units
  • SEBS styrene-ethylene-butylene-styrenes
  • the polymer used as a functional substance may also be a polymer synthesized from monomers derived from natural resources which are renewable in the short term such as plants, microorganisms or gases, in particular from sugars, glycerin, oils or their derivatives such as alcohols or acids, mono-, di- or polyfunctional, and in particular from molecules such as bio-ethanol, bio-ethylene glycol, bio-propanediol, 1,3-propanediol biosourced, bio-butane-diol, lactic acid, succinic acid biosourced, glycerol, isosorbide, sorbitol, sucrose, diols derived from vegetable or animal oils and resin acids extracted from pine.
  • monomers derived from natural resources which are renewable in the short term such as plants, microorganisms or gases, in particular from sugars, glycerin, oils or their derivatives such as alcohols or acids, mono-, di- or polyfunctional, and in particular from molecules such as bio-ethanol, bio-ethylene
  • It may be in particular polyethylene obtained from bioethanol, polypropylene derived from bio-propanediol, polyesters of PLA or PBS type based on lactic acid or succinic acid biosourced, polyesters of PBAT type based on butane- diol or biosourced succinic acid, SORONA®-type polyesters based on 1,3-propanediol biosourced, polycarbonates containing isosorbide, polyethylene glycols based on bio-ethylene glycol, polyamides based on castor oil or plant polyols, and polyurethanes based for example on plant diols, glycerol, isosorbide, sorbitol or sucrose.
  • the non-starchy polymer is chosen from ethylene-vinyl acetate copolymers (EVA), polyethylenes (PE) and polypropylenes (PP) which are not functionalized or functionalized, in particular by silane units, acrylic units or maleic anhydride units.
  • EVA ethylene-vinyl acetate copolymers
  • PE polyethylenes
  • PP polypropylenes
  • thermoplastic polyurethanes TPU
  • PBS poly (butylene succinate)
  • PBSA poly (butylene succinate-co-adipate)
  • PBAT poly (butylene adipate terephthalate)
  • SEBS styrene-ethylene-butylene-styrene
  • PETG amorphous poly (ethylene terephthalate)
  • synthetic polymers obtained from bio-sourced monomers, polymers extracted from plants, animal tissues and microorganisms, optionally functionalized, and mixtures thereof.
  • non-starch polymers are polyethylenes (PE) and polypropylenes (PP), preferably functionalized, styrene-ethylene-butylene-styrene copolymers (SEBS), preferably functionalized, amorphous poly (ethylene terephthalate) (PETG) and thermoplastic polyurethanes.
  • PE polyethylenes
  • PP polypropylenes
  • SEBS styrene-ethylene-butylene-styrene copolymers
  • PETG amorphous poly (ethylene terephthalate)
  • thermoplastic polyurethanes thermoplastic polyurethanes
  • the non-starchy polymer has a weight average molecular weight of between 8500 and 10,000,000 daltons, in particular between 15,000 and 1,000,000 daltons.
  • non-starchy polymer preferably consists of carbon of renewable origin according to ASTM D6852 and is advantageously non-biodegradable or non-compostable in the sense of the standards EN 13432, ASTM D6400 and ASTM 6868.
  • the plasticized composition of step (b), optionally containing a functional substance (optional component 4), is dried or dehydrated, before the incorporation of the binding agent. (component 3) in step (d), to a residual moisture content of less than 5%, preferably less than 1%, and in particular less than 0.1%.
  • this drying or dehydration step can be carried out batchwise or continuously during the process.
  • the thermomechanical mixture of the native starch and the plasticizer is carried out by hot kneading at a temperature of preferably between 60 and 200 ° C., more preferably between 100 and 160 ° C., in a discontinuous manner, for example by kneading. mixing, or continuously, for example by extrusion.
  • the duration of this mixture can be from a few seconds to a few hours, depending on the mixing mode selected.
  • the incorporation, during step (d), of the binding agent into the plasticized composition can be carried out by thermomechanical mixing, discontinuously or continuously and in particular online, by reactive extrusion. . In this case, the mixing time can be short, from a few seconds to a few minutes.
  • the present invention also relates to a thermoplastic composition based on starch obtainable by the method of the invention.
  • composition in accordance with the invention is thermoplastic in the meaning defined above and therefore advantageously has a complex viscosity, measured on a PHYSICA MCR 501 or equivalent type rheometer, of between 10 and 10 6 Pa.s, for a temperature of between 100 and 200 ° C. For injection uses for example, its viscosity at these temperatures may be rather low and the composition is then preferentially heat-fusible in the sense specified above.
  • This composition is either a simple mixture of the three or four components (starch, plasticizer, binding agent, optional functional substance), or a mixture comprising macromolecular products resulting from the reaction of the binding agent with each of two or three other components.
  • the subject of the present invention is not only the composition obtained at the end of step (e), but also that obtained at the end of step (d), that is to say before reaction. in step (e), the binding agent with the other components.
  • thermoplastic compositions of the present invention those of the compositions resulting from step (e) having undergone the reaction step of the binding agent.
  • compositions of the present invention contain a functional substance, they preferably have a "solid dispersion" type structure.
  • the compositions of the present invention contain the plasticized starch in the form of domains dispersed in a matrix of continuous functional substance.
  • This dispersion-type structure must be distinguished in particular from a structure where the plasticized starch and the functional substance constitute only one and the same phase, or else compositions containing two co-continuous networks of plasticized starch and substance. functional.
  • the object of the present invention is indeed not to prepare materials that are above all biodegradable, but plastics with a high starch content having excellent rheological and mechanical properties.
  • the functional substance is preferably chosen from non-biodegradable synthetic polymers in accordance with the standards EN 13432, ASTM D6400 and ASTM 6868.
  • thermoplastic compositions according to the invention have the advantage of being sparingly soluble or even totally insoluble in water, of being difficult to hydrate and of maintaining good physical integrity after immersion in water.
  • Their level of insolubles in water, at 20 ° C. is preferably greater than 72%, in particular greater than 80%, more preferably greater than 90%. Very advantageously, it may be greater than 92%, especially greater than 95%. Ideally, this insoluble content may be at least 98% and in particular be close to 100%.
  • the degree of swelling of the thermoplastic compositions according to the invention, after immersion in water at 20 ° C. for a period of 24 hours is preferably less than 20%, in particular less than 12%, more preferably less than at 6%. Very advantageously, it may be less than 5%, especially less than 3%. Ideally, this swelling rate is at most equal to 2% and may especially be close to 0%.
  • the composition according to the invention advantageously has characteristic stress / strain curves of a ductile material, and not of a fragile type material.
  • the elongation at break, measured for the compositions of the present invention is greater than 40%, preferably greater than 80%, more preferably greater than 90%.
  • This elongation at break can advantageously be at least 95%, especially at least equal to 120%. It can even reach or exceed 180% or even 250%. It is generally reasonably less than 500%.
  • the maximum breaking stress of the compositions of the present invention is generally greater than 4 MPa, preferably greater than 6 MPa, more preferably greater than 8 MPa. It can even reach or exceed 10 MPa, or even 20 MPa. It is generally reasonably less than 80 MPa.
  • the thermoplastic composition of the present invention contains a functional substance as described above.
  • This functional substance is preferably a polymer chosen from functionalized polyethylenes (PE) and polypropylenes (PP), styrene-ethylene copolymers Functionalized butylene-styrene (SEBS), amorphous poly (ethylene terephthalate) and thermoplastic polyurethanes (PTU).
  • composition according to the invention may also comprise various other additional products. It may be products intended to improve its physico-chemical properties, in particular its implementation behavior and its durability or its mechanical, thermal, conductive, adhesive or organoleptic properties.
  • the additional product may be an improving or adjusting agent for the mechanical or thermal properties chosen from minerals, salts and organic substances, in particular from nucleating agents such as talc, compatibilizing agents such as surfactants, impact or scratch-resistant improvers such as calcium silicate, shrinkage control agents such as magnesium silicate, scavengers or deactivators of water, acids, catalysts, metals, oxygen , infra-red rays, UV rays, hydrophobing agents such as oils and greases, hygroscopic agents such as pentaerythritol, flame retardants and fireproofing agents such as halogenated derivatives, anti-smoke agents, reinforcing fillers, mineral or organic, such as clays, carbon black, talc, vegetable fibers, glass fibers or Kevlar.
  • nucleating agents such as talc
  • compatibilizing agents such as surfactants, impact or scratch-resistant improvers such as calcium silicate
  • shrinkage control agents such as magnesium silicate, sca
  • the additional product may also be an improving agent or an adjustment of the conductive or insulating properties with respect to electricity or heat, for example sealing against air, water or gases.
  • solvents, fats, essences, aromas, perfumes chosen among the minerals, salts and organic substances, in particular among nucleating agents such as talc, compatibilizers such as surfactants, scavengers or deactivators of water, acids, catalysts, metals, oxygen or infrared radiation, hydrophobing agents such as oils and fats, pearling agents, hygroscopic agents such as pentaerythritol, heat conduction or dissipation agents such as metal powders, graphites and salts, and micrometric reinforcement like clays and carbon black.
  • nucleating agents such as talc
  • compatibilizers such as surfactants, scavengers or deactivators of water, acids, catalysts, metals, oxygen or infrared radiation
  • hydrophobing agents such as oils and fats, pearling agents, h
  • the additional product may be an agent that improves the organoleptic properties, in particular:
  • odorant properties perfumes or odor masking agents
  • optical properties glossing agents, whitening agents such as titanium dioxide, dyes, pigments, dye enhancers, opacifiers, matting agents such as carbonate calcium, thermochromic agents, phosphorescence and fluorescence agents, metallizing or marbling agents and anti-fogging agents), sound properties (barium sulphate and barytes), and
  • the additional product may also be an enhancing or adjusting agent for adhesive properties, including adhesion to cellulosic materials such as paper or wood, metal materials such as aluminum and steel, glass or ceramic materials, textiles and mineral materials, such as pine resins, rosin, ethylene / vinyl alcohol copolymers, fatty amines, lubricating agents, mold release agents, antistatic agents and anti-blocking agents.
  • cellulosic materials such as paper or wood, metal materials such as aluminum and steel, glass or ceramic materials, textiles and mineral materials, such as pine resins, rosin, ethylene / vinyl alcohol copolymers, fatty amines, lubricating agents, mold release agents, antistatic agents and anti-blocking agents.
  • the additional product may be an agent improving the durability of the material or an agent for controlling its (bio) degradability, especially chosen from hydrophobing agents such as oils and greases, anti-corrosion agents, antimicrobial agents such as Ag, Cu and Zn, degradation catalysts such as oxo-catalysts and enzymes such as amylases.
  • hydrophobing agents such as oils and greases
  • anti-corrosion agents such as Ag, Cu and Zn
  • antimicrobial agents such as Ag, Cu and Zn
  • degradation catalysts such as oxo-catalysts and enzymes such as amylases.
  • thermoplastic composition of the present invention also has the advantage of being essentially renewable raw materials and can be presented, after adjustment of the formulation, the following properties, useful in multiple applications in plastics or other fields : suitable thermoplasticity, melt viscosity and glass transition temperature, in the usual known value ranges of the current polymers (Tg from -50 ° to 150 ° C.), allowing implementation using existing industrial installations and used conventionally for the usual synthetic polymers,
  • thermoplastic starch compositions of the prior art flexibleibility, elongation at break, maximum breaking stress
  • starch-based thermoplastic composition according to the invention can, in particular, present simultaneously:
  • thermoplastic composition according to the invention can be used as such or in admixture with synthetic, artificial or naturally occurring polymers. It can be biodegradable or compostable according to EN 13432, ASTM D6400 and ASTM 6868, and then include polymers or materials that meet these standards, such as PLA, PCL, PBSA, PBAT and PHA.
  • the barrier effects to water and insufficient water vapor, insufficient heat resistance for the manufacture of bottles and resistance to heat very insufficient for use as textile fibers, and
  • composition according to the invention is however preferably non-biodegradable or non-compostable in the sense of the above standards, and then comprises, for example, known synthetic polymers or starches or extraction polymers highly functionalized, crosslinked or etherified.
  • known synthetic polymers or starches or extraction polymers highly functionalized, crosslinked or etherified The best performances in terms of rheological properties, mechanical properties and insensitivity to water have indeed been obtained with such non-biodegradable and non-compostable compositions.
  • composition according to the invention advantageously contains at least 33%, preferably at least 50%, in particular at least 60%, more preferably at least 70%, or more than 80% of renewable carbon in the sense of the standard. ASTM D6852.
  • This carbon of renewable origin is essentially that constitutive of the starch necessarily present in the composition according to the invention but can also be advantageously, by a judicious choice of the constituents of the composition, that present in the plasticizer of the starch as in the case for example glycerol or sorbitol, but also that present in the functional substance, any other functional product or any additional polymer when they come from renewable natural resources such as those defined preferentially above.
  • thermoplastic compositions based on starch according to the invention as barrier films with water, with water vapor, with oxygen, with carbon dioxide, with aromas, to fuels for automotive fluids, organic solvents and / or fats, alone or in multi-layer or multi-ply structures obtained by coextrusion, lamination or other techniques, for the field of packaging of carriers printing, insulation, or textile in particular.
  • compositions of the present invention may also be used to increase hydrophilicity, electrical conduction ability or microwaves, printability, dyeability, bulk coloring or paintability. anti-static or anti-dust effect, scratch resistance, fire resistance, adhesive power, heat sealability, sensory properties, in particular touch and acoustic properties, permeability to water and / or water vapor, or the resistance to organic solvents and / or fuels, of synthetic polymers in the context for example of the manufacture of membranes, films, printable electronic labels, textile fibers, containers or reservoirs, synthetic hot melt films, parts obtained by injection or extrusion such as automobile parts.
  • thermoplastic composition according to the invention considerably reduces the risks of accumulation in adipose tissue of living organisms and thus also in the food chain.
  • composition according to the invention may be in pulverulent, granular or bead form and form the matrix of a dilutable masterbatch in a bio-sourced matrix or not.
  • the invention also relates to a plastic or elastomeric material comprising the thermoplastic composition of the present invention or a finished or semi-finished product obtained therefrom.
  • a native wheat starch marketed by the Applicant under the name "SP wheat starch” having a water content of about 12% (component 1),
  • a concentrated aqueous composition of polyols based on glycerol and sorbitol marketed by the Applicant under the name POLYSORB G84 / 41/00 having a water content of about 16% (component 2) of methylene diphenyl diisocyanate ( MDI) marketed under the name Suprasec 1400 by the company Hunstman (component 3).
  • thermoplastic compositions A thermoplastic composition according to the prior art is prepared.
  • a TSA brand twin-screw extruder with a diameter (D) of 26 mm and a length of 56 D is fed with the starch and the plasticizer, so as to obtain a total material flow rate of 15 kg / h, varying the ratio of plasticizer mixture (POLYSORB) / wheat starch as follows:
  • composition AP5050 -100 parts / 100 parts
  • composition AP6040 - 67 parts / 100 parts
  • composition AP6535 Composition AP6535
  • composition AP7030 Composition AP7030.
  • the extrusion conditions are as follows:
  • compositions AP5050 and AP6040 are too sticky at high levels of plasticizer (compositions AP5050 and AP6040) to be granulated on a material commonly used with synthetic polymers. It is also noted that the compositions are still too sensitive to water to be cooled in a cold water tank. For these reasons, the plasticized starch rods are cooled in air on a conveyor belt and then dried at 80 ° C. in a vacuum oven for 24 hours and then granulated.
  • thermoplastic composition thus obtained in the form of granules, during a second passage in the extruder, 0, 1, 2, 4, 6, 8 and 12 parts of MPI per 100 parts of thermoplastic composition ( pcr). Due to an excessive increase in the viscosity, or even a crosslinking of the material in the extruder, and an irreversible loss of the thermoplastic character of the composition, it was impossible to incorporate:
  • composition AP6535 more than 4 phr of MDI in the composition AP6535 and more than 2 phr of MDI in the composition AP7030.
  • the water and moisture sensitivity of the compositions prepared and the ability of the plasticizer to migrate to water and thereby to induce degradation of the structure of the material are evaluated.
  • the level of insoluble in water of the compositions obtained is determined according to the following protocol:
  • the rate of moisture uptake is determined by measuring the mass of a plasticized starch sample after one month of storage, before drying (M h ) and after drying under vacuum at 80 ° C. for 24 hours (M s ).
  • the moisture recovery rate corresponds to the difference (1-M s / M h ) expressed in percent.
  • Table 1 shows that the incorporation of MDI according to the invention results in both a clear decrease in the rate of moisture uptake, a very significant decrease in the solubilization kinetics and a significant increase in the level of insolubles in the water.
  • thermoplastic compositions thus prepared in accordance with the invention contain specific entities of glucose-MDI-glycerol and glucose type. -MDI-sorbitol, attesting the fixing of the plasticizer on the starch via the binding agent.
  • compositions according to the invention prepared by reaction of a binding agent (MDI) with the starch-based thermoplastic compositions of the state of the art are more stable to moisture and water than the compositions. of the prior art without MDI.
  • MDI binding agent
  • thermoplastic base starch mixture AP6040 obtained according to Example 1 MDI and a polyethylene grafted with 2% vinyltrimethoxysilane (PEgSi) are mixed with this composition, thus forming a dry blend.
  • the PEgSi used was obtained beforehand by grafting vinyltrimethoxysilane on a low density PE by extrusion.
  • An example of such a PEgSi available on the market is the product BorPEX ME 2510 or BorPEX HE2515 both marketed by Borealis.
  • the twin-screw extruder previously described is fed by this dry blend.
  • the extrusion conditions are as follows:
  • Temperature profile (ten heating zones Z1 to Z10): 150 ° C.
  • compositions are prepared by introducing different levels of MDI: 0; 2 and 4 parts per 100 parts of thermoplastic composition AP6040 (phr).
  • compositions prepared are shown in the table below.
  • the mechanical tensile characteristics of the various samples are determined according to standard NF T51-034 (Determination of tensile properties) using a Lloyd Instrument LR5K test bench, a tensile speed of 50 mm / min and standard test specimens. H2.
  • the 07641 mixture containing 30% silane-grafted PE, produced without MDI, is very hydrophilic and therefore can not be cooled in the water leaving the die because it dislocates very quickly by hydration in the cooling bath.
  • the alloys made with MDI are very hydrophobic.
  • compositions prepared with MDI are also good to very good in terms of elongation and tensile strength.
  • the MDI by binding the plasticizer to the macromolecules of starch and PEgSi, greatly improves the properties of water resistance and mechanical strength, thus opening the compositions according to the invention, multiple new uses possible compared to those of the prior art.
  • compositions thus prepared according to the invention are in the form of starch dispersions in a continuous polymer matrix of PegSi.
  • All these alloys have in particular a good scratch resistance and a "leather" feel. They can thus find for example an application as a coating of fabrics, wood panels, paper or cardboard.

Abstract

La présente invention a pour objet un procédé de préparation d'une composition thermoplastique à base d'amidon comprenant les étapes suivantes: (a) sélection d'au moins un amidon granulaire et d'au moins un plastifiant organique de cet amidon, (b) préparation d'une composition plastifiée par mélange thermomécanique de cet amidon et de ce plastifiant, (c) incorporation éventuelle d'au moins une substance fonctionnelle porteuse de fonctions à hydrogène actif, (d) incorporation d'au moins un agent de liaison porteur d'au moins deux groupements fonctionnels aptes à réagir avec des molécules porteuses de fonctions à hydrogène actif,et éventuellement (e) le chauffage du mélange jusqu'à une température suffisante pour faire réagir l'agent de liaison avec, le plastifiant et avec l'amidon et/ou la substance fonctionnelle, les étapes (d) et (e) pouvant être simultanées, ainsi qu'une composition thermoplastiqueà base d'amidon susceptible d'être obtenue par ce procédé.

Description

PROCEDE DE PREPARATION DE COMPOSITIONS THERMOPLASTIQUES A BASE D'AMIDON PLASTIFIE ET COMPOSITIONS AINSI OBTENUES
La présente invention concerne un nouveau procédé de préparation de compositions thermoplastiques à base d'amidon et les compositions ainsi obtenues.
On entend par « composition thermoplastique » dans la présente invention une composition qui, de manière réversible, se ramollit sous l'action de la chaleur et se durcit en se refroidissant. Elle présente au moins une température dite de transition vitreuse (Tv) en dessous de laquelle la fraction amorphe de la composition est à l'état vitreux cassant, et au-dessus de laquelle la composition peut subir des déformations plastiques réversibles. La température de transition vitreuse ou l'une, au moins, des températures de transition vitreuse de la composition thermoplastique à base d'amidon de la présente invention est de préférence comprise entre -50 et 1500C. Cette composition à base d'amidon peut, bien entendu, être mise en forme par les procédés utilisés traditionnellement en plasturgie (extrusion, injection, moulage, soufflage, calandrage etc.). Sa viscosité, mesurée à une température de 100 0C à 2000C, est généralement comprise entre 10 et 106 Pa. s.
De préférence, ladite composition est «thermofusible», c'est-à-dire qu'elle peut être mise en forme sans application de forces de cisaillement importantes, c'est à dire par simple écoulement ou par simple pressage de la matière fondue. Sa viscosité, mesurée à une température de 100 0C à 2000C, est généralement comprise entre 10 et 103 Pa. s.
Dans le contexte actuel de perturbations climatiques dues à l'effet de serre et au réchauffement planétaire, de l'évolution à la hausse des coûts des matières premières fossiles, en particulier du pétrole dont sont issues les matières plastiques, de l'état de l'opinion publique en quête d'un développement durable, de produits plus naturels, plus propres, plus sains et moins dispendieux en énergie, et de l'évolution des réglementations et des fiscalités, il est nécessaire de disposer de nouvelles compositions issues de ressources renouvelables, qui conviennent en particulier au domaine des matériaux plastiques, et qui soient à la fois compétitives, conçues dès l'origine pour n'avoir que peu ou pas d'impacts négatifs sur l'environnement, et techniquement aussi performantes que les polymères préparés à partir de matières premières d' origine fossiles .
L'amidon constitue une matière première présentant les avantages d'être renouvelable, biodégradable et disponible en grandes quantités à un prix économiquement intéressant par rapport au pétrole et au gaz utilisés comme matières premières pour les plastiques actuels.
Le caractère biodégradable de l'amidon a déjà été exploité dans la fabrication de matières plastiques, et cela selon deux solutions techniques principales.
Les premières compositions à base d'amidon développées l'ont été il y a une trentaine d'années environ. Les amidons ont été alors employés sous forme de mélanges avec des polymères synthétiques tels que le polyéthylène, en tant que charge, à l'état natif granulaire. Avant dispersion dans le polymère synthétique constituant la matrice, ou phase continue, l'amidon natif est alors de préférence séché jusqu'à un taux d'humidité inférieur à 1% en poids, pour réduire son caractère hydrophile. Dans ce même but, il peut également être enrobé par des corps gras (acides gras, silicones, siliconates) ou encore être modifié à la surface des grains, par des siloxanes ou des isocyanates.
Les matériaux ainsi obtenus contenaient généralement environ 10 %, tout au plus 20% en poids d'amidon granulaire, car au-delà de cette valeur, les propriétés mécaniques des matériaux composites obtenus devenaient trop imparfaites et abaissées par rapport à celles des polymères synthétiques formant la matrice. De plus, il est apparu que de telles compositions à base de polyéthylène étaient seulement bio-fragmentables et non biodégradables comme escompté, de sorte que l'essor attendu de ces compositions n'a pas eu lieu. Pour pallier au défaut de biodégradabilité, des développements ont été également menés par la suite sur le même principe mais en remplaçant seulement le polyéthylène classique par des polyéthylènes dégradables par oxydation ou par des polyesters biodégradables tels que le polyhydroxybutyrate-co-hydroxyvalérate (PHBV) ou le poly (acide lactique) (PLA). Là encore, les propriétés mécaniques de tels composites obtenus par mélange avec de l'amidon granulaire se sont avérées être insuffisantes. On pourra se référer au besoin à l'excellent livre « La Chimie Verte », Paul Colonna, Edition TEC & DOC, Janvier 2006, chapitre 6 intitulé « Matériaux à base d'amidons et de leurs dérivés » de Denis Lourdin et Paul Colonna, pages 161 à 166.
Par la suite, l'amidon a été utilisé dans un état essentiellement amorphe et thermoplastique. Cet état est obtenu par plastification de l'amidon à l'aide d'un plastifiant approprié incorporé dans l'amidon à un taux compris généralement entre 15 et 25 % par rapport à l'amidon granulaire, par apport d'énergie à la fois mécanique et thermique. Les brevets US 5 095 054 de la société Warner Lambert et EP 0 497 706 Bl de la Demanderesse décrivent en particulier cet état déstructuré, à cristallinité réduite ou absente, et des moyens pour obtenir de tels amidons thermoplastiques.
Toutefois, les propriétés mécaniques des amidons thermoplastiques, bien qu'elles puissent être, dans une certaine mesure, modulées par le choix de l'amidon, du plastifiant et du taux d'emploi de ce dernier, sont globalement assez médiocres car les matières ainsi obtenues sont toujours très hautement visqueuses à haute température (1200C à 1700C) et très fragiles, trop cassantes, et très dures à basse température, c'est-à- dire en dessous de la température de transition vitreuse ou de la température de transition vitreuse la plus élevée .
Ainsi, l'allongement à la rupture de tels amidons thermoplastiques est très faible, toujours inférieur à environ 10%, et cela même avec une teneur en plastifiant très élevée de l'ordre de 30%. A titre de comparaison, l'allongement à la rupture de polyéthylènes basse densité est généralement compris entre 100 et 1000 %.
De plus, la contrainte maximale à la rupture des amidons thermoplastiques diminue très fortement lorsque le taux de plastifiant augmente. Elle a une valeur acceptable, de l'ordre de 15 à 60 MPa, pour une teneur en plastifiant de 10 à 25 %, mais diminue de manière inacceptable au-delà de 30 %.
De ce fait, ces amidons thermoplastiques ont fait l'objet de nombreuses recherches visant à mettre au point des formulations biodégradables et/ou hydrosolubles présentant de meilleures propriétés mécaniques par mélange physique de ces amidons thermoplastiques, soit avec des polymères d'origine pétrolière comme le poly (acétate de vinyle) (PVA), les poly (alcool vinylique) (PVOH), les copolymères éthylène/alcool vinylique (EVOH), des polyesters biodégradables tels que les polycaprolactones (PCL), les poly (butylène adipate téréphtalate) (PBAT) et les poly (butylène succinate adipate) (PBS), soit avec des polyesters d'origine renouvelable comme les poly (acide lactique) (PLA) ou des polyhydroxyalkanoates microbiens (PHA, PHB et PHBV), soit encore avec des polymères naturels extraits de plantes ou de tissus d'animaux. On pourra se référer à nouveau au livre « La Chimie Verte », Paul Colonna, Edition TEC & DOC, pages 161 à 166, mais aussi par exemple aux brevets EP 0 579 546 Bl, EP 0 735 104 Bl et FR 2 697 259 de la Demanderesse qui décrivent des compositions contenant des amidons thermoplastiques.
Au microscope, ces résines apparaissent comme très hétérogènes et présentent des îlots d'amidon plastifié dans une phase continue de polymères synthétiques. Ceci est dû au fait que les amidons thermoplastiques sont très hydrophiles et sont en conséquence très peu compatibles avec les polymères synthétiques. Il en découle que les propriétés mécaniques de tels mélanges, même avec ajout d'agents de compatibilisation tels que par exemple des copolymères comportant des motifs hydrophobes et des motifs hydrophiles en alternance comme des copolymères éthylène/acide acrylique (EAA) , ou encore des cyclodextrines ou des organosilanes, restent assez limitées .
A titre d'exemple, le produit commercial MATER-BI de grade Y présente, selon les renseignements donnés par son fabricant, un allongement à la rupture de 27% et une contrainte maximale à la rupture de 26 MPa. En conséquence, ces matières composites trouvent aujourd'hui des usages restreints, c'est-à-dire limités essentiellement aux seuls secteurs du suremballage, des sacs poubelle, des sacs de caisses et de certains objets massiques rigides, biodégradables.
La déstructuration de l'état granulaire natif semi- cristallin de l'amidon pour obtenir des amidons amorphes thermoplastiques peut être réalisée en milieu peu hydraté par les procédés d'extrusion. L'obtention d'une phase fondue à partir des granules d'amidon nécessite non seulement un apport important d' énergie mécanique et d'énergie thermique mais également la présence d'un agent plastifiant au risque, sinon, de carboniser l'amidon. L'eau est le plastifiant le plus naturel de l'amidon et il est par conséquent couramment employé, mais d'autres molécules sont également très efficaces, notamment les sucres tels que le glucose, le maltose, le fructose ou le saccharose ; les polyols tels que l' éthylèneglycol, le propylèneglycol, les polyéthylèneglycols (PEG) , le glycérol, le sorbitol, le xylitol, le maltitol ou les sirops de glucose hydrogénés ; l'urée, les sels d'acides organiques tels que le lactate de sodium ainsi que les mélanges de ces produits.
La quantité d'énergie à appliquer pour plastifier l'amidon peut être avantageusement réduite en augmentant la quantité de plastifiant. En pratique, l'usage d'un agent plastifiant à un taux important par rapport à l'amidon induit toutefois différents problèmes techniques parmi lesquels on peut citer les suivants : o un relargage du plastifiant de la matrice plastifiée dès la fin de la fabrication ou au cours du temps lors du stockage, de sorte qu'il est impossible de retenir une quantité de plastifiant aussi élevée que souhaité et par conséquent d' obtenir une matière suffisamment souple et filmogène, o une forte instabilité des propriétés mécaniques de l'amidon plastifié qui se durcit ou se ramollit en fonction de l'humidité de l'air, respectivement lorsque sa teneur en eau diminue ou augmente, o le blanchissement ou l' opacification de la surface de la composition par cristallisation du plastifiant utilisé à haute dose, comme par exemple dans le cas du xylitol, o un caractère collant ou huileux de la surface, comme dans le cas du glycérol par exemple, o une très mauvaise tenue à l'eau, d'autant plus problématique que la teneur en plastifiant est élevée. Une perte d'intégrité physique est constatée dans l'eau, de sorte que l'amidon plastifié ne peut pas être refroidi, en fin de fabrication, par immersion dans un bain d'eau comme les polymères traditionnels. De ce fait, ses usages sont très limités. Pour étendre ses possibilités d'usage, il est nécessaire de le mélanger avec des quantités importantes, généralement supérieures ou égales à 60 %, de polyesters ou d'autres polymères coûteux, et o une hydrolyse prématurée possible des polyesters (PLA, PBAT, PCL, PET) éventuellement associés à l'amidon thermoplastique .
La présente invention apporte une solution efficace aux problèmes énoncés ci-dessus.
La présente invention a pour objet un procédé de préparation d'une composition thermoplastique à base d' amidon comprenant les étapes suivantes :
(a) sélection d'au moins un amidon granulaire (composant 1) et d'au moins un plastifiant organique (composant 2) de cet amidon,
(b) préparation d'une composition plastifiée par mélange thermomécanique de cet amidon et de ce plastifiant organique, (c) incorporation éventuelle, dans la composition plastifiée obtenue à l'étape (b) , d'au moins une substance fonctionnelle (composant optionnel 4), autre que de l'amidon granulaire et porteuse de fonctions à hydrogène actif et/ou de fonctions donnant par hydrolyse de telles fonctions à hydrogène actif, et
(d) incorporation, dans la composition plastifiée obtenue, d'au moins un agent de liaison (composant 3) porteur d'au moins deux groupements fonctionnels aptes à réagir avec des molécules porteuses de fonctions à hydrogène actif et capable de permettre la fixation, par liaisons covalentes, d'au moins une partie de l'agent plastifiant sur l'amidon et/ou sur la substance fonctionnelle éventuellement ajoutée à l' étape (c) , ledit agent de liaison ayant une masse molaire inférieure à 5000, et étant choisi parmi les diacides et les composés porteurs d'au moins deux fonctions, libres ou masquées, identiques ou différentes, choisies parmi les fonctions isocyanate, carbamoyl-caprolactame, époxyde, halogéno, anhydride d'acide, halogénure d'acyle, oxychlorure, trimétaphosphate et alcoxysilane .
On entend au sens de l'invention par « amidon granulaire », un amidon natif ou modifié physiquement, chimiquement ou par voie enzymatique, ayant conservé, au sein des granules d'amidon, une structure semi- cristalline similaire à celle mise en évidence dans les grains d'amidon présents naturellement dans les organes et tissus de réserve des végétaux supérieurs, en particulier dans les graines de céréales, les graines de légumineuses, les tubercules de pomme de terre ou de manioc, les racines, les bulbes, les tiges et les fruits. Cet état semi-cristallin est essentiellement dû aux macromolécules d' amylopectine, l'un des deux constituants principaux de l'amidon. A l'état natif, les grains d'amidon présentent un taux de cristallinité qui varie de 15 à 45 %, et qui dépend essentiellement de l'origine botanique de l'amidon et du traitement éventuel qu'il a subi. L'amidon granulaire, placé sous lumière polarisée, présente une croix noire caractéristique, dite croix de Malte, typique de l'état granulaire. Pour une description plus détaillée de l'amidon granulaire, on pourra se référer au chapitre II intitulé « Structure et morphologie du grain d'amidon » de S.Perez, dans l'ouvrage « Initiation à la chimie et à la physico-chimie macromoléculaires », Première édition 2000, Volume 13, pages 41 à 86, Groupe Français d'Etudes et d'Applications des Polymères.
On entend par « plastifiant de l'amidon », toute molécule organique de faible masse moléculaire, c'est-à- dire ayant de préférence une masse moléculaire inférieure à 5000, en particulier inférieure à 1000, qui, lorsqu'elle est incorporée à l'amidon par un traitement thermomécanique à une température comprise entre 20 et 2000C aboutit à une diminution de la température de transition vitreuse et/ou à une réduction de la cristallinité d'un amidon granulaire jusqu'à une valeur inférieure à 15 %, voire à un état essentiellement amorphe. Cette définition de l'agent plastifiant n'englobe pas l'eau, qui, bien qu'elle ait un effet de plastification de l'amidon, présente l'inconvénient majeur d' inactiver la plupart des fonctions susceptibles d'être présentes sur l'agent de réticulation, telles que les fonctions époxyde ou isocyanate.
On entend par « substance fonctionnelle », toute molécule, autre que de l'amidon granulaire, l'agent de liaison et l'agent plastifiant, porteuse de fonctions à hydrogène actif, c'est-à-dire de fonctions présentant au moins un atome d'hydrogène susceptible d'être déplacé si une réaction chimique a lieu entre l'atome porteur de cet atome d'hydrogène et une autre fonction réactive. Les fonctions à hydrogène actif sont par exemple les fonctions hydroxyle, acide protonique, urée, uréthanne, amide, aminé ou thiol. Cette définition englobe également dans la présente invention toute molécule, autre que l'amidon granulaire, l'agent de liaison et l'agent plastifiant, porteuse de fonctions susceptibles de donner, notamment par hydrolyse, de telles fonctions à hydrogène actif. Les fonctions qui peuvent donner de telles fonctions à hydrogène actif sont par exemple les fonctions alcoxy, en particulier les alcoxysilanes, ou les fonctions chlorure d'acyle, anhydride d'acide, époxyde ou ester.
La substance fonctionnelle est de préférence un oligomère ou polymère organique ayant une masse moléculaire moyenne en poids comprise entre 5 000 et 5 000 000, notamment comprise entre 8500 et 3 000 000, en particulier comprise entre 15 000 et 1 000 000 daltons.
On entend par « agent de liaison », toute molécule porteuse d'au moins deux groupements fonctionnels, libres ou masquées, aptes à réagir avec des molécules porteuses de fonctions à hydrogène actif telles que notamment le plastifiant de l'amidon. Cet agent de liaison permet par conséquent la fixation, par liaisons covalentes, d'au moins une partie de l'agent plastifiant sur l'amidon et/ou sur la substance fonctionnelle. Cet agent de liaison se distingue des agents d'adhésion, des agents de compatibilisation physique ou des agents de greffage par le fait que ces derniers soit créent uniquement des liaisons faibles (non covalentes) , soit ne sont porteurs que d'une seule fonction réactive.
La masse moléculaire de l'agent de liaison est de préférence inférieure à 5000 et tout particulièrement inférieure à 1000. En effet, le faible poids moléculaire de l'agent de liaison permet son incorporation rapide et facile dans la composition d'amidon plastifié par le plastifiant .
De préférence, ledit agent de liaison présente une masse moléculaire comprise entre 50 et 500, en particulier entre 90 et 300.
De préférence, le procédé comprend l'étape (c) d'incorporation d'au moins une substance fonctionnelle dans la composition thermoplastique contenant l'amidon et l'agent plastifiant. Dans ce cas, c'est-à-dire lorsqu'on introduit une substance fonctionnelle, l'agent de liaison utilisé est de préférence choisi de manière à ce qu'une de ses fonctions réactives soit capable de réagir avec les fonctions réactives de cette substance fonctionnelle. Ceci permet de fixer au moins partiellement le plastifiant par liaison covalente sur la substance fonctionnelle. Le plastifiant peut donc être fixé au moins en partie, soit sur l'amidon, soit sur la substance fonctionnelle ou bien sur ces deux composants à la fois.
Le procédé de la présente invention comporte de préférence en outre une étape (e) de chauffage du mélange obtenu à l'étape (d) jusqu'à une température suffisante pour faire réagir l'agent de liaison avec, d'une part, le plastifiant et, d'autre part, avec l'amidon et/ou la substance fonctionnelle éventuellement présente. Les étapes (d) et (e) peuvent être mises en œuvre simultanément ou bien l'une après l'autre après un temps très variable.
L'incorporation de l'agent de liaison dans la composition thermoplastique et la réaction avec l'amidon et/ou la substance fonctionnelle (étapes (c) et (d) ) se fait de préférence par malaxage à chaud à une température comprise entre 60 et 200 0C, et mieux entre 100 et 1600C. L'agent de liaison peut être choisi par exemple parmi les composés porteurs d'au moins deux fonctions, libres ou masquées, identiques ou différentes, choisies parmi les fonctions isocyanate, carbamoylcaprolactame, époxyde, halogéno, anhydride d'acide, halogénure d'acyle, oxychlorure, trimétaphosphate et alcoxysilane .
L'agent de liaison peut également être un diacide organique .
Il peut s'agir avantageusement des composés suivants :
- les diisocyanates et polyisocyanates, de préférence le 4 , 4 ' -dicyclohexylméthane-diisocyanate (H12MDI), le méthylènediphényl-diisocyante (MDI), le toluène- diisocyanate (TDI), le naphthalène-diisocyanate (NDI), 1' hexaméthylène-diisocyanate (HMDI) et la lysine- diisocyanate (LDI), les dicarbamoylcaprolactames, de préférence le 1,1' carbonyl-biscaprolactame,
- les diépoxydes, les halogénhydrines, c'est-à-dire les composés comportant une fonction époxyde et une fonction halogène, de préférence l' épichlorohydrine, les diacides organiques, de préférence l'acide succinique, l'acide adipique, l'acide glutarique, l'acide oxalique, l'acide malonique, l'acide maléique et les anhydrides correspondants, les oxychlorures, de préférence l' oxychlorure de phosphore,
- les trimétaphosphates, de préférence le trimétaphoshate de sodium,
- les alcoxysilanes, de préférence le tétraéthoxysilane,
- et les mélanges quelconques de ces composés.
Dans un mode de réalisation préféré du procédé de l'invention, l'agent de liaison est choisi parmi les diépoxydes, les diisocyanates et les halogénhydrines . On préfère en particulier utiliser un agent de liaison choisi parmi les diisocyanates, le méthylènediphényl- diisocyanate (MDI) et le 4, 4' -dicyclohexylméthane- diisocyanate (H12MDI) étant particulièrement préférés.
La quantité appropriée d'agent de liaison dépend notamment de la teneur en plastifiant. Il a été noté de façon surprenante et inattendue que, plus la quantité de plastifiant introduite est élevée, plus la quantité d'agent de liaison peut être augmentée sans que la matière finale ne devienne dure et perde ses propriétés thermoplastiques .
La quantité d'agent de liaison utilisée est de préférence comprise entre 0,01 et 15 parts, en particulier entre 0,1 et 12 parts et mieux encore entre 0,1 et 9 parts pour 100 parts de composition plastifiée de l'étape (b) , contenant éventuellement la substance fonctionnelle .
A titre d'exemple, cette quantité d'agent de liaison peut être comprise entre 0,5 et 5 parties, notamment entre 0,5 et 3 parties, pour 100 parties en poids de composition plastifiée de l'étape (b) , contenant éventuellement la substance fonctionnelle.
Contre toute attente, de très faibles quantités d'agent de liaison réduisent considérablement la sensibilité à l'eau et à la vapeur d'eau de la composition thermoplastique finale obtenue selon l'invention et permettent notamment de ce fait de refroidir celle-ci rapidement en fin de fabrication par immersion dans l'eau, ce qui n'est pas le cas pour un amidon plastifié préparé par simple mélange avec l'agent plastifiant, c'est-à-dire sans utilisation d'un agent de liaison capable de lier l'agent plastifiant à l'amidon ou sur la substance fonctionnelle éventuellement introduite. On a également constaté que les compositions thermoplastiques à base d' amidon préparées selon le procédé revendiqué, présentaient une moindre dégradation thermique et une moindre coloration que les amidons plastifiés de l'art antérieur. Ces derniers, en raison de leur grande sensibilité à l'eau, doivent d'ailleurs être nécessairement refroidis à l'air, ce qui nécessite beaucoup plus de temps qu'un refroidissement à l'eau. Par ailleurs, cette caractéristique de stabilité à l'eau ouvre de nombreux usages potentiels nouveaux à la composition selon l'invention.
L'article intitulé « Effect of Compatibilizer Distribution on the Blends of Starch/Biodegradable Polyesters » de Long Yu et al., Journal of Applied Polymer Science, Vol.103, 812-818 (2007), 2006, Wiley Periodicals Inc, décrit l'effet du méthylènediphenyl- diisocyanate (MDI) comme agent compatibilisant de mélanges d'un amidon gélatinisé par de l'eau (70% amidon, 30% eau) et d'un polyester biodégradable (PCL ou PBSA), lesquels sont connus pour être non miscibles entre eux d'un point de vue thermodynamique. Ce document n'envisage à aucun moment l'utilisation d'un agent plastifiant organique, susceptible de remplacer l'eau qui présente les inconvénients, observés par la Demanderesse, de désactiver les fonctions isocyanate du MDI utilisé et de ne pas permettre l'obtention d'une composition amylacée thermoplastique de souplesse suffisante, probablement du fait de l' évaporation de l'eau en sortie du dispositif de traitement thermomécanique ou lors du stockage.
L'article intitulé « Effects of Starch Moisture on Properties on Wheat Starch/'PoIy (Lactic Acid) Blend Containing Methylenediphenyl Diisocyanate », de Wang et al., publié dans Journal of Polymers and the Environment, Vol. 10, No 4, Octobre 2002, concerne également la compatibilisation d'une phase amidon et d'une phase de poly (acide lactique) (PLA) par l'ajout de méthylène- diphényl-isocyanate (MDI) . Comme dans l'article précédent, l'eau est le seul plastifiant envisagé mais présente les inconvénients signalés ci-avant.
L'article intitulé « Thermal and Mechanical Properties of Poly(lactic acid) /Starch/Methylenediphenyl Diisocyanate Blending with Triethyl Citrate » de Ke et al., Journal of Applied Polymer Science, Vol. 88, 2947- 2955 (2003), concerne, comme les deux articles ci-dessus, le problème de l'incompatibilité thermodynamique de l'amidon et du PLA. Ce document étudie l'effet de l'utilisation de citrate de triéthyle, en tant qu'agent plastifiant dans les mélanges amidon/PLA/MDI . Il ressort toutefois clairement de ce document (voir page 2952, colonne de gauche, Morphology) que le citrate de triéthyle joue le rôle d'agent plastifiant uniquement pour la phase de PLA mais non pas pour la phase amylacée qui reste sous forme de granules d'amidon dispersés dans une matrice de PLA plastifiée par le citrate de triéthyle .
La demande internationale WO 01/48078 décrit un procédé de préparation de matériaux thermoplastiques par incorporation d'un polymère synthétique à l'état fondu dans des compositions thermoplastiques. Ce document envisage, certes, l'utilisation d'un agent plastifiant de type polyol, mais ne mentionne à aucun moment la possibilité de fixation de l'agent plastifiant sur l'amidon et/ou le polymère synthétique via un agent de liaison bifonctionnel de faible poids moléculaire.
L'article intitulé « The influence of citric acid on the properties of thermoplastic starch/linear low- density polyethylene blends » de Ning et al., dans Carbohydrate Polymers, 67, (2007), 446-453, étudie l'effet de la présence d'acide citrique sur des mélanges amidon thermoplastique/polyéthylène . Ce document n'envisage à aucun moment la fixation de l'agent plastifiant utilisé (glycérol) sur l'amidon via un composé bi- ou polyfonctionnel . Les résultats de spectroscopie ne mettent en évidence aucune liaison covalente entre l'acide citrique et l'amidon ou le polyéthylène . Il est simplement constaté que les liaisons physiques (liaisons hydrogène) entre l'amidon et le glycérol sont renforcés par la présence d'acide citrique.
En conclusion, aucun des documents ci-dessus ne décrit ni ne suggère un procédé similaire à celui de la présente invention comprenant l'incorporation d'un agent de liaison réactif, au moins bifonctionnel, tel que revendiqué, dans une composition plastifiée à base d'amidon et d'un plastifiant de l'amidon, et la liaison du plastifiant à l'amidon et/ou à une substance fonctionnelle par l'intermédiaire de l'agent de liaison bifonctionnel tel que revendiqué.
Selon l'invention, l'amidon granulaire peut provenir de toute origine botanique. Il peut s'agir d'amidon natif de céréales telles que le blé, le maïs, l'orge, le triticale, le sorgo ou le riz, de tubercules tels que la pomme de terre ou le manioc, ou de légumineuses telles que le pois et le soja, et de mélanges de tels amidons. Selon une variante préférée, l'amidon granulaire est un amidon hydrolyse par voie acide, oxydante ou enzymatique, ou un amidon oxydé. Il peut s'agir d'un amidon communément appelé amidon fluidifié ou d'une dextrine blanche. Il peut s'agir également d'un amidon modifié par voie physico-chimique mais ayant essentiellement conservé la structure de l'amidon natif de départ, comme notamment les amidons estérifiés et/ou éthérifiés, en particulier modifiés par acétylation, hydroxypropylation, cationisation, réticulation, phosphatation, ou succinylation, ou les amidons traités en milieu aqueux à basse température (« annealing ») , traitement dont on sait qu' il augmente la cristallinité de l'amidon. De préférence, l'amidon granulaire est un amidon natif, hydrolyse, oxydé ou modifié, de blé ou de pois.
L'amidon granulaire présente généralement un taux de solubles à 200C dans l'eau déminéralisée, inférieur à 5 % en masse. Il est de préférence quasiment insoluble dans l'eau froide.
Le plastifiant de l'amidon est de préférence choisi parmi les diols, les triols et les polyols tels que le glycérol, le polyglycérol, l' isosorbide, les sorbitans, le sorbitol, le mannitol, et les sirops de glucose hydrogénés, les sels d'acides organiques comme le lactate de sodium, l'urée et les mélanges de ces produits. Le plastifiant présente de façon avantageuse une masse molaire inférieure à 5000, de préférence inférieure à 1000, et en particulier inférieur à 400. L'agent plastifiant organique a bien entendu une masse molaire supérieure à 18, autrement dit il n'englobe pas l'eau.
Grâce à la présence de l'agent de liaison, la quantité de plastifiant utilisée dans la présente invention peut être, de manière avantageuse, relativement élevée par rapport à la quantité de plastifiant utilisée dans les amidons plastifiés de l'art antérieur. L'agent plastifiant est incorporé dans l'amidon granulaire de préférence à raison de 10 à 150 parts en poids, de préférence à raison de 25 à 120 parts en poids et en particulier à raison de 40 à 120 parts en poids pour 100 parts en poids d'amidon. La substance fonctionnelle porteuse de fonctions à hydrogène actif et/ou de fonctions qui donnent notamment par hydrolyse de telles fonctions à hydrogène actif, peut être un polymère d'origine naturelle, ou bien un polymère synthétique obtenu à partir de monomères d' origine fossile et/ou de monomères issus de ressources naturelles renouvelables .
Les polymères d'origine naturelle peuvent être obtenus par extraction à partir de plantes ou de tissus animaux. Ils sont de préférence modifiés ou fonctionnalisés, et sont en particulier de type protéique, cellulosique, ligno-cellulosique, chitosane et caoutchoucs naturels.
On peut également utiliser des polymères obtenus par extraction à partir de cellules de micro-organimes, comme les polyhydroxyalcanoates (PHA) .
Un tel polymère d'origine naturelle peut être choisi parmi les farines, les protéines modifiées ou non modifiées, les celluloses non modifiées ou modifiées par exemple par carboxyméthylation, éthoxylation, hydroxypropylation, cationisation, acétylation, alkylation, les hémicelluloses, les lignines, les guars modifis ou non modifiés, les chitines et chitosans, les gommes et les résines naturelles telles que les caoutchoucs naturels, les colophanes, les shellacs et les résines terpéniques, les polysaccharides extraits d'algues tels que les alginates e les carraghénanes, les polysaccharides d'origine bactérienne tels que les xanthanes ou les PHA, les fibres ligno-cellulosiques telles que les fibres de lin.
Le polymère synthétique obtenu à partir de monomères d'origine fossile, comportant de préférence des fonctions à hydrogène actif peut être choisi parmi les polymères synthétiques de type polyester, polyacrylique, polyacétal, polycarbonate, polyamide, polyimide, polyuréthane, polyoléfine, polyoléfine fonctionnalisée, styrénique, styrénique fonctionnalisé, vinylique, vinylique fonctionnalisé, fluoré fonctionnalisé, polysulfone fonctionnalisé, polyphényléther fonctionnalisé, polyphénylsulfure fonctionnalisé, silicone fonctionnalisée et polyéther fonctionnalisée.
A titre d'exemple, on peut citer les PLA, les PBS, les PBSA, les PBAT, les PET, les polyamides (PA) 6, 6-6, 6-10, 6-12, 11 et 12, les copolyamides, les polyacrylates, le poly (alcool de vinyle) , les poly (acétate de vinyle), les copolymères éthylène-acétate de vinyle (EVA) , les copolymères éthylène-acrylate de méthyle (EMA) , les copolymères éthylène-alcool vinylique (EVOH), les polyoxyméthylènes (POM), les copolymères acrylonitrile-styrène-acrylates (ASA) , les polyuréthanes thermoplastiques (TPU) , les polyéthylènes ou polypropylènes fonctionnalisés par exemple par des motifs silane, acryliques ou anhydride maléique et les copolymères styrène-butylène-styrènes (SBS) et styrène- éthylène-butylène-styrènes (SEBS) de préférence fonctionnalisés par exemple par des motifs anhydride maléique et les mélanges quelconques de ces polymères.
Le polymère utilisé comme substance fonctionnelle peut être en outre un polymère synthétisé à partir de monomères issus de ressources naturelles renouvelables à brève échéance comme les plantes, les microorganismes ou les gaz, notamment à partir de sucres, de glycérine, d'huiles ou de leurs dérivés tels que des alcools ou des acides, mono-, di- ou polyfonctionnels, et en particulier à partir de molécules telles que le bio-éthanol, le bio- éthylèneglycol, le bio-propanediol, le 1, 3-propanediol biosourcé, le bio-butane-diol, l'acide lactique, l'acide succinique biosourcé, le glycérol, l' isosorbide, le sorbitol, le saccharose, les diols dérivés d'huiles végétales ou animales et les acides résiniques extraits de pin.
Il peut être notamment du polyéthylène issu de bio- éthanol, du polypropylène issu de bio-propanediol, des polyesters de type PLA ou PBS à base d' acide lactique ou d'acide succinique biosourcés, des polyesters de type PBAT à base de butane-diol ou d' acide succinique biosourcés, de polyesters de type SORONA® à base de 1,3- propanediol biosourcé, des polycarbonates contenant de 1' isosorbide, de polyéthylèneglycols à base bio- éthylèneglycol, des polyamides à base d'huile de ricin ou de polyols végétaux, et des polyuréthanes à base par exemple, de diols végétaux, de glycérol, d' isosorbide, de sorbitol ou de saccharose.
De préférence, le polymère non amylacé est choisi parmi les copolymères éthylène-acétate de vinyle (EVA) , les polyéthylènes (PE) et polypropylènes (PP) non fonctionnalisés ou fonctionnalisés, notamment par des motifs silane, des motifs acryliques ou des motifs anhydride maléique, les polyuréthanes thermoplastiques (TPU), les poly (butylène succinate) (PBS), les poly (butylène succinate-co-adipate) (PBSA), les poly (butylène adipate téréphtalate) (PBAT), les copolymères styrène-butylène-styrène, et styrène- éthylène-butylène-styrène (SEBS) , de préférence fonctionnalisés, notamment par des motifs anhydride maléique, les poly (téréphtalate d'éthylène) amorphes (PETG) , les polymères synthétiques obtenus à partir de monomères bio-sourcés, les polymères extraits de plantes, de tissus animaux et de microorganismes, éventuellement fonctionnalisés, et les mélanges de ceux-ci.
On peut citer à titre d'exemples de polymères non amylacés particulièrement préférés les polyéthylènes (PE) et polypropylènes (PP) , de préférence fonctionnalisés, les copolymères styrène-éthylène-butylène-styrène (SEBS) , de préférence fonctionnalisés, les poly (téréphtalate d'éthylène) amorphes (PETG) et les polyuréthannes thermoplastiques .
Avantageusement, le polymère non-amylacé présente un poids moléculaire moyen en poids compris entre 8500 et 10 000 000 daltons, en particulier entre 15 000 et 1 000 000 daltons.
Par ailleurs, le polymère non amylacé est constitué de préférence de carbone d' origine renouvelable au sens de la norme ASTM D6852 et est avantageusement non biodégradable ou non compostable au sens des normes EN 13432, ASTM D6400 et ASTM 6868.
Dans un mode de réalisation préféré du procédé de l'invention, la composition plastifiée de l'étape (b) , contenant éventuellement une substance fonctionnelle (composant optionnel 4), est séchée ou déshydratée, avant l'incorporation de l'agent de liaison (composant 3) à l'étape (d) , jusqu'à un taux d'humidité résiduelle inférieur à 5 %, de préférence inférieur à 1 %, et en particulier inférieur à 0,1 %.
En fonction de la quantité d'eau à éliminer, cette étape de séchage ou de déshydratation peut être conduite par lots (batch) ou en continu au cours du procédé.
De préférence, le mélange thermomécanique de l'amidon natif et du plastifiant est réalisé par malaxage à chaud à une température de préférence comprise entre 60 et 200 0C, plus préférentiellement entre 100 et 160 0C, de façon discontinue, par exemple par pétrissage/malaxage, ou de façon continue par exemple par extrusion. La durée de ce mélange peut être de quelques secondes à quelques heures, selon le mode de mélange retenu . De façon similaire, l'incorporation, lors de l'étape (d) , de l'agent de liaison dans la composition plastifiée peut être réalisée par mélange thermomécanique, de façon discontinue ou de façon continue et en particulier en ligne, par extrusion réactive. Dans ce cas, la durée de mélange peut être courte, de quelques secondes à quelques minutes.
La présente invention a également pour objet une composition thermoplastique à base d'amidon susceptible d'être obtenue par le procédé de l'invention.
La composition conforme à l'invention est thermoplastique au sens défini plus haut et présente de ce fait avantageusement, une viscosité complexe, mesurée sur rhéomètre de type PHYSICA MCR 501 ou équivalent, comprise entre 10 et 106 Pa. s, pour une température comprise entre 100 et 2000C. Pour des usages en injection par exemple, sa viscosité à ces températures peut être plutôt faible et la composition est alors préférentiellement thermo-fusible au sens précisé plus haut .
Cette composition est soit un simple mélange des trois ou quatre composants (amidon, plastifiant, agent de liaison, substance fonctionnelle optionnelle) , soit un mélange comprenant des produits macromoléculaires résultant de la réaction de l'agent de liaison avec chacun des deux ou trois autres composants. Autrement dit la présente invention a pour objet non seulement la composition obtenue à l'issue de l'étape (e) , mais également celle obtenue à l'issue de l'étape (d) , c'est- à-dire avant réaction, à l'étape (e) , de l'agent de liaison avec les autres composants.
Bien entendu, les propriétés intéressantes des compositions thermoplastiques de la présente invention sont celles des compositions, issues de l'étape (e) , ayant subi l'étape de réaction de l'agent de liaison.
Lorsque les compositions de la présente invention contiennent une substance fonctionnelle, elles présentent de préférence une structure de type « dispersion solide ». Autrement dit, les compositions de la présente invention contiennent l'amidon plastifié sous forme de domaines dispersés dans une matrice de substance fonctionnelle continue. Cette structure de type dispersion doit être distinguée en particulier d'une structure où l'amidon plastifié et la substance fonctionnelle ne constitueraient qu'une seule et même phase, ou encore des compositions contenant deux réseaux co-continus d'amidon plastifié et de substance fonctionnelle. Le but de la présente invention n'est en effet pas de préparer des matériaux avant tout biodégradables, mais des matières plastiques à forte teneur en amidon ayant d'excellentes propriétés rhéologiques et mécaniques.
Pour cette même raison, on choisit de préférence la substance fonctionnelle parmi les polymères synthétiques non biodégradables au sens des normes EN 13432, ASTM D6400 et ASTM 6868.
Les compositions thermoplastiques selon l'invention présentent l'avantage d'être peu solubles voire même totalement insolubles dans l'eau, de s'hydrater difficilement et de conserver une bonne intégrité physique après immersion dans l'eau. Leur taux d'insolubles dans l'eau, à 20 0C, est de préférence supérieur à 72 %, en particulier supérieur à 80 %, mieux encore supérieur à 90 %. De manière très avantageuse, il peut être supérieur à 92 %, notamment supérieur à 95 %. Idéalement, ce taux d'insolubles peut être au moins égal à 98 % et notamment être proche de 100%. Par ailleurs, le taux de gonflement des compositions thermoplastiques selon l'invention, après immersion dans l'eau à 20 0C pendant une durée de 24 heures, est de préférence inférieur à 20 %, en particulier inférieur à 12 %, mieux encore inférieur à 6 %. De manière très avantageuse, il peut être inférieur à 5 %, notamment inférieur à 3 %. Idéalement, ce taux de gonflement est au plus égal à 2 % et peut notamment être proche de 0%.
Contrairement aux compositions à hautes teneurs en amidon thermoplastique de l'art antérieur, la composition selon l'invention présente avantageusement des courbes contrainte/déformation caractéristiques d'un matériau ductile, et non pas d'un matériau de type fragile. L'allongement à la rupture, mesuré pour les compositions de la présente invention, est supérieur à 40 %, de préférence supérieur à 80 %, mieux encore supérieur à 90 %. Cet allongement à la rupture peut avantageusement être au moins égal à 95 %, notamment au moins égal à 120 %. Il peut même atteindre ou dépasser 180 %, voire 250 %. Il est en général raisonnablement inférieur à 500 %.
La contrainte maximale à la rupture des compositions de la présente invention est généralement supérieure à 4 MPa, de préférence supérieure à 6 MPa, mieux encore supérieure à 8 MPa. Elle peut même atteindre ou dépasser 10 MPa, voire 20 MPa. Elle est en général raisonnablement inférieure à 80 MPa.
Dans un mode de réalisation, la composition thermoplastique de la présente invention contient une substance fonctionnelle telle que décrite ci-avant. Cette substance fonctionnelle est de préférence un polymère choisi parmi les polyéthylènes (PE) et polypropylènes (PP) fonctionnalisés, les copolymères styrène-éthylène- butylène-styrène (SEBS) fonctionnalisés, les poly (téréphtalate d'éthylène) amorphes et les polyuréthannes thermoplastiques (PTU) .
La composition selon l'invention peut également comprendre différents autres produits additionnels. Il peut s'agir de produits visant à améliorer ses propriétés physico-chimiques, en particulier son comportement de mise en œuvre et sa durabilité ou bien ses propriétés mécaniques, thermiques, conductrices, adhésives ou organoleptiques .
Le produit additionnel peut être un agent améliorateur ou d'ajustement des propriétés mécaniques ou thermiques choisi parmi les minéraux, les sels et les substances organiques, en particulier parmi les agents de nucléation comme le talc, les agents compatibilisants comme les agents tensio-actifs, les agents améliorateurs de la résistance aux chocs ou aux rayures comme le silicate de calcium, les agents régulateurs de retrait comme le silicate de magnésium, les agents piégeurs ou désactivateurs d'eau, d'acides, de catalyseurs, de métaux, d'oxygène, de rayons infra-rouges, de rayons UV, les agents hydrophobants comme les huiles et graisses, les agents hygroscopiques comme le pentaérythritol, les agents retardateurs de flamme et les agents anti-feu comme les dérivés halogènes, les agents anti-fumée, les charges de renforcement, minérales ou organiques, comme les argiles, le noir de carbone, le talc, les fibres végétales, les fibres de verre ou le kevlar.
Le produit additionnel peut être également un agent améliorateur ou d'ajustement des propriétés conductrices ou isolantes vis-à-vis de l'électricité ou de la chaleur, de l'étanchéité par exemple à l'air, à l'eau, aux gaz, aux solvants, aux corps gras, aux essences, aux arômes, aux parfums, choisi notamment parmi les minéraux, les sels et les substances organiques, en particulier parmi les agents de nucléation comme le talc, les agents compatibilisants comme le tensio-actifs, les agents piégeurs ou désactivateurs d'eau, d'acides, de catalyseurs, de métaux, d'oxygène ou du rayonnement infra-rouge, les agents hydrophobants comme les huiles et graisses, les agents perlants, les agents hygroscopiques comme le pentaérythritol, les agents de conduction ou de dissipation de la chaleur comme les poudres métalliques, les graphites et les sels, et les charges de renforcement micrométriques comme les argiles et le noir de carbone.
Le produit additionnel peut être encore un agent améliorateur des propriétés organoleptiques, notamment :
- des propriétés odorantes (parfums ou agents de masquage d'odeur), des propriétés optiques (agents de brillance, agents de blancheur tels que le dioxyde de titane, colorants, pigments, exhausteurs de colorants, opacifiants, agents de matité tels que le carbonate de calcium, agents thermochromes, agents de phosporescence et de fluorescence, agents métallisants ou marbrants et agents anti-buée) , des propriétés sonores (sulfate de baryum et barytes) , et
- des propriétés tactiles (matières grasses) .
Le produit additionnel peut être aussi un agent améliorateur ou d'ajustement des propriétés adhésives, notamment de l'adhésion vis-à-vis des matières cellulosiques comme le papier ou le bois, des matières métalliques comme l'aluminium et l'acier, des matériaux en verre ou céramiques, des matières textiles et des matières minérales, comme notamment les résines de pin, le colophane, les copolymères d' éthylène/alcool vinylique, les aminés grasses, les agents lubrifiants, les agents de démoulage, les agents antistatiques et les agents anti-blocking.
Enfin, le produit additionnel peut être un agent améliorateur de la durabilité du matériau ou un agent de contrôle de sa (bio) dégradabilité, notamment choisi parmi les agents hydrophobants comme les huiles et graisses, les agents anticorrosion, les agents antimicrobiens comme Ag, Cu et Zn, les catalyseurs de dégradation comme les oxo-catalyseurs et les enzymes comme les amylases.
La composition thermoplastique de la présente invention présente en outre l'avantage d'être constituée de matières premières essentiellement renouvelables et de pouvoir présenter, après ajustement de la formulation, les propriétés suivantes, utiles dans de multiples applications en plasturgie ou dans d'autres domaines : thermoplasticité, viscosité à l'état fondu et température de transition vitreuse appropriées, dans les gammes de valeur habituelles connues des polymères courants (Tg de -50° à 1500C), permettant une mise en œuvre grâce aux installations industrielles existantes et utilisées classiquement pour les polymères synthétiques habituels,
- une miscibilité suffisante à une grande variété de polymères d'origine fossile ou d'origine renouvelable du marché ou en développement,
- une stabilité physicochimique satisfaisante aux conditions de mise en œuvre,
- faible sensibilité à l'eau et à la vapeur d'eau,
- performances mécaniques très nettement améliorées par rapport aux compositions thermoplastiques d'amidon de l'art antérieur (souplesse, allongement à la rupture, contrainte maximale à la rupture) - bon effet de barrière à l'eau, à la vapeur d'eau, à l'oxygène, au gaz carbonique, aux UV, aux corps gras, aux arômes, aux essences, aux carburants,
- opacité, translucidité ou transparence modulables en fonction des usages,
- bonne imprimabilité et aptitude à être mise en peinture, notamment par des encres et peintures en phase aqueuse,
- retrait contrôlable,
- stabilité dans le temps suffisante biodégradabilité, compostabilité et/ou recyclabilité ajustables.
De manière tout à fait remarquable, la composition thermoplastique à base d'amidon selon l'invention peut, en particulier, présenter simultanément :
- un taux d'insolubles au moins égal à 98 %,
- un taux de gonflement inférieur à 5 %,
- un allongement à la rupture au moins égal à 95 %, et
- une contrainte maximale à la rupture supérieure à 8 MPa.
La composition thermoplastique selon l'invention peut être utilisée telle quelle ou en mélange avec des polymères synthétiques, artificiels ou d'origine naturelle. Elle peut être biodégradable ou compostable au sens des normes EN 13432, ASTM D6400 et ASTM 6868, et comprendre alors des polymères ou des matières répondant à ces normes, tels que les PLA, PCL, PBSA, PBAT et PHA.
Elle peut en particulier permettre de corriger certains défauts majeurs connus du PLA, à savoir
- l'effet barrière médiocre au CO2 et à l'oxygène,
- les effets barrière à l'eau et à la vapeur d'eau insuffisants, la tenue à la chaleur insuffisante pour la fabrication de bouteilles et la tenue à la chaleur très insuffisante pour l'usage en tant que fibres textiles, et
- une fragilité et un manque de souplesse à l'état de films .
La composition selon l'invention est toutefois de préférence non-biodégradable ou non-compostable au sens des normes ci-dessus, et comprend alors, par exemple, des polymères synthétiques connus ou des amidons ou des polymères d'extraction hautement fonctionnalisés, réticulés ou éthérifiés. Les meilleures performances en termes de propriétés rhéologiques, mécaniques et d'insensibilité à l'eau ont en effet été obtenues avec de telles compositions non biodégradables et non compostables .
Il est possible de moduler la durée de vie et la stabilité de la composition conforme à l'invention en ajustant en particulier son affinité pour l'eau, de manière à convenir aux usages attendus en tant que matériau et aux modes de valorisation envisagés en fin de vie .
La composition selon l'invention contient avantageusement au moins 33 %, de préférence au moins 50 %, en particulier au moins 60 %, mieux encore au moins 70 %, voir plus de 80 % de carbone d'origine renouvelable au sens de la norme ASTM D6852. Ce carbone d'origine renouvelable est essentiellement celui constitutif de l'amidon nécessairement présent dans la composition conforme à l'invention mais peut être aussi avantageusement, par un choix judicieux des constituants de la composition, celui présent dans le plastifiant de l'amidon comme dans le cas par exemple du glycérol ou du sorbitol, mais encore de celui présent dans la substance fonctionnelle, tout autre produit fonctionnel ou tout polymère additionnel lorsqu' ils proviennent de ressources naturelles renouvelables comme ceux définis préférentiellement ci-dessus.
Il est en particulier envisageable d'utiliser les compositions thermoplastiques à base d'amidon selon l'invention, en tant que films barrière à l'eau, à la vapeur d'eau, à l'oxygène, au gaz carbonique, aux arômes, aux carburants aux fluides automobiles, aux solvants organiques et/ou aux corps gras, seuls ou dans des structures multi-couches ou multi-plis obtenues par co- extrusion, contre-collage ou autres techniques, pour le domaine de l'emballage des supports d'impression, de l'isolation, ou du textile notamment.
Les compositions de la présente invention peuvent aussi être utilisées pour augmenter le caractère hydrophile, l'aptitude à la conduction électrique ou aux microondes, l' imprimabilité, l'aptitude à la teinture, à la coloration dans la masse ou à la peinture, l'effet anti-statique ou anti-poussière, la résistance à la rayure, la résistance au feu, le pouvoir adhésif, la thermosoudabilité, les propriétés sensorielles, en particulier le toucher et les propriétés acoustiques, la perméabilité à l'eau et/ou la vapeur d'eau, ou la résistance aux solvants organiques et/ou carburants, de polymères synthétiques dans le cadre par exemple de la fabrication de membranes, de films, d'étiquettes électroniques imprimables, de fibres textiles, de contenants ou réservoirs, de films thermofusibles synthétiques, de pièces obtenues par injection ou extrusion telles que des pièces automobiles.
Il convient de noter que le caractère relativement hydrophile de la composition thermoplastique selon l'invention réduit considérablement les risques de bio- accumulation dans les tissus adipeux des organismes vivants et donc également dans la chaîne alimentaire.
La composition selon l'invention peut se présenter sous forme pulvérulente, granulée ou en billes et constituer la matrice d'un mélange maître diluable dans une matrice bio-sourcée ou non.
L' invention concerne aussi une matière plastique ou élastomérique comprenant la composition thermoplastique de la présente invention ou un produit fini ou semi-fini obtenu à partir de celle-ci.
Exemple 1 :
Comparaison de compositions à base d'amidon de blé selon l'invention avec des compositions selon l'art antérieur préparées sans agent de liaison
On retient pour cet exemple : un amidon de blé natif commercialisé par la Demanderesse sous le nom « Amidon de blé SP» présentant une teneur en eau voisine de 12% (composant 1),
- une composition aqueuse concentrée de polyols à base de glycérol et de sorbitol, commercialisée par la Demanderesse sous l'appellation POLYSORB G84/41/00 ayant une teneur en eau de 16% environ, (composant 2) du méthylène-diphényl-diisocyante (MDI) commercialisé sous la dénomination Suprasec 1400 par la société Hunstman (composant 3) .
(a) Préparation des compositions thermoplastiques (TPS) de base : On prépare une composition thermoplastique selon l'art antérieur. Pour cela on alimente avec l'amidon et le plastifiant une extrudeuse à double vis de marque TSA, ayant un diamètre (D) 26 mm et de longueur de 56 D, de manière à obtenir un débit matière total de 15 kg/h, en faisant varier le rapport de mélange plastifiant (POLYSORB) /amidon de blé comme suit :
-100 parts/100 parts (Composition AP5050),
- 67 parts/100 parts (Composition AP6040),
- 54 parts/100 parts (Composition AP6535) ,
- 43 parts/100 parts (Composition AP7030) .
Les conditions d'extrusion sont les suivantes :
- Profil de température (dix zones de chauffe Zl à ZlO) : 90/90/110/140/140/110/90/90/90/90
- Vitesse de vis : 200 tr/min.
En sortie d' extrudeuse, on constate que les matières ainsi obtenues sont trop collantes aux forts taux de plastifiant (Compositions AP5050 et AP6040) pour être granulées sur un matériel utilisé couramment avec des polymères synthétiques. On constate également que les compositions sont toujours trop sensibles à l'eau pour être refroidies dans un bac d'eau froide. Pour ces raisons, les joncs d'amidons plastifiés sont refroidis à l'air sur un tapis roulant pour être ensuite séchés à 800C en étuve sous vide pendant 24 heures puis granulés.
(b) Préparation de compositions selon l'invention (avec MPI) et selon l'art antérieur (sans MPI)
On incorpore ensuite dans la composition thermoplastique ainsi obtenue sous forme de granulés, au cours d'un second passage dans l' extrudeuse, respectivement 0, 1, 2, 4, 6, 8 et 12 parts de MPI pour 100 parts de composition thermoplastique (pcr) . Du fait d'une trop forte augmentation de la viscosité, voire même d'une réticulation de la matière dans l' extrudeuse, et d'une perte irréversible du caractère thermoplastique de la composition, il a été impossible d' incorporer :
- plus de 8 pcr de MDI dans la composition AP6040
- plus de 4 pcr de MDI dans la composition AP6535 et plus de 2 pcr de MDI dans la composition AP7030.
Test de stabilité à l'eau:
On évalue la sensibilité à l'eau et à l'humidité des compositions préparées et l'aptitude du plastifiant à migrer vers l'eau et à induire de ce fait une dégradation de la structure de la matière.
On détermine le taux d'insolubles dans l'eau des compositions obtenues selon le protocole suivant :
(i) Sécher l'échantillon à caractériser (12 heures à 800C sous vide)
(ii) Mesurer la masse de l'échantillon (= MsI) avec une balance de précision.
(iii) Immerger l'échantillon dans l'eau, à 200C (volume d'eau en ml égal à 100 fois la masse en g d'échantillon) .
(iv) Prélever l'échantillon après un temps défini de plusieurs heures.
(v) Eliminer l'excès d'eau en surface avec un papier absorbant, le plus rapidement possible.
(vi) Poser l'échantillon sur une balance de précision et suivre la perte de masse pendant 2 minutes (mesure de la masse toute les 20 secondes)
(vii) Déterminer la masse de l'échantillon gonflé par représentation graphique des prises de mesure précédentes en fonction du temps et extrapolation à t=0 de la masse
(= Mg) .
(viii) Sécher l'échantillon (pendant 24 heures à 800C sous vide) . Mesurer la masse de l'échantillon sec (= Ms2)
(ix) Calculer le taux d'insoluble, exprimé en pour-cents, suivant la formule Ms2/Msl.
(x) Calculer le taux de gonflement, en pour-cents, selon la formule (Mg-MsI) /MsI .
Test de reprise en eau :
Le taux de reprise d'humidité est déterminé en mesurant la masse d'un échantillon d'amidon plastifié après un mois de stockage, avant séchage (Mh) et après séchage sous vide à 800C pendant 24 heures (Ms) . Le taux de reprise d'humidité correspond à la différence (1-Ms/Mh) exprimée en pourcent .
Tableau 1 : Taux de reprise d' humidité et taux d' insolubles dans l'eau des amidons plastifiés avec ou sans MPI
Figure imgf000036_0001
*: Selon l'art antérieur **: Selon l'invention
Le Tableau 1 montre que l'incorporation de MDI selon l'invention entraîne à la fois une nette diminution du taux de reprise d'humidité, une très nette diminution de la cinétique de solubilisation et une augmentation significative du taux d'insolubles dans l'eau.
Ces résultats laissent supposer que le plastifiant est lié à l'amidon grâce au MDI, utilisé en tant qu'agent de liaison. L'analyse par spectrométrie de masse a par ailleurs montré que les compositions thermoplastiques ainsi préparées conformément à l'invention avec mise en œuvre d'un agent de liaison tel que le MDI, contiennent des entités spécifiques de type glucose-MDI-glycérol et glucose-MDI-sorbitol, attestant de la fixation du plastifiant sur l'amidon via l'agent de liaison.
Les compositions selon l'invention préparées par réaction d'un agent de liaison (MDI) avec les compositions thermoplastiques à base d'amidon de l'état de la technique, sont plus stables à l'humidité et à l'eau que les compositions de l'art antérieur sans MDI.
Exemple 2 :
Ajout d'une substance fonctionnelle
Dans le but d'augmenter encore la stabilité à l'eau du mélange d'amidon thermoplastique de base AP6040 obtenu selon l'exemple 1, on mélange à cette composition du MDI et un polyéthylène greffé avec 2 % de vinyltriméthoxysilane (PEgSi) formant ainsi un mélange à sec (dry blend) . Le PEgSi utilisé a été obtenu au préalable par greffage du vinyltriméthoxysilane sur un PE basse densité par extrusion. On peut citer comme exemple d'un tel PEgSi disponible sur le marché le produit BorPEX ME 2510 ou BorPEX HE2515 tous deux commercialisés par la société Boréalis.
L'extrudeuse double vis précédemment décrite est alimentée par ce dry blend.
Les conditions d' extrusion sont les suivantes :
- Profil de température (dix zones de chauffe Zl à ZlO) : 1500C
- Vitesse de vis : 400 tr/min.
On prépare les compositions suivantes en introduisant différents taux de MDI : 0 ; 2 et 4 parts pour 100 parts de composition thermoplastique AP6040 (pcr) .
Les compositions préparées sont reprises dans le tableau ci-dessous.
Tableau 2
Compositions des alliages PE greffé Silane/AP6040 et résultats de tenue à l'eau obtenus
Figure imgf000038_0001
* 0=impossible, I=possible mais surface poisseuse, 2=possible sans problème (hydrophobe)
** Après 24 (72) heures dans l'eau à 2O0C
Mesure des propriétés mécaniques :
On détermine les caractéristiques mécaniques en traction des différents échantillons selon la norme NF T51-034 (Détermination des propriétés en traction) en utilisant un banc d'essai Lloyd Instrument LR5K, une vitesse de traction : 50 mm/min et des éprouvettes normalisées de type H2.
A partir des courbes de traction (contrainte = f (allongement) , obtenues à une vitesse d'étirement de 50 mm/min, on relève, pour chacun des alliages PE greffé silane/AP6040, l'allongement à la rupture et la contrainte maximale à la rupture correspondante. Tableau 3
Figure imgf000039_0001
Le mélange 07641 contenant 30% de PE greffé silane, réalisé sans MDI, est très hydrophile et ne peut par conséquent pas être refroidi dans l'eau en sortie de filière car il se disloque très rapidement par hydratation dans le bain de refroidissement.
Tous les alliages amidon plastifié/PEgSi préparés avec un agent de liaison (MDI), même ceux contenant moins de 30% de PEgSi sont très peu hydrophiles et peuvent avantageusement être refroidis sans difficulté dans 1' eau .
Au-delà de 30%, les alliages réalisés avec du MDI sont très hydrophobes.
Les propriétés mécaniques des compositions préparées avec du MDI sont par ailleurs bonnes à très bonnes en termes d'allongement et de contrainte à la rupture .
Le MDI, en liant le plastifiant aux macromolécules de l'amidon et du PEgSi, permet d'améliorer grandement les propriétés de tenue à l'eau et de résistance mécanique, ouvrant ainsi aux compositions conformes à l'invention, de multiples usages nouveaux possibles par rapport à celles de l'art antérieur.
En outre, des observations en microscopie optique et électronique à balayage montrent que les compositions ainsi préparées selon l'invention se présentent sous forme de dispersions d'amidon dans une matrice polymérique continue de PegSi.
Tous ces alliages présentent notamment une bonne résistance à la rayure et un toucher « cuir ». Ils peuvent de ce fait trouver par exemple une application en tant que revêtement de tissus, de panneaux de bois, de papiers ou de cartons .

Claims

REVENDICATIONS
1. Procédé de préparation d'une composition thermoplastique à base d' amidon comprenant les étapes suivantes :
(a) sélection d'au moins un amidon granulaire (composant 1) et d'au moins un plastifiant organique (composant 2) de cet amidon,
(b) préparation d'une composition plastifiée par mélange thermomécanique de cet amidon et de ce plastifiant organique,
(c) incorporation éventuelle, dans la composition plastifiée obtenue à l'étape (b) , d'au moins une substance fonctionnelle (composant optionnel 4), autre que de l'amidon granulaire et porteuse de fonctions à hydrogène actif et/ou de fonctions donnant par hydrolyse de telles fonctions à hydrogène actif, et
(d) incorporation, dans la composition plastifiée obtenue, d'au moins un agent de liaison (composant 3) ayant une masse molaire inférieure à 5000, choisi parmi les diacides organiques et les composés porteurs d' au moins deux fonctions, libres ou masquées, identiques ou différentes, choisies parmi les fonctions isocyanate, carbamoyl-caprolactame, époxyde, halogéno, anhydride d'acide, halogénure d'acyle, oxychlorure, trimétaphosphate et alcoxysilane .
2. Procédé selon la revendication 1, caractérisé par le fait qu' il comporte en outre une étape
(e) de chauffage du mélange obtenu à l'étape (d) jusqu'à une température suffisante pour faire réagir l'agent de liaison avec, d'une part, le plastifiant et, d'autre part, avec l'amidon et/ou la substance fonctionnelle éventuellement présente, les étapes (d) et (e) pouvant être simultanées.
3. Procédé selon la revendication 1 ou 2, caractérisé par le fait qu'il comprend l'étape (c) d'introduction d'au moins une substance fonctionnelle
(composant 4) .
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé par le fait que l'agent plastifiant (composant 2) est choisi parmi les diols, les triols, les polyols, les sels d'acides organiques, l'urée et les mélanges de ces produits.
5. Procédé selon la revendication 4, caractérisé par le fait que le plastifiant est choisi parmi le glycérol, les polyglycérols, l' isosorbide, les sorbitans, le sorbitol, le mannitol, les sirops de glucose hydrogénés, le lactate de sodium, et les mélanges de ces produits.
6. Procédé selon l'une quelconque des revendications précédentes, caractérisé par le fait que le plastifiant est incorporé dans l'amidon granulaire à raison de 10 à 150 parts en poids, de préférence à raison de 25 à 120 parts en poids et en particulier à raison de 40 à 120 parts en poids pour 100 parts en poids d'amidon.
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'agent de liaison est choisi parmi les composés suivants :
- les diisocyanates et polyisocyanates, de préférence le 4,4' -dicyclohexylméthane-diisocyanate (H12MDI) , méthylènediphényl-diisocyante (MDI), le le toluène- diisocyanate (TDI), le naphthalène-diisocyanate (NDI), 1' hexaméthylène-diisocyanate (HMDI) et la lysine- diisocyanate (LDI), les dicarbamoylcaprolactames, de préférence le 1,1'- carbonyl-biscaprolactame,
- les diépoxydes,
- les halogénhydrines, de préférence l' épichlorhydrine, les diacides organiques, de préférence l'acide succinique, l'acide adipique, l'acide glutarique, l'acide oxalique, l'acide malonique, l'acide maléique et les anhydrides correspondants, les oxychlorures, de préférence l' oxychlorure de phosphore, les trimétaphosphates, de préférence le trimétaphosphate de sodium,
- les alcoxysilanes, de préférence le tétraéthoxysilane, et les mélanges de ces composés.
8. Procédé selon la revendication 7, caractérisé par le fait que l'agent de liaison est choisi parmi les diisocyanates, les diépoxydes et les halogénhydrines .
9. Procédé selon la revendication 8, caractérisé par le fait que l'agent de liaison est un diisocyanate, de préférence le méthylènediphényl- diisocyanate (MDI) ou le 4, 4' -dicyclohexylméthane- diisocyanate (H12MDI) .
10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la quantité d'agent de liaison utilisée est comprise entre 0,01 et 15 parts, de préférence entre 0,1 et 12 parts et mieux encore entre 0,1 et 9 parts pour 100 parts de composition plastifiée de l'étape (b) , contenant éventuellement en outre une substance fonctionnelle
(composant 4) .
11. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'amidon granulaire (composant 1) est un amidon natif de céréales, de tubercules ou de légumineuses, un amidon hydrolyse par voie acide, oxydante ou enzymatique, un amidon oxydé, une dextrine blanche, un amidon estérifié et/ou éthérifié, ou un amidon ayant subi un traitement en milieu aqueux à basse température (annealing) .
12. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la composition plastifiée, contenant éventuellement une substance fonctionnelle (composant 4), est séchée ou déshydratée, avant l'incorporation de l'agent de liaison, jusqu'à un taux d'humidité résiduelle inférieur à 5 %, de préférence inférieur à 1 %, en particulier inférieur à 0,1 %.
13. Composition thermoplastique à base d'amidon susceptible d'être obtenue par un procédé selon l'une quelconque des revendications 1 et 3 à 12.
14. Composition thermoplastique à base d'amidon susceptible d'être obtenue par un procédé selon l'une quelconque des revendications 2 à 12, caractérisée en ce qu'elle présente un taux d'insolubles dans l'eau, à 20 0C, supérieur à 72 %, de préférence supérieur à 80 %, en particulier supérieur à 90 %.
15. Composition selon la revendication 14, caractérisée en ce qu'elle présente, après immersion dans l'eau à 20 0C pendant 24 heures, un taux de gonflement inférieur à 20 %, de préférence inférieur à 12 %, mieux encore inférieur à 6 % .
16. Composition selon la revendication 14 ou 15, caractérisée en ce qu'elle présente un allongement à la rupture supérieur à 40%, de préférence supérieur à 80% et en particulier supérieur à 90 %.
17. Composition selon l'une quelconque des revendications 14 à 16, caractérisée en ce qu'elle présente une contrainte maximale à la rupture supérieure à 4 MPa, de préférence supérieure à 6 MPa et en particulier supérieure à 8 MPa.
18. Composition selon l'une quelconque des revendications 14 à 17, caractérisée en ce qu'elle présente :
- un taux d'insolubles au moins égal à 98 %,
- un taux de gonflement inférieur à 5 %,
- un allongement à la rupture au moins égal à 95 %, et
- une contrainte maximale à la rupture supérieure à 8 MPa.
19. Composition selon l'une quelconque des revendications 13 à 18, caractérisée en ce qu'elle est non biodégradable ou non compostable au sens des normes EN 13432, ASTM D6400 et ASTM 6868.
20. Composition selon l'une quelconque des revendications 13 à 19, caractérisée en ce qu'elle contient au moins 33 %, de préférence au moins 50 % de carbone d' origine renouvelable au sens de la norme ASTM D6852.
21. Composition selon l'une quelconque des revendications 13 à 20, caractérisée par le fait qu'elle contient, en tant que substance fonctionnelle, un polymère choisi parmi les polyéthylènes (PE) et polypropylènes (PP) fonctionnalisés, les copolymères styrène-éthylène-butylène-styrène (SEBS) fonctionnalisés, les poly (téréphtalate d'éthylène) amorphes et les polyuréthannes thermoplastiques (PTU) .
PCT/FR2009/050131 2008-02-01 2009-01-29 Procede de preparation de compositions thermoplastiques a base d'amidon plastifie et compositions ainsi obtenues WO2009095618A2 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP09705602A EP2247660A2 (fr) 2008-02-01 2009-01-29 Procede de preparation de compositions thermoplastiques a base d'amidon plastifie et compositions ainsi obtenues
MX2010008454A MX2010008454A (es) 2008-02-01 2009-01-29 Metodo para preparar composiciones termoplasticas basadas en almidon plastificado y composiciones resultantes.
BRPI0906981-0A BRPI0906981A2 (pt) 2008-02-01 2009-01-29 Método de preparação de composição termoplásticas baseadas em amido plastificado e composições resultantes
CA2712898A CA2712898A1 (fr) 2008-02-01 2009-01-29 Procede de preparation de compositions thermoplastiques a base d'amidon plastifie et compositions ainsi obtenues
US12/864,765 US20100311905A1 (en) 2008-02-01 2009-01-29 Method for preparing thermoplastic compositions based on plasticized starch and resulting compositions
JP2010544762A JP5544302B2 (ja) 2008-02-01 2009-01-29 可塑化デンプンベース熱可塑性組成物を調製する方法および結果として生じる組成物
CN200980103896.3A CN101932646B (zh) 2008-02-01 2009-01-29 用于制备基于增塑淀粉的热塑性组合物的方法以及所产生的组合物
RU2010136737/05A RU2524382C2 (ru) 2008-02-01 2009-01-29 Способ получения термопластических композиций на основе пластифицированного крахмала и полученные им композиции
AU2009208826A AU2009208826B2 (en) 2008-02-01 2009-01-29 Method for preparing thermoplastic compositions based on plasticized starch and resulting compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0850660 2008-02-01
FR0850660A FR2927084B1 (fr) 2008-02-01 2008-02-01 Procede de preparation de compositions thermoplastiques a base d'amidon plastifie et compositions ainsi obtenues.

Publications (2)

Publication Number Publication Date
WO2009095618A2 true WO2009095618A2 (fr) 2009-08-06
WO2009095618A3 WO2009095618A3 (fr) 2009-09-24

Family

ID=39666188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/050131 WO2009095618A2 (fr) 2008-02-01 2009-01-29 Procede de preparation de compositions thermoplastiques a base d'amidon plastifie et compositions ainsi obtenues

Country Status (12)

Country Link
US (1) US20100311905A1 (fr)
EP (1) EP2247660A2 (fr)
JP (1) JP5544302B2 (fr)
KR (1) KR20100113612A (fr)
CN (1) CN101932646B (fr)
AU (1) AU2009208826B2 (fr)
BR (1) BRPI0906981A2 (fr)
CA (1) CA2712898A1 (fr)
FR (1) FR2927084B1 (fr)
MX (1) MX2010008454A (fr)
RU (1) RU2524382C2 (fr)
WO (1) WO2009095618A2 (fr)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011086334A1 (fr) 2010-01-15 2011-07-21 Roquette Freres Procédé de préparation de compositions thermoplastiques à base d'amidon plastifié et compositions
WO2011086292A1 (fr) 2009-12-22 2011-07-21 Roquette Freres Compositions a base de matiere vegetale et de fibres synthetiques et procede de preparation de telles compositions
WO2011117549A1 (fr) 2010-03-25 2011-09-29 Roquette Freres Compositions à base de matière végétale et procédé de préparation de telles compositions
WO2011128536A1 (fr) * 2010-04-14 2011-10-20 Setup Performance Thermoplastioues a base de farine vegetale plastifiee et compositions ainsi obtenues
WO2012127263A1 (fr) 2011-03-18 2012-09-27 Metabolic Explorer Procédé de production d'amidon plastifié au moyen de 1,3-propanediol et composition obtenue
CN103180137A (zh) * 2010-10-27 2013-06-26 罗盖特公司 用于生产包括基于淀粉物质的粘合剂组合物的多层结构的方法
US8536381B2 (en) 2008-09-12 2013-09-17 Solvay Sa Process for purifying hydrogen chloride
WO2013164547A1 (fr) 2012-05-03 2013-11-07 Roquette Freres Mousses a base d'amidon thermoplastique et de polyolefine
JP2014037552A (ja) * 2010-04-02 2014-02-27 Dainichiseika Color & Chem Mfg Co Ltd バイオポリウレタン樹脂
US8795536B2 (en) 2008-01-31 2014-08-05 Solvay (Societe Anonyme) Process for degrading organic substances in an aqueous composition
US9309209B2 (en) 2010-09-30 2016-04-12 Solvay Sa Derivative of epichlorohydrin of natural origin
US9663427B2 (en) 2003-11-20 2017-05-30 Solvay (Société Anonyme) Process for producing epichlorohydrin
CN115340724A (zh) * 2022-07-11 2022-11-15 金聚合科技(宁波)有限公司 一种淀粉基抗菌材料及其制备方法

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080036555A (ko) 2005-05-20 2008-04-28 솔베이(소시에떼아노님) 클로로히드린으로부터 출발하여 에폭시드를 제조하는 방법
FR2918058A1 (fr) * 2007-06-28 2009-01-02 Solvay Produit a base de glycerol, procede pour sa purification et son utilisation dans la fabrication de dichloropropanol
JP2011502032A (ja) 2007-10-02 2011-01-20 ソルヴェイ(ソシエテ アノニム) 容器の耐腐食性を向上させるためのケイ素を含有する組成物の使用
FR2927088B1 (fr) * 2008-02-01 2011-02-25 Roquette Freres Compositions thermoplastiques a base d'amidon plastifie et procede de preparation de telles compositions.
US8389107B2 (en) 2008-03-24 2013-03-05 Biovation, Llc Cellulosic biolaminate composite assembly and related methods
CN102099186A (zh) 2008-03-24 2011-06-15 拜奥维森有限责任公司 生物层压复合组件和相关方法
FR2934272B1 (fr) * 2008-07-24 2013-08-16 Roquette Freres Procede de preparation de compositions a base de matiere amylacee et de polymere synthetique.
JP2013049760A (ja) * 2011-08-30 2013-03-14 Mitsubishi Chemicals Corp 樹脂組成物の製造方法、並びに、成形体、フィルム及び袋の製造方法
US20140305338A1 (en) * 2011-10-12 2014-10-16 Muhsin Demirci Agent for paint and method for manufacturing the paint with the agent
US9327438B2 (en) * 2011-12-20 2016-05-03 Kimberly-Clark Worldwide, Inc. Method for forming a thermoplastic composition that contains a plasticized starch polymer
MY163937A (en) * 2012-03-13 2017-11-15 Texchem Polymers Sdn Bhd Thermoplastic Starch Composition Derives From Agricultural Waste
US20130253102A1 (en) * 2012-03-26 2013-09-26 Sung-Yuan LIU Biodegradable plastic material
TWI445755B (zh) * 2012-06-27 2014-07-21 Ind Tech Res Inst 阻燃性熱可塑性澱粉材料、生質複材及其製備方法
CN103044719B (zh) * 2012-12-19 2015-09-16 华南理工大学 一种具有高疏水性能的热塑性淀粉塑料及其制备方法
CN103059146A (zh) * 2013-02-05 2013-04-24 湘潭大学 一种淀粉表面处理工艺
CN103122133B (zh) * 2013-03-19 2015-02-11 宁波家塑生物材料科技有限公司 一种聚乳酸/植物多糖环保型复合材料及其制备方法
US9464188B2 (en) 2013-08-30 2016-10-11 Kimberly-Clark Worldwide, Inc. Simultaneous plasticization and compatibilization process and compositions
KR101385930B1 (ko) * 2013-09-02 2014-04-16 (주)씨엠티 인서트 스크류의 제조방법
EP3221389A1 (fr) * 2014-11-17 2017-09-27 Roquette Frères Composition à base d'amidon thermoplastique et de polyester aliphatique
US10889655B2 (en) * 2014-12-19 2021-01-12 Novamont S.P.A. Destructured starch derivatives and elastomer compositions containing them
US9738752B2 (en) * 2015-04-24 2017-08-22 Xerox Corporation Copolymers for 3D printing
US20170002185A1 (en) * 2015-06-30 2017-01-05 BiologiQ, Inc. Articles Formed with Biodegradable Materials
US11879058B2 (en) 2015-06-30 2024-01-23 Biologiq, Inc Yarn materials and fibers including starch-based polymeric materials
US11674014B2 (en) 2015-06-30 2023-06-13 BiologiQ, Inc. Blending of small particle starch powder with synthetic polymers for increased strength and other properties
US11926929B2 (en) 2015-06-30 2024-03-12 Biologiq, Inc Melt blown nonwoven materials and fibers including starch-based polymeric materials
US11046840B2 (en) 2015-06-30 2021-06-29 BiologiQ, Inc. Methods for lending biodegradability to non-biodegradable plastic materials
US11926940B2 (en) 2015-06-30 2024-03-12 BiologiQ, Inc. Spunbond nonwoven materials and fibers including starch-based polymeric materials
US11674018B2 (en) 2015-06-30 2023-06-13 BiologiQ, Inc. Polymer and carbohydrate-based polymeric material blends with particular particle size characteristics
US11111363B2 (en) 2015-06-30 2021-09-07 BiologiQ, Inc. Articles formed with renewable and/or sustainable green plastic material and carbohydrate-based polymeric materials lending increased strength and/or biodegradability
EP3452548A4 (fr) 2016-05-05 2020-01-22 Cargill, Incorporated Compositions de colle à bois comprenant des protéines et du poly(éther glycidylique), et leurs utilisations
CN106633201A (zh) * 2016-10-07 2017-05-10 河南工业大学 一种高刚性热塑性淀粉注塑专用料的制备方法
EP3360544A1 (fr) * 2017-02-08 2018-08-15 Roquette Freres Compositions filmogènes pour enveloppes de gélules dures et enveloppes de gélules dures ainsi obtenues
KR102302778B1 (ko) * 2017-03-20 2021-09-16 한국과학기술연구원 항혈전 또는 항균성 고분자 화합물, 이를 제조하는방법, 및 이를 포함하는 의료용 물질
SK922017A3 (sk) * 2017-09-13 2019-04-02 Envirocare, S.R.O. Biodegradovateľná polymérna zmes a spôsob jej prípravy
EP3737782A1 (fr) * 2018-01-02 2020-11-18 PrimaLoft, Inc. Fibre synthétique à biodégradation améliorée et ses procédés de fabrication
CN108424549B (zh) * 2018-03-31 2021-05-04 苏州汉丰新材料股份有限公司 耐热全降解热塑性淀粉及其制备方法和应用
KR20210024448A (ko) * 2018-04-23 2021-03-05 바이올로지크, 인코퍼레이티드 플라스틱 물질로의 생분해성 부여 첨가제의 추가
JP7253331B2 (ja) * 2018-06-05 2023-04-06 日泉ポリテック株式会社 熱可塑化デンプン/オレフィン系樹脂組成物の成形シートおよびその製造方法
EP3674059A1 (fr) * 2018-12-28 2020-07-01 Agrana Stärke GmbH Composé ou feuille comportant de l'amidon thermoplastique ainsi qu'un polymère thermoplastique
US11001645B2 (en) * 2019-02-14 2021-05-11 Cyclopure, Inc. Charge-bearing cyclodextrin polymeric materials and methods of making and using same
KR20230169384A (ko) 2019-02-14 2023-12-15 사이클로퓨어, 인코포레이티드 전하 담지 시클로덱스트린 중합체 물질 및 그의 제조 방법 및 사용 방법
CN111849132A (zh) * 2020-07-03 2020-10-30 贵州大学 一种高强度交联pbat材料及其制备方法
CN113444349A (zh) * 2021-06-15 2021-09-28 上海乐亿塑料制品有限公司 一种绿色无毒包装袋及其制备方法
CN113317160A (zh) * 2021-07-07 2021-08-31 广州华景建设有限公司 一种园林花苗的栽培工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19546371A1 (de) * 1995-12-12 1997-06-19 Basf Ag Verfahren zur Herstellung Oligo- und/oder Polysaccharid-haltiger Polyurethane und daraus hergestellte Formteile
EP0967247A1 (fr) * 1998-06-25 1999-12-29 supol GmbH Procédé de production de matériaux thermoplastiques en utilisant des produits amylacés et matériaux thermoplastiques ainsi obtenus
EP1106646A1 (fr) * 1999-12-07 2001-06-13 Roquette FrÀ¨res Composition diluante et désintégrante, son procédé d'obtention et son utilisation
WO2001048078A1 (fr) * 1999-12-27 2001-07-05 Polyvalor, Societe En Commandite Compositions polymeres contenant de l"amidon thermoplastique et leur procede de production

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2205323B (en) * 1987-03-09 1991-01-30 Warner Lambert Co Destructurized starch and process for making same
US5095054A (en) * 1988-02-03 1992-03-10 Warner-Lambert Company Polymer compositions containing destructurized starch
IT1245408B (it) * 1991-02-20 1994-09-20 Butterfly Srl Composizioni polimeriche biodegradabili a base di amido e di polimero termoplastico
US5256711A (en) * 1991-10-04 1993-10-26 Director-General Of Agency Of Industrial Science Starch-containing biodegradable plastic and method of producing same
US5844023A (en) * 1992-11-06 1998-12-01 Bio-Tec Biologische Naturverpackungen Gmbh Biologically degradable polymer mixture
DE19624641A1 (de) * 1996-06-20 1998-01-08 Biotec Biolog Naturverpack Biologisch abbaubarer Werkstoff, bestehend im wesentlichen aus oder auf Basis thermoplastischer Stärke
DE69730852T2 (de) * 1996-11-05 2005-09-22 Novamont S.P.A. Biologisch abbaubare polymerzusammensetzungen, die stärke und ein thermoplastisches polymer enthalten
DE19729305C2 (de) * 1997-07-09 2000-07-06 Aventis Res & Tech Gmbh & Co Thermoplastische Mischung auf Basis von Stärke enthaltend mindestens eine kationische und mindestens eine anionische Stärke, Verfahren zu ihrer Herstellung sowie Verwendung
DE19822979A1 (de) * 1998-05-25 1999-12-02 Kalle Nalo Gmbh & Co Kg Folie mit Stärke oder Stärkederivaten und Polyesterurethanen sowie Verfahren zu ihrer Herstellung
IT1303553B1 (it) * 1998-09-01 2000-11-14 Novamont Spa Composizioni biodegradabili comprendenti amido ed esteri di cellulosa.
CA2282963A1 (fr) * 1998-10-15 2000-04-15 The Goodyear Tire & Rubber Company Preparation de caoutchouc renforce a l'amidon et utilisation de ce produit dans les pneus
MX220923B (es) * 1999-01-25 2004-06-11 Ato Bv Nanoparticulas biopolimericas.
EP1187875A1 (fr) * 1999-05-14 2002-03-20 The Dow Chemical Company Procede de preparation de compositions polymeriques thermoplastiques a base d'amidon et d'epoxyde
US7241832B2 (en) * 2002-03-01 2007-07-10 bio-tec Biologische Naturverpackungen GmbH & Co., KG Biodegradable polymer blends for use in making films, sheets and other articles of manufacture
US20030077444A1 (en) * 2001-05-10 2003-04-24 The Procter & Gamble Company Multicomponent fibers comprising starch and polymers
US6946506B2 (en) * 2001-05-10 2005-09-20 The Procter & Gamble Company Fibers comprising starch and biodegradable polymers
US20020168518A1 (en) * 2001-05-10 2002-11-14 The Procter & Gamble Company Fibers comprising starch and polymers
DE50212366D1 (de) * 2001-10-23 2008-07-24 Innogel Ag El
US20030092801A1 (en) * 2001-11-15 2003-05-15 Giorgio Agostini Rubber composition comprised of functionalized elastomer and starch composite with coupling agent and tire having at least one component thereof
US6830810B2 (en) * 2002-11-14 2004-12-14 The Procter & Gamble Company Compositions and processes for reducing water solubility of a starch component in a multicomponent fiber
US7947766B2 (en) * 2003-06-06 2011-05-24 The Procter & Gamble Company Crosslinking systems for hydroxyl polymers
JP2005154586A (ja) * 2003-11-26 2005-06-16 Sumitomo Rubber Ind Ltd ゴム組成物
US20080036115A1 (en) * 2004-03-10 2008-02-14 Minoru Ueda Starch Resin Composition, Molded Product Using the Same and Method for Producing the Same
JP2006143887A (ja) * 2004-11-19 2006-06-08 El & Chem Corp 生分解性プラスチック組成物及びその製造方法
US7153354B2 (en) * 2004-11-19 2006-12-26 Board Of Trustees Of Michigan State University Chemically modified plasticized starch compositions by extrusion processing
US20070082982A1 (en) * 2005-10-11 2007-04-12 The Procter & Gamble Company Water stable compositions and articles comprising starch and methods of making the same
WO2007050560A2 (fr) * 2005-10-24 2007-05-03 Mgp Ingredients, Inc. Composites thermoresistants a base d'amidon et de polyester et leurs procedes de fabrication
JP5084245B2 (ja) * 2006-06-07 2012-11-28 関西ペイント株式会社 澱粉系塗料組成物
BRPI0716663B1 (pt) * 2006-08-15 2019-08-27 Ecosynthetix Inc processo para produzir um produto de nanopartículas de biopolímero
DE102007050770A1 (de) * 2007-10-22 2009-04-23 Biotec Biologische Naturverpackungen Gmbh & Co. Kg Polymeres Material und Verfahren zu dessen Herstellung
FR2927087B1 (fr) * 2008-02-01 2011-02-11 Roquette Freres Compositions thermoplastiques a base d'amidon soluble et procede de preparation de telles compositions.
FR2932488B1 (fr) * 2008-06-13 2012-10-26 Roquette Freres Compositions thermoplastiques ou elastomeriques a base d'amidon et procede de preparation de telles compositions.
FR2934272B1 (fr) * 2008-07-24 2013-08-16 Roquette Freres Procede de preparation de compositions a base de matiere amylacee et de polymere synthetique.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19546371A1 (de) * 1995-12-12 1997-06-19 Basf Ag Verfahren zur Herstellung Oligo- und/oder Polysaccharid-haltiger Polyurethane und daraus hergestellte Formteile
EP0967247A1 (fr) * 1998-06-25 1999-12-29 supol GmbH Procédé de production de matériaux thermoplastiques en utilisant des produits amylacés et matériaux thermoplastiques ainsi obtenus
EP1106646A1 (fr) * 1999-12-07 2001-06-13 Roquette FrÀ¨res Composition diluante et désintégrante, son procédé d'obtention et son utilisation
WO2001048078A1 (fr) * 1999-12-27 2001-07-05 Polyvalor, Societe En Commandite Compositions polymeres contenant de l"amidon thermoplastique et leur procede de production

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KE T ET AL: "Thermal and Mechanical Properties of Poly(Lactic acid)/Starch/Methylenediphenyl Diisocyanate Blending with Triethyl Citrate" 1 janvier 2003 (2003-01-01), JOURNAL OF APPLIED POLYMER SCIENCE,, PAGE(S) 2947 - 2955 , XP002491348 *Blend preparation, pages 2949-2950* *
NING ET AL: "The influence of citric acid on the properties of thermoplastic starch/linear low-density polyethylene blends" CARBOHYDRATE POLYMERS, APPLIED SCIENCE PUBLISHERS, LTD. BARKING, GB, vol. 67, no. 3, 13 décembre 2006 (2006-12-13), pages 446-453, XP005802455 ISSN: 0144-8617 *
WANG H ET AL: "Effects of Starch Moisture on Properties of Wheat Starch/Poly(Lactic acid) Blend Containing Methylenediphenyl Diisocyanate" 1 janvier 2002 (2002-01-01), JOURNAL OF POLYMERS AND THE ENVIRONMENT,, PAGE(S) 133 - 138 , XP002491347 *Introduction, pages 133-134* *Sample preparation, page 134* *
YU L ET AL: "Effect of Compatibilizer Distribution on the Blends of Starch/Biodegradable Polyesters" JOURNAL OF APPLIED POLYMER SCIENCE,, vol. 103, 1 janvier 2006 (2006-01-01), pages 812-818, XP002491346 cité dans la demande *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9663427B2 (en) 2003-11-20 2017-05-30 Solvay (Société Anonyme) Process for producing epichlorohydrin
US8795536B2 (en) 2008-01-31 2014-08-05 Solvay (Societe Anonyme) Process for degrading organic substances in an aqueous composition
US8536381B2 (en) 2008-09-12 2013-09-17 Solvay Sa Process for purifying hydrogen chloride
WO2011086292A1 (fr) 2009-12-22 2011-07-21 Roquette Freres Compositions a base de matiere vegetale et de fibres synthetiques et procede de preparation de telles compositions
WO2011086334A1 (fr) 2010-01-15 2011-07-21 Roquette Freres Procédé de préparation de compositions thermoplastiques à base d'amidon plastifié et compositions
FR2955329A1 (fr) * 2010-01-15 2011-07-22 Roquette Freres Procede de preparation de compositions thermoplastiques a base d'amidon plastifie et compositions
CN102918097A (zh) * 2010-03-25 2013-02-06 罗盖特兄弟公司 植物材料组合物及其制备方法
FR2957928A1 (fr) * 2010-03-25 2011-09-30 Roquette Freres Compositions a base de matiere vegetale et procede de preparation de telles compositions
WO2011117549A1 (fr) 2010-03-25 2011-09-29 Roquette Freres Compositions à base de matière végétale et procédé de préparation de telles compositions
JP2014037552A (ja) * 2010-04-02 2014-02-27 Dainichiseika Color & Chem Mfg Co Ltd バイオポリウレタン樹脂
FR2958938A1 (fr) * 2010-04-14 2011-10-21 Setup Performance Procede de preparation de compositions thermoplastiques a base de farine vegetale plastifiee et compositions ainsi obtenues
WO2011128536A1 (fr) * 2010-04-14 2011-10-20 Setup Performance Thermoplastioues a base de farine vegetale plastifiee et compositions ainsi obtenues
US9309209B2 (en) 2010-09-30 2016-04-12 Solvay Sa Derivative of epichlorohydrin of natural origin
CN103180137A (zh) * 2010-10-27 2013-06-26 罗盖特公司 用于生产包括基于淀粉物质的粘合剂组合物的多层结构的方法
WO2012127263A1 (fr) 2011-03-18 2012-09-27 Metabolic Explorer Procédé de production d'amidon plastifié au moyen de 1,3-propanediol et composition obtenue
WO2013164547A1 (fr) 2012-05-03 2013-11-07 Roquette Freres Mousses a base d'amidon thermoplastique et de polyolefine
CN115340724A (zh) * 2022-07-11 2022-11-15 金聚合科技(宁波)有限公司 一种淀粉基抗菌材料及其制备方法
CN115340724B (zh) * 2022-07-11 2023-10-24 金聚合科技(宁波)有限公司 一种淀粉基抗菌材料及其制备方法

Also Published As

Publication number Publication date
FR2927084A1 (fr) 2009-08-07
JP2011511120A (ja) 2011-04-07
BRPI0906981A2 (pt) 2015-07-21
KR20100113612A (ko) 2010-10-21
CA2712898A1 (fr) 2009-08-06
CN101932646A (zh) 2010-12-29
RU2524382C2 (ru) 2014-07-27
CN101932646B (zh) 2014-04-02
RU2010136737A (ru) 2012-03-10
WO2009095618A3 (fr) 2009-09-24
US20100311905A1 (en) 2010-12-09
FR2927084B1 (fr) 2011-02-25
JP5544302B2 (ja) 2014-07-09
AU2009208826B2 (en) 2014-06-19
AU2009208826A1 (en) 2009-08-06
MX2010008454A (es) 2010-12-06
EP2247660A2 (fr) 2010-11-10

Similar Documents

Publication Publication Date Title
EP2247660A2 (fr) Procede de preparation de compositions thermoplastiques a base d'amidon plastifie et compositions ainsi obtenues
EP2247661A2 (fr) Procede de preparation de compositions thermoplastiques a base d'amidon plastifie et compositions ainsi obtenues
WO2009095617A2 (fr) Compositions thermoplastiques a base d'amidon soluble et procede de preparation de telles compositions
EP2337815B1 (fr) Compositions thermoplastiques ou elastomeriques a base d'esters d'une matiere amylacee et procede de preparation de telles compositions
EP2310447B1 (fr) Procede de preparation de compositions a base de composant amylace et de polymere synthetique
FR2927083A1 (fr) Procede de preparation de compositions thermoplastiques a base de matiere amylacee soluble.
CA2726860A1 (fr) Compositions thermoplastiques ou elastomeriques a base d'amidon et procede de preparation de telles compositions
EP2550323A1 (fr) Compositions à base de matière végétale et procédé de préparation de telles compositions
FR2937039A1 (fr) Compositions elastomeriques a base d'esters d'une matiere amylacee et procede de preparation de telles compositions
FR2955329A1 (fr) Procede de preparation de compositions thermoplastiques a base d'amidon plastifie et compositions
EP2558512B1 (fr) Thermoplastioues a base de farine vegetale plastifiee et compositions ainsi obtenues

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980103896.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09705602

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2712898

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12864765

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010544762

Country of ref document: JP

Ref document number: 4788/CHENP/2010

Country of ref document: IN

Ref document number: MX/A/2010/008454

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009208826

Country of ref document: AU

REEP Request for entry into the european phase

Ref document number: 2009705602

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009705602

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107019385

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010136737

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2009208826

Country of ref document: AU

Date of ref document: 20090129

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0906981

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100730