EP2550323A1 - Compositions à base de matière végétale et procédé de préparation de telles compositions - Google Patents

Compositions à base de matière végétale et procédé de préparation de telles compositions

Info

Publication number
EP2550323A1
EP2550323A1 EP11715988A EP11715988A EP2550323A1 EP 2550323 A1 EP2550323 A1 EP 2550323A1 EP 11715988 A EP11715988 A EP 11715988A EP 11715988 A EP11715988 A EP 11715988A EP 2550323 A1 EP2550323 A1 EP 2550323A1
Authority
EP
European Patent Office
Prior art keywords
composition
starch
polyolefin
composition according
starches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11715988A
Other languages
German (de)
English (en)
Inventor
Joël BERNAERTS
Laurie Coudyser
Léon Mentink
Didier Beaudoux
Bernard Constant
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roquette Freres SA
Original Assignee
Roquette Freres SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roquette Freres SA filed Critical Roquette Freres SA
Publication of EP2550323A1 publication Critical patent/EP2550323A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/26Natural polymers, natural resins or derivatives thereof according to C08L1/00 - C08L5/00, C08L89/00, C08L93/00, C08L97/00 or C08L99/00

Definitions

  • the present invention relates to novel thermoplastic compositions containing selected proportions of at least four components, namely, respectively, a starchy material, plasticizer of starchy material, polyolefin and plant material, said plant material being, further selected from vegetable fibers and vegetable fillers. It also relates to a process for preparing these thermoplastic compositions.
  • thermoplastic composition in the present invention means a composition which reversibly softens under the action of heat and hardens on cooling. It has at least one so-called glass transition temperature (Tg) below which the amorphous fraction of the composition is in the brittle glassy state, and above which the composition can undergo reversible plastic deformations.
  • Tg glass transition temperature
  • the glass transition temperature or at least one of the glass transition temperatures of the starch-based thermoplastic composition of the present invention is preferably from -120 ° C to 150 ° C.
  • This thermoplastic composition has an ability to be shaped by the processes traditionally used in the plastic, textile or wood processing industries, such as extrusion, injection, molding, rotational molding, thermoforming, blowing, calendering or pressing. Its viscosity, measured at a temperature of 100 ° C. to 200 ° C., is generally between 10 and 10 6 Pa.s.
  • said thermoplastic composition is "heat fusible", that is to say that it can be shaped without application of significant shear forces, that is to say by simple flow or by simple pressing melted matter. Its viscosity, measured at a temperature of 100 ° C. to 200 ° C., is generally between 10 and 10 3 Pa.s.
  • plant material is intended to mean a product of vegetable origin, of essentially polysaccharide nature, cellulose, hemicellulosic, woody or amylaceous, of essentially proteinaceous nature or based on natural rubbers and in the form of particles or in the form of a fibrous material.
  • said plant material is chosen from vegetable fibers and vegetable fillers as will be described later in the present application.
  • starch which has been introduced as a filler in a granular state, in particular in polyolefins.
  • This starch is then a vegetable load having the advantage of being also renewable, but especially to be available in large quantities at an economically attractive price compared to oil and gas.
  • a granular starch is a starch having a semicrystalline granule structure similar to that found for starch as naturally occurring in reserve organs and tissues of higher plants, particularly in cereal seeds, legume seeds, tubers of potato or cassava, roots, bulbs, stems and fruits.
  • This semi-crystalline state is essentially due to macromolecules of amylopectin, one of the two main constituents of starch.
  • the starch grains In the native state, the starch grains have a degree of crystallinity which varies from 15 to 45%, and which depends essentially on the botanical origin of the starch and the possible treatment that it has undergone.
  • the granular starch placed under polarized light, presents in microscopy a characteristic cross, called “Maltese cross", typical of the crystalline granular state.
  • Mealtese cross characteristic cross
  • Such granular starches that is to say in the structural state where they are in the reserve organs of plants, are insoluble in water.
  • fatty substances fatty acids, silicones, siliconates
  • siloxanes or isocyanates siloxanes or isocyanates
  • the composites thus obtained then generally contain at most 20% by weight of granular starch, since beyond this value, the mechanical properties of the composite materials obtained become too modified or too low compared to those of the polymers. Synthetics forming the matrix. The growth of such composites, sometimes called hybrid as well, has remained limited.
  • starch has been associated with polyolefins in a completely different state called “destructured” or “thermoplastic” and this according to a completely different technology.
  • This destructured or thermoplastic state of the starch is obtained by plastification of granular starch by incorporation of a suitable plasticizer at a level generally comprised between 15 and 35% with respect to the granular starch and by supply of mechanical and thermal energy.
  • US Pat. Nos. 5,095,054 to Warner Lambert and EP 0,497,706 B1 of the Applicant describe, in particular, this destructured state, with reduced or absent crystallinity due to the addition of plasticizer, and means for obtaining such thermoplastic starches.
  • thermoplastic amorphous starches can be carried out in a low-hydrated medium by thermomechanical or extrusion processes. Obtaining a melted phase from granular starch requires not only a significant supply of mechanical energy and thermal energy but also the presence of a plasticizer at the risk, otherwise, to carbonize the starch.
  • thermoplastic starch makes it possible to obtain thermoplastic compositions whose properties can be modulated by the choices of the starch type, the nature of the plasticizer, the plasticization ratio, the incorporation rate of thermoplastic starch in polyolefins and the mixing process.
  • the thermoplastic compositions thus obtained typically have a structure where the thermoplastic starch is present in island-dispersed form in a continuous polyolefin phase. This is explained by the fact that thermoplastic starches are very hydrophilic and are therefore very poorly miscible or compatible with polyolefins.
  • compatibilizing agents or coupling agents such as, for example, copolymers with hydrophobic units and alternating hydrophilic units such as ethylene / acrylic acid (EAA) copolymers, polyolefins grafted with maleic anhydride or organosilane groups.
  • EAA ethylene / acrylic acid
  • Major advances have allowed in recent years to obtain new thermoplastic compositions having excellent mechanical properties in terms of stiffness, flexion and resilience to shocks, by the development of new processes such as those that were the subject of patent applications WO2009 / 095617, WO 2009/095618, WO 2009/095622 and WO 2010/010282 published in the name of the Applicant.
  • the present invention provides a novel and advantageous solution to the problems stated above by proposing novel thermoplastic compositions prepared from at least four components, at least one starchy material and at least one polyolefin, and having improved properties compared to to those of the prior art.
  • thermoplastic composition characterized in that it contains:
  • said starch material a) being plasticized by the plasticizer b) and these percentages being expressed by dry weight relative to the dry weight of said composition.
  • said composition contains:
  • said composition is characterized in that it contains, in total, at least 27%, preferably 30 to 80%, and even more preferably 35 to 75%. %, of plasticized starch material consisting of a) and b), these percentages being expressed as total dry weight of starchy material (s) and plasticizer (s) of starch material relative to the dry weight of the thermoplastic composition.
  • said composition is characterized in that it contains, in total, at least 52%, preferably 55% to 90%, of the plasticized starchy material constituted by at least one starchy material and at least one starchy material plasticizer (components a and b), and at least one polyolefin (component c), these percentages being expressed as total dry weight of starchy material, plasticizer (s) starch material and polyolefin (s) relative to the dry weight of the thermoplastic composition.
  • thermoplastic composition according to the invention associating, moreover, in defined proportions, a plasticized starchy material, a polyolefin and a fiber or vegetable load allowed against all odds to obtain, compared to compositions of the prior art, including not containing fiber or vegetable filler or containing lesser or higher proportions, improved mechanical properties and even allowed to get rid or significantly reduce the amounts of compatibilizers or coupling agents ordinarily required to obtain satisfactory properties.
  • the Applicant believes that the plasticized starchy material behaves itself, within the composition, in the manner of a compatibilizing or coupling agent between the selected plant material and the other constituents. of the composition, in particular the polyolefin.
  • the present invention also relates, in particular, to a thermoplastic composition according to the invention characterized in that it is in the form of granules, chips, sheets, plates, powders or fibrous mats, capable of being shaped by pressing, thermoforming, extrusion, calendering, injection or blowing.
  • a thermoplastic intermediate composition that does not contain any fiber or vegetable filler and then, by any suitable means and in the appropriate proportions, mix said intermediate composition with the fibers and / or vegetable fillers.
  • thermoplastic composition according to the invention has, compared with compositions of the prior art, in particular containing a polyolefin but no plasticized starchy material, excellent properties in terms of interaction and adhering or adhering to fibers or vegetable fillers such as paper or cardboard, so that, alternatively, there is prepared an intermediate composition not yet containing vegetable fibers or fillers, an intermediate composition that the one can then use, among other things, as a means of bonding, between them, fibers and / or vegetable fillers.
  • the subject of the present invention is also a process for improving the bonding, between them, of fibers and / or vegetable fillers, characterized in that it comprises the following steps:
  • thermomechanical mixing of said plant material and said composition iii. thermomechanical mixing of said plant material and said composition.
  • Step (iii) is carried out at a temperature advantageously between 80 and 200 ° C., preferably between 120 and 185 ° C. and even more preferably between 160 and 180 ° C.
  • This step may in particular be done by hot pressing, thermomolding, extrusion, injection, and / or hot spraying of the intermediate composition on a mattress of plant material.
  • We can prepare, in particular, panels or "fibrous mats" usable, for example, as acoustic and / or thermal insulation and may contain up to 95% or more of plant material.
  • the intermediate composition, free of fiber or vegetable filler, that can be used for the preparation of the thermoplastic composition according to the invention may especially be characterized in that it contains:
  • said intermediate composition contains:
  • said intermediate composition contains: a) from 25 to 60% of at least one starchy material,
  • Said intermediate composition that can be used according to the invention may in particular have a density of between 0.95 and 1.3, preferably between 1.0 and 1.25, and more preferably between 1.05 and 1.15, according to the invention. to ISO 1,183.
  • thermoplastic composition according to the invention or the intermediate composition that can be used for its preparation necessarily comprises a polyolefin.
  • This polyolefin can be virgin that is to say having not had prior use although it can be formulated by addition of additives or by compounding. It can also be recycled, that is to say from polyolefin parts or objects recovered by recovery of material.
  • polyolefin means a non-functionalized or ungrafted polyolefin or a mixture of such a polyolefin with a functionalized or grafted polyolefin.
  • the polyolefin is a mixture of a non-functionalized and non-grafted polyolefin (POI) and of a functionalized and / or grafted polyolefin (PO 2)
  • the ratio (POI) / (PO 2) can range from 1/99 at 99/1, advantageously from 10/90 to 90/10, for example from 25/75 to 75/25.
  • the polyolefin may be obtained from monomers of fossil origin and / or monomers derived from renewable natural resources, as it may be from a deposit of recycled material or to be recycled.
  • non-functionalized or ungrafted polyolefins that may be used in the context of the present invention, mention may be made in particular of:
  • olefins such as, for example, linear or radical low density polyethylenes (LDPE), high density polyethylenes (HDPE), polypropylenes (PP) of isotactic, syndiotactic or atactic form, polybutenes and polyisobutylenes,
  • LDPE linear or radical low density polyethylenes
  • HDPE high density polyethylenes
  • PP polypropylenes
  • isotactic, syndiotactic or atactic form polybutenes and polyisobutylenes
  • copolymers based on at least two olefins such as, for example, ethylene - propylene (P / E) copolymers, ethylene - butene copolymers and ethylene - octene copolymers,
  • a) homopolymers of functionalized or grafted olefins for example with acids or anhydrides such as maleic, acrylic and methacrylic acids (or anhydrides), such as, for example, maleic anhydride grafted polyethylenes and polypropylenes, with oxiranes such as that methacrylate or glycidyl acrylate, or by silanes,
  • copolymers based on at least two olefins for example ethylene - propylene (P / E) copolymers, ethylene - butene copolymers and functionalized or grafted ethylene - octene copolymers, example with acids or anhydrides, such as maleic, acrylic and methacrylic acids (or anhydrides), such as, for example, maleic anhydride grafted polyethylenes and polypropylenes, with oxiranes, such as methacrylate or glycidyl acrylate, or by silanes,
  • acids or anhydrides such as maleic, acrylic and methacrylic acids (or anhydrides)
  • maleic anhydride grafted polyethylenes and polypropylenes with oxiranes, such as methacrylate or glycidyl acrylate, or by silanes
  • the polyolefin can be further synthesized from monomers derived from renewable natural resources in the short term such as plants, microorganisms or gases. It may especially be polyolefin obtained from bio-sourced monomers, in particular from glycerol, bio-ethanol, bio-methanol or bio-propanediol.
  • the polyolefin is chosen from polyolefins obtained from bio-sourced monomers, and mixtures thereof.
  • the polyolefin has a weight average molecular weight of between 8500 and 10,000,000 gmol 1 , in particular between 15,000 and 1,000,000 gmol -1 .
  • the polyolefin is conventionally a non-biodegradable or non-compostable resin in the sense of the standards EN 13432, ASTM D 6400 and ASTM D 6868.
  • the polyolefin is a polyolefin containing at least 15%, preferably at least 30%, in particular at least 50%, better still at least 70% or even more than 80% (including 100%), carbon of renewable origin according to ASTM D 6852 and / or ASTM D 6866, with respect to all the carbon present in said polyolefin.
  • This polyolefin is preferably chosen from non-functionalized or ungrafted polyolefins, mentioned above (homopolymers of olefins, copolymers based on at least two olefins and any mixtures thereof) such as linear or radical low density polyethylenes (LDPEs), high density polyethylenes (HDPE), polypropylenes (PP) of isotactic, syndiotactic or atactic form, polybutenes, polyisobutylenes, ethylene - propylene (P / E) copolymers, ethylene - butene copolymers and copolymers of ethylene-octene, as well as any mixtures thereof.
  • the polyolefin may also be a mixture of polyolefins, at least one of which may be functionalized or grafted, in particular carrying silane, acrylic or maleic anhydride units.
  • thermoplastic composition according to the invention or the intermediate composition that can be used for its preparation also necessarily comprises at least one plasticized starchy material. It may be in particular a plasticized starch, the latter preferably having a degree of crystallinity of less than 15%, preferably less than 5% and more preferably less than 1%, that is to say being in a essentially amorphous state.
  • This degree of crystallinity can in particular be measured by X-ray diffraction as described in US Pat. No. 5,362,777 (column 9, lines 8 to 24).
  • the plasticized starch is advantageously substantially free of starch grains having, under light microscopy under polarized light, a Maltese cross, an indicator sign of the presence of crystalline granular starch.
  • the starchy material used for the preparation of the composition according to the invention or the intermediate composition that can be used according to the invention is preferably chosen from granular starches, water-soluble starches and organomodified starches.
  • granular starch is a granular starch.
  • the crystallinity of said granular starch can be reduced to less than 15% by thermomechanical treatment with a suitable plasticizer.
  • Said granular starch can be of any botanical origin. It may be starch native to cereals such as wheat, maize, barley, triticale, sorghum or rice, tubers such as potato or cassava, or legumes such as peas and soya, starches rich in amylose or conversely, rich in amylopectin (vaxy) from these plants and any mixtures of the aforementioned starches.
  • the granular starch may also be a granular starch modified by any means, physical, chemical and / or enzymatic.
  • It may be a fluidized or oxidized granular starch or a white dextrin. It may also be a granular starch modified physico-chemically but having been able to retain the structure of the native starch starting, as esterified and / or etherified starches, in particular modified by grafting, acetylation, hydroxypropylation, anionization, cationisation, crosslinking, phosphatation, succinylation and / or silylation. It may be, finally, a starch modified by a combination of the treatments mentioned above or any mixture of such granular starches.
  • this granular starch is chosen from native starches, fluidized starches, oxidized starches, chemically modified starches, white dextrins and any mixtures of these products.
  • the granular starch is preferably a wheat or pea granular starch or a granular derivative of wheat or pea starch. It generally has a level of solubles at 20 ° C in demineralized water, less than 5% by weight and can be practically insoluble in cold water.
  • the starch is a water-soluble starch which may also come from all botanical origins, including a starch which is water-soluble, rich in amylose or, conversely, rich in amylopectin (vaxy).
  • This soluble starch can be introduced as a partial or total replacement of the granular starch.
  • the water-soluble starch is used in solid form, preferably substantially anhydrous, i.e. undissolved or non-dispersed in an aqueous or organic solvent. It is therefore important not to confuse, throughout the description that follows, the term "water-soluble” with the term "dissolved”.
  • Such water-soluble starches can be obtained by pregelatinization on a drum, by pregelatinization on an extruder, by spraying a suspension or a starchy solution, by precipitation with a non-solvent or by cooking. hydrothermal, by chemical or other functionalization. It is in particular a pregelatinized, extruded or atomized starch, a highly converted dextrin (also called yellow dextrin), a maltodextrin, a functionalized starch or a mixture of these products.
  • the pregelatinized starches can be obtained by hydrothermal treatment of gelatinization of native starches or modified starches, in particular by steam cooking, jet-cooker cooking, drum cooking, cooking in kneader / extruder systems and then drying, for example in incubator, by hot air on a fluidized bed, on a rotating drum, by atomization, by extrusion or by lyophilization.
  • Such starches generally have a solubility in demineralized water at 20 ° C. of greater than 5% and more generally of between 10 and 100% and a starch crystallinity level of less than 15%, generally less than 5% and most often less than 1%, or even none. Examples include products manufactured and marketed by the Applicant under the brand name PREGEFLO ®.
  • Highly processed dextrins can be prepared from native or modified starches by dextrinification in a weakly acidic acid medium. It may be in particular soluble white dextrins or yellow dextrins. By way of example, mention may be made of the STABILYS ® A 053 or TACKIDEX ® C 072 products manufactured and marketed by the Applicant. Such dextrins have demineralized water at 20 ° C, a solubility generally between 10 and 95% and a starch crystallinity of less than 15% and generally less than 5%.
  • Maltodextrins can be obtained by acid, oxidative or enzymatic hydrolysis of starches in an aqueous medium. They may in particular have an equivalent dextrose (DE) of between 0.5 and 40, preferably between 0.5 and 20, and more preferably between 0.5 and 12. Such maltodextrins are for example manufactured and marketed by the Applicant. under the tradename GLUCIDEX ® and have a solubility in deionized water at 20 ° C, generally greater than 90% or close to 100%, and a starch crystallinity generally less than 5% and almost zero ordinary .
  • the functionalized starches can be obtained from a native or modified starch.
  • the high functionalization can for example be carried out by esterification or etherification at a sufficiently high level to confer a solubility in water.
  • Such functionalized starches have a soluble fraction as defined above, greater than 5%, preferably greater than 10%, more preferably greater than 50%.
  • the functionalization can be obtained in particular by aqueous phase acetylation of acetic anhydride, mixed anhydrides, glutamate hydroxypropylation, dry phase cationization or glue phase, anionization in the dry phase or glue phase by phosphatation or succinylation.
  • These water-soluble, highly functionalized starches may have a degree of substitution of between 0.01 and 3, and more preferably between 0.05 and 1.
  • the reagents for modification or functionalization of starch are of renewable origin. .
  • the water-soluble starch is a water-soluble starch of wheat or pea or a water-soluble derivative of a wheat or pea starch.
  • the starch is an organomodified starch, preferably organosoluble, which may also come from all botanical origins, including an organomodified starch, preferably organosoluble, rich in amylose or, conversely, rich in amylopectin (waxy).
  • organosoluble starch may be introduced as partial or total replacement of the granular starch or of the water-soluble starch.
  • organomodified starch is intended to mean any polysaccharide material derived from starch, other than a granular starch or a water-soluble starch according to the definitions given above.
  • this organomodified starch is almost amorphous, that is to say has a starch crystallinity level of less than 5%, generally less than 1% and especially zero.
  • organosoluble that is to say present at 20 ° C, a fraction soluble in a solvent selected from ethanol, ethyl acetate, propyl acetate, butyl acetate, diethyl carbonate, propylene carbonate, dimethyl glutarate, triethyl citrate, dibasic esters, dimethyl sulfoxide (DMSO), dimethyl isosorbide, glycerol triacetate, isosorbide diacetate, isosorbide dioleate and methyl esters of vegetable oils, at least equal to 5% by weight.
  • This soluble fraction is preferably greater than 20% by weight and in particular greater than 50% by weight.
  • the organomodified starch may be used according to the invention in solid form, preferably substantially anhydrous.
  • its water content is less than 10%, preferably less than 5%, in particular less than 2% by weight and ideally less than 0.5%, or even less than 0.2% by weight.
  • Organomodified starch can be prepared by high functionalization of native or modified starches such as those presented above. This high functionalization can for example be carried out by esterification or etherification at a sufficiently high level to make it essentially amorphous and to confer on it an insolubility in water and preferably a solubility in one of the above organic solvents.
  • Such functionalized starches have a soluble fraction as defined above, greater than 5%, preferably greater than 10%, more preferably greater than 50%.
  • the high functionalization can be obtained in particular by acetylation in the solvent phase by acetic anhydride, grafting for example in the solvent phase or by reactive extrusion, of acid anhydrides, mixed anhydrides, fatty acid chlorides, oligomers of caprolactones or lactides, hydroxypropylation and crosslinking in the glue phase, cationization and crosslinking in the dry phase or in the glue phase, anionization by phosphatation or succinylation and crosslinking in the dry phase or in the glue phase, sililation, butadiene telomerization.
  • organomodified starches may be particularly starch acetates, dextrins or maltodextrins or fatty esters of these starchy materials (starches, dextrins, maltodextrins) with fatty chains of 4 to 22 carbons, all of these products preferably having a degree of substitution (DS) between 0.5 and 3.0, preferably between 0.8 and 2.8 and in particular between 1.0 and 2.7.
  • DS degree of substitution
  • It may be, for example, hexanoates, octanoates, decanoates, laurates, palmitates, oleates and stearates of starches, dextrins or maltodextrins, in particular having a DS between 0 , 8 and 2.8.
  • the organomodified starch is an organomodified starch of wheat or pea or an organomodified derivative of a wheat or pea starch.
  • the amylaceous material is chosen from native starches, pregelatinized starches, extruded starches, atomized starches, fluidized starches, oxidized starches, cationic starches, anionic starches, hydroxyalkylated starches, crosslinked starches, starch acetates, fatty starch and fatty chain esters of 4 to 22 carbons, dextrins, maltodextrins and any mixtures of these products.
  • the starchy material used in component a is a native starch.
  • thermoplastic composition according to the invention or the intermediate composition that can be used according to the invention comprises a plasticizing agent of starchy material.
  • plasticizing agent is intended to mean any organic molecule of low molecular weight, that is to say having a molecular mass of less than 5000 and greater than 18 g / mol which, when incorporated by a thermomechanical treatment into a temperature between 20 and 200 ° C to the thermoplastic composition according to the invention, to the intermediate composition used according to the invention or to the single starchy material results in a decrease in the glass transition temperature of said composition or material and / or results in reducing the crystallinity of the starchy material until it reaches a substantially amorphous state.
  • Water is the most natural plasticizer of the starchy material, especially starch, and is therefore commonly used.
  • the plasticizer used in the context of the present invention is preferably chosen from diols, triols and polyols such as glycerol, polyglycerol, isosorbide, sorbitans, sorbitol, mannitol, sugars, such as glucose, maltose, fructose or sucrose or hydrogenated glucose syrups, salts of organic acids such as sodium lactate, urea and mixtures of these products.
  • the plasticizer then advantageously has a molar mass of less than 5000, preferably less than 1000, and in particular less than 400.
  • the plasticizer preferably has a molar mass of at most 380.
  • the starchy material consists of an organomodified starch
  • fatty acids of mono-alcohols, diols, triols or polyols such as ethanol, diethylene glycol, glycerol and sorbitol.
  • glycerol diacetate diacetin
  • glycerol triacetate triacetin
  • isosorbide diacetate isosorbide dioctanoate
  • isosorbide dioleate isosorbide dilaurate
  • esters of dicarboxylic acids or dibasic esters DBE of English dibasic esters
  • the plasticizer is contained in the plasticized starchy material in a proportion of 25 to 110 parts by dry weight, preferably in the proportion of 30 to 100 parts by dry weight and in particular at the rate of 30 to 90 parts by dry weight. per 100 parts by dry weight of starchy material, for example starch.
  • thermoplastic composition according to the invention or the intermediate composition that can be used according to the invention preferably comprises, as plasticized starchy material, at least one plasticized starch obtained from native starches, pregelatinized starches, extruded starches, atomized starches, fluidized starches, oxidized starches, cationic starches, anionic starches, hydroxyalkylated starches, crosslinked starches, starch acetates, starch fatty esters and chains fatty acids of 4 to 22 carbons, dextrins, maltodextrins and mixtures any of these products, plasticized by thermomechanical mixing with at least one of the plasticizers listed above.
  • composition according to the invention may also comprise a binding agent.
  • binding agent in the present invention means any organic molecule carrying at least two functional groups, free or masked, capable of reacting with molecules carrying active hydrogen functional groups such as starchy material, for example starch, or the plasticizer of the starchy material. This binding agent may be added to the composition in order to allow covalent attachment of at least a portion of the plasticizer to the starch, or even to the polyolefin, in particular if it carries functional groups. .
  • This binding agent may then be chosen for example from compounds carrying at least two functions, free or masked, identical or different, in particular chosen from isocyanate, carbamoylcaprolactam, aldehyde, epoxide, halogen, protonic acid, anhydride and other functional groups. acid, acyl halide, oxychloride, trimetaphosphate, alkoxysilane and combinations thereof.
  • diisocyanates preferably methylenediphenyl diisocyanate (MDI), isophorone diisocyanate (IPDI), dicyclohexylmethane diisocyanate (H12MDI), toluene diisocyanate (TDI), naphthalene diisocyanate (NDI), hexamethylene -diisocyanate (HMDI) or lysine diisocyanate (LDI), the aliphatic diisocyanate of molar mass 600 g / mol obtained from dimer of fatty diacid (DDI® 1410 Diisocyanate)
  • MDI methylenediphenyl diisocyanate
  • IPDI isophorone diisocyanate
  • H12MDI dicyclohexylmethane diisocyanate
  • TDI toluene diisocyanate
  • NDI naphthalene diisocyanate
  • HMDI hexam
  • the so-called “isocyanate-free" prepolymers resulting from a reaction of a diol or an amine on a diisocyanate under conditions such that the prepolymer contains an isocyanate function at each of its ends ( ⁇ , ⁇ -functional or telechelic polymer) without the free diisocyanate being detectable the isocyanate prepolymers of the dendrimer type, prepared from compounds having several alcohol or amino functional groups and polyisocyanates prepared so that the dendrimer formed has only reactive isocyanate functions at the end of the branch, the dendrimer containing or not free di or triisocyanates,
  • dialkylcarbonates especially dianhydrohexitol dialkylcarbonates, and in particular isosorbide dialkylcarbonates,
  • dicarbamoylcaprolactams preferably 1,1 -carbonyl-bis-caprolactam, diepoxides,
  • organic diacids preferably succinic acid, adipic acid, glutaric acid, oxalic acid, malonic acid, maleic acid or the corresponding anhydrides,
  • polyacids and polyanhydrides preferably mellitic acid or its derivatives, such as trimellitic acid or pyromellitic acid,
  • oxychlorides preferably phosphorus oxychloride
  • trimetaphosphates preferably sodium trimetaphosphate
  • alkoxysilanes preferably tetraethoxysilane
  • heterocyclic compounds preferably bis-oxazolines, bis-oxazolin-5-ones and bis-azalactones,
  • methylenic or ethylenic diester derivatives preferably methyl or ethyl carbonate derivatives
  • a diisocyanate and in particular methylene diphenyl diisocyanate (MDI) is used as the linking agent.
  • MDI methylene diphenyl diisocyanate
  • IPDI isophorone diisocyanate
  • H12MDI dicyclohexylmethane diisocyanate
  • the amount of binding agent, expressed as dry weight and relative to the sum, expressed as dry weight of the composition according to the invention may advantageously be between 0.1 and 15% by weight, preferably between 0.1 and 12% by weight, more preferably still between 0.2 and 9% by weight and in particular between 0.5 and 5% by weight.
  • the incorporation of the binding agent into the mixture of the composition according to the invention or, preferably, into the intermediate composition that can be used according to the invention can be done by physical mixing at low temperature or cold, but preferably by mixing. when heated to a temperature above the glass transition temperature of the starchy material.
  • This mixing temperature is advantageously between 60 and 200 ° C. and better still between 100 and 160 ° C.
  • This incorporation can be carried out by thermomechanical mixing, discontinuously or continuously and in particular online. In this case, the mixing time can be short, from a few seconds to a few minutes.
  • composition according to the invention or the intermediate composition that can be used for its preparation may advantageously also comprise an agent that improves its impact resilience, especially at a temperature of 23 ° C. or below, as well as at -18 ° C.
  • agent that improves its impact resilience, especially at a temperature of 23 ° C. or below, as well as at -18 ° C.
  • It may be in particular an ethylene-propylene, ethylene-styrene or styrene-butadiene copolymer-type polymer, an elastomeric material of natural rubber type, styrene-butylene-styrene copolymer (SBS) or styrene-ethylene copolymer.
  • SBS styrene-butylene-styrene copolymer
  • SEBS styrenes
  • This resilience-improving agent may represent from 1 to 15%, preferably from 2 to 12% and better still from 5 to 10% by weight (dry / dry) of
  • thermoplastic composition according to the invention or the intermediate composition that can be used for its preparation advantageously has the following preferred variants, taken separately or in combination, including with the variants described above: it contains, in total, at least 51%, preferably at least 70%, in particular more than 80%, of biobased carbon-based materials of renewable origin within the meaning of ASTM D 6852 and / or the standard ASTM D 6866, expressed as dry weight relative to the dry weight of said composition,
  • composition according to the invention has particularly advantageous mechanical characteristics.
  • the present invention makes it possible in particular to obtain a new thermoplastic composition based on starchy material, plasticizer of starchy material, polyolefin and fiber or vegetable filler, characterized in a remarkable manner in that it simultaneously has:
  • a maximum tensile stress greater than 50 MPa, especially greater than 55 MPa.
  • the plant material constituting the fourth essential component of the thermoplastic composition according to the invention is, as mentioned above, selected not only by its rate of introduction into said composition, but also by its nature, namely chosen from vegetable fibers. and vegetable loads. It is selected in order to improve the cold mechanical properties of the composition according to the invention but also its heat stability as well as its thermomechanical properties, its conductive properties, and / or its organoleptic properties such as its appearance, its color. or its smell.
  • the plant material thus selected in the form of fibers and / or vegetable fillers consists of particles whose largest dimension is generally between 0.5 and 5000 microns and preferably between 0.5 and 1000 microns.
  • it may consist of a mixture of small particles whose largest dimension is between 0.5 and 300, preferably between 100 and 275 micrometers and large particles whose largest dimension is between 350 and 5000, preferably between 400 and 3000 micrometers.
  • the weight ratios of the small particles / coarse particles generally vary from 0.1 to 9 and preferably from 0.5 to 2.
  • the term "dimension” is the largest dimension of the particles of said fibers or fillers, these being able to present in very different aspects (granules , powders, fibers, chips ...), their largest dimension can be considered, on a case by case basis, being their diameter, their length or any other dimension easily and commonly measurable by those skilled in the art.
  • the filler or vegetable fiber thus selected according to the invention most often has a water content of between 0.5 and 30%, preferably between 1 and 20%, more preferably between 1 and 15%. This water content may advantageously be between 2 and 15%.
  • the vegetable load may in particular be chosen from granular starches, native or modified, as defined above, and unplasticized. As a result, this starch placed under polarized light always has in microscopy a "Maltese cross" typical of the crystalline granular state.
  • the starch selected as plant material can come from all botanical origins, including a starch rich in amylose or conversely rich in amylopectin (waxy).
  • this granular starch is pea starch, wheat starch, waxy rice starch or waxy corn starch. It has been shown that these preferred granular starches are advantageous in terms of whiteness and appearance of the compositions according to the invention. It may especially be a waxy corn starch.
  • the vegetable filler When the vegetable filler is selected from granular starches, their dimensions are generally between 0.5 and 100 microns, especially between 1 and 70 microns.
  • these dimensions are between 2 and 50 microns, preferably between 4 and 45 microns, and more preferably between 5 and 40 microns.
  • These dimensions may especially be between 8 and 35 microns, especially between 10 and 30 microns.
  • the vegetable filler may also be chosen from non-fibrous co-products of starch, mill, candy, paper mill or oil mill. It may be in particular gums of wheat or triticale, oil cake or maize, guar or carob meal, cereal protein or tubers allowing in particular to obtain beige to brown hues, rosins or terpene resins for example to improve the adhesion properties.
  • the vegetable load can also be chosen from algae and algae extracts. It may be in particular dried and ground whole algae or extracts of algae such as polysaccharides such as alginates and carrageenans.
  • the vegetable fiber may, for its part, be chosen also from cellulosic or lignocellulosic fibers and in particular from the fibrous co-products of starch, mill, candy, paper mill or oil mill. It can then be elementary fibers, in individualized form, in a cluster or in agglomerates. These may include cereal bran, corn kernels, wheat or triticale fiber, rice husks, sunflower shells, outer seed shells, beet pulp or potato pulp, bagasse of sugar cane, walnut hulls, hazelnuts or almonds. It may be in particular wood in the form of sawdust, in particular beech, oak, birch, eucalyptus, pine or fir. It can also be spruce wood.
  • fibrous cellulosic clusters consisting of fibrils with a diameter of 10 to 100 nanometers for a length of a few micrometers to a few centimeters, such as paper or cardboard.
  • lignocellulosic fibers such as wood, flax, hemp, bamboo, sisal, miscanthus, banana, pea, potato, cereals, palm, cocoon, jute, straw, cotton, kenaf or others.
  • products that can advantageously be used among these fibers include sisal, bamboo, coconut or jute fibers.
  • the plant material used according to the invention may of course be any mixture of at least two of the fibers and / or vegetable fillers mentioned above.
  • the composition according to the invention has a water content corresponding to its equilibrium humidity in an atmosphere at 66% moisture content. relative and a temperature of 20 ° C.
  • thermoplastic composition (a) It may be chosen advantageously to increase the nucleation or the crystallization ability of the polyolefin present in the thermoplastic composition (a) and thus to adjust the mechanical properties and shrinkage properties of the composition according to the invention.
  • the plant material consists of particles whose size is between 0.5 and 5000 micrometers, and is chosen from: granular starches, native or modified,
  • the plant material is chosen from cellulosic or lignocellulosic fibers such as wood, sisal, bamboo, coconut or jute fibers.
  • thermoplastic composition according to the invention has the advantage of being relatively sparse and of having a density measured according to the ISO 1183 method of between 1.05 and 1.25 and preferably between 1.1 and 1.2.
  • composition according to the invention or the intermediate composition that can be used for its preparation may comprise other polymers, of any kind, in a small amount, for the adjustment of its characteristics.
  • it will preferably comprise polymers or copolymers other than polyolefins, partially or totally bio-sourced, such as in particular polyurethanes (PU), thermoplastic polyurethanes (TPU), polyamides, polylactates (PLA), polybutylenes succinates (PB S, PB SA), polyhydroxyalkanoates (PHA, PHB, PHBV) or any mixtures thereof.
  • Fillers and other additives of all types may also be incorporated in the composition of the present invention or the intermediate composition used for its preparation.
  • It may be products designed to further improve its physico-chemical properties, in particular its physical structure, its implementation behavior and its durability or its mechanical, thermal, conductive, adhesive or organoleptic properties.
  • the additive may be an improving or adjusting agent for the mechanical or thermal properties chosen from among minerals, salts and substances organic. It may be nucleating agents such as talc, compatibilizers or dispersants such as natural or synthetic surfactants, impact or scratch-resistant agents such as calcium silicate control agents such as magnesium silicate, scavengers or deactivators of water, acids, catalysts, metals, oxygen, infrared rays, UV rays, hydrophobing agents such as oils and greases, fire retardants and flame retardants such as halogenated derivatives, smoke-suppressing agents, reinforcing fillers, mineral or organic, such as calcium carbonate, talc, kevlar.
  • nucleating agents such as talc, compatibilizers or dispersants such as natural or synthetic surfactants, impact or scratch-resistant agents such as calcium silicate control agents such as magnesium silicate, scavengers or deactivators of water, acids, catalysts, metals, oxygen, infrared rays, UV
  • the additive may also be an improving agent or an adjustment of the conductive or insulating properties with respect to electricity or heat, for example sealing against air, water or gases. , to solvents, to fatty substances, to essences, to aromas, to perfumes, chosen in particular from minerals, salts and organic substances, in particular from heat-conduction or dissipation agents such as metal powders and graphites .
  • the additive may be an agent that improves the organoleptic properties, in particular:
  • odorant properties perfumes or odor masking agents
  • optical properties whiteners such as titanium dioxide, dyes, pigments, dye enhancers, opacifiers, dulling agents such as calcium, thermochromic agents, phosphorescence and fluorescence agents, metallizing or marbling agents and anti-fogging agents
  • the additive may also be an enhancing or adjusting agent for adhesive properties, including adhesion to cellulosic materials such as paper or wood, metal materials such as aluminum and steel, glass or ceramic materials, textiles and mineral materials, such as pine resins, rosins, ethylene / alcohol copolymers vinyl, fatty amines, lubricating agents, release agents, antistatic agents and anti-blocking agents.
  • cellulosic materials such as paper or wood, metal materials such as aluminum and steel, glass or ceramic materials, textiles and mineral materials, such as pine resins, rosins, ethylene / alcohol copolymers vinyl, fatty amines, lubricating agents, release agents, antistatic agents and anti-blocking agents.
  • the additive may be an agent improving the durability of the material or an agent for controlling its (bio) degradability, especially chosen from hydrophobic or pearling agents such as oils and greases, anti-corrosion agents, antimicrobial agents such as Ag , Cu and Zn, degradation catalysts such as oxo-catalysts and enzymes such as amylases.
  • hydrophobic or pearling agents such as oils and greases
  • anti-corrosion agents such as Ag , Cu and Zn
  • antimicrobial agents such as Ag , Cu and Zn
  • degradation catalysts such as oxo-catalysts and enzymes such as amylases.
  • composition With a view to the preparation of the composition according to the invention, it is possible to use a number of methods that provide, in particular, extremely varied moments and orders of introduction of the components of said composition (polyolefin, amylaceous material, plasticizer of starchy material, fiber or vegetable filler). , optional bonding agent, impact resilience enhancer, any other additives).
  • the fiber and / or vegetable filler can be introduced after all or part of it has been previously dispersed in a composition already containing the starchy material, its plasticizer and the polyolefin.
  • said fiber and / or vegetable filler regardless of how and when it was incorporated, may be dispersed mainly in the plasticized starch material, or in the polyolefin phase, or even be divided between these two phases.
  • the present invention particularly relates to a process for preparing a thermoplastic composition according to the invention as described above in all its variants, said process comprising the following steps:
  • thermoplastic composition comprising at least one starchy material, a plasticizer of said starchy material having a molar mass greater than 18 g / mol and less than 5000 g / mol and a polyolefin, a plasticization of the material starch being produced by thermomechanical mixing with said plasticizer, (ii) selecting at least one plant material (b) chosen from vegetable fibers and vegetable fillers, consisting of particles whose size is between 0.5 and 5000 micrometers, preferably chosen from:
  • thermomechanical mixture composition (a) and plant material (b) so as to obtain the thermoplastic composition according to the invention.
  • composition (a) may in particular correspond to the "intermediate composition” as previously described in all its variants.
  • the incorporation of the plasticizer can be performed cold prior to its thermomechanical mixing with the starchy material.
  • the thermomechanical mixture made to plasticize the starchy material is carried out under heat at a temperature of preferably between 60 and 200 ° C., more preferably between 80 and 185 ° C. and in particular between 100 and 160 ° C., in a discontinuous manner. for example by kneading / kneading, or continuously, for example by extrusion.
  • the duration of this mixture can range from a few seconds to a few hours, depending on the mixing mode selected.
  • the incorporation of the plant material (b) can be done by physical mixing at low temperature or cold in the composition (a) but preferably by hot mixing at a temperature above the highest glass transition temperature of the composition (a).
  • This mixing temperature is advantageously between 80 and 200 ° C., preferably between 120 and 185 ° C. and even more preferably between 160 and 180 ° C.
  • This incorporation can be carried out by thermomechanical mixing, discontinuously or continuously and in particular online. In this case, the mixing time can be short, from a few seconds to a few minutes. This gives a thermoplastic composition, very homogeneous as can be observed by observation under a microscope.
  • step (iii) is carried out in such a way that this starch remains in the state of charge and is not plasticized, that is to say in using a sufficiently short mixing time not to laminate the granular starch.
  • the selected plant material has a water content corresponding to its equilibrium humidity in a 66% atmosphere. relative humidity and a temperature of 20 ° C.
  • This water content is usually between 5 and 20% and generally between 8 and 15%.
  • the process according to the invention is characterized in that the mixing step (iii) is followed by a shaping treatment of the thermoplastic composition according to the invention (iv) at a temperature of between 80.degree. and 200 ° C, preferably between 120 and 185 ° C, and in particular between 160 and 180 ° C.
  • the subject of the present invention is also the use of a composition comprising at least one starchy material plasticized by a plasticizer of molar mass greater than 18 g / mol and less than 5000 g / mol as compatibilizing agent between a plant material (b) and a polyolefin. It also relates to a process for improving the compatibility between a plant material and a polyolefin, characterized in that it comprises the following steps:
  • thermomechanical mixing preferably thermomechanical mixing, the plant material and the polyolefin in the presence of said starchy material so as to improve the plant material / polyolefin compatibility within the resulting thermoplastic composition.
  • Step (iii) is carried out at a temperature advantageously between 80 and 200 ° C., preferably between 120 and 185 ° C. and even more preferably between 160 and 180 ° C.
  • thermoplastic composition according to the invention can be used as such or in admixture with other products or additives, including other synthetic, artificial or naturally occurring polymers. It is preferably non-biodegradable and non-compostable in the sense of standards EN 13432, ASTM D 6400 and ASTM D 6868, and thus constitute a sink or carbon trap, thanks to its high content of plant products of photosynthetic origin.
  • composition according to the invention advantageously contains at least 51%, preferably at least 55%, and in particular more than 60% of biobased materials based on carbon of renewable origin (ASTM D 6852 and / or ASTM D 6866), expressed as dry weight relative to the dry weight of said composition.
  • This carbon of renewable origin is that constitutive of the starch necessarily present in the composition according to the invention and that constitutive of the plant material (b) also necessarily present, but can also be that of the polyolefin which is preferably bio-sourced, that of the other possible constituents of the composition as the plasticizer, especially if it is glycerol or sorbitol, or any other product when it comes from renewable natural resources.
  • compositions according to the invention as bioplastic materials or composite materials, useful for preparation by injection, extrusion, blowing, calendering, molding, thermoforming, compacting, spinning, kinking or other techniques, objects, parts, bottles, jars, containers, tanks, sheets, panels, bars, cleats, beam profiles, tables, interior furniture, street furniture, mats, nonwovens, door trim, wall, insulation, auto parts, electrical parts, wiring, ducts, dashboards, hoods or other household sports and leisure articles, household appliances, tools or useful for different industries such as the building industry, packaging, electricity, transportation and equipment.
  • Said composition may be in pulverulent, granulated or bead form. It can constitute as such a masterbatch or the matrix of a masterbatch, intended to be diluted in a bio-sourced matrix or not. It can also constitute a plastic raw material or a compound that can be used directly by an equipment manufacturer or a manufacturer of plastic objects. It can also constitute a final or intermediate composition, able to be shaped or used in the wood processing industry such as a wood panel or wood / polymer composites.
  • thermoplastic composition (a) is a composition comprising, on a dry weight basis:
  • thermoplastic starch obtained from: native starch marketed by the Applicant under the name "SP wheat starch” with a water content of about 12%,
  • an aqueous plasticizing composition of polyols based on glycerol and sorbitol marketed by the Applicant under the name POLYSORB® G 84/41/00 having a water content of about 16%,
  • a polyolefin consisting of a mixture of a commercially ungrafted polypropylene and a commercially grafted polypropylene.
  • thermoplastic thermoplastic
  • Temperature profile (ten heating zones Z1 to Z10): 200/120/140/140/160/170/160/150/160/160,
  • thermoplastic composition (a) The constituents of the thermoplastic composition (a) are introduced into the extruder as follows:
  • the polyolefin in the main hopper of the extruder, following which it passes through all of the ten heating zones Z1 to Z10 of the extruder,
  • the plasticizer of the starchy component (POLYSORB®) at zone Z2 the plasticizer / wheat starch ratio being set at 67 parts / 100 parts,
  • starchy component unplasticized wheat starch
  • a water extraction is operated by slight depression at the Z6 zone.
  • This composition comprises 52% of renewable origin material in the form of wheat starch and bio-sourced polyol type plasticizers. It has a density close to 1.11.
  • This thermoplastic composition (a) is referred to as "Resin A” and is used as "intermediate composition” by combining it, in order to obtain a composition according to the invention, with a plant material (b) consisting of sisal fibers whose main dimension (length) is of the order of 500 micrometers. 25% by weight of sisal fibers containing about 8.5% water, based on the total weight of the composition according to the invention, are mixed with Resin A.
  • the rods are cooled under water at 20 ° C and then dried at 80 ° C under vacuum for 4 hours.
  • the density of the composition according to the invention thus obtained is close to 1.13. It contains about 23.4% vegetable fibers, this percentage being expressed by dry weight relative to the dry weight of the thermoplastic composition according to the invention.
  • control composition 2 Identical preparation of a control composition 2 was prepared using instead of Resin A, a mixture (control composition 1) comprising 97% MFI (Melt Flow Index) co-polymer PPC16N polypropylene of 16 (230). ° C, 2.16 kg) having mechanical characteristics very close to those of Resin A and 3% of 1% maleic anhydride grafted polypropylene as compatibilizer. Only extrusion conditions on a 6mm die are slightly modified in the sense that:
  • the profile is increasing from 190 ° C. to 210 ° C.
  • compositions according to the invention or not:
  • composition according to the invention has much better mechanical characteristics than the control composition 2 and this, for all the criteria measured.
  • the plasticized starch present in Resin A appears to act both on improving adhesion to sisal fibers and improving polypropylene compatibility.
  • composition according to the invention may also be obtained by the same method as that applied usually and advantageously without modification of the tooling and by working at temperatures below 20 ° to 35 ° C. below the control composition 2.
  • the composition according to the invention unlike the control composition 2, has a beautiful natural appearance and great homogeneity. It also has a pleasant feel explained by the presence of starch used in the thermoplastic composition (a).
  • composition according to the invention comprising a total of about 64% of bio-sourced material has many technical advantages compared to the control composition 2 which however comprises only 23.4% of renewable natural origin material.
  • This sawdust and this wood flour have, respectively, at the time of their introduction into Resin A or PPC16N, a water content of approximately 11.5% and 12.4%.
  • composition according to the invention which comprises in total about 69% of bio-sourced material, has much better mechanical properties than the control composition which however comprises only about 35% of renewable natural origin material.
  • thermoplastic compositions are selected for producing compositions according to the invention and comparative.
  • the first intermediate composition comprises, in dry weight:
  • thermoplastic starch obtained from:
  • an aqueous plasticizing composition of polyols based on glycerol and sorbitol marketed by the Applicant under the name POLYSORB® G 84/41/00 having a water content of about 16%,
  • thermoplastic starch does not comprise MDI.
  • the third intermediate composition consists of a mixture of a non-grafted polypropylene and a grafted polypropylene used for the manufacture of the first two intermediate compositions.
  • compositions A (according to the invention), B (according to the invention) and C (comparative) are obtained by mixing the first, second and third intermediate compositions respectively with:
  • Example 3 Compositions, Containing or Not According to the Invention, Based on Native Waxy Corn Starch
  • the resin A as described above is chosen as the thermoplastic composition (a) or intermediate composition that can be used according to the invention.
  • a composition according to the invention is prepared by using as plant material (b), in this case as vegetable filler, a waxy maize native starch marketed by the Applicant.
  • thermoplastic composition according to the invention contains approximately 35% by weight of vegetable filler, this percentage being expressed by dry weight relative to the dry weight of the thermoplastic composition according to the invention.
  • a control composition is prepared in the same manner using, in place of Resin A, an MFI polypropylene polypropylene HP456J of MFI 16 (230 ° C., 2.16 kg) having mechanical properties superior to those of the resin. A in terms of modulus of resistance and stiffness.
  • MFI polypropylene polypropylene HP456J of MFI 16 230 ° C., 2.16 kg
  • a in terms of modulus of resistance and stiffness is added to this polypropylene is added 4% of maleic anhydride grafted polypropylene as compatibilizer between the polypropylene and the hydrophilic fillers.
  • Resin A thermoplastic composition (a) 580 17
  • composition according to the invention is a composition according to the invention.
  • Resin A an intermediate composition that can be used according to the process of the invention, therefore has a very advantageous gain on the effectiveness of the increase in mechanical properties compared with the polypropylene base control compositions, while enabling it to be freed of the use of grafted polypropylene as a compatibilizer.
  • the plasticized starch present in Resin A appears to act both on improving the adhesion of starch fillers and on improving polypropylene compatibility.
  • composition according to the invention which comprises in total about 71% of bio-sourced material, has modulus properties of rigidity relatively close to the control composition which however comprises only about 35% of material of renewable natural origin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

La présente invention a pour objet une nouvelle composition thermoplastique, caractérisée en ce qu'elle contient: a)de15 à60 % d'au moins une matière amylacée, b)de10 à30 % d'au moins un agent plastifiant de matière amylacée, c)de15 à70 %d'au moins une polyoléfine, et d)de 10 à 40 % d'au moins une matière végétale choisie parmi les fibres végétales et les charges végétales. Elle concerne également un procédé de préparation d'une composition thermoplastique comprenant les étapes suivantes: (i) sélection d'au moins une composition (a) comprenant au moins une matière amylacée, un plastifiant de ladite matière et une polyoléfine, (ii) sélection d'au moins une matière végétale (b) choisie parmi les fibres végétales et les charges végétales, constituée de particules dont la dimension est comprise entre 0,5 et 5000 micromètres, (iii) mélange de la composition (a) et de la matière végétale (b) de manière à obtenir la composition thermoplastique selon l'invention.

Description

COMPOSITIONS A BASE DE MATIERE VEGETALE ET PROCEDE DE PREPARATION DE TELLES COMPOSITIONS
La présente invention concerne de nouvelles compositions thermoplastiques contenant des proportions sélectionnées d'au moins quatre composants, à savoir, respectivement, d'une matière amylacée, d'agent plastifiant de matière amylacée, de polyoléfme et de matière végétale, ladite matière végétale étant, en outre, sélectionnée parmi les fibres végétales et les charges végétales. Elle concerne également un procédé de préparation de ces compositions thermoplastiques.
On entend par « composition thermoplastique » dans la présente invention une composition qui, de manière réversible, se ramollit sous l'action de la chaleur et se durcit en se refroidissant. Elle présente au moins une température dite de transition vitreuse (Tg) en dessous de laquelle la fraction amorphe de la composition est à l'état vitreux cassant, et au-dessus de laquelle la composition peut subir des déformations plastiques réversibles. La température de transition vitreuse ou l'une, au moins, des températures de transition vitreuse, de la composition thermoplastique à base d'amidon de la présente invention est de préférence comprise entre -120°C et 150°C. Cette composition thermoplastique présente une aptitude à être mise en forme par les procédés utilisés traditionnellement dans les industries de transformation des matières plastiques, des textiles ou du bois, tels que l'extrusion, l'injection, le moulage, le rotomoulage, le thermoformage, le soufflage, le calandrage ou le pressage. Sa viscosité, mesurée à une température de 100°C à 200°C, est généralement comprise entre 10 et 106 Pa.s
De préférence, ladite composition thermoplastique est «thermo-fusible», c'est- à-dire qu'elle peut être mise en forme sans application de forces de cisaillement importantes, c'est-à-dire par simple écoulement ou par simple pressage de la matière fondue. Sa viscosité, mesurée à une température de 100°C à 200°C, est généralement comprise entre 10 et 103 Pa.s.
Sous le terme « matière végétale », on entend au sens de la présente invention un produit d'origine végétale, de nature essentiellement polysaccharidique, en particulier de nature cellulosique, hémi-cellulosique, ligneuse ou amylacée, de nature essentiellement protéique ou à base caoutchoucs naturels et se présentant sous forme de particules ou sous forme d'un matériel fibreux. Dans le cadre de l'invention, ladite matière végétale est choisie parmi les fibres végétales et les charges végétales telles qu'elles seront décrites ultérieurement dans la présente demande.
Dans les contextes environnementaux et économiques actuels, de raréfaction des réserves pétrolières et gazières dont sont issues les matières plastiques traditionnelles appelées également pétro-plastiques par opposition aux bioplastiques à base de ressources renouvelables, de perturbations climatiques dues à l'effet de serre et du réchauffement planétaire, de l'état de l'opinion publique en quête d'un développement durable, de produits plus naturels, plus propres, plus sains, recyclables et moins dispendieux en énergie, et de l'évolution des réglementations et des fiscalités, il est nécessaire de disposer de nouvelles compositions issues de ressources renouvelables qui soient à la fois compétitives, conçues dès l'origine pour n'avoir que peu ou pas d'impacts négatifs sur l'environnement et techniquement aussi performantes que les matériaux préparés à partir de matières premières d'origine fossiles.
Dans cet esprit, différentes voies ont été explorées depuis plusieurs dizaines d'années déjà, consistant à introduire des matières bio-sourcées comme charges dans des résines pétro-plastiques. Ces charges présentent le double avantage d'être faiblement denses par rapport aux charges minérales et d'être d'origine naturelle et renouvelable à faible échéance. Parmi les résines pétro-plastiques, les polyoléfïnes présentent de leur côté les avantages d'être produites en très larges volumes à des prix relativement bas, de présenter des éco-profils intéressants au regard de l'environnement, d'être incinérables sans production de gaz toxiques contrairement par exemple au PVC et d'être recyclables industriellement.
Parmi les matières végétales, de nombreux travaux ont porté sur l'incorporation jusqu'à 60 % de fibres végétales, comme en particulier les fibres de lin et de chanvre, les fibres de paille de céréales, les fibres de kénaf, les fibres de bois, les fibres cellulosiques (rayon), dans les résines pétro-plastiques comme en particulier dans le polypropylène. On obtient ainsi des produits appelés couramment compounds de fibres naturelles. On pourra se référer par exemple à la thèse suivante:
"Interfacial Interactions in Fiber Reinforced Thermoplastic Composites " par Livia Dânyâdi, Laboratory of Plastics and Rubber Technology Department of Physical Chemistry and Materials Science Budapest University of Technology and Economies, Institute of Materials and Environmental Chemistry Chemical Research Center Hungarian Academy of Sciences, 2009.
Cette opération de compoundage est aujourd'hui assez bien maîtrisée bien que de nombreuses études soient encore menées en vue d'améliorer la production et les caractéristiques de ces compounds. En effet, l'introduction de telles fibres n'est pas aisée compte tenu que les fibres végétales sont généralement très hydrophiles alors que les résines sont de nature hydrophobe. De fait, il est préconisé de sécher ces fibres pour réduire leur caractère hydrophobe et d'utiliser des produits de synthèse, généralement d'origine pétrolière, en tant qu'agents dispersants, agents compatibilisants et/ou agents couplants mais aussi des agents stabilisants spécifiques compte tenu de l'instabilité élevée des fibres végétales au cisaillement, à la chaleur, à la lumière et aux microorganismes. De plus, les quantités maximales de matière d'origine végétale qu'il est possible d'introduire dans les résines pétro-plastiques sans compromettre leurs propriétés demeurent relativement limitées et restent dans la pratique d'ordinaire inférieures à 50 %.
D'autres types de matières végétales ont aussi été introduites, en tant que charges, dans des résines pétro-plastiques de façon à corriger les défauts énoncés ci- dessus ou à obtenir des propriétés avantageuses.
C'est le cas de l'amidon qui a été introduit comme charge dans un état granulaire notamment dans des polyoléfïnes. On pourra se référer dans ce contexte par exemple à la demande de brevet WO 2009 022195 qui décrit des composites de polyoléfïnes et d'amidon granulaire. Cet amidon constitue alors une charge végétale présentant l'avantage d'être elle aussi renouvelable, mais surtout d'être disponible en grandes quantités à un prix économiquement intéressant par rapport au pétrole et au gaz. Un amidon granulaire est un amidon ayant une structure en granules semi- cristallins similaires à ceux mis en évidence pour l'amidon tel qu'il est présent naturellement dans les organes et tissus de réserve des végétaux supérieurs, en particulier dans les graines de céréales, les graines de légumineuses, les tubercules de pomme de terre ou de manioc, les racines, les bulbes, les tiges et les fruits. Cet état semi-cristallin est essentiellement dû aux macromolécules d'amylopectine, l'un des deux constituants principaux de l'amidon. A l'état natif, les grains d'amidon présentent un taux de cristallinité qui varie de 15 à 45 %, et qui dépend essentiellement de l'origine botanique de l'amidon et du traitement éventuel qu'il a subi. L'amidon granulaire, placé sous lumière polarisée, présente en microscopie une croix caractéristique, dite « croix de Malte », typique de l'état granulaire cristallin. Pour une description plus détaillée de l'amidon granulaire, on pourra se référer au chapitre II intitulé « Structure et morphologie du grain d'amidon » de S. Perez, dans l'ouvrage « Initiation à la chimie et à la physico-chimie macromoléculaires », Première édition 2000, Volume 13, pages 41 à 86, Groupe Français d'Etudes et d'Applications des Polymères.
De tels amidons granulaires, c'est à dire dans l'état structural où ils se trouvent dans les organes de réserve des plantes, sont insolubles dans l'eau. Avant dispersion dans le polymère synthétique constituant la matrice ou phase continue, il a été préconisé de sécher l'amidon natif jusqu'à un taux d'humidité inférieur à 1% en poids, pour réduire son caractère hydrophile et de faciliter ainsi sa dispersion. Dans ce même but, il a été conseillé de l'enrober préalablement par des corps gras (acides gras, silicones, siliconates) ou encore de modifier la surface des grains d'amidon par des siloxanes ou des isocyanates ou enfin d'y associer des dispersants synthétiques de différente nature chimique tel que par exemple des polyéthylènes glycols ou des copolymères éthylène-acétate de vinyle (EVA). Les composites ainsi obtenus contiennent alors généralement au plus 20% en poids d'amidon granulaire, car au-delà de cette valeur, les propriétés mécaniques des matériaux composites obtenus deviennent trop modifiées ou trop abaissées par rapport à celles des polymères synthétiques formant la matrice. L'essor de tels composites appelés parfois aussi hybrides est resté limité.
Plus récemment, l'amidon a été associé à des polyoléfïnes, dans un tout autre état appelé « déstructuré » ou « thermoplastique » et cela selon une technologie complètement différente. Cet état déstructuré ou thermoplastique de l'amidon est obtenu par plastification d'amidon granulaire par incorporation d'un plastifiant approprié à un taux compris généralement entre 15 et 35 % par rapport à l'amidon granulaire et par apport d'énergie mécanique et thermique. Les brevets US 5 095 054 de la société Warner Lambert et EP 0 497 706 Bl de la Demanderesse décrivent en particulier cet état déstructuré, à cristallinité réduite ou absente grâce à l'ajout de plastifiant, et des moyens pour obtenir de tels amidons thermoplastiques. La déstructuration de l'état granulaire natif semi-cristallin de l'amidon pour obtenir des amidons amorphes thermoplastiques peut être réalisée en milieu peu hydraté par des procédés thermomécaniques ou d'extrusion. L'obtention d'une phase fondue à partir d'amidon granulaire nécessite non seulement un apport important d'énergie mécanique et d'énergie thermique mais également la présence d'un plastifiant au risque, sinon, de carboniser l'amidon.
L'association d'amidon thermoplastique et de polyoléfïnes permet d'obtenir des compositions thermoplastiques dont les propriétés peuvent être modulées par les choix du type l'amidon, de la nature du plastifiant, du ratio de plastification, du taux d'incorporation d'amidon thermoplastique dans les polyoléfïnes et du procédé de mélange. Les compositions thermoplastiques ainsi obtenues présentent d'ordinaire une structure où l'amidon thermoplastique est présent sous forme dispersée en îlots dans une phase continue de polyoléfine. Ceci s'explique par le fait que les amidons thermoplastiques sont très hydrophiles et sont en conséquence très peu miscibles ou compatibles avec les polyoléfïnes. D'ordinaire, pour améliorer la structure de ces mélanges, on y ajoute des agents compatibilisants ou agents de couplage, tels que par exemple des copolymères à motifs hydrophobes et motifs hydrophiles en alternance comme des copolymères éthylène/acide acrylique (EAA), des polyoléfïnes greffés par des groupements anhydride maléique ou organosilanes. De grandes avancées ont permis ces dernières années d'obtenir de nouvelles compositions thermoplastiques présentant d'excellentes propriétés mécaniques en termes de rigidité, de flexion et de résilience aux chocs, par le développement de procédés nouveaux tels que ceux ayant fait l'objet de demandes de brevet WO2009/095617, WO 2009/095618, WO 2009/095622 et WO 2010/010282 publiées au nom de la Demanderesse.
La présente invention apporte une solution nouvelle et avantageuse aux problèmes énoncés ci-dessus en proposant de nouvelles compositions thermoplastiques préparées à partir d'au moins quatre composants, dont au moins une matière amylacée et au moins une polyoléfine, et présentant des propriétés améliorées par rapport à celles de l'art antérieur.
Plus précisément, la présente invention a pour objet une composition thermoplastique, caractérisée en ce qu'elle contient :
a) de 15 à 60 % d'au moins une matière amylacée,
b) de 10 à 30 % d'au moins un agent plastifiant de matière amylacée de masse molaire supérieure à 18g/mol et inférieure à 5000g/mol,
c) de 15 à 65 % d'au moins une polyoléfine, et
d) de 10 à 40 % d'au moins une matière végétale choisie parmi les fibres végétales et les charges végétales,
ladite matière amylacée a) étant plastifiée par l'agent plastifiant b) et ces pourcentages étant exprimés en poids sec par rapport au poids sec de ladite composition.
De préférence, ladite composition contient :
a) de 15 à 50 % d'au moins une matière amylacée,
b) de 10 à 25 % d'au moins un agent plastifiant de matière amylacée,
c) de 25 à 50 % d'au moins une polyoléfine, et
d) de 15 à 40 % d'au moins une matière végétale choisie parmi les fibres
végétales et les charges végétales.
Selon une variante avantageuse, dépendante de l'une quelconque des variantes précédentes, ladite composition est caractérisée en ce qu'elle contient, au total, au moins 27 %, de préférence de 30 à 80 %, et encore plus préférentiellement de 35 à 75 %, de matière amylacée plastifiée constituée de a) et de b), ces pourcentages étant exprimés en poids sec total de matière amylacée(s) et de plastifiant(s) de matière amylacée par rapport au poids sec de la composition thermoplastique.
Selon une variante particulièrement avantageuse, dépendante de l'une quelconque des variantes précédentes, ladite composition est caractérisée en ce qu'elle contient, au total, au moins 52 %, de préférence de 55 à 90 %, de la matière amylacée plastifiée, constituée d'au moins une matière amylacée et d'au moins un plastifiant de matière amylacée (constituants a et b), et d'au moins une polyoléfine (constituant c), ces pourcentages étant exprimés en poids sec total de matière amylacée, de plastifïant(s) de matière amylacée et de polyoléfïne(s) par rapport au poids sec de la composition thermoplastique.
La Demanderesse a en effet constaté après de nombreux travaux que, de façon surprenante et inattendue, l'utilisation de la composition thermoplastique selon l'invention, associant, par ailleurs dans des proportions définies, une matière amylacée plastifiée, une polyoléfine et une fibre ou charge végétale permettait contre toute attente d'obtenir, en regard des compositions de l'art antérieur, notamment ne contenant pas de fibre ou charge végétale ou en contenant des proportions moindres ou plus élevées, des propriétés mécaniques améliorées et permettait même de s'affranchir ou de réduire signifïcativement les quantités d'agents de compatibihsation ou d'agents de couplage d'ordinaire nécessaires pour obtenir des propriétés satisfaisantes. Sans vouloir se lier à une quelconque théorie, la Demanderesse pense que la matière amylacée plastifiée se comporte elle-même, au sein de la composition, à la manière d'un agent de compatibihsation ou de couplage entre la matière végétale sélectionnée et les autres constituants de la composition, notamment la polyoléfine.
La présente invention a également trait, en particulier, à une composition thermoplastique selon l'invention caractérisée en ce qu'elle se présente sous forme de granulés, de copeaux, de feuilles, de plaques, de poudres ou de mats fibreux, aptes à être mis en forme par pressage, thermoformage, extrusion, calandrage, injection ou soufflage. En vue de la constitution de la composition selon l'invention, on peut mettre en œuvre les différents constituants dans un ordre indifférent et selon des procédés très variés. On peut, entre autres, préparer une composition intermédiaire thermoplastique ne contenant pas de fibre ou charge végétale puis, par tout moyen adapté et selon les proportions adéquates, mélanger ladite composition intermédiaire avec les fibres et/ou charges végétales.
La Demanderesse a pu constater par ailleurs que la composition thermoplastique selon l'invention présentait, en regard des compositions de l'art antérieur, notamment contenant une polyoléfme mais pas de matière amylacée plastifiée, d'excellentes propriétés en termes d'interaction et d'adhésion ou de collage vis-à-vis des fibres ou charges végétales telles que du papier ou du carton, de sorte que, selon une variante, on prépare une composition intermédiaire ne contenant pas encore de fibres ou charges végétales, composition intermédiaire que l'on peut ensuite utiliser, entre autres, comme moyen de collage, entre elles, de fibres et/ou charges végétales.
La présente invention a d'ailleurs également pour objet un procédé pour améliorer le collage, entre elles, de fibres et/ou de charges végétales, caractérisé en ce qu'il comprend les étapes suivantes :
i. sélection d'au moins une matière végétale choisie parmi les fibres végétales et les charges végétales,
ii. sélection d'au moins une composition contenant une matière amylacée plastifiée par un plastifiant de masse molaire supérieure à 18g/mol et inférieure à 5000g/mol et une polyoléfine, et
iii. mélange thermomécanique de ladite matière végétale et de ladite composition.
L'étape (iii) est menée à une température avantageusement comprise entre 80 et 200°C, de préférence comprise entre 120 et 185°C et plus préférentiellement encore comprise entre 160 et 180°C. Cette étape peut notamment se faire par pressage à chaud, thermomoulage, extrusion, injection, et/ou pulvérisation à chaud de la composition intermédiaire sur un matelas de matière végétale. On peut ainsi préparer, en particulier, des panneaux ou des « mats fibreux » utilisables, par exemple, comme isolants acoustiques et/ou thermiques et pouvant contenir jusqu'à 95 %, voire plus, de matière végétale.
La composition intermédiaire, exempte de fibre ou charge végétale, utilisable en vue de la préparation de la composition thermoplastique selon l'invention peut notamment être caractérisée en en ce qu'elle contient :
a) de 17 à 65 % d'au moins une matière amylacée,
b) de 12 à 30 % d'au moins un agent plastifiant de matière amylacée, et c) de 17 à 70 % d'au moins une polyoléfine,
ces pourcentages étant exprimés en poids sec par rapport au poids sec de ladite composition intermédiaire.
De préférence, ladite composition intermédiaire contient :
a) de 20 à 65 % d'au moins une matière amylacée,
b) de 12 à 25 % d'au moins un agent plastifiant de matière amylacée, et c) de 20 à 65 % d'au moins une polyoléfine.
Selon une variante avantageuse, ladite composition intermédiaire contient : a) de 25 à 60 % d'au moins une matière amylacée,
b) de 15 à 25 % d'au moins un agent plastifiant de matière amylacée, et c) c) de 25 à 60 % d'au moins une polyoléfine.
Ladite composition intermédiaire utilisable selon l'invention peut en particulier présenter une densité comprise entre 0,95 et 1,3, de préférence comprise entre 1,0 et 1,25, et plus préférentiellement comprise entre 1,05 et 1,15, conformément à la norme ISO 1 183.
La composition thermoplastique selon l'invention ou la composition intermédiaire utilisable pour sa préparation comprend nécessairement une polyoléfine. Cette polyoléfine peut être vierge c'est-à-dire n'ayant pas eu d'usage antérieur bien que pouvant être formulée par addition d'additifs ou par compoundage. Elle peut être également recyclée, c'est-à-dire provenir de pièces ou objets en polyoléfine valorisés par récupération de matière. Dans la présente invention, on entend par « polyoléfine » une polyoléfine non fonctionnalisée ou non greffée ou un mélange d'une telle polyoléfine avec une polyoléfine fonctionnalisée ou greffée. Dans le cas où la polyoléfine est un mélange d'une polyoléfine non fonctionnalisée et non greffée (POl) et d'une polyoléfine fonctionnalisée et/ou greffée (P02), le ratio (P01)/(P02) peut aller de 1/99 à 99/1, avantageusement de 10/90 à 90/10, par exemple de 25/75 à 75/25.
La polyoléfine peut être obtenue à partir de monomères d'origine fossile et/ou de monomères issus de ressources naturelles renouvelables, comme elle peut être issue d'un gisement de matière recyclée ou à recycler.
A titre d'exemples de polyoléfines non fonctionnalisées ou non greffées, utilisables dans le cadre de la présente invention, on peut citer notamment :
a) les homopolymères d'oléfmes comme, par exemple, les polyéthylènes basse densité (PEbd) linéaires ou radicalaires, les polyéthylènes haute densité (PEhd), les polypropylènes (PP) de forme isotactique, syndiotactique ou atactique, les polybutènes et les polyisobutylènes,
b) les copolymères à base d'au moins deux oléfines comme, par exemple, les copolymères d'éthylène - propylène (P/E), les copolymères d'éthylène - butène et les copolymères d'éthylène - octène,
c) les mélanges quelconques d'au moins deux quelconques des produits précités.
A titre d'exemples de polyoléfines fonctionnalisées ou greffées utilisables dans le cadre de la présente invention, en mélange avec des polyoléfines non fonctionnalisées ou non greffées, on peut citer notamment :
a) les homopolymères d'oléfmes fonctionnalisés ou greffés, par exemple par des acides ou des anhydrides tels que les acides (ou anhydrides) maléique, acrylique et méthacrylique, comme, par exemple, les polyéthylènes et polypropylènes greffés anhydride maléique, par des oxiranes tels que le méthacrylate ou l'acrylate de glycidyle, ou par des silanes,
b) les copolymères à base d'au moins deux oléfines comme, par exemple, les copolymères d'éthylène - propylène (P/E) les copolymères d'éthylène - butène et les copolymères d'éthylène - octène, fonctionnalisés ou greffés, par exemple par des acides ou des anhydrides, tels que les acides (ou anhydrides) maléique, acrylique et méthacrylique, comme, par exemple, les polyéthylènes et polypropylènes greffés anhydride maléique, par des oxiranes, tels que le méthacrylate ou l'acrylate de glycidyle, ou par des silanes,
c) les mélanges quelconques d'au moins deux quelconques des produits précités.
La polyoléfine peut être en outre synthétisée à partir de monomères issus de ressources naturelles renouvelables à brève échéance comme les plantes, les microorganismes ou les gaz. Il peut notamment s'agir de polyoléfine obtenue à partir de monomères bio-sourcés, en particulier à partir de glycérol, de bio-éthanol, de bio- méthanol ou de bio-propanediol.
De préférence, la polyoléfine est choisie parmi les polyoléfines obtenues à partir de monomères bio-sourcés, et les mélanges de celles-ci.
Avantageusement, la polyoléfine présente un poids moléculaire moyen en poids compris entre 8500 et 10 000 000 g.mol 1, en particulier entre 15 000 et 1 000 000 g.mol"1.
La polyoléfine est classiquement une résine non biodégradable ou non compostable au sens des normes EN 13432, ASTM D 6400 et ASTM D 6868.
Selon une autre variante préférentielle, la polyoléfine est une polyoléfine contenant au moins 15 %, de préférence au moins 30 %, en particulier au moins 50 %, mieux encore au moins 70 %, voire plus de 80 % (y compris 100 %), de carbone d'origine renouvelable au sens de la norme ASTM D 6852 et/ou la norme ASTM D 6866, par rapport à l'ensemble du carbone présent dans ladite polyoléfine.
Cette polyoléfine est de préférence choisie parmi les polyoléfines non fonctionnalisées ou non greffées, précitées (homopolymères d'oléfines, copolymères à base d'au moins deux oléfmes et leurs mélanges quelconques) tels que les polyéthylènes basse densité (PEbd) linéaires ou radicalaires, les polyéthylènes haute densité (PEhd), les polypropylènes (PP) de forme isotactique, syndiotactique ou atactique, les polybutènes, les polyisobutylènes, les copolymères d'éthylène - propylène (P/E), les copolymères d'éthylène - butène et les copolymères d'éthylène - octène, ainsi que les mélanges quelconques de ceux-ci. La polyoléfine peut également être un mélange de polyoléfïnes, dont l'une au moins peut être fonctionnalisée ou greffée, en particulier porteuse de motifs silanes, acryliques ou anhydrides maléiques.
La composition thermoplastique selon l'invention ou la composition intermédiaire utilisable pour sa préparation comprend également nécessairement au moins une matière amylacée plastifiée. Il peut s'agir notamment d'un amidon plastifié, ce dernier présentant de préférence un taux de cristallinité inférieur à 15 %, de préférence inférieur à 5% et plus préférentiellement inférieur à 1%, c'est-à-dire être dans un état essentiellement amorphe.
Ce taux de cristallinité peut en particulier être mesuré par diffraction de rayons X comme décrit dans le brevet US 5 362 777 (colonne 9, lignes 8 à 24).
L'amidon plastifié est avantageusement substantiellement dépourvu de grains d'amidon présentant, en microscopie sous lumière polarisée, une croix de Malte, signe indicateur de la présence d'amidon granulaire cristallin.
La matière amylacée utilisée pour la préparation de la composition selon l'invention ou la composition intermédiaire utilisable selon l'invention est, de préférence, choisie parmi les amidons granulaires, les amidons hydrosolubles et les amidons organomodifiés.
Selon une première variante, il s'agit d'un amidon granulaire. La cristallinité dudit amidon granulaire peut être rendue inférieure à 15% par un traitement thermomécanique avec un agent plastifiant approprié. Ledit amidon granulaire peut être de toutes origines botaniques. Il peut s'agir d'amidon natif de céréales telles que le blé, le maïs, l'orge, le triticale, le sorgo ou le riz, de tubercules tels que la pomme de terre ou le manioc, ou de légumineuses telles que le pois et le soja, les amidons riches en amylose ou, inversement, riches en amylopectine ( vaxy) issus de ces plantes et les mélanges quelconques des amidons précités. L'amidon granulaire peut également être un amidon granulaire modifié par tous moyens, physiques, chimiques et/ou enzymatiques. Il peut s'agir d'un amidon granulaire fluidifié ou oxydé ou d'une dextrine blanche. Il peut s'agir également d'un amidon granulaire modifié par voie physico-chimique mais ayant pu conserver la structure de l'amidon natif de départ, comme les amidons estérifïés et/ou éthérifïés, en particulier modifiés par greffage, acétylation, hydroxypropylation, anionisation, cationisation, réticulation, phosphatation, succinylation et/ou silylation. Il peut s'agir, enfin, d'un amidon modifié par une combinaison des traitements énoncés ci-dessus ou d'un mélange quelconque de tels amidons granulaires.
Dans un mode de réalisation préféré, cet amidon granulaire est choisi parmi les amidons natifs, les amidons fluidifiés, les amidons oxydés, les amidons ayant subi une modification chimique, les dextrines blanches et les mélanges quelconques de ces produits.
L'amidon granulaire est de préférence un amidon granulaire de blé ou de pois ou un dérivé granulaire d'amidon de blé ou de pois. Il présente généralement un taux de solubles à 20°C dans l'eau déminéralisée, inférieur à 5 % en masse et peut être quasiment insoluble dans l'eau froide.
Selon une seconde variante, l'amidon est un amidon hydrosoluble, pouvant provenir aussi de toutes origines botaniques, y compris un amidon, hydrosoluble, riche en amylose ou, inversement, riche en amylopectine ( vaxy). Cet amidon soluble peut être introduit en remplacement partiel ou total de l'amidon granulaire.
On entend au sens de l'invention par « amidon hydrosoluble», toute matière polysaccharidique dérivée d'amidon, présentant à 20°C et sous agitation mécanique pendant 24 heures, une fraction soluble dans de l'eau déminéralisée au moins égale à 5 % en poids. Cette fraction soluble est de préférence supérieure à 20 % en poids et en particulier supérieure à 50 % en poids. Bien entendu, l'amidon soluble peut être totalement soluble dans l'eau déminéralisée (fraction soluble = 100 %).
L'amidon hydrosoluble est utilisé sous forme solide, de préférence essentiellement anhydre, c'est-à-dire non dissoute ou non dispersée dans un solvant aqueux ou organique. Il est donc important de ne pas confondre, tout au long de la description qui suit, le terme « hydrosoluble » avec le terme « dissous ».
De tels amidons hydrosolubles peuvent être obtenus par prégélatinisation sur tambour, par prégélatinisation sur extrudeuse, par atomisation d'une suspension ou d'une solution amylacée, par précipitation par un non-solvant, par cuisson hydrothermique, par fonctionnalisation chimique ou autre. Il s'agit en particulier d'un amidon prégélatinisé, extrudé ou atomisé, d'une dextrine hautement transformée (appelée aussi dextrine jaune), d'une maltodextrine, d'un amidon fonctionnalisé ou d'un mélange de ces produits.
Les amidons prégélatinisés peuvent être obtenus par traitement hydrothermique de gélatinisation d'amidons natifs ou d'amidons modifiés, en particulier par cuisson vapeur, cuisson jet-cooker, cuisson sur tambour, cuisson dans des systèmes de malaxeur/extrudeuse puis séchage, par exemple en étuve, par air chaud sur lit fluidisé, sur tambour rotatif, par atomisation, par extrusion ou par lyophilisation. De tels amidons présentent généralement une solubilité dans l'eau déminéralisée à 20°C supérieure à 5 % et plus généralement comprise entre 10 et 100 % et un taux de cristallinité en amidon inférieur à 15%, généralement inférieur à 5% et le plus souvent inférieur à 1%, voire nul. A titre d'exemple, on peut citer les produits fabriqués et commercialisés par la Demanderesse sous le nom de marque PREGEFLO®.
Les dextrines hautement transformées peuvent être préparées à partir d'amidons natifs ou modifiés, par dextrinification en milieu acide peu hydraté. Il peut s'agir en particulier de dextrines blanches solubles ou de dextrines jaunes. A titre d'exemple, on peut citer les produits STABILYS® A 053 ou TACKIDEX® C 072 fabriqués et commercialisés par la Demanderesse. De telles dextrines présentent dans l'eau déminéralisée à 20°C, une solubilité comprise généralement entre 10 et 95 % et une cristallinité en amidon inférieure à 15% et généralement inférieure à 5%.
Les maltodextrines peuvent être obtenues par hydrolyse acide, oxydante ou enzymatique d'amidons en milieu aqueux. Elles peuvent présenter en particulier un dextrose équivalent (DE) compris entre 0,5 et 40, de préférence entre 0,5 et 20, et mieux encore entre 0,5 et 12. De telles maltodextrines sont par exemple fabriquées et commercialisées par la Demanderesse sous l'appellation commerciale GLUCIDEX® et présentent une solubilité dans l'eau déminéralisée à 20°C, généralement supérieure à 90%, voire proche de 100%, et une cristallinité en amidon inférieure généralement inférieure à 5% et d'ordinaire quasiment nulle. Les amidons fonctionnalisés peuvent être obtenus à partir d'un amidon natif ou modifié. La haute fonctionnalisation peut par exemple être réalisée par estérification ou éthérifïcation à un niveau suffisamment élevé pour lui conférer une solubilité dans l'eau. De tels amidons fonctionnalisés présentent une fraction soluble telle que définie ci-dessus, supérieure à 5 %, de préférence supérieure à 10 %, mieux encore supérieure à 50%.
La fonctionnalisation peut s'obtenir en particulier par acétylation en phase aqueuse d'anhydride acétique, d'anhydrides mixtes, hydroxypropylation en phase colle, cationisation en phase sèche ou phase colle, anionisation en phase sèche ou phase colle par phosphatation ou succinylation. Ces amidons hautement fonctionnalisés hydrosolubles peuvent présenter un degré de substitution compris entre 0,01 et 3, et mieux encore compris entre 0,05 et 1. De préférence, les réactifs de modification ou de fonctionnalisation de l'amidon, sont d'origine renouvelable.
Selon une autre variante avantageuse, l'amidon hydrosoluble est un amidon hydrosoluble de blé ou de pois ou un dérivé hydrosoluble d'un amidon de blé ou de pois.
Il présente avantageusement une faible teneur en eau, généralement inférieure à 10 %, de préférence inférieure à 5 %, en particulier inférieure à 2 % en poids et idéalement inférieure à 0,5 %, voire inférieure à 0,2 % en poids.
Selon une troisième variante, l'amidon est un amidon organomodifié, de préférence organosoluble, pouvant provenir aussi de toutes origines botaniques, y compris un amidon organomodifié, de préférence organosoluble, riche en amylose ou, inversement, riche en amylopectine (waxy). Cet amidon organosoluble peut être introduit en remplacement partiel ou total de l'amidon granulaire ou de l'amidon hydrosoluble.
On entend au sens de l'invention par « amidon organomodifié», toute matière polysaccharidique dérivée d'amidon, autre qu'un amidon granulaire ou un amidon hydrosoluble selon les définitions données ci-avant. De préférence, cet amidon organomodifié est quasiment amorphe, c'est à dire présente un taux de cristallinité en amidon inférieur à 5 %, généralement inférieur à 1% et notamment nul. Il est aussi de préférence « organosoluble », c'est-à-dire présente, à 20°C, une fraction soluble dans un solvant choisi parmi l'éthanol, l'acétate d'éthyle, l'acétate de propyle, l'acétate de butyle, le carbonate de diéthyle, le carbonate de propylène, le glutarate de diméthyle, le citrate de triéthyle, les esters dibasiques, le diméthylsulfoxide (DMSO), le diméthylisosorbide, le triacétate de glycérol, le diacétate d'isosorbide, le dioléate d'isosorbide et les esters méthyliques d'huiles végétales, au moins égale à 5 % en poids. Cette fraction soluble est de préférence supérieure à 20 % en poids et en particulier supérieure à 50 % en poids. Bien entendu, l'amidon organosoluble peut être totalement soluble dans l'un ou plusieurs des solvants indiqués ci-dessus (fraction soluble = 100 %).
L'amidon organomodifié peut être utilisé selon l'invention sous forme solide, de préférence essentiellement anhydre. De préférence, sa teneur en eau est inférieure à 10 %, de préférence inférieure à 5 %, en particulier inférieure à 2 % en poids et idéalement inférieure à 0,5 %, voire inférieure à 0,2 % en poids.
L'amidon organomodifié peut être préparé par une haute fonctionnalisation des amidons natifs ou modifiés tels que ceux présentés ci-avant. Cette haute fonctionnalisation peut par exemple être réalisée par estérification ou éthérification à un niveau suffisamment élevé pour le rendre essentiellement amorphe et pour lui conférer une insolubilité dans l'eau et de préférence une solubilité dans l'un des solvants organiques ci-dessus. De tels amidons fonctionnalisés présentent une fraction soluble telle que définie ci-dessus, supérieure à 5 %, de préférence supérieure à 10 %, mieux encore supérieure à 50%.
La haute fonctionnalisation peut s'obtenir en particulier par acétylation en phase solvant par anhydride acétique, greffage par exemple en phase solvant ou par extrusion réactive, d'anhydrides d'acides, d'anhydrides mixtes, de chlorures d'acides gras, d'oligomères de caprolactones ou de lactides, hydroxypropylation et réticulation en phase colle, cationisation et réticulation en phase sèche ou en phase colle, anionisation par phosphatation ou succinylation et réticulation en phase sèche ou en phase colle, sililation, télomérisation au butadiène. Ces amidons hautement fonctionnalisés organomodifiés, de préférence organosolubles, peuvent être en particulier des acétates d'amidons, de dextrines ou de maltodextrines ou des esters gras de ces matières amylacées (amidons, dextrines, maltodextrines) avec des chaînes grasses de 4 à 22 carbones, l'ensemble de ces produits présentant de préférence un degré de substitution (DS) compris entre 0,5 et 3,0, de préférence compris entre 0,8 et 2,8 et notamment compris entre 1,0 et 2,7.
Il peut s'agir, par exemple, d'hexanoates, d'octanoates, de décanoates, de laurates, de palmitates, d'oléates et de stéarates d'amidons, de dextrines ou de maltodextrines, en particulier présentant un DS compris entre 0,8 et 2,8.
Selon une autre variante avantageuse, l'amidon organomodifié est un amidon organomodifié de blé ou de pois ou un dérivé organomodifié d'un amidon de blé ou de pois.
De préférence, dans le cadre de l'invention, la matière amylacée est choisie parmi les amidons natifs, les amidons prégélatinisés, les amidons extrudés, les amidons atomisés, les amidons fluidifiés, les amidons oxydés, les amidons cationiques, les amidons anioniques, les amidons hydroxyalkylés, les amidons réticulés, les acétates d'amidon, les esters gras d'amidon et de chaînes grasses de 4 à 22 carbones, les dextrines, les maltodextrines et les mélanges quelconque de ces produits. Tout préférentiellement, la matière amylacée utilisée en constituant a est un amidon natif.
Par ailleurs, la composition thermoplastique selon l'invention ou la composition intermédiaire utilisable selon l'invention comprend un agent plastifiant de matière amylacée.
On entend par « agent plastifiant », toute molécule organique de faible masse moléculaire, c'est-à-dire ayant une masse moléculaire inférieure à 5000 et supérieure à 18 g/mol qui, lorsqu'elle est incorporée par un traitement thermomécanique à une température comprise entre 20 et 200°C à la composition thermoplastique selon l'invention, à la composition intermédiaire utilisable selon l'invention ou à la seule matière amylacée aboutit à une diminution de la température de transition vitreuse de ladite composition ou matière et/ou aboutit à réduire la cristallinité de la matière amylacée jusqu'à lui permettre d'atteindre un état essentiellement amorphe. L'eau est le plastifiant le plus naturel de la matière amylacée, en particulier de l'amidon, et il est par conséquent couramment employé.
L'agent plastifiant retenu dans le cadre de la présente invention est de préférence choisi parmi les diols, les triols et les polyols tels que le glycérol, le polyglycérol, l'isosorbide, les sorbitans, le sorbitol, le mannitol, les sucres, tels que le glucose, le maltose, le fructose ou le saccharose ou encore les sirops de glucose hydrogénés, les sels d'acides organiques comme le lactate de sodium, l'urée et les mélanges de ces produits. Le plastifiant présente alors de façon avantageuse une masse molaire inférieure à 5000, de préférence inférieure à 1000, et en particulier inférieure à 400. L'agent plastifiant a de préférence une masse molaire au plus égale à 380.
Il peut, lorsque la matière amylacée consiste en un amidon organomodifié, être tout particulièrement choisi parmi les esters méthyliques, éthyliques ou les esters gras d'acides organiques tels que les acides lactique, citrique, succinique, adipique et glutarique et les esters acétiques ou esters gras de mono-alcools, diols, triols ou polyols tels que l'éthanol, le diéthylène glycol, le glycérol et le sorbitol. A titre d'exemple, on peut citer le diacétate de glycérol (diacétine), le triacétate de glycérol (triacétine), le diacétate d'isosorbide, le dioctanoate d'isosorbide, le dioléate d'isosorbide, le dilaurate d'isosorbide, les esters d'acides dicarboxyliques ou esters dibasiques (DBE de l'anglais dibasic esters) et les mélanges de ces produits.
Selon une variante avantageuse, le plastifiant est contenu dans la matière amylacée plastifiée à raison de 25 à 110 parts en poids sec, de préférence à raison de 30 à 100 parts en poids sec et en particulier à raison de 30 à 90 parts en poids sec, pour 100 parts en poids sec de matière amylacée, par exemple d'amidon.
La composition thermoplastique selon l'invention ou la composition intermédiaire utilisable selon l'invention comprend de préférence en tant que matière amylacée plastifiée au moins un amidon plastifié obtenu à partir d'amidons natifs, d'amidons prégélatinisés, d'amidons extrudés, d'amidons atomisés, d'amidons fluidifiés, d'amidons oxydés, d'amidons cationiques, d'amidons anioniques, d'amidons hydroxyalkylés, d'amidons réticulés, d'acétates d'amidon, d'esters gras d'amidon et de chaînes grasses de 4 à 22 carbones, de dextrines, de maltodextrines et les mélanges quelconque de ces produits, plastifiés par mélange thermomécanique par l'un au moins des agents plastifiants listés ci-dessus.
La composition selon l'invention peut également comprendre un agent de liaison.
On entend par « agent de liaison » dans la présente invention, toute molécule organique porteuse d'au moins deux groupements fonctionnels, libres ou masquées, aptes à réagir avec des molécules porteuses de fonctions à hydrogène actif telles que la matière amylacée, par exemple l'amidon, ou le plastifiant de la matière amylacée. Cet agent de liaison peut être ajouté à la composition pour permettre la fixation, par liaisons covalentes, d'au moins une partie de l'agent plastifiant sur l'amidon, voire aussi sur la polyoléfme, en particulier si elle est porteuse de groupements fonctionnels.
Cet agent de liaison peut alors être choisi par exemple parmi les composés porteurs d'au moins deux fonctions, libres ou masquées, identiques ou différentes, notamment choisies parmi les fonctions isocyanate, carbamoylcaprolactame, aldéhydes, époxyde, halogéno, acide protonique, anhydride d'acide, halogénure d'acyle, oxychlorure, trimétaphosphate, alcoxysilane et des combinaisons de celles-ci.
Il peut être choisi avantageusement parmi les composés suivants:
A titre d'agents de liaison utilisables dans la présente invention, on peut citer :
- les diisocyanates, de préférence le méthylènediphényl-diisocyanate (MDI), l'isophorone-diisocyanate (IPDI), le dicyclohexylméthane-diisocyanate (H12MDI), le toluène-diisocyanate (TDI), le naphthalène-diisocyanate (NDI), l'hexaméthylène-diisocyanate (HMDI) ou la lysine-diisocyanate (LDI), le diisocyanate aliphatique de masse molaire 600 g/mol obtenu à partir de dimères de diacide gras (DDI® 1410 Diisocyanate)
les dimères, trimères et tetramères de diisocyanates,
les triisocyanates, tétraisocyanates ainsi que les homopolymères respectifs des di, tri- et tétra-isocyanates existants,
les prépolymères dits « isocyanate-free » résultant d'une réaction d'un diol ou d'une aminé sur un diisocyanate dans des conditions telles que le prépolymère contienne une fonction isocyanate à chacune des ses extrémités (polymère α,ω- fonctionnel ou téléchélique) sans que du diisocyanate libre ne puisse être détecté, les prépolymères d'isocyanate de type dendrimères, préparés à partir de composés présentant plusieurs fonctions alcools ou aminés et de polyisocyanates préparés de façon à ce que le dendrimère formé ne présente que des fonctions isocyanates réactives en bout de branche, le dendrimère contenant ou non des di ou triisocyanates libres,
les dialkylcarbonates, notamment les dialkylcarbonates de dianhydrohexitols, et en particulier les dialkylcarbonates d'isosorbide,
les dicarbamoylcaprolactames, de préférence le l,l '-carbonyl-bis-caprolactame, les diépoxydes,
les composés comportant une fonction époxyde et une fonction halogénure, de préférence l'épichlorhydrine,
les diacides organiques, de préférence l'acide succinique, l'acide adipique, l'acide glutarique, l'acide oxalique, l'acide malonique, l'acide maléique ou les anhydrides correspondants,
les polyacides et les polyanhydrides, de préférence l'acide mellitique ou ses dérivés, tels que l'acide trimellitique ou l'acide pyromellitique,
les oxychlorures, de préférence l'oxychlorure de phosphore,
les trimétaphosphates, de préférence le trimétaphosphate de sodium,
les alcoxysilanes, de préférence le tétraéthoxysilane,
les composés hétérocycliques, de préférence les bis-oxazolines, les bis-oxazolin-5- ones et les bis-azalactones,
les dérivés de diesters méthyléniques ou éthyléniques, de préférence les dérivés de carbonates de méthyle ou d'éthyle,
les mélanges quelconques d'au moins deux quelconques des produits précités.
De manière particulièrement préférée, on utilise en tant qu'agent de liaison un diisocyanate, et en particulier le méthylène diphényl diisocyanate (MDI). Par ailleurs, l'emploi d'isophorone-diisocyanate (IPDI) ou de dicyclohexylméthane-diisocyanate (H12MDI) permet d'obtenir des compositions finales particulièrement peu colorées. On peut mettre en œuvre un mélange quelconque d'au moins deux quelconques des trois diisocyanates précités (MDI, IPDI, H12MDI).
La quantité d'agent de liaison, exprimée en poids sec et rapportée à la somme, exprimée en poids sec de la composition selon l'invention peut être avantageusement comprise entre 0,1 et 15 % en poids, de préférence entre 0,1 et 12 % en poids, plus préférentiellement encore entre 0,2 et 9 % en poids et en particulier entre 0,5 et 5 % en poids.
L'incorporation de l'agent de liaison dans le mélange de la composition selon l'invention ou, de préférence, dans la composition intermédiaire utilisable selon l'invention peut se faire par mélange physique à froid ou à basse température mais de préférence par malaxage à chaud à une température supérieure à la température de transition vitreuse de la matière amylacée. Cette température de malaxage est avantageusement comprise entre 60 et 200°C et mieux de 100 à 160°C. Cette incorporation peut être réalisée par mélange thermomécanique, de façon discontinue ou de façon continue et en particulier en ligne. Dans ce cas, la durée de mélange peut être courte, de quelques secondes à quelques minutes.
La composition selon l'invention ou la composition intermédiaire utilisable pour sa préparation, peut avantageusement comprendre, en outre, un agent améliorateur de sa résilience au choc, notamment à température de 23°C ou inférieure comme à - 18 °C. Il peut s'agir notamment d'un polymère de type co-polymère éthylène- propylène, éthylène-styrène ou styrène-butadiène, d'une matière élastomérique de type caoutchouc naturel, copolymère styrène-butylène-styrènes (SBS) ou styrène-éthylène-butylène-styrènes (SEBS). Cet agent améliorateur de résilience peut représenter de 1 à 15%, de préférence de 2 à 12% et mieux de 5 à 10%> en poids (sec/sec), de la composition selon l'invention.
La composition thermoplastique selon l'invention ou la composition intermédiaire utilisable pour sa préparation présente avantageusement les variantes préférées suivantes, prises séparément ou en combinaison, y compris avec les variantes décrites précédemment: elle contient, au total, au moins 51 %, de préférence au moins 70 %, en particulier plus de 80 %, de matières biosourcées à base de carbone d'origine renouvelable au sens de la norme ASTM D 6852 et/ou de la norme ASTM D 6866, exprimé en poids sec par rapport au poids sec de ladite composition,
- elle est non biodégradable ou non compostable au sens des normes EN 13432, ASTM D 6400 et ASTM D 6868,
elle présente une contrainte maximale en flexion (selon norme ISO 178) supérieure à 10 MPa, de préférence supérieure à 20 MPa, et/ou
elle présente une contrainte maximale en traction (selon norme ISO 527) supérieure à 10 MPa, de préférence supérieure à 15 MPa.
Par ailleurs, la composition selon l'invention présente des caractéristiques mécaniques particulièrement avantageuses.
Elle peut notamment être caractérisée en ce qu'elle présente:
une contrainte maximale en flexion (ISO 178) supérieure à 30 MPa, et/ou
- une contrainte maximale en traction (ISO 527) supérieure à 20 MPa.
La présente invention permet notamment d'obtenir une nouvelle composition thermoplastique à base de matière amylacée, de plastifiant de matière amylacée, de polyoléfme et de fibre ou charge végétale, caractérisée de manière remarquable en ce qu'elle présente simultanément :
- une contrainte maximale en flexion supérieure à 30 MPa, notamment supérieure à 35 MPa, et
une contrainte maximale en traction supérieure à 50 MPa, notamment supérieure à 55 MPa.
Elle peut également être caractérisée en ce qu'elle présente un module de flexion (ISO 178) et/ou un module de traction (ISO 527) supérieur à 1000 MPa, notamment supérieur à 1500 MPa.
Elle peut avantageusement être caractérisée en ce qu'elle présente un module de flexion (ISO 178) et un module de traction (ISO 527) supérieurs à 1500 MPa, notamment supérieurs à 2000 MPa. La matière végétale constituant le quatrième composant essentiel de la composition thermoplastique selon l'invention est, comme mentionné précédemment, sélectionnée non seulement par son taux d'introduction au sein de ladite composition, mais également par sa nature, à savoir choisie parmi les fibres végétales et les charges végétales. Elle est sélectionnée en vue d'améliorer les propriétés mécaniques à froid de la composition selon l'invention mais aussi sa stabilité à la chaleur ainsi que ses propriétés thermomécaniques, ses propriétés conductrices, et/ou ses propriétés organoleptiques telles que son aspect, sa couleur ou son odeur.
La matière végétale ainsi sélectionnée sous forme de fibres et/ou charges végétales est constituée de particules dont la dimension la plus importante est généralement comprise entre 0,5 et 5000 micromètres et de préférence comprise entre 0,5 et 1000 micromètres. De façon avantageuse, elle peut être constituée d'un mélange de petites particules dont la dimension la plus importante est comprise entre 0,5 et 300, préférentiellement entre 100 et 275, micromètres et de grosses particules dont la dimension la plus importante est comprise entre 350 et 5000, préférentiellement entre 400 et 3000, micromètres. Les rapports en poids des petites particules/grosses particules variant généralement de 0,1 à 9 et de préférence de 0,5 à 2. Ainsi, il est possible d'ajuster aux mieux les caractéristiques thermomécaniques et les caractéristiques organoleptiques de la composition thermoplastique selon l'invention.
Par convention, dans le cadre de la présente invention et en regard des fibres et charges végétales, on dénommera « dimension », la dimension la plus importante des particules desdites fibres ou charges, celles-ci pouvant se présenter sous des aspects très variés (granules, poudres, fibres, copeaux ...), leur dimension la plus importante pouvant être, au cas par cas, considérée comme étant leur diamètre, leur longueur ou toute autre dimension facilement et communément mesurable par l'homme de l'art.
Par ailleurs, la charge ou fibre végétale ainsi sélectionnée selon l'invention présente le plus souvent une teneur en eau comprise entre 0,5 et 30%, de préférence comprise entre 1 et 20%, plus préférentiellement encore entre 1 et 15 %. Cette teneur en eau peut avantageusement être comprise entre 2 et 15 %. La charge végétale peut notamment être choisie parmi les amidons granulaires, natifs ou modifiés, tels que définis plus haut, et non plastifiés. De ce fait, cet amidon placé sous lumière polarisée, présente toujours en microscopie une « croix de Malte » typique de l'état granulaire cristallin. L'amidon sélectionné en tant que matière végétale, peut provenir de toutes origines botaniques, y compris un amidon riche en amylose ou, inversement riche en amylopectine (waxy). De préférence, cet amidon granulaire est un amidon de pois, un amidon de blé, un amidon de riz waxy ou un amidon de maïs waxy. Il a été montré que ces amidons granulaires préférés sont avantageux en termes de blancheur et d'aspect des compositions selon l'invention. Il peut notamment s'agir d'un amidon de maïs waxy.
Lorsque la charge végétale est choisie parmi les amidons granulaires, leurs dimensions sont généralement comprises entre 0,5 et 100 micromètres, notamment entre 1 et 70 micromètres. De manière avantageuse, ces dimensions sont comprises entre 2 et 50 micromètres, de préférence entre 4 et 45 micromètres, et plus préférentiellement entre 5 et 40 micromètres. Ces dimensions peuvent tout particulièrement être comprises entre 8 et 35 micromètres, notamment entre 10 et 30 micromètres.
La charge végétale peut être choisie également parmi les co-produits non fibreux d'amidonnerie, de meunerie, de sucrerie, de papeterie ou d'huilerie. Il peut s'agir en particulier gommes de blé ou de triticale, de tourteaux d'oléagineux ou de maïs, de farines de guar ou de caroube, de protéines de céréales ou de tubercules permettant en particulier d'obtenir des teintes beiges à marron, des colophanes ou des résines terpéniques permettant par exemple d'améliorer les propriétés d'adhésion.
La charge végétale peut aussi être choisie parmi les algues et extraits d'algues. Il peut s'agir en particulier d'algues entières séchées et broyées ou d'extraits d'algues tels que des polysaccharides comme les alginates et les carraghénanes.
La fibre végétale peut, pour sa part, être choisie aussi parmi les fibres cellulosiques ou ligno-cellulosiques et notamment parmi les co-produits fibreux d'amidonnerie, de meunerie, de sucrerie, de papeterie ou d'huilerie. Elle peut se présenter alors en fibres élémentaires, sous forme individualisée, en grappe ou en agglomérats. Il peut s'agir de sons de céréales, de drêches de maïs, de fibres de blé ou de triticale, de balles de riz, de coques de tournesol, d'enveloppes externes de graines, de pulpes de betteraves ou de pomme de terre, de bagasse de canne à sucre, de coques de noix, de noisettes ou d'amandes. Il peut s'agir en particulier de bois sous forme de sciures, en particulier de hêtre, de chêne, de bouleaux, d'eucalyptus, de pins ou de sapins. Il peut également s'agir de bois d'épicéa. Il peut s'agir aussi d'amas fibreux cellulosiques constitués de fibrilles de diamètre voisin de 10 à 100 nanomètres pour une longueur de quelques micromètres à quelques centimètres, tels que du papier ou du carton. Il peut s'agir aussi de fibres ligno-cellulosiques telles que les fibres de bois, de lin, de chanvre, de bambou, de sisal, de miscanthus, de banane, de pois, de pomme de terre, de céréales, de palme, de cocon, de jute, de paille, de coton, de kénaf ou autres. On peut citer par exemple comme produits avantageusement utilisables parmi ces fibres, les fibres de sisal, de bambou, de coco ou de jute.
Des fibres ou charges végétales potentiellement utilisables selon l'invention sont notamment décrites dans les demandes de brevet WO 94/03543, CA 2,217,541 et EP 1 265 957.
La matière végétale utilisable selon l'invention peut bien évidemment être un mélange quelconque d'au moins deux quelconques des fibres et/ou charges végétales citées ci-dessus.
De préférence, elle présente lors de sa mise en œuvre c'est-à-dire lors de son incorporation pour former la composition selon l'invention, une teneur en eau correspondant à son humidité d'équilibre en atmosphère à 66% d'humidité relative et une température de 20°C.
Elle peut être choisie avantageusement pour augmenter la nucléation ou l'aptitude à la cristallisation de la polyoléfine présente dans la composition thermoplastique (a) et permettre ainsi d'ajuster les propriétés mécaniques et les propriétés au retrait de la composition selon l'invention.
Selon une variante avantageuse, la matière végétale est constituée de particules dont la dimension est comprise entre 0,5 et 5000 micromètres, et est choisie parmi: les amidons granulaires, natifs ou modifiés,
les co-produits d'amidonnerie, de meunerie, de sucrerie, de papeterie ou d'huilerie,
les fibres cellulosiques ou ligno-cellulosiques,
- les algues et extraits d'algues, et
les mélanges quelconques d'au moins deux quelconques de ces produits.
Préférentiellement, la matière végétale est choisie parmi les fibres cellulosiques ou ligno-cellulosiques telles que les fibres de bois, de sisal, de bambou, de coco ou de jute.
La composition thermoplastique selon l'invention présente l'avantage d'être assez peu dense et de présenter une densité mesurée selon la méthode ISO 1183 comprise entre 1,05 et 1,25 et de préférence comprise entre 1,1 et 1,2.
Par ailleurs, la composition selon l'invention ou la composition intermédiaire utilisable pour sa préparation peut comprendre d'autres polymères, de toute nature, en faible quantité, pour l'ajustement de ses caractéristiques. Elle comprendra toutefois de préférence des polymères ou des copolymères autres que des polyoléfines, partiellement ou totalement bio-sourcés, comme en particulier des polyuréthanes (PU), des polyuréthanes thermoplastiques (TPU), des polyamides, des polylactates (PLA), des polybutylènes succinates (PB S, PB SA), des polyhydroxyalcanoates (PHA, PHB, PHBV) ou des mélanges quelconques de ceux-ci.
Des charges et autres additifs de toutes natures, dont ceux détaillés ci-après, peuvent aussi être incorporés dans la composition de la présente invention ou la composition intermédiaire utilisable pour sa préparation.
II peut s'agir de produits visant à améliorer davantage encore ses propriétés physico-chimiques, en particulier sa structure physique, son comportement de mise en œuvre et sa durabilité ou bien ses propriétés mécaniques, thermiques, conductrices, adhésives ou organoleptiques.
L'additif peut être un agent améliorateur ou d'ajustement des propriétés mécaniques ou thermiques choisi parmi les minéraux, les sels et les substances organiques. Il peut s'agir d'agents de nucléation tel que le talc, d'agents compatibilisants ou dispersants comme les agents tensio-actifs naturels ou synthétiques, d'agents améliorateurs de la résistance aux chocs ou aux rayures comme le silicate de calcium, d'agents régulateurs de retrait comme le silicate de magnésium, d'agents piégeurs ou désactivateurs d'eau, d'acides, de catalyseurs, de métaux, d'oxygène, de rayons infra-rouges, de rayons UV, d'agents hydrophobants comme les huiles et graisses, d'agents retardateurs de flamme et anti-feu comme les dérivés halogénés, d'agents anti-fumée, de charges de renforcement, minérales ou organiques, comme le carbonate de calcium , le talc, le kevlar.
L'additif peut être également un agent améliorateur ou d'ajustement des propriétés conductrices ou isolantes vis-à-vis de l'électricité ou de la chaleur, de l'étanchéité par exemple à l'air, à l'eau, aux gaz, aux solvants, aux corps gras, aux essences, aux arômes, aux parfums, choisi notamment parmi les minéraux, les sels et les substances organiques, en particulier parmi les agents de conduction ou de dissipation de la chaleur comme les poudres métalliques et les graphites.
L'additif peut être encore un agent améliorateur des propriétés organoleptiques, notamment :
des propriétés odorantes (parfums ou agents de masquage d'odeur), des propriétés optiques (agents de brillance, agents de blancheur tels que le dioxyde de titane, colorants, pigments, exhausteurs de colorants, opacifiants, agents de matité tels que le carbonate de calcium, agents thermochromes, agents de phosporescence et de fluorescence, agents métallisants ou marbrants et agents anti-buée),
des propriétés sonores (sulfate de baryum et barytes), et
- des propriétés tactiles (matières grasses).
L'additif peut être aussi un agent améliorateur ou d'ajustement des propriétés adhésives, notamment de l'adhésion vis-à-vis des matières cellulosiques comme le papier ou le bois, des matières métalliques comme l'aluminium et l'acier, des matériaux en verre ou céramiques, des matières textiles et des matières minérales, comme notamment les résines de pin, les colophanes, les copolymères d'éthylène/alcool vinylique, les aminés grasses, les agents lubrifiants, les agents de démoulage, les agents antistatiques et les agents anti-blocking.
Enfin, l'additif peut être un agent améliorateur de la durabilité du matériau ou un agent de contrôle de sa (bio)dégradabilité, notamment choisi parmi les agents hydrophobants ou perlants comme les huiles et graisses, les agents anticorrosion, les agents antimicrobiens comme Ag, Cu et Zn, les catalyseurs de dégradation comme les oxo-catalyseurs et les enzymes comme les amylases.
En vue de la préparation de la composition selon l'invention, on peut utiliser de nombreux procédés prévoyant notamment des moments et ordres d'introduction extrêmement variés des composants de ladite composition (polyoléfine, matière amylacée, plastifiant de matière amylacée, fibre ou charge végétale, agent de liaison éventuel, agent d'amélioration de la résilience au choc éventuel, autres additifs éventuels).
Ainsi, la fibre et/ou charge végétale peut être introduite après avoir, en tout ou partie, été préalablement dispersée dans une composition contenant déjà, la matière amylacée, son plastifiant et la polyoléfine. En outre, dans la composition finale, ladite fibre et/ou charge végétale, quels que soient la façon et le moment où elle a été incorporée, peut se retrouver dispersée principalement soit dans la matière amylacée plastifiée, soit dans la phase de polyoléfine, voire être répartie entre ces deux phases.
Parmi toutes ces possibilités de mise en œuvre desdits composants, la présente invention a notamment pour objet un procédé de préparation d'une composition thermoplastique selon l'invention telle que décrite précédemment dans toutes ses variantes, ledit procédé comprenant les étapes suivantes :
(i) sélection d'au moins une composition (a) thermoplastique comprenant au moins une matière amylacée, un plastifiant de ladite matière amylacée de masse molaire supérieure à 18g/mol et inférieure à 5000g/mol et une polyoléfine, une plastification de la matière amylacée étant réalisée par mélange thermomécanique avec ledit agent plastifiant, (ii) sélection d'au moins une matière végétale (b) choisie parmi les fibres végétales et les charges végétales, constituée de particules dont la dimension est comprise entre 0,5 et 5000 micromètres, de préférence choisie parmi:
- les amidons granulaires, natifs ou modifiés,
- les co-produits d'amidonnerie, de meunerie, de sucrerie, de papeterie ou d'huilerie,
- les fibres cellulosiques ou ligno-cellulosiques,
- les algues et extraits d'algues,
- et les mélanges quelconques d'au moins deux quelconques de ces produits, et
(iii) mélange thermomécanique, de la composition (a) et de la matière végétale (b) de manière à obtenir la composition thermoplastique selon l'invention.
Ladite composition (a) peut notamment correspondre à la « composition intermédiaire » telle que décrite précédemment dans toutes ses variantes.
L'incorporation du plastifiant peut être réalisée à froid préalablement à son mélange thermomécanique avec la matière amylacée. Le mélange thermomécanique réalisé pour plastifier la matière amylacée est mis en œuvre à chaud à une température de préférence comprise entre 60 et 200°C, plus préférentiellement entre 80 et 185°C et notamment comprise entre 100 et 160°C, de façon discontinue, par exemple par pétrissage/malaxage, ou de façon continue, par exemple par extrusion. La durée de ce mélange peut aller de quelques secondes à quelques heures, selon le mode de mélange retenu.
Par ailleurs, l'incorporation de la matière végétale (b) (étape (iii)) peut se faire par mélange physique à froid ou à basse température à la composition (a) mais de préférence par mélange à chaud à une température supérieure à la température de transition vitreuse la plus élevée de la composition (a). Cette température de mélange est avantageusement comprise entre 80 et 200 °C, de préférence comprise entre 120 et 185 °C et plus préférentiellement encore comprise entre 160 et 180°C. Cette incorporation peut être réalisée par mélange thermomécanique, de façon discontinue ou de façon continue et en particulier en ligne. Dans ce cas, la durée de mélange peut être courte, de quelques secondes à quelques minutes. On obtient ainsi une composition thermoplastique, très homogène comme cela peut être constaté par observation sous microscope. Bien évidemment, lorsque la charge végétale introduite est de l'amidon, l'étape (iii) est réalisée de manière à ce que cet amidon reste à l'état de charge et ne soit pas plastifié, c'est-à-dire en utilisant un temps de mélange suffisamment court pour ne pas plastifier l'amidon granulaire.
De préférence, la matière végétale sélectionnée présente lors de sa mise en œuvre c'est-à-dire lors de son incorporation pour former la composition selon l'invention, une teneur en eau correspondant à son humidité d'équilibre en atmosphère à 66% d'humidité relative et une température de 20°C. Cette teneur en eau est d'ordinaire comprise entre 5 et 20% et généralement comprise entre 8 et 15 %.
De préférence, le procédé selon l'invention est caractérisé en ce que l'étape de mélange (iii) est suivi d'un traitement de mise en forme de la composition thermoplastique selon l'invention (iv), à une température comprise entre 80 et 200°C, de préférence comprise entre 120 et 185 °C, et en particulier comprise entre 160 et 180°C.
Dans le cadre de ses recherches, la Demanderesse a constaté que, contre toute attente, l'introduction de matière végétale (b) permettait de réduire considérablement la sensibilité à l'eau, à la vapeur d'eau et à la chaleur de la composition finale obtenue, en comparaison aux produits préparés sans ajout de matière végétale. Ceci ouvre la voie à des applications nouvelles aux compositions de l'invention qui présentent en outre l'avantage d'être très hautement constituées de matières premières renouvelables et de pouvoir présenter des propriétés de thermoplasticité adaptées à une mise en forme selon les procédés en place dans l'industrie des plastiques ou l'industrie du bois, de stabilité physicochimique satisfaisante aux conditions de mise en œuvre, de stabilité suffisante au vieillissement notamment vis-à-vis de l'oxygène, du gaz carbonique, des UV, des corps gras, des arômes, des essences et des carburants, et de recyclabilité .
La présente invention a d'ailleurs également pour objet l'utilisation d'une composition comprenant au moins une matière amylacée plastifiée par un plastifiant de masse molaire supérieure à 18g/mol et inférieure à 5000g/mol comme agent de compatibilisation entre une matière végétale (b) et une polyoléfme. Elle a également pour objet un procédé pour améliorer la compatibilité entre une matière végétale et une polyoléfme, caractérisé en ce qu'il comprend les étapes suivantes :
i. sélection d'au moins une matière végétale choisie parmi les fibres végétales et les charges végétales et d'au moins une polyoléfme,
ii. sélection d'au moins une matière amylacée plastifiée par un plastifiant de masse molaire supérieure à 18g/mol et inférieure à 5000g/mol, et
iii. mélange, de préférence mélange thermomécanique, de la matière végétale et de la polyoléfme en présence de ladite matière amylacée de manière à améliorer la compatibilité matière végétale / polyoléfme au sein de la composition thermoplastique résultante.
L'étape (iii) est menée à une température avantageusement comprise entre 80 et 200 °C, de préférence comprise entre 120 et 185 °C et plus préférentiellement encore comprise entre 160 et 180°C.
La composition thermoplastique selon l'invention peut être utilisée telle quelle ou en mélange avec d'autres produits ou additifs, y compris d'autres polymères synthétiques, artificiels ou d'origine naturelle. Elle est de préférence non biodégradable et non compostable au sens des normes EN 13432, ASTM D 6400 et ASTM D 6868, et constituer de ce fait, un puits ou piège à carbone, grâce à sa haute richesse en produits végétaux d'origine photosynthétique.
La composition selon l'invention contient avantageusement au moins 51 %, de préférence au moins 55 %, et en particulier plus de 60 % de matières biosourcées à base de carbone d'origine renouvelable (ASTM D 6852 et/ou ASTM D 6866), exprimé en poids sec par rapport au poids sec de ladite composition. Ce carbone d'origine renouvelable est celui constitutif de l'amidon nécessairement présent dans la composition conforme à l'invention et celui constitutif de la matière végétale (b) également nécessairement présente, mais peut aussi être aussi celui de la polyoléfme qui est de préférence bio-sourcée, celui des autres constituants éventuels de la composition comme le plastifiant, notamment s'il s'agit de glycérol ou de sorbitol, ou de tout autre produit lorsqu'il provient de ressources naturelles renouvelables.
Il est en particulier envisageable d'utiliser les compositions selon l'invention, en tant que matériaux bioplastiques ou matériaux composites, utiles à la préparation par injection, extrusion, soufflage, calandrage, moulage, thermoformage, compactage, filage, éguitage ou autres techniques, d'objets, de pièces, de flaconnages, de pots, de contenants, de réservoirs, de feuilles, de panneaux, de barreaux, de tasseaux , de profilés de poutres, de tables, de meubles d'intérieur, de mobiliers urbains, de mats, de non-tissés, de garnitures de portes, de parois, de couches isolantes, de pièces automobiles, de pièces électriques, de câblages, de gaines, de tableaux de bord, de capots ou autres produits courants d'usage domestique comme les articles de sports et de loisir, l'électroménager, l'outillage ou utiles à différentes industries comme par exemple l'industrie du bâtiment, de l'emballage, de l'électricité, du transport et de l'équipement.
Ladite composition peut se présenter sous forme pulvérulente, granulée ou en billes. Elle peut constituer en tant que telle un mélange maître ou la matrice d'un mélange maître, destiné à être dilué dans une matrice bio-sourcée ou non. Elle peut constituer aussi une matière première plastique ou un compound utilisable directement par un équipementier ou un façonnier d'objets plastiques. Elle peut constituer aussi une composition finale ou intermédiaire, apte à être mise en forme ou utilisée dans l'industrie de transformation du bois comme un panneau de bois ou un composites bois/polymères.
L'invention sera mieux comprise à la lumière des exemples qui suivent qui ne se veulent en aucun cas limitatif de l'invention.
Exemple 1 : Compositions, conformes ou non à l'invention, à base de sisal
Préparation des compositions
On choisit pour cet exemple comme composition thermoplastique (a), une composition comprenant en poids sec :
- d'une part, 52 % d'un amidon thermoplastique obtenu à partir: - d'amidon natif commercialisé par la Demanderesse sous le nom « Amidon de blé SP» présentant une teneur en eau voisine de 12%,
- d'une composition plastifiante aqueuse de polyols à base de glycérol et de sorbitol, commercialisée par la Demanderesse sous l'appellation POLYSORB ® G 84/41/00 ayant une teneur en eau de 16% environ,
- et de P/o de méthylènediphényl-diisocyanate (MDI),
- et d'autre part, 48 % d'une polyoléfine constituée d'un mélange d'un polypropylène non greffé du commerce et d'un polypropylène greffé du commerce.
Cette composition (a), thermoplastique, est obtenue selon le procédé conforme à la demande de brevet WO 2010/010282 publiée au nom de la Demanderesse et ce, en utilisant une extrudeuse à double vis de marque TSA, ayant un diamètre (D) 26 mm et de longueur de 50 D, de manière à obtenir un débit matière total de 15 kg/h, et en retenant les conditions d'extrusion suivantes:
Profil de température (dix zones de chauffe ZI à Z10) : 200/120/140/140/160/170/160/150/160/160,
- Vitesse de vis : 200 tr/min.
Les constituants de la composition thermoplastique (a) sont introduits dans Γ extrudeuse de la manière suivante :
- la polyoléfine, dans la trémie principale de l'extrudeuse, en suite de quoi elle traverse l'ensemble des dix zones de chauffe ZI à Z 10 de l'extrudeuse,
- le plastifiant du composant amylacé (POLYSORB ®) au niveau de la zone Z2, le rapport plastifiant/amidon de blé étant fixé à 67 parts/100 parts,
- le composant amylacé (amidon de blé non plastifié) au niveau de la zone Z3
- et l'agent de liaison au niveau de la zone Z7.
Une extraction d'eau est opérée par légère dépression au niveau de la zone Z6.
Cette composition comprend 52 % de matière d'origine renouvelable sous forme d'amidon de blé et de plastifiants de type polyols bio-sourcés. Elle présente une densité proche de 1,11. On dénomme cette composition thermoplastique (a) : « Résine A » et on l'utilise comme « composition intermédiaire » en l'associant, en vue d'obtenir une composition selon l'invention, à une matière végétale (b) constituée de fibres de sisal dont la dimension principale (longueur) est de l'ordre de 500 micromètres. On mélange à la Résine A, 25 % en poids commercial de fibres de sisal à 8,5 % d'eau environ, par rapport au poids total de composition selon l'invention.
Les conditions de préparation par extrusion sur filière de 6mm, sont les suivantes :
- Profil de température (4 zones de chauffe): profil croissant de 165°C à
175°C
- Température de coupe en tête : 200°C
- Dégazage de l'eau de la matière avant la sortie de l'extrudeuse
- Vitesse vis : 350 tr/min
- Débit : 350 kg/h.
En sortie d'extrudeuse, les joncs sont refroidis sous eau à 20°C puis séchés à 80°C sous vide pendant 4 heures. La densité de la composition selon l'invention ainsi obtenue est voisine de 1,13. Elle contient environ 23,4 % de fibres végétales, ce pourcentage étant exprimé en poids sec par rapport au poids sec de la composition thermoplastique selon l'invention.
On prépare de manière identique une composition témoin 2 en utilisant en lieu et place de Résine A, un mélange (composition témoin 1) comprenant 97% de polypropylène de type co-polymère PPC16N de MFI (« Melt Flow Index ») de 16 (230°C ; 2,16 kg) présentant des caractéristiques mécaniques très proches de celles de la Résine A et 3% de polypropylène greffé anhydride maléique à 1% en tant qu'agent de compatibilisation. Seules les conditions d'extrusion sur filière de 6mm, sont légèrement modifiées au sens que :
- le profil est croissant de 190°C à 210°C,
- et la température en coupe en tête est fixée à: 220°C. Caractéristiques mécaniques des compositions conformes ou non à l'invention :
On observe que la composition selon l'invention présente de bien meilleures caractéristiques mécaniques que la composition témoin 2 et ce, pour l'ensemble des critères mesurés. L'amidon plastifié présent au sein de la Résine A apparaît agir à la fois sur l'amélioration de l'adhésion aux fibres de sisal et sur l'amélioration de la compatibilité au polypropylène.
La composition selon l'invention peut de plus être obtenue par le même procédé que celui appliqué habituellement et avantageusement sans modification de l'outillage et en travaillant à des températures inférieures de 20 à 35°C au dessous de la composition témoin 2. Ceci permet des gains énergétiques non négligeables et de réduire les besoins en ressources d'origine fossile mais aussi une moindre dégradation des propriétés de renfort conférées par les fibres végétales vis à vis de la matrice polymérique. De plus, la composition selon l'invention, contrairement à la composition témoin 2, présente un bel aspect naturel et une grande homogénéité. Elle présente également un toucher agréable s'expliquant par la présence d'amidon mis en oeuvre au sein de la composition thermoplastique (a).
On constate que la composition selon l'invention comprenant au total 64 % environ de matière bio-sourcée présente de nombreux avantages techniques comparativement à la composition témoin 2 qui ne comporte pourtant que 23,4 % de matière d'origine naturelle renouvelable.
Exemple 2 : Compositions, conformes ou non à l'invention, à base de poudres de bois
A) On retient le mode opératoire donné à l'EXEMPLE 1, en utilisant en lieu et place de fibres de sisal en association à la Résine A (composition selon l'invention) ou au PPC16N (composition témoin) :
17,6 % environ, par rapport à la composition finale (sec/sec), d'une sciure de bois comprenant des particules de taille comprise entre 0,5 et 3 millimètres, et
17,6 % environ, par rapport à la composition finale (sec/sec), d'une farine de bois, comprenant des particules de taille voisine de 250 micromètres.
Cette sciure de bois et cette farine de bois présentent respectivement, au moment de leur introduction dans la Résine A ou le PPC16N, une teneur en eau d'environ 11,5 % et 12 ,4 %.
Les résultats des tests mécaniques obtenus sont les suivants :
On constate que la composition selon l'invention, laquelle comprend au total environ 69 % de matière bio-sourcée, présente de bien meilleures propriétés mécaniques que la composition témoin qui ne comporte pourtant que 35 % environ de matière d'origine naturelle renouvelable.
B) On choisit pour cet exemple différentes compositions thermoplastiques intermédiaires en vue de fabriquer des compositions selon l'invention et comparatives.
La première composition intermédiaire comprend en poids sec :
- d'une part, 52 % d'un amidon thermoplastique obtenu à partir:
- d'amidon natif commercialisé par la Demanderesse sous le nom « Amidon de blé SP» présentant une teneur en eau voisine de 12%,
- d'une composition plastifiante aqueuse de polyols à base de glycérol et de sorbitol, commercialisée par la Demanderesse sous l'appellation POLYSORB ® G 84/41/00 ayant une teneur en eau de 16% environ,
- et de P/o de méthylènediphényl-diisocyanate (MDI),
- et d'autre part, 48 %> d'une polyoléfme constituée d'un mélange dans des proportions égales d'un polypropylène non greffé du commerce et d'un polypropylène greffé du commerce. La seconde composition intermédiaire est identique à la première composition à la différence que l'amidon thermoplastique ne comprend pas de MDI.
La troisième composition intermédiaire est constituée du mélange d'un polypropylène non greffé et d'un polypropylène greffé utilisé pour la fabrication des deux premières compositions intermédiaires.
Ces compositions intermédiaires sont obtenues selon le procédé de l'exemple
1.
Les compositions A (selon l'invention), B (selon l'invention) et C (comparative) sont obtenues en mélangeant respectivement les première, deuxième et troisième compositions intermédiaires avec :
17,6 % environ, par rapport à la composition finale (sec/sec), d'une sciure de bois comprenant des particules de taille comprise entre 1 et 2 millimètres, et 17,6 % environ, par rapport à la composition finale (sec/sec), d'une farine de bois, comprenant des particules de taille voisine de 220 micromètres.
Les résultats des tests mécaniques obtenus sont les suivants :
On observe que l'introduction de charges végétales dans les compositions comprenant l'amidon plastifié (avec ou sans MDI) permet d'améliorer de manière beaucoup plus importante le module de traction (module six fois plus important) que lorsque la composition n'en comprend pas (module trois fois plus important seulement). Dans cette composition comprenant des charges végétales, l'introduction de MDI permet une légère augmentation des propriétés en traction et au choc.
Exemple 3 : Compositions, conformes ou non à l'invention, à base d'amidon natif de maïs waxy
Préparation des compositions
On choisit pour cet exemple la Résine A telle que décrite précédemment comme composition thermoplastique (a) ou composition intermédiaire utilisable selon l'invention. On prépare une composition selon l'invention en utilisant comme matière végétale (b), en l'occurrence comme charge végétale, un amidon natif de maïs waxy commercialisé par la Demanderesse.
On mélange à la Résine A, 40 % en poids commercial dudit amidon natif waxy à 12% d'eau environ, par rapport au poids total en sec de composition selon l'invention.
Les conditions de préparation par extrusion sur filière de 3 cm de diamètre, sont les suivantes :
- Profil de température (20/80/180/180/180/180/180180) pour 8 zones de chauffe)
- Température de coupe en tête : 180°C
- Dégazage de l'eau de la matière avant la sortie de l'extrudeuse
- Vitesse vis : 200tr/min
- Débit : 5kg/h.
La composition thermoplastique selon l'invention ainsi obtenue contient environ 35%, en poids, de charge végétale, ce pourcentage étant exprimé en poids sec par rapport au poids sec de la composition thermoplastique selon l'invention.
On prépare de manière identique une composition témoin en utilisant en lieu et place de la Résine A, un polypropylène de type homopolymère Moplen HP456J de MFI de 16 (230°C ; 2,16 kg) présentant des caractéristiques mécaniques supérieures à celles de la Résine A en termes de module de résistance et de rigidité. A ce polypropylène est ajouté 4% de polypropylène greffé anhydride maléique en tant qu'agent de compatibilisation entre le polypropylène et les charges de nature hydrophile.
Caractéristiques mécaniques des compositions conformes ou non à l'invention : Module de flexion Contrainte
(MPa) Max (MPa)
ISO 178 ISO 527
Résine A (composition thermoplastique (a)) 580 17
Résine A et
35 % amidon natif maïs waxy 1688 22
(composition selon l'invention)
PP Moplen HP456J
1522 35
(témoin PP seul)
PP Moplen HP456J et 35 % amidon natifs maïs
waxy + 4% agent compatibilisant 2134 34
(composition témoin)
On observe que l'effet renforçant de la charge d'amidon maïs waxy sur les propriétés de module de flexion (rigidité) et de résistance (contrainte maximale) est beaucoup plus élevé pour la Résine A que pour la base polypropylène qui possède en plus un agent compatibilisant.
En effet, alors que le module est trois fois plus élevé pour la résine A compoundée par rapport à la résine A vierge, le module du polypropylène n'est augmenté que d'un facteur de 1,4.
De plus, aucun effet n'est visible sur la contrainte maximale pour le polypropylène alors que la composition selon l'invention permet d'augmenter de 5 MPa la résistance (contrainte maximale).
Le fait de compounder la Résine A, composition intermédiaire utilisable selon le procédé de l'invention, présente donc un gain très avantageux sur l'efficacité de l'augmentation des propriétés mécaniques par rapport aux compositions témoins base polypropylène tout en permettant de s'affranchir de l'emploi de polypropylène greffé en tant que compatibilisant. L'amidon plastifié présent au sein de la Résine A apparaît agir à la fois sur l'amélioration de l'adhésion des charges d'amidon et sur l'amélioration de la compatibilité au polypropylène.
On constate de plus que la composition selon l'invention, laquelle comprend au total environ 71 % de matière bio-sourcée, présente des propriétés de module de rigidité relativement proches de la composition témoin qui ne comporte pourtant que 35 % environ de matière d'origine naturelle renouvelable.

Claims

REVENDICATIONS
1. Composition thermoplastique, caractérisée en ce qu'elle contient :
a) de 15 à 60 % d'au moins une matière amylacée,
b) de 10 à 30 % d'au moins un agent plastifiant de matière amylacée de masse molaire supérieure à 18g/mol et inférieure à 5000g/mol,
c) de 15 à 65 % d'au moins une polyoléfïne, et
d) de 10 à 40 % d'au moins une matière végétale choisie parmi les fibres végétales et les charges végétales,
ladite matière amylacée a) étant plastifiée par l'agent plastifiant b) et ces pourcentages étant exprimés en poids sec par rapport au poids sec de ladite composition.
2. Composition selon la revendication 1, caractérisée en ce qu'elle contient :
a) de 15 à 50 % d'au moins une matière amylacée,
b) de 10 à 25 % d'au moins un agent plastifiant de matière amylacée, c) de 25 à 50 % d'au moins une polyoléfïne, et
d) de 15 à 40 % d'au moins une matière végétale choisie parmi les fibres végétales et les charges végétales.
3. Composition selon l'une des revendications 1 ou 2, caractérisée en ce qu'elle contient, au total, au moins 27 %, de préférence de 30 à 80 %, et encore plus préférentiellement de 35 à 75 %, d'au moins une matière amylacée et d'au moins un plastifiant de matière amylacée, ces pourcentages étant exprimés en poids sec total de matière amylacée(s) et de plastifiant(s) de matière amylacée par rapport au poids sec de la composition thermoplastique.
4. Composition selon l'une quelconque des revendications 1 à 3, caractérisée en ce qu'elle contient, au total, au moins 52 %, de préférence de 55 à 90 %, d'au moins une matière amylacée, d'au moins un plastifiant de matière amylacée et d'au moins une polyoléfïne, ces pourcentages étant exprimés en poids sec total de matière amylacée(s), de plastifïant(s) de matière amylacée et de polyoléfïne(s) par rapport au poids sec de la composition thermoplastique.
5. Composition selon l'une quelconque des revendications 1 à 4, caractérisée en ce que la polyoléfïne est choisie parmi :
a) les homopolymères d'oléfines, en particulier les polyéthylènes basse densité (PEbd) linéaires ou radicalaires, les polyéthylènes haute densité (PEhd), les polypropylènes (PP) de forme isotactique, syndiotactique ou atactique, les polybutènes et les polyisobutylènes,
b) les copolymères à base d'au moins deux oléfïnes, en particulier les copolymères d'éthylène - propylène (P/E), les copolymères d'éthylène - butène et les copolymères d'éthylène - octène,
c) les homopolymères d'oléfines fonctionnalisés ou greffés i) par des acides ou des anhydrides, en particulier les acides (ou anhydrides) maléique, acrylique et méthacrylique, notamment les polyéthylènes et polypropylènes greffés anhydride maléique, ii) par des oxiranes, en particulier le méthacrylate ou Pacrylate de glycidyle, ou iii) par des silanes.
d) les copolymères à base d'au moins deux oléfïnes, notamment les copolymères d'éthylène - propylène (P/E), les copolymères d'éthylène - butène et les copolymères d'éthylène - octène, fonctionnalisés ou greffés, en particulier par des acides, des anhydrides, des oxiranes ou des silanes,
e) les mélanges quelconques d'au moins deux quelconques des produits précités.
6. Composition selon l'une quelconque des revendications 1 à 5, caractérisée en ce que la matière végétale est constituée de particules dont la dimension est comprise entre 0,5 et 5000 micromètres, et est choisie parmi:
- les amidons granulaires, natifs ou modifiés,
- les co-produits d'amidonnerie, de meunerie, de sucrerie, de papeterie ou d'huilerie, - les fibres cellulosiques ou ligno-cellulosiques, - les algues et extraits d'algues, et
- les mélanges quelconques d'au moins deux quelconques de ces produits.
7. Composition selon l'une quelconque des revendications 1 à 6, caractérisée en ce que la matière amylacée est choisie parmi les amidons natifs, les amidons prégélatinisés, les amidons extrudés, les amidons atomisés, les amidons fluidifiés, les amidons oxydés, les amidons cationiques, les amidons anioniques, les amidons hydroxyalkylés, les amidons réticulés, les acétates d'amidon, les esters gras d'amidon et de chaînes grasses de 4 à 22 carbones, les dextrines, les maltodextrines et les mélanges quelconque de ces produits.
8. Composition selon l'une quelconque des revendications 1 à 7, caractérisée en ce que l'agent plastifiant de la matière amylacée présente une masse molaire inférieure à 1000, de préférence inférieure à 400, et plus préférentiellement au plus égale à 380.
9. Composition selon l'une quelconque des revendications 1 à 8, caractérisée en ce qu'elle contient au moins 51 %, de préférence au moins 70 %, en particulier plus de 80 %, de matières biosourcées à base de carbone d'origine renouvelable, exprimé en poids sec par rapport au poids sec de ladite composition.
10. Composition selon l'une quelconque des revendications 1 à 9, caractérisée en ce qu'elle est non biodégradable ou non compostable.
11. Composition selon l'une quelconque des revendications 1 à 10, caractérisée en ce qu'elle présente simultanément :
- une contrainte maximale en flexion supérieure à 30 MPa, notamment supérieure à 35 MPa, et
- une contrainte maximale en traction supérieure à 50 MPa, notamment supérieure à 55 MPa.
12. Composition selon l'une quelconque des revendications 1 à 11, caractérisée en ce qu'elle présente un module de flexion (ISO 178) et un module de traction (ISO 527) supérieurs à 1500 MPa, notamment supérieurs à 2000 MPa.
13. Composition selon l'une quelconque des revendications 1 à 12, caractérisée en ce qu'elle présente une densité comprise entre 1,05 et 1,25, de préférence comprise entre 1,1 et 1,2.
14. Composition selon l'une quelconque des revendications 1 à 13, caractérisée en ce qu'elle contient, en outre, de préférence à raison de 1 à 15 % en poids (sec/sec), un agent améliorateur de sa résilience au choc, notamment à température de 23°C ou inférieure, ledit agent étant en particulier choisi dans le groupe comprenant les polymères de type co-polymère éthylène- propylène, éthylène-styrène ou styrène- butadiène et les matières élastomériques de type caoutchouc naturel, copolymère styrène-butylène-styrènes (SBS) ou styrène-éthylène-butylène-styrènes (SEBS).
15. Composition selon l'une quelconque des revendications 1 à 14, caractérisée en ce qu'elle contient, en outre, un polymère ou un copolymère autre qu'une polyoléfme choisi dans le groupe comprenant les polyuréthanes (PU), les polyuréthanes thermoplastiques (TPU), les polyamides, les polylactates (PLA), les polybutylènes succinates (PBS, PBSA), les polyhydroxyalcanoates (PHA, PHB, PHBV) et leurs mélanges quelconques.
16. Procédé de préparation d'une composition thermoplastique selon l'une quelconque des revendications 1 à 15, ledit procédé comprenant les étapes suivantes :
(i) sélection d'au moins une composition (a) thermoplastique comprenant au moins une matière amylacée, un plastifiant de ladite matière amylacée de masse molaire supérieure à 18g/mol et inférieure à 5000g/mol et une polyoléfine, une plastification de la matière amylacée étant réalisée par mélange thermomécanique avec ledit agent plastifiant, (ii) sélection d'au moins une matière végétale (b) choisie parmi les fibres végétales et les charges végétales, constituée de particules dont la dimension est comprise entre 0,5 et 5000 micromètres, de préférence choisie parmi:
- les amidons granulaires, natifs ou modifiés,
- les co-produits d'amidonnerie, de meunerie, de sucrerie, de papeterie ou d'huilerie,
- les fibres cellulosiques ou ligno-cellulosiques,
- les algues et extraits d'algues,
- et les mélanges quelconques d'au moins deux quelconques de ces produits, et
(iii) mélange thermomécanique, de la composition (a) et de la matière végétale (b) de manière à obtenir la composition thermoplastique selon l'invention.
17. Procédé selon la revendication 16, caractérisé en ce que la composition (a) contient :
a) de 17 à 65 %, de préférence de 20 à 65%, d'au moins une matière amylacée, a) de 12 à 30 %, de préférence de 12 à 25 %, d'au moins un agent plastifiant de matière amylacée, et
b) de 17 à 70 %, de préférence de 17 à 65 %, d'au moins une polyoléfine, ces pourcentages étant exprimés en poids sec par rapport au poids sec de ladite composition (a).
18. Procédé selon la revendication 17, caractérisé en ce que la composition (a) contient :
a) de 25 à 60 % d'au moins une matière amylacée,
b) de 15 à 25 % d'au moins un agent plastifiant de matière amylacée, et c) de 25 à 60 % d'au moins une polyoléfine.
19. Procédé pour améliorer l'adhésivité ou le collage, entre elles, de fibres et/ou de charges végétales, caractérisé en ce qu'il comprend les étapes suivantes : (i) sélection d'au moins une matière végétale choisie parmi les fibres végétales et les charges végétales,
(ii) sélection d'au moins une composition contenant une matière amylacée plastifiée par un plastifiant de masse molaire supérieure à 18g/mol et inférieure à 5000g/mol et une polyoléfïne, et
(iii) mélange thermomécanique, de ladite matière végétale et de ladite composition.
20. Procédé pour améliorer la compatibilité entre une matière végétale et une polyoléfïne, caractérisé en ce qu'il comprend les étapes suivantes :
(i) sélection d'au moins une matière végétale choisie parmi les fibres végétales et les charges végétales et d'au moins une polyoléfïne,
(ii) sélection d'au moins une matière amylacée plastifiée par un plastifiant de masse molaire supérieure à 18g/mol et inférieure à 5000g/mol, et (iii) mélange thermomécanique, de la matière végétale et de la polyoléfïne en présence de ladite matière amylacée de manière à améliorer la compatibilité matière végétale / polyoléfïne au sein de la composition thermoplastique résultante.
21. Procédé selon l'une quelconque des revendications 16 à 20, caractérisé en ce que l'étape (iii) est menée à une température comprise entre 80 et 200 °C, de préférence comprise entre 120 et 185 °C et plus préférentiellement encore comprise entre 160 et 180°C.
EP11715988A 2010-03-25 2011-03-24 Compositions à base de matière végétale et procédé de préparation de telles compositions Withdrawn EP2550323A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1052184A FR2957928B1 (fr) 2010-03-25 2010-03-25 Compositions a base de matiere vegetale et procede de preparation de telles compositions
PCT/FR2011/050633 WO2011117549A1 (fr) 2010-03-25 2011-03-24 Compositions à base de matière végétale et procédé de préparation de telles compositions

Publications (1)

Publication Number Publication Date
EP2550323A1 true EP2550323A1 (fr) 2013-01-30

Family

ID=43033165

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11715988A Withdrawn EP2550323A1 (fr) 2010-03-25 2011-03-24 Compositions à base de matière végétale et procédé de préparation de telles compositions

Country Status (5)

Country Link
US (1) US20130096236A1 (fr)
EP (1) EP2550323A1 (fr)
CN (1) CN102918097A (fr)
FR (1) FR2957928B1 (fr)
WO (1) WO2011117549A1 (fr)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104144984A (zh) 2011-08-24 2014-11-12 阿尔吉斯有限责任公司 基于大型水生植物的生物塑料
US9085677B2 (en) * 2012-01-23 2015-07-21 Erica Budina Bioplastics
CN102617892A (zh) * 2012-04-11 2012-08-01 宁波德沃生物科技有限公司 一种可降解淀粉基塑料的制备方法
FR2993272B1 (fr) * 2012-07-13 2014-08-01 Roquette Freres Composition thermoplastique a base d'amidon comprenant un copolymere de propylene fonctionnalise
KR20140015990A (ko) 2012-07-27 2014-02-07 (주)엘지하우시스 자동차 내장재용 열가소성 수지 조성물 및 자동차 내장재 성형품
WO2014046317A1 (fr) 2012-09-21 2014-03-27 주식회사 엘지하우시스 Feuille intérieure garnie de résine biologique pour véhicules et son procédé de fabrication
CN104781333B (zh) * 2012-11-12 2020-07-10 乐金华奥斯有限公司 汽车内饰材料用热塑性树脂组合物及汽车内饰材料用成型品
CN103044719B (zh) * 2012-12-19 2015-09-16 华南理工大学 一种具有高疏水性能的热塑性淀粉塑料及其制备方法
EP2997079A1 (fr) * 2013-05-14 2016-03-23 SPC Sunflower Plastic Compound GmbH Produit en biomatériau à base de coques ou cosses de graines de tournesol
US9464188B2 (en) 2013-08-30 2016-10-11 Kimberly-Clark Worldwide, Inc. Simultaneous plasticization and compatibilization process and compositions
CN103666336B (zh) * 2013-11-21 2015-08-26 江苏博思源防火材料科技有限公司 一种胶黏剂的制备方法
JP6572235B2 (ja) * 2014-04-10 2019-09-04 エフピーイノベイションズ 湿潤天然繊維およびデンプンを熱可塑性プラスチック中に混入する方法
CN105037895A (zh) * 2015-08-21 2015-11-11 安徽吉安特种线缆制造有限公司 一种新型耐高温低烟阻燃的复合电缆料及其制备方法
CN105131539A (zh) * 2015-09-09 2015-12-09 沈阳化工大学 一种可降解高阻隔材料及其制备方法
CN105238088A (zh) * 2015-10-30 2016-01-13 武汉华丽生物股份有限公司 一种纤维素基生物质片材及其制备方法
CN105368088A (zh) * 2015-11-03 2016-03-02 周福海 一种藻类制备聚烯烃复合材料的方法
CN105368386A (zh) * 2015-11-18 2016-03-02 广德县永彬竹木工艺品厂 一种生物质基竹木加工用粘合剂及其制备工艺
KR20180003804A (ko) * 2016-07-01 2018-01-10 씨제이제일제당 (주) 소맥피를 포함한 바이오 플라스틱 조성물 및 이를 이용한 바이오 플라스틱 필름
CN106700585A (zh) * 2016-11-28 2017-05-24 天津旁耘科技有限公司 一种医用复合新材料及其制备方法
CN107254184A (zh) * 2017-04-28 2017-10-17 青岛高智高新科技有限公司 一种易生物降解的环保型饭盒用材料及其优化制作工艺
CN107033567A (zh) * 2017-05-16 2017-08-11 广州找塑料新材料科技有限公司 花生壳粉填充聚丙烯聚乳酸复合材料及其制备方法
CN107400294B (zh) * 2017-08-28 2020-07-03 浙江苏达山新材料有限公司 生物基降解材料及其制备方法、应用
KR102440697B1 (ko) 2017-12-11 2022-09-05 현대자동차주식회사 실릴화 마이크로 피브릴 셀룰로오스를 포함하는 폴리프로필렌 복합수지 조성물 및 이를 이용한 자동차 필러트림
CN109111628A (zh) * 2018-07-31 2019-01-01 展恒凯文科技(深圳)有限责任公司 碳水化合物基生物降解热塑性淀粉材料及制备方法和应用
CN110857342A (zh) * 2018-08-08 2020-03-03 山西惠谷嘉旭生物科技有限公司 一种生物质基低碳可降解防滑餐垫及其制备方法
CN109679305A (zh) * 2018-12-20 2019-04-26 广东顺威赛特工程塑料开发有限公司 一种淀粉基可降解pp/phb复合材料及其制备方法
CN109721770A (zh) * 2018-12-24 2019-05-07 华南理工大学 氧化还原改性植物纤维的热塑性和韧性调控方法及其应用
CN109593638B (zh) * 2019-01-02 2021-09-24 大连理工大学 一种水热预处理促进聚乳酸塑料降解甲烷化利用的系统及方法
US20220089850A1 (en) * 2019-05-16 2022-03-24 Seiko Pmc Corporation Resin composition for molding materials, molded body, and method for producing resin composition for molding materials
JP7193856B2 (ja) * 2019-07-10 2022-12-21 大宝工業株式会社 成形材料及び成形品
CN111732780A (zh) * 2020-03-03 2020-10-02 江苏中恒宠物用品股份有限公司 一种可控降解塑料垃圾袋及其制备方法
CN114395192A (zh) * 2022-02-22 2022-04-26 陕西理工大学 一种石松粉改性淀粉-聚丙烯防水复合材料的制备方法
CN115403865A (zh) * 2022-10-15 2022-11-29 温州市梵特日用品有限公司 一种含纳米银的抗菌可降解塑料颗粒及其制备方法
CN116003025B (zh) * 2022-11-30 2024-05-28 厦门三航混凝土有限公司 一种掺合石粉的低标号混凝土

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3321960A1 (de) * 1983-06-18 1984-12-20 Maizena Gmbh, 2000 Hamburg Flammfestes staerkeprodukt, verfahren zu seiner herstellung und seine verwendung
GB2205323B (en) * 1987-03-09 1991-01-30 Warner Lambert Co Destructurized starch and process for making same
US5095054A (en) * 1988-02-03 1992-03-10 Warner-Lambert Company Polymer compositions containing destructurized starch
US5362777A (en) 1988-11-03 1994-11-08 Ivan Tomka Thermoplastically processable starch and a method of making it
US5409973A (en) * 1989-08-07 1995-04-25 Butterfly S.R.L. Polymer composition including destructured starch and an ethylene copolymer
FR2672295B1 (fr) 1991-01-31 1994-06-03 Roquette Freres Compositions thermoformables, leur procede de preparation et leur utilisation pour l'obtention d'articles thermoformes.
US5292782A (en) * 1991-02-20 1994-03-08 Novamont S.P.A. Biodegradable polymeric compositions based on starch and thermoplastic polymers
US5412005A (en) * 1991-05-03 1995-05-02 Novamont S.P.A. Biodegradable polymeric compositions based on starch and thermoplastic polymers
DE4119915C2 (de) * 1991-06-17 1994-07-21 Inventa Ag Stärke-Polymer-Mischung, Verfahren zu ihrer Herstellung sowie ihre Verwendung
ES2112327T3 (es) * 1991-08-07 1998-04-01 Clopay Corp Una pelicula termoplastica biodegradable y metodo para producirla.
IT1256914B (it) 1992-08-03 1995-12-27 Novamont Spa Composizione polimerica biodegradabile.
FR2732026B1 (fr) * 1995-03-21 1997-06-06 Roquette Freres Procede pour ameliorer la compatibilite reciproque de polymeres
ES2201173T3 (es) 1995-04-07 2004-03-16 BIO-TEC BIOLOGISCHE NATURVERPACKUNGEN GMBH & CO. KG Mezcla de polimeros biologicamente degradable.
DE19624641A1 (de) * 1996-06-20 1998-01-08 Biotec Biolog Naturverpack Biologisch abbaubarer Werkstoff, bestehend im wesentlichen aus oder auf Basis thermoplastischer Stärke
ITTO980524A1 (it) * 1998-06-17 1999-12-17 Novamont Spa Composizioni contenenti amido aventi elevata resistenza all'invecchiam ento.
DE19938672C2 (de) * 1999-08-06 2001-11-22 Biop Biopolymer Gmbh Verfahren zur Herstellung einer thermoplastischen Polymermischung auf Stärkebasis durch reaktive Extrusion
US6605657B1 (en) * 1999-12-27 2003-08-12 Polyvalor Societe En Commandite Polymer compositions containing thermoplastic starch
US6231970B1 (en) 2000-01-11 2001-05-15 E. Khashoggi Industries, Llc Thermoplastic starch compositions incorporating a particulate filler component
US7241832B2 (en) * 2002-03-01 2007-07-10 bio-tec Biologische Naturverpackungen GmbH & Co., KG Biodegradable polymer blends for use in making films, sheets and other articles of manufacture
US20030148690A1 (en) * 2001-05-10 2003-08-07 Bond Eric Bryan Multicomponent fibers comprising a dissolvable starch component, processes therefor, and fibers therefrom
FR2850391B1 (fr) * 2003-01-24 2007-04-20 Roquette Freres Procede et composition adhesive aqueuse pour la production de panneaux a base de matieres vegetales
AT412781B (de) * 2003-04-14 2005-07-25 Fasalex Patent Und Lizenzverwe Formkörper aus biologischem fasermaterial und kunststoff
US7989524B2 (en) * 2005-07-19 2011-08-02 The United States Of America, As Represented By The Secretary Of Agriculture Fiber-reinforced starch-based compositions and methods of manufacture and use
US20070079945A1 (en) * 2005-10-11 2007-04-12 Isao Noda Water stable fibers and articles comprising starch, and methods of making the same
ITMI20061845A1 (it) * 2006-09-27 2008-03-28 Novamont Spa Composizioni biodegradabili polifasiche a base di amido
US20090048368A1 (en) 2007-08-13 2009-02-19 Bash Thomas F Polyolefin compositions comprising bio-based starch materials
FR2927087B1 (fr) * 2008-02-01 2011-02-11 Roquette Freres Compositions thermoplastiques a base d'amidon soluble et procede de preparation de telles compositions.
FR2927084B1 (fr) * 2008-02-01 2011-02-25 Roquette Freres Procede de preparation de compositions thermoplastiques a base d'amidon plastifie et compositions ainsi obtenues.
FR2927088B1 (fr) * 2008-02-01 2011-02-25 Roquette Freres Compositions thermoplastiques a base d'amidon plastifie et procede de preparation de telles compositions.
FR2934272B1 (fr) 2008-07-24 2013-08-16 Roquette Freres Procede de preparation de compositions a base de matiere amylacee et de polymere synthetique.
CN101885869A (zh) * 2009-05-15 2010-11-17 金伯利-克拉克环球有限公司 挠性热塑性膜和制品
WO2011020170A1 (fr) * 2009-08-18 2011-02-24 National Research Council Of Canada Procédé de production de mélanges amidon thermoplastique/polymère
EP2473542B1 (fr) * 2009-09-03 2015-07-29 Co2starch Pty Ltd Compositions de polymère/amidon thermoplastique
TWI417333B (zh) * 2010-09-06 2013-12-01 Ind Tech Res Inst 澱粉基熱塑性複合材料
FR2966769B1 (fr) * 2010-10-27 2014-02-07 Roquette Freres Structure multicouche comprenant une composition adhesive a base de matiere amylacee

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011117549A1 *

Also Published As

Publication number Publication date
CN102918097A (zh) 2013-02-06
FR2957928A1 (fr) 2011-09-30
FR2957928B1 (fr) 2013-07-05
US20130096236A1 (en) 2013-04-18
WO2011117549A1 (fr) 2011-09-29

Similar Documents

Publication Publication Date Title
WO2011117549A1 (fr) Compositions à base de matière végétale et procédé de préparation de telles compositions
AU2009208830B2 (en) Method for preparing thermoplastic compositions based on plasticized starch and resulting compositions
EP2337815B1 (fr) Compositions thermoplastiques ou elastomeriques a base d'esters d'une matiere amylacee et procede de preparation de telles compositions
RU2524382C2 (ru) Способ получения термопластических композиций на основе пластифицированного крахмала и полученные им композиции
FR2927087A1 (fr) Compositions thermoplastiques a base d'amidon soluble et procede de preparation de telles compositions.
CA2729814A1 (fr) Procede de preparation de compositions a base de composant amylace et de polymere synthetique
CA2726860A1 (fr) Compositions thermoplastiques ou elastomeriques a base d'amidon et procede de preparation de telles compositions
FR2927083A1 (fr) Procede de preparation de compositions thermoplastiques a base de matiere amylacee soluble.
WO2011086292A1 (fr) Compositions a base de matiere vegetale et de fibres synthetiques et procede de preparation de telles compositions
WO2011086334A1 (fr) Procédé de préparation de compositions thermoplastiques à base d'amidon plastifié et compositions
FR2958938A1 (fr) Procede de preparation de compositions thermoplastiques a base de farine vegetale plastifiee et compositions ainsi obtenues
EP2872564B1 (fr) Composition thermoplastique à base d'amidon comprenant un copolymère de propylène fonctionnalisé
WO2014009678A1 (fr) Composition thermoplastique à base d'amidon comprenant un polypropylène fonctionnalisé de fluidité sélectionnée

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121016

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20161001