EP2246576B1 - Konfluenzsteuersystem - Google Patents

Konfluenzsteuersystem Download PDF

Info

Publication number
EP2246576B1
EP2246576B1 EP08871487.8A EP08871487A EP2246576B1 EP 2246576 B1 EP2246576 B1 EP 2246576B1 EP 08871487 A EP08871487 A EP 08871487A EP 2246576 B1 EP2246576 B1 EP 2246576B1
Authority
EP
European Patent Office
Prior art keywords
flow rate
pressure
operation quantity
rate control
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08871487.8A
Other languages
English (en)
French (fr)
Other versions
EP2246576A4 (de
EP2246576A1 (de
Inventor
Junichi Miyagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Publication of EP2246576A1 publication Critical patent/EP2246576A1/de
Publication of EP2246576A4 publication Critical patent/EP2246576A4/de
Application granted granted Critical
Publication of EP2246576B1 publication Critical patent/EP2246576B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20538Type of pump constant capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • F15B2211/20553Type of pump variable capacity with pilot circuit, e.g. for controlling a swash plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/255Flow control functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/26Power control functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/265Control of multiple pressure sources
    • F15B2211/2654Control of multiple pressure sources one or more pressure sources having priority

Definitions

  • the present invention relates to a confluence control system for use in a hydraulic system or the like in an injection molding machine, a press machine or the like, for instance.
  • a solenoid proportional valve 110 is connected to a discharge line 103 of a variable displacement pump 101, and a discharge line 103a of a fixed displacement pump 104 merges with the discharge line 103.
  • a check valve 105 is provided on and an unload valve 106 is connected to the discharge line 103a.
  • the unload valve 106 is controlled by output from a comparator 111.
  • a swash plate drive cylinder 108 for driving a swash plate of the variable displacement pump 101 is controlled by a swash plate control valve 109.
  • the unload valve 106 When a flow rate command value qref inputted into the comparator 111 is smaller than a specified value, the unload valve 106 is turned off to be in a position N1, so that oil discharged from the fixed displacement pump 104 is returned to a tank 102 and so that only oil discharged from the variable displacement pump 101 is delivered to an actuator.
  • the solenoid proportional valve 110 has an opening according to the flow rate command value qref
  • the swash plate control valve 109 operates so as to make a constant differential pressure between upstream and downstream sides of the solenoid proportional valve 110, and thus a discharge quantity of the variable discharge pump 101 is controlled through the swash plate drive cylinder 108.
  • the unload valve 106 is turned on by a signal from the comparator 111 so as to take a position N2.
  • communication between the fixed displacement pump 104 and the tank 102 is cut off, and oil discharged from the fixed displacement pump 104 is delivered to the discharge line 103 through the check valve 105 and joins oil discharged from the variable displacement pump 101.
  • Such control over the unload valve 106 makes it possible to continuously control a discharge flow rate q of oil up to a total displacement composed of a displacement of the variable displacement pump 101 and a displacement of the fixed displacement pump 104, as shown in Fig. 6 .
  • JP S63 115902 A teaches a confluence control system, wherein delivery sides of plural electromagnetic pressure flow control pumps are, via check valves, connected to each other.
  • a controller is provided to control the flow control signal to only one pump and to stop the other pump, so that no pressure shock is generated.
  • the confluence control system of claim 1 which system in particular comprises:
  • the pressure flow rate control unit receives the one pressure command, the one flow rate command, and the signal representing the detected pressure from the pressure sensor, and outputs to the operation quantity distribution unit the operation quantity required for obtaining the pressure and the flow rate according to the pressure command and the flow rate command.
  • the operation quantity distribution unit produces the first and second velocity signals on basis of the operation quantity and respectively outputs the first and second velocity signals to the first and second variable flow rate control devices so that the first variable flow rate control device discharges the liquid with the flow rate continuously changing according to the operation quantity and so that the second variable flow rate control device does not discharge the liquid, when the operation quantity is not larger than the predetermined set value, or produces the first and second velocity signals on basis of the operation quantity and outputs the first and second velocity signals to the first and second variable flow rate control devices, respectively, so that the first and second variable flow rate control devices respectively discharge the liquid with the total flow rate continuously changing according to the operation quantity, when the operation quantity exceeds the set value.
  • the discharged flow rate from the first variable flow rate control device and the discharged flow rate from the second variable flow rate control device are merged, and the first and second variable flow rate control devices are controlled by the first and second velocity signals produced by division of the operation quantity in the operation quantity distribution unit, so that switching between single drive and confluent drive can be smoothed without any shock.
  • the operation quantity distribution unit provided on downstream side of the pressure flow rate control unit suspends operation of the second variable flow rate control device when the flow rate is decreased to the predetermined set value or lower values by the pressure flow rate control unit, so that energy saving can be achieved.
  • the operation quantity distribution unit outputs the operation quantity as the first velocity signal to the first variable flow rate control device and outputs the second velocity signal being zero to the second variable flow rate control device, when the operation quantity is not larger than the set value, or outputs the set value as the first velocity signal to the first variable flow rate control device, sets a value obtained by subtraction of the set value from the operation quantity as the second velocity signal, and outputs the second velocity signal to the second variable flow rate control device, when the operation quantity exceeds the set value.
  • the operation quantity not more than the set value becomes the first velocity signal and the second velocity signal becomes zero
  • the operation quantity exceeding the set value makes the set value the first velocity signal and causes the value obtained by the subtraction of the set value from the operation quantity to become the second velocity signal, and thus the first and second velocity signals can be produced by simple computations.
  • the first and second variable flow rate control devices are composed of fixed displacement pumps and servo motors for driving the fixed displacement pumps.
  • the first and second variable flow rate control devices composed of the fixed displacement pumps and the servo motors for driving the fixed displacement pumps are simple in structure and inexpensive.
  • the pressure flow rate control unit limits a value calculated by a pressure control computation based on the pressure command and the signal representing the detected pressure from the pressure sensor so that the value does not exceed a value according to the flow rate command.
  • the value calculated by the pressure control computation is limited so as not to exceed the value according to the flow rate command, and thus the pressure lower than the target value causes automatic flow rate control to be performed with simple computations.
  • One embodiment comprises a control signal distribution unit that receives a control signal representing activation or suspension of the first variable flow rate control device and a signal, representing the operation quantity, from the pressure flow rate control unit, that outputs the control signal representing suspension of the second variable flow rate control device when the operation quantity is not larger than a threshold smaller than the set value, and that outputs the control signal representing drive of the second variable flow rate control device when the operation quantity exceeds the threshold.
  • control signal representing the suspension of the control is outputted by the control signal distribution unit to the second variable flow rate control device so that reduction in power consumption and energy saving can be achieved, when the operation quantity is not larger than the threshold smaller than the set value, and the control signal representing start of the control is outputted to the second variable flow rate control device so as to attain standby status, when the operation quantity exceeds the threshold, thereby ensuring the activation of the second variable flow rate control device with satisfactory response without any shock.
  • the pressure flow rate control unit comprises a cut-off characteristics setting unit for setting cut-off characteristics of pressure override in a pressure-flow rate characteristics diagram on basis of signals representing the pressure command, the flow rate command, and the operation quantity from the pressure flow rate control unit and outputting a pressure command provided with the cut-off characteristics.
  • the pressure flow rate control unit includes the cut-off characteristics setting unit for outputting the pressure command provided with the cut-off characteristics, so that a cut-off width can freely be adjusted to improve stability of the system.
  • the cut-off characteristics setting unit calculates the pressure command provided with the cut-off characteristics on basis of expressions (1) and (2).
  • the cut-off characteristics are provided on basis of the expressions (1) and (2), and thus can be provided by simple computations.
  • the discharged flow rate from the first variable flow rate control device and the discharged flow rate from the second variable flow rate control device are merged, and the first and second variable flow rate control devices are continuously controlled by the first and second velocity signals produced by the division of the operation quantity in the operation quantity distribution unit, so that the switching between single drive and confluent drive can be smoothed without any shock.
  • the operation quantity distribution unit provided on downstream side of the pressure flow rate control unit suspends operation of the second variable flow rate control device when the flow rate is decreased to the predetermined set value or lower values by the pressure flow rate control unit, so that energy saving can be achieved.
  • a confluence control system includes a first variable flow rate control device 1, a second variable flow rate control device 2, a pressure flow rate control unit 40, and a signal distribution unit 50.
  • the first variable flow rate control device 1 has a first fixed displacement pump 11, a first motor 12 for driving the first fixed displacement pump 11, a first driver 13 for driving the first motor 12, and an encoder 14 for detecting an angle of rotation of the first motor 12, and hydraulic oil as an example of liquid is discharged with flow rate control from the first fixed displacement pump 11 on basis of control over rotation velocity of the first motor 12.
  • the first motor 12, the first driver 13, and the encoder 14 form an example of a servo motor.
  • the second variable flow rate control device 2 has a second fixed displacement pump 21, a second motor 22 for driving the second fixed displacement pump 21, a second driver 23 for driving the second motor 22, and an encoder 24 for detecting an angle of rotation of the second motor 22, and hydraulic oil is discharged with flow rate control from the second fixed displacement pump 21 on basis of control over rotation velocity of the second motor 22.
  • the second motor 22, the second driver 23, and the encoder 24 form an example of a servo motor.
  • the first fixed displacement pump 11 of the first variable flow rate control device 1 discharges hydraulic oil into a first discharge line 10 and supplies the oil to a main machine hydraulic circuit 5.
  • a pressure of the hydraulic oil in the first discharge line 10 is detected by a pressure sensor 7.
  • the second fixed displacement pump 21 of the second variable flow rate control device 2 discharges hydraulic oil into a second discharge line 20 merging with the first discharge line 10.
  • a check valve 6 in which flow from the second fixed displacement pump 21 of the second variable flow rate control device 2 to the first discharge line 10 is in a forward direction, so that the hydraulic oil may be prevented from flowing backward from the first discharge line 10 to the second discharge line 20.
  • the pressure flow rate control unit 40 receives one pressure command Pi, one flow rate command Qi, and a signal representing the detected pressure from the pressure sensor 7, calculates a quantity Vq of operation required for obtaining a pressure and a flow rate according to the pressure command Pi and the flow rate command Qi, and outputs the quantity Vq to the signal distribution unit 50.
  • the pressure flow rate control unit 40 includes a cut-off characteristics setting unit 41, a summing point 42, a pressure control computation unit 43, and a velocity limiter 45.
  • the cut-off characteristics setting unit 41 receives the pressure command Pi, the flow rate command Qi, and the operation quantity Vq, calculates a pressure command Pi_C provided with cut-off characteristics on basis of the pressure command Pi, the flow rate command Qi, and the operation quantity Vq so that cut-off control similar to substantial cut-off of the flow rate command Qi is carried out, as shown in Figs. 3 and 4 , on condition that the pressure (load pressure) detected by the pressure sensor 7 exceeds, e.g., 90% of a maximum command pressure (maximum target pressure), and outputs the pressure command Pi_C to the summing point 42.
  • the pressure command Pi_C provided with cut-off characteristics is calculated with use of the following expressions (1) and (2).
  • the pressure command Pi_C provided with cut-off characteristics is calculated on basis of simple operations using the above expressions (1) and (2).
  • a cut-off width (difference between the target pressure and a pressure at which the cut-off control is started) CF is set at 10% of the maximum target pressure.
  • the cut-off width CF is set at 5 to 10% of the maximum target pressure because the width smaller than the range is prone to make the control unstable.
  • Vq ⁇ 0 within Vq ⁇ 0 of the expression (1) corresponds to status in which the load pressure is decreased by reverse rotation of the first motor 12 when the pressure command Pi is lowered for decreasing the pressure of the first discharge line 10 from pressure keeping status (status in which a hydraulic cylinder not shown is pressed against a load with a high pressure without moving in the main machine hydraulic circuit 5).
  • FIG. 3 and 4 pressure axes and flow rate axes are both expressed by percentage to maximum value, broken lines represent flow rates in the first fixed displacement pump 11, chain lines represent flow rates in the second fixed displacement pump 21, and solid lines represent total flow rates of the first and second fixed displacement pumps 11 and 21.
  • Fig. 4 is an enlarged illustration of main part of Fig. 3 .
  • a method of providing the cut-off characteristics is not limited to the use of the expressions (1) and (2) described above, and publicly known various methods can be used therefor.
  • the cut-off characteristics setting unit itself may be omitted and the cut-off characteristics may be provided by characteristics of a relief valve or the like.
  • the summing point 42 outputs to the pressure control computation unit 43 a signal obtained by subtraction of the detected signal, from the pressure sensor 7, from the pressure command Pi_C provided with the cut-off characteristics.
  • the pressure control computation unit 43 receives the signal from the summing point 42, carries out a PID (proportional-plus-integral-plus-derivative) control computation, for instance, and outputs a resultant pressure signal Vp to the velocity limiter 45.
  • the pressure control computation unit 43 may carry out other publicly known pressure control computations such as PI (proportional-plus-integral) control computation.
  • the velocity limiter 45 limits the pressure signal Vp from the pressure control computation unit 43 so that the pressure signal Vp may not exceed a value according to the flow rate command Qi, and thus outputs the operation quantity Vq.
  • the signal distribution unit 50 includes an operation quantity distribution unit 51 and a control signal distribution unit 52.
  • the operation quantity distribution unit 51 divides the operation quantity Vq into a first velocity signal V1 and a second velocity signal V2 in accordance with a rule that will be described later, and outputs the first velocity signal V1 and the second velocity signal V2 to the first driver 13 of the first variable flow rate control device 1 and the second driver 23 of the second variable flow rate control device 2, respectively.
  • the control signal distribution unit 52 receives a control signal S1 and the operation quantity Vq, produces a control signal S2 in accordance with a rule that will be described later, and distributes, i.e., outputs the control signal S2 to the second driver 23 of the second variable flow rate control device 2.
  • the operation quantity distribution unit 51 outputs the operation quantity Vq as the first velocity signal V1 to the first driver 13 of the first variable flow rate control device 1 and outputs the second velocity signal V2 that is zero to the second driver 23 of the second variable flow rate control device 2, when the operation quantity Vq is not larger than a predetermined set value, e.g., a maximum velocity Vmax1 of the first motor 12.
  • a predetermined set value e.g., a maximum velocity Vmax1 of the first motor 12.
  • the operation quantity distribution unit 51 outputs the set value Vmax1 as the first velocity signal V1 to the first driver 13 of the first variable flow rate control device 1 and outputs a value (Vq - Vmax1), obtained by subtraction of the set value Vmax1 from the operation quantity Vq, as the second velocity signal V2 to the second driver 23 of the second variable flow rate control device 2, when the operation quantity Vq exceeds the set value Vmax1.
  • the operation quantity distribution unit 51 produces the first and second velocity signals V1 and V2 in accordance with a velocity distribution algorithm below.
  • a broken line represents flow rates in the first fixed displacement pump 11
  • a chain line represents flow rates in the second fixed displacement pump 21
  • a solid line represents a total flow rate of the first and second fixed displacement pumps 11 and 21.
  • the operation quantity distribution unit 51 is capable of obtaining the first and second velocity signals V1 and V2 with use of the simple computation as described above.
  • the control signal distribution unit 52 receives the first control signal S1 that represents bringing the first driver 13 of the first variable flow rate control device 1 into activated status or stopped status, as ON or OFF, and a signal that represents the operation quantity Vq from the pressure flow rate control unit 40.
  • the first control signal S1 "OFF" does not mean controlling the velocity of the first motor 12 to zero but means stopping the control itself over the first motor 12.
  • the control signal distribution unit 52 outputs the second control signal S2 of OFF representing the stopped status to the second driver 23 of the second variable flow rate control device 2.
  • the control signal distribution unit 52 outputs the second control signal S2 of OFF to the second driver 23 of the second variable flow rate control device 2, when the first control signal S1 is ON and the operation quantity Vq received from the pressure flow rate control unit 40 is not larger than a predetermined threshold (Vmax1)/2 smaller than the set value Vmax1, or outputs the second control signal S2 of ON representing the activated status to the second driver 23 of the second variable flow rate control device 2, when the operation quantity Vq exceeds the threshold (Vmax1)/2.
  • the threshold (Vmax1)/2 is a value representing a half of the maximum velocity Vmax1 of the first motor 12 that corresponds to the set value.
  • control signal distribution unit 52 produces the second control signal S2 in accordance with a control signal distribution algorithm that will be described below, and outputs the second control signal S2 to the second driver 23 of the second variable flow rate control device 2.
  • the control signal distribution unit 52 sets the second control signal S2 to be OFF and turns off the second driver 23 of the second variable flow rate control device 2 so as to cease power consumption, thereby achieving energy saving.
  • the cut-off characteristics setting unit 41 calculates the pressure command Pi_C provided with the cut-off characteristics with use of the following expressions (1) and (2)on basis of the pressure command Pi, the flow rate command Qi, and the operation quantity Vq.
  • the pressure command Pi_C is inputted from the cut-off characteristics setting unit 41 into the summing point 42.
  • the detection signal from the pressure sensor 7 is subtracted from the pressure command Pi_C at the summing point 42, and the resultant signal is inputted from the summing point 42 into the pressure control computation unit 43.
  • the pressure control computation unit 43 receives the signal from the summing point 42 and carries out PID (proportional-plus-integral-plus-derivative) control, and the resultant pressure signal Vp is inputted into the velocity limiter 45.
  • PID proportional-plus-integral-plus-derivative
  • the velocity limiter 45 limits the pressure signal Vp from the pressure control computation unit 43 so that the pressure signal Vp may not exceed a value according to the flow rate command Qi, obtains the operation quantity Vq, and outputs the operation quantity Vq to the signal distribution unit 50.
  • the operation quantity distribution unit 51 of the signal distribution unit 50 produces the first and second velocity signals V1 and V2 in accordance with a velocity distribution algorithm below on basis of the operation quantity Vq and the maximum velocity Vmax1, as the set value, of the first motor 12.
  • the first motor 12 runs at a constant rotation velocity and the discharge flow rate of the first fixed displacement pump 11 is constant at 40% until the pressure reaches 96%, the pressure in excess of 96% causes gradual decrease in the rotation velocity of the first motor 12 and gradual decrease in the discharge flow rate of the first fixed displacement pump 11 from 40%, and the pressure of 100% makes the discharge flow rate zero.
  • the operation quantity distribution unit 51 provided on downstream side of the pressure flow rate control unit 40 thus divides the operation quantity Vq from the pressure flow rate control unit 40 and produces the first velocity signal V1 and the second velocity signal V2, the operation of the second fixed displacement pump 21 is suspended according to the cut-off characteristics on condition that the flow rate is decreased with the high pressure not lower than 96%, that is, the discharge quantity of the second fixed displacement pump 21 is made zero when the pressure is in a range of 96 to 100%, so that energy saving can be achieved.
  • both the first fixed displacement pump 11 and the second fixed displacement pump 21 would be driven until the pressure would come just near to 100%, so that energy saving could not be achieved.
  • control signal distribution unit 52 produces the second control signal S2 in accordance with a control signal distribution algorithm that will be described below, and outputs the second control signal S2 to the second driver 23 of the second variable flow rate control device 2.
  • the control signal distribution unit 52 sets the second control signal S2 to be OFF and turns off the second driver 23 of the second variable flow rate control device 2 so as to cease power consumption, thereby achieving energy saving.
  • variable flow rate control device 1 and the second variable flow rate control device 2 are used in the embodiment, a third variable flow rate control device, a fourth variable flow rate control device and the like may additionally be used to join discharged hydraulic oil from the third variable flow rate control device, the fourth variable flow rate control device and the like to the first discharge line 10 through respective check valves.
  • the set value may be slightly smaller than the maximum rotation velocity Vmax1 of the first motor 12.
  • the velocity distribution algorithm of the operation quantity distribution unit is not limited to the examples described above but may be such that characteristics can be expressed by polygonal lines, a curved line and/or the like having a large number of inflection points, provided that the algorithm produces the first and second velocity signals on basis of the operation quantity so that the first variable flow rate control device 1 may discharge liquid with a flow rate continuously changing according to the operation quantity and so that the second variable flow rate control device 2 may not discharge liquid, when the operation quantity is not larger than the predetermined set value, or produces the first and second velocity signals on basis of the operation quantity so that the first and second variable flow rate control devices 1, 2 may discharge fluid with a total flow rate continuously changing according to the operation quantity, when the operation quantity exceeds the set value.
  • the maximum rotation velocities Vmax1, Vmax2 of the first and second motors 12, 22 and the discharge displacements Vcc1, Vcc2 of the first and second fixed displacement pumps 11, 21, however, may have any desired values.
  • the switching between the single drive and the confluent drive is performed at a point of the flow rate command with a percentage divided by the ratio Vmax1 ⁇ Vcc:Vmax2 ⁇ Vcc.
  • the pressure flow rate control unit 40 and the signal distribution unit 50 of the embodiment may be composed of softwares, digital circuits, or analog circuits.
  • first and second fixed displacement pumps 11, 21 are used in the embodiment, one of these pumps can be a variable displacement pump so as to control the discharge quantity.
  • Inverters can be used as the drivers.
  • a current sensor may be used that detects a drive current for the first motor 12 and that thereby detects the pressure of the first discharge line 10 indirectly.
  • liquid is hydraulic oil in the embodiment, not only hydraulic oil but any type of liquid can be used and the invention can be applied to any type of hydraulic system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)

Claims (6)

  1. Konfluenzsteuersystem, umfassend:
    eine erste variable Durchflussmengen-Steuervorrichtung (1), die in der Lage ist, Flüssigkeit in eine erste Ablassleitung (10) mit Steuerung einer Durchflussmenge der Flüssigkeit abzulassen,
    eine zweite variable Durchflussmengen-Steuervorrichtung (2), die in der Lage ist, Flüssigkeit in eine zweite Ablassleitung (20), die sich mit der ersten Ablassleitung (10) vereinigt, mit Steuerung einer Durchflussmenge der Flüssigkeit abzulassen,
    ein Rückschlagventil (6), das in der zweiten Ablassleitung (20) vorgesehen ist, sodass ein Durchfluss von der zweiten variablen Durchflussmengen-Steuervorrichtung (2) zu der ersten Ablassleitung (10) in einer Vorwärtsrichtung erfolgt,
    einen Drucksensor (7) zum Erfassen eines Drucks in der ersten Ablassleitung (10),
    eine Druck-Durchflussmengen-Steuereinheit (40), die konfiguriert ist, um einen Druckbefehl (Pi), einen Durchflussmengenbefehl (Qi) und ein Signal, das einen erfassten Druck von dem Drucksensor (7) repräsentiert, zu empfangen und um eine Betriebsquantität (Vq), die für das Erhalten eines Druckes und einer Durchflussmenge gemäß dem Druckbefehl (Pi) und dem Durchflussmengenbefehl (Qi) erforderlich ist, auszugeben, und
    eine Betriebsquantitätsverteilungseinheit (51), die konfiguriert ist, um die Betriebsquantität (Vq) von der Druck-Durchflussmengen-Steuereinheit (40) zu empfangen und um ein erstes und ein zweites Geschwindigkeitssignal (V1 und V2) auf der Basis der Betriebsquantität (Vq) durch Aufteilen der Betriebsquantität (Vq) zu erzeugen und um das erste und das zweite Geschwindigkeitssignal an die erste und die zweite variable Durchflussmengen-Steuervorrichtung (1 und 2) auszugeben, sodass die erste variable Durchflussmengen-Steuervorrichtung (1) Flüssigkeit mit einer Durchflussmenge, die sich kontinuierlich gemäß der Betriebsquantität (Vq) ändert, ablässt und sodass die zweite variable Durchflussmengen-Steuervorrichtung (2) keine Flüssigkeit abgibt, wenn die Betriebsquantität (Vq) nicht größer ist als ein vorbestimmter gesetzter Wert, oder um das erste und das zweite Geschwindigkeitssignal (V1 und V2) auf der Basis der Betriebsquantität (Vq) durch Aufteilen der Betriebsquantität (Vq) zu erzeugen und um das erste und das zweite Geschwindigkeitssignal an die erste und die zweite variable Durchflussmengen-Steuervorrichtung (1 und 2) auszugeben, sodass die erste und die zweite variable Durchflussmengen-Steuervorrichtung (1 und 2) jeweils Flüssigkeit mit einer Gesamtdurchflussmenge, die sich kontinuierlich gemäß der Betriebsquantität (Vq) ändert, wenn die Betriebsquantität (Vq) den gesetzten Wert überschreitet, ablässt, wobei
    die Druck-Durchflussmengen-Steuereinheit (40) einen Wert begrenzt, der durch eine Drucksteuerberechnung berechnet wird, basierend auf dem Druckbefehl (Pi) und dem Signal, das den von dem Drucksensor (7) erfassten Druck repräsentiert, sodass der Wert einen Wert gemäß dem Durchflussmengenbefehl (Qi) nicht überscheitet.
  2. Konfluenzsteuersystem nach Anspruch 1, wobei
    die Betriebsquantitätsverteilungseinheit (51) die Betriebsquantität (Vq) als das erste Geschwindigkeitssignal (V1) an die erste variable Durchflussmengen-Steuervorrichtung (1) ausgibt und das zweite Geschwindigkeitssignal (V2), das null ist, an die zweite variable Durchflussmengen-Steuervorrichtung (2) ausgibt, wenn die Betriebsquantität (Vq) nicht größer als der gesetzte Wert ist, oder den gesetzten Wert als das erste Geschwindigkeitssignal (V1) an die erste variable Durchflussmengen-Steuervorrichtung (1) ausgibt, einen Wert, der durch Subtraktion des gesetzten Werts von der Betriebsquantität (Vq) erhalten wird, als das zweite Geschwindigkeitssignal (V2) setzt und das zweite Geschwindigkeitssignal (V2) an die zweite variable Durchflussmengen-Steuervorrichtung (2) ausgibt, wenn die Betriebsquantität (Vq) den gesetzten Wert überschreitet.
  3. Konfluenzsteuersystem nach Anspruch 1 oder 2, wobei
    die erste und die zweite variable Durchflussmengen-Steuervorrichtung (1 und 2) aus Verdrängungspumpen (11 und 21) mit feststehendem Hub und Servomotoren zum Antreiben der Verdrängungspumpen (11 und 21) mit feststehendem Hub bestehen.
  4. Konfluenzsteuersystem nach Anspruch 1, weiter umfassend
    eine Steuersignalverteilungseinheit (52), die ein Steuersignal, das Aktivierung oder Suspension der ersten variablen Durchflussmengen-Steuervorrichtung (1) repräsentiert, und ein Signal, das die Betriebsquantität (Vq) repräsentiert, von der Druck-Durchflussmengen-Steuereinheit (40) empfängt, die das Steuersignal, das Suspension der zweiten variablen Durchflussmengen-Steuervorrichtung (2) repräsentiert, ausgibt, wenn die Betriebsquantität (Vq) nicht größer als ein Schwellenwert und nicht kleiner als der gesetzte Wert ist, und die das Steuersignal, welches das Antreiben der zweiten variablen Durchflussmengen-Steuervorrichtung (2) repräsentiert, ausgibt, wenn die Betriebsquantität (Vq) den Schwellenwert überschreitet.
  5. Konfluenzsteuersystem nach Anspruch 1, wobei
    die Druck-Durchflussmengen-Steuereinheit (40) umfasst
    eine Grenzeigenschaften setzende Einheit (41) zum Setzen von Grenzeigenschaften des Überschreibens von Druck in einem Druck-Durchflussmengen-Eigenschaftsdiagramm auf der Basis von Signalen, die den Druckbefehl (Pi), den Durchflussmengenbefehl (Qi) und die Betriebsquantität (Vq) von der Druck-Durchflussmengen-Steuereinheit (40) repräsentieren, und zum Ausgeben eines Druckbefehls, der mit den Grenzeigenschaften versehen ist.
  6. Konfluenzsteuersystem nach Anspruch 5, wobei
    die Grenzeigenschaften setzende Einheit (41) den Druckbefehl, der mit den Grenzeigenschaften versehen ist, berechnet, auf der Basis der Gleichungen (1) und (2): Vq 0 Pi_C = Pi
    Figure imgb0021
    0 < Vq Qi Pi_C = Pi Qi CF Vq / Qi
    Figure imgb0022
    wobei Pi_C der mit den Grenzeigenschaften versehene Druckbefehl ist,
    Vq die Betriebsquantität, ausgegeben von der Druck-Durchflussmengen-Steuereinheit (40), ist,
    Pi der Druckbefehl ist,
    Qi der Durchflussmengenbefehl ist, und
    CF eine vorbestimmte Konstante ist, die eine Grenzbreite repräsentiert.
EP08871487.8A 2008-01-22 2008-12-18 Konfluenzsteuersystem Not-in-force EP2246576B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008011186A JP4548488B2 (ja) 2008-01-22 2008-01-22 合流制御システム
PCT/JP2008/073087 WO2009093399A1 (ja) 2008-01-22 2008-12-18 合流制御システム

Publications (3)

Publication Number Publication Date
EP2246576A1 EP2246576A1 (de) 2010-11-03
EP2246576A4 EP2246576A4 (de) 2013-11-20
EP2246576B1 true EP2246576B1 (de) 2017-07-19

Family

ID=40900913

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08871487.8A Not-in-force EP2246576B1 (de) 2008-01-22 2008-12-18 Konfluenzsteuersystem

Country Status (6)

Country Link
EP (1) EP2246576B1 (de)
JP (1) JP4548488B2 (de)
KR (1) KR101143022B1 (de)
CN (1) CN101910646B (de)
TW (1) TW200934959A (de)
WO (1) WO2009093399A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112153A (ja) * 2009-11-26 2011-06-09 Daikin Industries Ltd 液圧装置
CN104179736B (zh) * 2014-08-15 2016-08-24 徐工集团工程机械股份有限公司科技分公司 一种工程机械定量泵调速液压系统
CN104564862B (zh) * 2015-01-06 2018-08-07 浙江大学 一种组合式泵控缸电液控制系统
CN104806588B (zh) * 2015-04-01 2017-08-25 广西柳工机械股份有限公司 双泵合流液压控制系统
CN108799221A (zh) * 2018-07-04 2018-11-13 武汉商学院 注塑机液压动力系统
CN108757651A (zh) * 2018-08-20 2018-11-06 杭叉集团股份有限公司 电动叉车及其液压控制系统

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679690U (de) * 1979-11-22 1981-06-27
JPS57127870U (de) * 1981-02-05 1982-08-09
JPS59176513U (ja) * 1983-05-12 1984-11-26 小島プレス工業株式会社 射出成形機における省エネ装置
JPS60245806A (ja) * 1984-05-18 1985-12-05 Nissei Plastics Ind Co 合流回路
JPS6313903A (ja) * 1986-07-04 1988-01-21 Fukushima Seisakusho:Kk 一定圧力液圧源
JPH0792061B2 (ja) * 1986-10-30 1995-10-09 日精樹脂工業株式会社 射出成形機の制御装置
JP2859878B2 (ja) * 1988-06-17 1999-02-24 ダイキン工業株式会社 可変容量形ポンプの制御装置
JPH0752390Y2 (ja) * 1989-11-27 1995-11-29 油研工業株式会社 油圧供給装置
JPH0478305A (ja) * 1990-07-17 1992-03-12 Sumitomo Heavy Ind Ltd 油圧制御回路
JPH0478306A (ja) 1990-07-17 1992-03-12 Sumitomo Heavy Ind Ltd 油圧制御回路
JP2950941B2 (ja) * 1990-08-22 1999-09-20 株式会社不二越 可変容量形ポンプ
JP3171473B2 (ja) * 1992-01-17 2001-05-28 株式会社トキメック サーボモータドライブ油圧ポンプの流量・圧力制御装置
JPH05338000A (ja) * 1992-06-08 1993-12-21 Toshiba Mach Co Ltd 射出成形機等のポンプ駆動用モータ制御装置
JPH08253955A (ja) * 1995-01-20 1996-10-01 Komatsu Ltd 建設機械用油圧回路
JP2000249103A (ja) * 1999-03-02 2000-09-12 Daikin Ind Ltd 液圧回路
JP4137361B2 (ja) * 1999-04-05 2008-08-20 東芝機械株式会社 射出成形機における油圧ポンプ駆動用電動機の駆動制御方法および装置
JP3415061B2 (ja) * 1999-04-05 2003-06-09 東芝機械株式会社 射出成形機における油圧ポンプ駆動用電動機の駆動制御方法および装置
JP4635282B2 (ja) * 1999-09-24 2011-02-23 ダイキン工業株式会社 自律形インバータ駆動油圧ユニット
JP2001193706A (ja) * 2000-01-04 2001-07-17 Toshiba Mach Co Ltd 油圧駆動装置の油圧回路
JP2002144100A (ja) * 2000-11-15 2002-05-21 Murata Mach Ltd 油圧式パンチプレス
JP3799366B2 (ja) * 2001-08-30 2006-07-19 三菱重工プラスチックテクノロジー株式会社 射出成形機及びその制御方法
JP3863785B2 (ja) * 2002-01-21 2006-12-27 株式会社不二越 両方向可変吐出形ポンプの圧力・流量制御方法及び装置
JP4167842B2 (ja) * 2002-03-27 2008-10-22 株式会社日本製鋼所 射出成形機の油圧制御方法および制御装置
JP5196001B2 (ja) * 2011-09-29 2013-05-15 東洋紡株式会社 透明導電性フィルム及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP2009174572A (ja) 2009-08-06
CN101910646B (zh) 2013-07-31
EP2246576A4 (de) 2013-11-20
CN101910646A (zh) 2010-12-08
EP2246576A1 (de) 2010-11-03
KR20100098716A (ko) 2010-09-08
KR101143022B1 (ko) 2012-05-14
WO2009093399A1 (ja) 2009-07-30
TWI371534B (de) 2012-09-01
JP4548488B2 (ja) 2010-09-22
TW200934959A (en) 2009-08-16

Similar Documents

Publication Publication Date Title
EP2246576B1 (de) Konfluenzsteuersystem
US9512918B2 (en) Speed control system for a hydrostatic transmission
JP5541540B2 (ja) 複数の可変負荷を駆動するための、定容量ポンプを含む油圧システム及びその動作方法
CN104093995B (zh) 液压闭合回路系统
US9140275B2 (en) Hydraulic drive and method for controlling such a hydraulic drive
WO1990008910A1 (en) Hydraulic driving running apparatus
EP1830066B1 (de) Hydraulische Steuervorrichtung für eine Bearbeitungsmaschine
EP3067473A1 (de) Hybride arbeitsmaschine
WO2001075309A1 (fr) Procede et dispositif de commande de pompe
US9732770B2 (en) Drive control system of operating machine, operating machine including drive control system, and drive control method of operating machine
EP3591241B1 (de) Arbeitsmaschine
US9400003B2 (en) Hydraulic pump control system for construction machinery
JPH0599201A (ja) 油圧装置の能力を制限する方法及び装置
CN102686808A (zh) 工程机械的液压泵控制装置及控制方法
JP6025432B2 (ja) ハイドロスタティック式の駆動システム
KR20160145056A (ko) 제어 장치 및 작업 기계
CN103635689B (zh) 液压单元
CN210715336U (zh) 一种软启动静液压驱动系统
US8429908B2 (en) Hydraulic system
KR20230054726A (ko) 유압 액티브 서스펜션 유량 제어 시스템
TW201124630A (en) Hydraulic device
JP4720801B2 (ja) クレーンウインチのシリーズ油圧回路
JP2007333111A (ja) ポンプ流量の制御方法および制御装置
US11781285B2 (en) Construction machine
CN216241552U (zh) 一种泵送液压系统及湿喷机

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100819

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20131022

RIC1 Information provided on ipc code assigned before grant

Ipc: F15B 11/02 20060101AFI20131015BHEP

Ipc: F15B 11/17 20060101ALI20131015BHEP

17Q First examination report despatched

Effective date: 20140708

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170302

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 910680

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008051253

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170719

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 910680

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171019

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20171124

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171020

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171119

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171019

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20171116

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008051253

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

26N No opposition filed

Effective date: 20180420

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171218

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171218

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180102

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171218

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20081218

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008051253

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190702

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181218

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719