EP2245133A1 - Granulat - Google Patents

Granulat

Info

Publication number
EP2245133A1
EP2245133A1 EP08870061A EP08870061A EP2245133A1 EP 2245133 A1 EP2245133 A1 EP 2245133A1 EP 08870061 A EP08870061 A EP 08870061A EP 08870061 A EP08870061 A EP 08870061A EP 2245133 A1 EP2245133 A1 EP 2245133A1
Authority
EP
European Patent Office
Prior art keywords
dyes
violet
sokalan
silica
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08870061A
Other languages
English (en)
French (fr)
Other versions
EP2245133B1 (de
Inventor
Stephen Norman Batchelor
Jayne Michelle Bird
Andrew Paul Chapple
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unilever PLC
Unilever NV
Original Assignee
Unilever PLC
Unilever NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever PLC, Unilever NV filed Critical Unilever PLC
Priority to EP08870061A priority Critical patent/EP2245133B1/de
Publication of EP2245133A1 publication Critical patent/EP2245133A1/de
Application granted granted Critical
Publication of EP2245133B1 publication Critical patent/EP2245133B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0034Fixed on a solid conventional detergent ingredient
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0084Antioxidants; Free-radical scavengers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/40Dyes ; Pigments
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • C11D3/502Protected perfumes
    • C11D3/505Protected perfumes encapsulated or adsorbed on a carrier, e.g. zeolite or clay

Definitions

  • the present invention relates to the reduction in migration of actives from granules.
  • Powder detergents for clothes washing are formulated at high pH and often contain percarbonate or perborate as a bleach.
  • high performance organic chemicals such as anti-oxidants, shading dyes and shading pigments may be added to the formulation. These compounds are frequently chemically unstable to high pH and bleach, so that on storage they are destroyed. To prevent this, they may be segregated from the formulation, by adding them to the formulation in separate post-dosed granules.
  • An acidic polymer may be added to the granule used to increase stability as described in WO2007/039042 (Unilever) .
  • non-ionic surfactants in such granules, to initially mix the HPOCs in and to aid dispersion and delivery of the ingredients in the wash, as described in WO2006/053598 (Unilever) . This is especially the case when the HPOCs are hydrophobic materials.
  • the non-ionic containing granules leach non-ionic over the whole formulation, again exposing the HPOCs to high pH and bleach.
  • the problem is particularly severe in powder detergent formulations that contain high levels of non-ionic surfactant.
  • the leaching from the granule can also lead to powder discolouration, especially for dyes and pigments.
  • the present invention provides a granule comprising:
  • the non-ionic surfactant having the HPOC mixed therein is in contact with the silica and coated with the binder .
  • High performance organic chemicals are organic chemicals added to the formulation at low levels, preferably between 0.00001 to 0.5 wt% to give benefits beyond detergency to the user .
  • the HPOC is limited to an anti-oxidant, a shading dyes, a shading pigment or mixtures thereof.
  • the HPOC is most preferably a dye.
  • Dyes preferably selected from the groups of basic dye, acid dyes, direct dyes, hydrophobic dyes selected from solvent dyes and disperse dyes.
  • Dyes may be selected from those listed in the colour index
  • Blue and violet thiazolium mono-azo dyes may also be used as described in WO 2007/084729.
  • the granule contains 0.01 to 1.0 wt% of a shading dye for fabric whiteness.
  • the shading dye is preferably selected from:
  • Direct dyes Direct violet and direct blue dyes are preferred.
  • the dye are bis or tris - azo dyes.
  • the carcinogenic benzidene based dyes are not preferred.
  • the direct dye is a direct violet of the following structure
  • Ri is hydrogen or alkyl
  • R2 is hydrogen, alkyl or substituted or unsubstituted aryl, preferably phenyl
  • R3 and R4 are independently hydrogen or alkyl
  • n is 0, 1 or 2, preferably 1 or 2.
  • Preferred dyes are direct violet 7, direct violet 9, direct violet 11, direct violet 26, direct violet 31, direct violet 35, direct violet 40, direct violet 41, direct violet 51, and direct violet 99.
  • the direct dye may be covalently linked to a photobleach, for example as described in WO2006/024612.
  • Cotton substantive acid dyes give benefits to cotton containing garments.
  • Preferred dyes and mixes of dyes are blue or violet.
  • Preferred acid dyes are:
  • R a , R b , R c and R d are selected from: H, an branched or linear Cl to C7-alkyl chain, benzyl a phenyl, and a naphthyl; the dye is substituted with at least one SC>3 ⁇ or -COO ⁇ group; the B ring does not carry a negatively charged group or salt thereof; and the A ring may further substituted to form a naphthyl; the dye is optionally substituted by groups selected from: amine, methyl, ethyl, hydroxyl, methoxy, ethoxy, phenoxy, Cl, Br, I, F, and NO 2 .
  • Preferred azine dyes are: acid blue 98, acid violet 50, and acid blue 59, more preferably acid violet 50 and acid blue 98.
  • the composition may comprise one or more hydrophobic dyes selected from benzodifuranes, methine, triphenylmethanes, napthalimides, pyrazole, napthoquinone, anthraquinone and mono-azo or di-azo dye chromophores .
  • Hydrophobic dyes are dyes which do not contain any charged water solubilising group. Hydrophobic dyes may be selected from the groups of disperse and solvent dyes. Blue and violet anthraquinone and mono-azo dye are preferred.
  • Preferred dyes include solvent violet 13, disperse violet 27 disperse violet 26, disperse violet 28, disperse violet 63 and disperse violet 77.
  • Reactive dyes are dyes which contain an organic group capable of reacting with cellulose and linking the dye to cellulose with a covalent bond. They deposit onto cotton. Preferably the reactive group is hydrolysed or the dye has been reactive group has been reacted with an organic species such as a polymer, so as to the link the dye to this species. Dyes may be selected from the reactive violet and reactive blue dyes listed in the colour index.
  • Shading photo-bleaches are dyes which form reactive bleach species on exposure to light. They are best used in combination with other shading dyes and pigments to give a blue or violet colour.
  • the photo-bleach molecule absorbs light and attains an electronical excited state, PB*.
  • This electronically excited state is quenched by triplet oxygen, 3 O 2 , in the surroundings to form singlet 1 O 2 .
  • Singlet oxygen is a highly reactive bleach.
  • Suitable Shading photo-bleaches may be selected from, water soluble phthalocyanine compounds, particularly metallated phthalocyanine compounds where the metal is Zn or Al-Zl where Zl is a halide, sulphate, nitrate, carboxylate, alkanolate or hydroxyl ion.
  • the phthalocyanine has 1-4 SO3X groups covalently bonded to it where X is an alkali metal or ammonium ion.
  • X alkali metal or ammonium ion
  • Xanthene type dyes are preferred, particularly based on the structure :
  • the dye may be substituted by halogens and other elements/groups.
  • Particularly preferred examples are Food Red 14 and Rose Bengal, Phloxin B, Eosin Y.
  • Basic dyes are organic dyes that carry a net positive charge. They deposit onto cotton. They are of particular utility for used in composition that contain predominantly cationic surfactants. Dyes may be selected from the basic violet and basic blue dyes listed in the colour index. Preferred examples include triarylmethane basic dyes, methane basic dye, anthraquinone basic dyes, basic blue 16, basic blue 65, basic blue 66, basic blue 67, basic blue 71, basic blue 159, basic violet 19, basic violet 35, basic violet 38, basic violet 48; basic blue 3, basic blue 75, basic blue 95, basic blue 122, basic blue 124, basic blue 141.
  • Pigments are coloured particles preferably with an average particle size in the range of 0.01 to 0.1 micron size, which are practically insoluble in aqueous medium that contain surfactants.
  • Preferred pigments are blue or violet.
  • Pigments may be selected from the blue and blue pigments listed in the colour index. Inorganic pigments such as pigment blue 29 or pigment pigment violet 15 may be used, however organic pigments are preferred.
  • Preferred organic pigments are pigment violet 1, 1:1, 1:2, 2, 3, 5:1, 13, 19, 23, 25, 27, 31, 32, 37, 39, 42, 44, 50 and Pigment blue 1, 2, 9, 10, 14, 15, 15:1, 15:2, 15:3, 15:4, 15:6, 16, 18, 19, 24:1, 25, 56, 60, 61, 62, 66, 75, 79 and 80.
  • More preferred pigments are pigment violet 3, 13, 23, 27, 37, 39, pigment blue 14, 25, 66 and 75.
  • pigment violet 23 The most preferred is pigment violet 23.
  • ANTIOXIDANT One class of anti-oxidants suitable for use in the present invention is alkylated phenols having the general formula:
  • RJx wherein R is C1-C22 linear or branched alkyl, preferably methyl or branched C3-C6 alkyl; C3-C6 alkoxy, preferably methoxy; Rl is a C3-C6 branched alkyl, preferably tert- butyl; x is 1 or 2.
  • Hindered phenolic compounds are preferred as antioxidant.
  • Another class of anti-oxidants suitable for use in the present invention is a benzofuran or benzopyran derivative having the formula:
  • Rl and R2 are each independently alkyl or Rl and R2 can be taken together to form a C5-C6 cyclic hydrocarbyl moiety;
  • B is absent or CH2 ;
  • R4 is C1-C6 alkyl;
  • R5 is hydrogen or -C(O)R3 wherein R3 is hydrogen or C1-C19 alkyl;
  • R6 is C1-C6 alkyl;
  • R7 is hydrogen or C1-C6 alkyl;
  • X is - CH2OH, or -CH2A wherein A is a nitrogen comprising unit, phenyl, or substituted phenyl.
  • Preferred nitrogen comprising A units include amino, pyrrolidino, piperidino, morpholino, piperazino, and mixtures thereof.
  • antioxidants are found as follows. A derivative of ⁇ -tocopherol, beta-tocopherol, gamma- tocopherol, delta-tocophero, and alkyl esters of gallic acid, especially octyl gallate and dodecyl gallate.
  • suitable antioxidants are the class of hindered amine light stabilisers (HALS), particularly those based 2,2,6, 6-tetramethylpipiridines .
  • Non-limiting examples of anti-oxidants suitable for use in the present invention include phenols inter alia 2,6-di- tert-butylphenol, 2, 6-di-tert-butyl-4-methylphenol, mixtures of 2 and 3- tert-butyl-4-methoxyphenol .
  • Mixtures of antioxidants may be use and in particular mixtures that have synergic antioxidant effects as found in, for example, WO02/072746.
  • Preferred non-ionic surfactants are, for example, polyethoxylated alcohols, ethoxylated alkyl phenols, anhydrosorbitols, and alkoxylated anhydrosorbitol esters.
  • An example of a preferred nonionic surfactant is a polyethoxylated alcohol manufactured and marketed by the Shell Chemical Company under the trademark "Neodol”.
  • Neodol 25-7 which is a mixture of 12 to 15 carbon chain length alcohols with about 7 ethylene oxide groups per molecule; Neodol 23-65, a C12-13 mixture with about 6.5 moles of ethylene oxide; Neodol 25-9, a C12-13 mixture with about 9 moles of ethylene oxide; and Neodol 45-7, a C14-15 mixture with about seven moles of ethylene oxide.
  • nonionic surfactants useful in the present invention include trimethyl nonyl polyethylene glycol ethers such as those, manufactured and marketed by Union Carbide Corporation under the Trademark Tergitol, octyl phenoxy polyethoxy ethanols sold by Rohm and Haas under the Trademark Triton, and polyoxyethylene alcohols, such as Brij 76 and Brij 97, trademarked products of Atlas Chemical Co.
  • the hydrophilic lipophilic balance (HLB) is preferably below about 13, and more preferably below 10.
  • the silica has a pore volume of from 0.2 to 2.5 ml/g, most preferably 1.2 to 2 ml/g.
  • the pore volume is measured by mercury intrusion porosimetry or water saturation method at 293K.
  • the water saturation method is preferred; here a known weight of the silica is slowly mixed with a known volume of water, such that excess water is present.
  • the container is sealed and left till the silica becomes fully saturated (i.e. all pores are filled) .
  • the excess water is then removed and the volume measured. Pore volume is then given by the equation:
  • the pore volume served to provide cavities into which the non-ionic/HPOC migrates during application.
  • the silica has an average particle size, APS, from 0.1 to 100 microns, preferably 1 to 15 microns. Preferably this is as measured by a laser diffraction particle size analyser, preferably a Malvern HP with 100mm lens .
  • the silica is a neutral or acidic silica.
  • the silica is amorphous.
  • the silica is without a wax surface treatment. This permits ready delivery of the HPOCs to the wash medium.
  • a binder is a material used to bind together two or more other materials in mixtures. Its two principal properties are adhesion and cohesion .
  • the binder is other than a non- ionic surfactant. Binders are standard in the art of laundry detergent granules, examples of which are: Sokalan® CP45, Sokalan® CP5, ethylene glycol, surfactants, anionic surfactants, polyethylene glycol, polyvinyl pyrrolidone, polyacrylates, citric acid and mixtures thereof.
  • the binder has a melting point above 30 0 C.
  • the binder is selected from the group consisting of a polyacrylate, polyethylene glycol, and polyacrylate/maleate copolymer.
  • the binder may serve as a coating agent and a cogranulent for the silica particles.
  • Suitable polymers for use herein are water-soluble.
  • water-soluble it is meant herein that the polymers have a solubility greater than 5 g/1 at 20 0 C in demineralised water .
  • the binder is preferably an acidic polymer.
  • an acidic polymer it is meant herein that a 1% solution of said polymers has a pH of less than 7, preferably less than 5.5.
  • Suitable polymers for use herein have a molecular weight in the range of from 1000 to 280,000, preferably from 1500 to 150, 000.
  • Suitable polymers which meet the above criteria and are therefore particularly useful in the present invention, include those having the following empirical formula I
  • the proportion of M being H in such polymers is preferably such as to ensure that the polymer is sufficiently acidic to meet the acidity criteria as hereinbefore defined.
  • Polymers according to formula I are known in the field of laundry detergents, and are typically used as chelating agents, as for instance in GB-A-I, 597, 756.
  • Preferred polycarboxylate polymers fall into several categories.
  • a first category belongs to the class of copolymeric polycarboxylate polymers which, formally at least, are formed from an unsaturated polycarboxylic acid such as maleic acid, citraconic acid, itaconic acid and mesaconic acid as first monomer, and an unsaturated monocarboxylic acid such as acrylic acid or an alpha -C1-C4 alkyl acrylic acid as second monomer.
  • preferred polycarboxylate polymers of this type are those in which X is CHO, R3 is H or Cl-4 alkyl, especially methyl, p is from about 0.1 to about 1.9, preferably from about 0.2 to about 1.5, n averages from about 10 to about 1500, preferably from about 50 to about 1000, more preferably from 100 to 800, especially from 120 to 400 and Y comprises monomer units of formula II
  • Such polymers are available from BASF under the trade name Sokalan® CP5 (neutralised form) and Sokajan® CP45 (acidic form) .
  • Binder materials are commercially readily available.
  • the water soluble polymers of the Sokalan® type sold by BASF® are preferred.
  • the granule is preferably of the size from 250 to 1400 microns.
  • the granule size is as determined by passing through a mesh sieve. Preferably the size is in the range...
  • the dye solvent violet 13 was mixed in non-ionic surfactant (7EO) to form a 0.5 wt% solution.
  • the non-ionic was added to the carrier in a high shear mixer. Following this the binder was added to granulate the mixture. There resultant granules were dried in an oven at 353K finally sieved to give granules in the size range 500 to 1000 microns.
  • the granules had the following composition. All percentages refer to weight.
  • Granule 5 71% bentonite 17 12% CP5 Gasil 230 is a neutral silica with an APS of 3.6 microns and a pore volume of 1.6 ml/g.
  • Gasil 200DF is an acidic silica with an APS of 4.3 microns and a pore volume of 0.4 ml/g.
  • Gasil 200TP is similar to Gasil 200DF.
  • Formulation (1) surfactant system: 18% sodium LAS. Builder system: 28% Sodium tripolyphosphate, sodium carbonate and sodium disilicate. Bleach system: none. Remainder sodium sulphate .
  • Formulation (2) surfactant system: 7% sodium LAS, 3% non- ionic (7EO) .
  • Builder system 45% Sodium tripolyphosphate, sodium carbonate, sodium disilicate.
  • Bleach system none. Remainder sodium sulphate.
  • Formulation (3) surfactant system: 10% sodium LAS, 5% non- ionic (7EO) .
  • Builder system 35% zeolite 4A, sodium carbonate, Bleach systems 16% sodium percarbonate and TAED. Remainder sodium sulphate.
  • Granule 1 the silica granule with high level of CP5 gave the best overall performance.
  • Performance test showed that some dye was also destroyed in formulation (3) with time, this was least with granule (2) with the acidic binder CP13.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Biochemistry (AREA)
  • Detergent Compositions (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Cosmetics (AREA)
  • Anti-Oxidant Or Stabilizer Compositions (AREA)
EP08870061A 2008-01-10 2008-12-17 Granulat Active EP2245133B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08870061A EP2245133B1 (de) 2008-01-10 2008-12-17 Granulat

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08150143 2008-01-10
EP08870061A EP2245133B1 (de) 2008-01-10 2008-12-17 Granulat
PCT/EP2008/067794 WO2009087033A1 (en) 2008-01-10 2008-12-17 Granules

Publications (2)

Publication Number Publication Date
EP2245133A1 true EP2245133A1 (de) 2010-11-03
EP2245133B1 EP2245133B1 (de) 2012-05-23

Family

ID=39490983

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08870061A Active EP2245133B1 (de) 2008-01-10 2008-12-17 Granulat

Country Status (8)

Country Link
EP (1) EP2245133B1 (de)
CN (1) CN101910396B (de)
AR (1) AR070132A1 (de)
BR (1) BRPI0821868A2 (de)
CL (1) CL2009000033A1 (de)
ES (1) ES2388018T3 (de)
WO (1) WO2009087033A1 (de)
ZA (1) ZA201003971B (de)

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2166078B1 (de) 2008-09-12 2018-11-21 The Procter & Gamble Company Extrudierte Aufheller enthaltende Partikel für Waschmittel
CN106978403B (zh) 2010-04-26 2021-12-14 诺维信公司 酶颗粒剂
US8470760B2 (en) * 2010-05-28 2013-06-25 Milliken 7 Company Colored speckles for use in granular detergents
US20140371435A9 (en) 2011-06-03 2014-12-18 Eduardo Torres Laundry Care Compositions Containing Thiophene Azo Dyes
CN107475235B (zh) 2011-06-20 2022-09-13 诺维信公司 颗粒组合物
EP2723858B1 (de) 2011-06-24 2017-04-12 Novozymes A/S Polypeptide mit protease-aktivität und diese kodierende polynukleotide
PL3543333T3 (pl) 2011-06-30 2022-06-13 Novozymes A/S Sposób badania przesiewowego alfa-amylaz
US10711262B2 (en) 2011-07-12 2020-07-14 Novozymes A/S Storage-stable enzyme granules
CN103748219A (zh) 2011-08-15 2014-04-23 诺维信公司 具有纤维素酶活性的多肽以及编码它的多核苷酸
EP2751266B1 (de) 2011-09-22 2017-03-29 Novozymes A/S Polypeptide mit proteaseaktivität und diese kodierende polynukleotide
WO2013076269A1 (en) 2011-11-25 2013-05-30 Novozymes A/S Subtilase variants and polynucleotides encoding same
MX2014007446A (es) 2011-12-20 2014-08-01 Novozymes As Variantes de subtilasa y polinucleotidos que las codifican.
US9801398B2 (en) 2012-01-26 2017-10-31 Novozymes A/S Use of polypeptides having protease activity in animal feed and detergents
MX350713B (es) 2012-02-17 2017-09-14 Novozymes As Variantes de subtilisina y polinucleotidos que las codifican.
US20150064773A1 (en) 2012-03-07 2015-03-05 Novozymes A/S Detergent Composition and Substitution of Optical Brighteners in Detergent Composition
MX2014011154A (es) 2012-03-19 2014-12-10 Procter & Gamble Composiciones que contienen colorantes para el cuidado de ropa.
AR090971A1 (es) 2012-05-07 2014-12-17 Novozymes As Polipeptidos que tienen actividad de degradacion de xantano y polinucleotidos que los codifican
MX364390B (es) 2012-06-20 2019-04-25 Novozymes As Uso de polipeptidos que tienen actividad proteasa en alimentos para animales y detergentes.
CN104869841A (zh) 2012-12-21 2015-08-26 诺维信公司 具有蛋白酶活性的多肽和编码它的多核苷酸
US9902946B2 (en) 2013-01-03 2018-02-27 Novozymes A/S Alpha-amylase variants and polynucleotides encoding same
US20160083703A1 (en) 2013-05-17 2016-03-24 Novozymes A/S Polypeptides having alpha amylase activity
EP2808372A1 (de) 2013-05-28 2014-12-03 The Procter and Gamble Company Oberflächenbehandlungszusammensetzungen mit fotochromen Farbstoffen
CN114634921A (zh) 2013-06-06 2022-06-17 诺维信公司 α-淀粉酶变体以及对其进行编码的多核苷酸
US9828569B2 (en) 2013-06-13 2017-11-28 The Procter & Gamble Company Granular laundry detergent
WO2014207224A1 (en) 2013-06-27 2014-12-31 Novozymes A/S Subtilase variants and polynucleotides encoding same
WO2014207227A1 (en) 2013-06-27 2014-12-31 Novozymes A/S Subtilase variants and polynucleotides encoding same
CN105358670A (zh) 2013-07-04 2016-02-24 诺维信公司 具有抗再沉积效果的具黄原胶裂解酶活性的多肽与编码它们的多核苷酸
RU2670946C9 (ru) 2013-07-29 2018-11-26 Новозимс А/С Варианты протеазы и кодирующие их полинуклеотиды
EP3339436B1 (de) 2013-07-29 2021-03-31 Henkel AG & Co. KGaA Waschmittelzusammensetzung mit proteasevarianten
WO2015014803A1 (en) 2013-07-29 2015-02-05 Novozymes A/S Protease variants and polynucleotides encoding same
US9834682B2 (en) 2013-09-18 2017-12-05 Milliken & Company Laundry care composition comprising carboxylate dye
CN105555935A (zh) 2013-09-18 2016-05-04 宝洁公司 包含羧化物染料的衣物洗涤护理组合物
CN105555936A (zh) 2013-09-18 2016-05-04 宝洁公司 包含羧化物染料的衣物洗涤护理组合物
CA2920901A1 (en) 2013-09-18 2015-03-26 The Procter & Gamble Company Laundry care compositions containing thiophene azo carboxylate dyes
WO2015049370A1 (en) 2013-10-03 2015-04-09 Novozymes A/S Detergent composition and use of detergent composition
EP3453757B1 (de) 2013-12-20 2020-06-17 Novozymes A/S Polypeptide mit proteaseaktivität und polynukleotide, die für diese kodieren
WO2015112339A1 (en) 2014-01-22 2015-07-30 The Procter & Gamble Company Fabric treatment composition
WO2015112338A1 (en) 2014-01-22 2015-07-30 The Procter & Gamble Company Method of treating textile fabrics
EP3097174A1 (de) 2014-01-22 2016-11-30 The Procter & Gamble Company Verfahren zur behandlung von textilstoffen
WO2015112341A1 (en) 2014-01-22 2015-07-30 The Procter & Gamble Company Fabric treatment composition
EP3114272A1 (de) 2014-03-05 2017-01-11 Novozymes A/S Zusammensetzungen und verfahren zur verbesserung der eigenschaften von cellulosischen textilmaterialien mit xyloglucan-endotransglycosylase
EP3114219A1 (de) 2014-03-05 2017-01-11 Novozymes A/S Zusammensetzungen und verfahren zur verbesserung der eigenschaften von nichtcellulosischen textilmaterialien mit xyloglucan-endotransglycosylase
CN106103708A (zh) 2014-04-01 2016-11-09 诺维信公司 具有α淀粉酶活性的多肽
JP2017518407A (ja) 2014-05-06 2017-07-06 ミリケン・アンド・カンパニーMilliken & Company ランドリーケア組成物
CN106414729A (zh) 2014-06-12 2017-02-15 诺维信公司 α‑淀粉酶变体以及对其进行编码的多核苷酸
WO2016001450A2 (en) 2014-07-04 2016-01-07 Novozymes A/S Subtilase variants and polynucleotides encoding same
EP3878960A1 (de) 2014-07-04 2021-09-15 Novozymes A/S Subtilasevarianten und polynukleotide zur codierung davon
US10287562B2 (en) 2014-11-20 2019-05-14 Novoszymes A/S Alicyclobacillus variants and polynucleotides encoding same
WO2016087617A1 (en) 2014-12-04 2016-06-09 Novozymes A/S Subtilase variants and polynucleotides encoding same
WO2016096714A1 (en) 2014-12-15 2016-06-23 Henkel Ag & Co. Kgaa Detergent composition comprising subtilase variants
EP3292173A1 (de) 2015-05-04 2018-03-14 Milliken & Company Leuko-triphenylmethanfarbstoffe als vergrauungshemmer in wäschepflegezusammensetzungen
EP3106508B1 (de) 2015-06-18 2019-11-20 Henkel AG & Co. KGaA Reinigungsmittelzusammensetzung mit subtilasevarianten
CN108012544A (zh) 2015-06-18 2018-05-08 诺维信公司 枯草杆菌酶变体以及编码它们的多核苷酸
CN108291212A (zh) 2015-10-14 2018-07-17 诺维信公司 多肽变体
CN108291215A (zh) 2015-10-14 2018-07-17 诺维信公司 具有蛋白酶活性的多肽以及编码它们的多核苷酸
CN109715792A (zh) 2016-06-03 2019-05-03 诺维信公司 枯草杆菌酶变体和对其进行编码的多核苷酸
JP6858850B2 (ja) 2016-07-13 2021-04-14 ザ プロクター アンド ギャンブル カンパニーThe Procter & Gamble Company バチルス・シビ(BACILLUS CIBI)DNase変異体及びその使用
US20180119056A1 (en) 2016-11-03 2018-05-03 Milliken & Company Leuco Triphenylmethane Colorants As Bluing Agents in Laundry Care Compositions
PL3476935T3 (pl) 2017-10-27 2022-03-28 The Procter & Gamble Company Kompozycje detergentowe zawierające odmiany polipeptydowe
WO2019081724A1 (en) 2017-10-27 2019-05-02 Novozymes A/S VARIANTS OF DNASE
WO2019201793A1 (en) 2018-04-17 2019-10-24 Novozymes A/S Polypeptides comprising carbohydrate binding activity in detergent compositions and their use in reducing wrinkles in textile or fabric.
EP3666869A1 (de) * 2018-12-10 2020-06-17 Clariant Plastics & Coatings Ltd Verkapselte farbstoffzusammensetzung und verfahren zur herstellung davon
EP3942032A1 (de) 2019-03-21 2022-01-26 Novozymes A/S Alpha-amylase-varianten und dafür codierende polynukleotide
EP3953462A1 (de) 2019-04-10 2022-02-16 Novozymes A/S Polypeptidvarianten
WO2021037895A1 (en) 2019-08-27 2021-03-04 Novozymes A/S Detergent composition
WO2021053127A1 (en) 2019-09-19 2021-03-25 Novozymes A/S Detergent composition
WO2021064068A1 (en) 2019-10-03 2021-04-08 Novozymes A/S Polypeptides comprising at least two carbohydrate binding domains
EP3892708A1 (de) 2020-04-06 2021-10-13 Henkel AG & Co. KGaA Reinigungszusammensetzungen mit dispersinvarianten
CN116507725A (zh) 2020-10-07 2023-07-28 诺维信公司 α-淀粉酶变体
WO2022171780A2 (en) 2021-02-12 2022-08-18 Novozymes A/S Alpha-amylase variants
EP4359518A1 (de) 2021-06-23 2024-05-01 Novozymes A/S Alpha-amylase-polypeptide

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0523287A1 (de) * 1991-07-18 1993-01-20 The Procter & Gamble Company Duftstoffzusätze für Textilweichmacherzusammensetzungen
DE102004020400A1 (de) * 2004-04-23 2005-11-17 Henkel Kgaa Parfümierte Feststoffe
ES2354367T3 (es) * 2004-11-22 2011-03-14 Unilever Plc Composiciones de tratamiento para lavado de ropa.
ZA200807030B (en) * 2006-02-25 2009-11-25 Unilever Plc Shading dye granule its use in a detergent formulation and process to make it

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009087033A1 *

Also Published As

Publication number Publication date
ZA201003971B (en) 2011-09-28
WO2009087033A1 (en) 2009-07-16
EP2245133B1 (de) 2012-05-23
CN101910396B (zh) 2012-10-17
ES2388018T3 (es) 2012-10-05
CN101910396A (zh) 2010-12-08
CL2009000033A1 (es) 2009-10-23
BRPI0821868A2 (pt) 2015-07-28
AR070132A1 (es) 2010-03-17

Similar Documents

Publication Publication Date Title
EP2245133B1 (de) Granulat
EP2268784B2 (de) Granulat mit reduzierter fleckenbildung
EP2288686B1 (de) Nuancierungsmittel
WO2009047127A1 (en) Granular detergent compositions with contrasting lamellar visual cues
EP1814974B1 (de) Wäschebehandlungsmittel
WO2007006357A1 (en) Dye delivery granules
WO2009047128A1 (en) Performance ingredients in film particles
JP4357837B2 (ja) 小袋中の液体組成物
CA2600385A1 (en) Detergent and bleach compositions
WO2003020867A1 (en) Perfumed coloured speckle composition and particulate laundry detergent compositions containing it
EP3969553B1 (de) Wäschezusammensetzung
ZA200209400B (en) Coloured speckle composition and particulate laundry detergent compositions containing it.
EP3775121B1 (de) Farbstoffgranulat
MXPA06006839A (es) Composicion para lavanderia.
US6117834A (en) Dye-transfer-inhibiting compositions and particulate detergent compositions containing them
EP2521764B1 (de) Waschmittelformulierung, die sprühgetrocknetes Granulat enthält
WO2008148669A1 (en) Mechanically sensitive laundry components and packaging therefor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100520

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C11D 17/00 20060101AFI20111116BHEP

Ipc: C11D 3/12 20060101ALI20111116BHEP

Ipc: C11D 3/40 20060101ALI20111116BHEP

Ipc: C11D 3/00 20060101ALI20111116BHEP

Ipc: C11D 3/50 20060101ALI20111116BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 559097

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008015935

Country of ref document: DE

Effective date: 20120719

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120523

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2388018

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20121005

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120823

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120923

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 559097

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120824

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120924

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130226

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008015935

Country of ref document: DE

Effective date: 20130226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120823

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081217

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151211

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20151214

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008015935

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170701

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161218

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20211224

Year of fee payment: 14

Ref country code: GB

Payment date: 20211222

Year of fee payment: 14

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220203 AND 20220209

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20211216

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231