EP2226895A2 - Antenne für den Empfang zirkular in einer Drehrichtung der Polarisation ausgestrahlter Satellitenfunksignale - Google Patents

Antenne für den Empfang zirkular in einer Drehrichtung der Polarisation ausgestrahlter Satellitenfunksignale Download PDF

Info

Publication number
EP2226895A2
EP2226895A2 EP10001881A EP10001881A EP2226895A2 EP 2226895 A2 EP2226895 A2 EP 2226895A2 EP 10001881 A EP10001881 A EP 10001881A EP 10001881 A EP10001881 A EP 10001881A EP 2226895 A2 EP2226895 A2 EP 2226895A2
Authority
EP
European Patent Office
Prior art keywords
antenna
loop
radiator
loop antenna
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10001881A
Other languages
English (en)
French (fr)
Other versions
EP2226895A3 (de
EP2226895B1 (de
Inventor
Stefan Lindenmeier
Heinz Lindenmeier
Jochen Hopf
Leopold Reiter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delphi Delco Electronics Europe GmbH
Original Assignee
Delphi Delco Electronics Europe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delphi Delco Electronics Europe GmbH filed Critical Delphi Delco Electronics Europe GmbH
Publication of EP2226895A2 publication Critical patent/EP2226895A2/de
Publication of EP2226895A3 publication Critical patent/EP2226895A3/de
Application granted granted Critical
Publication of EP2226895B1 publication Critical patent/EP2226895B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/32Vertical arrangement of element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/32Vertical arrangement of element
    • H01Q9/36Vertical arrangement of element with top loading

Definitions

  • the invention relates to an antenna for receiving circularly in a direction of rotation of the polarization of radiated satellite radio signals
  • Satellite radio signals are transmitted due to polarization rotations in the transmission path usually with circularly polarized electromagnetic waves.
  • program contents are transmitted, for example, in frequency bands closely adjacent to each other separated frequency bands, as in FIG. 1 is shown. This is done in the example of SDARS satellite broadcasting at a frequency of about 2.33 GHz in two adjacent frequency bands each with a bandwidth of 4 MHz with a spacing of the center frequencies of 8 MHz.
  • the signals are emitted by different satellites with a circularly polarized in one direction electromagnetic wave.
  • circularly polarized antennas are used to receive in the corresponding direction of rotation.
  • Such antennas are for example off DE-A-4008505 and DE-A-10163793 known.
  • This satellite broadcasting system is additionally supported by the regional emission of terrestrial signals in another, arranged between the two satellite signals frequency band of the same bandwidth. Similar satellite broadcasting systems are currently being planned.
  • the from the DE-A-4008505 known antenna is constructed on a substantially horizontally oriented conductive base and consists of crossed horizontal dipoles with V-shaped downwardly inclined, consisting of linear ladder parts Dipolhhann which are mechanically fixed at an azimuthal angle of 90 degrees to each other and at the top of a on the conductive base surface mounted linear vertical conductor are mounted.
  • the from the DE-A-10163793 known antenna is also constructed on a generally horizontally oriented conductive base and consists of crossed azimuthally mounted at 90 ° to each other frame structures. In both antennas, the mutually spatially offset by 90 ° antenna parts in the electrical phase are interconnected shifted by 90 ° to each other to generate the circular polarization.
  • Both types of antennas are particularly suitable for the reception of satellite signals emitted by high-flying satellites - so-called HEOS.
  • the signals of geostationary satellites - known as GEOS - are incident at lower elevation angles in regions remote from the equatorial zones.
  • the reception of such signals is possible with the two antenna types mentioned only with comparatively small antenna gain and therefore problematic due to the - due to economic reasons - weak transmitter power of the satellites. Added to this is the difficulty of designing antennas with a smaller height, which is imperative especially for mobile applications.
  • As further antennas of this type are known in the prior art patch antennas, which are also less efficient in terms of the reception at a low elevation angle.
  • the object of the invention is therefore to provide an antenna with a low profile, which is particularly suitable for the powerful reception of incident at low elevation angles circularly polarized in one direction of rotation emitted satellite signals.
  • an antenna of this type is advantageously combined in a common space with antenna structures, which also receive a circularly polarized field and which together with these antenna structures in an antenna diversity system or a system for digital beam shaping Azimuthal beam swing can be used.
  • This combination is particularly interesting for receiving systems in which signals from GEO satellites and HEO satellites in closely adjacent frequency bands are to be received equally.
  • the antenna combination is characterized by a particularly low mutual coupling of the antennas with each other.
  • the antenna for receiving circularly polarized satellite radio signals comprises at least two emitters connected to an antenna connector 28, each linearly polarized in a spatial direction and connected via a matching and phase shifter network 25, 31, and is characterized in that one of the emitters is formed as a loop antenna 14 substantially arranged in a horizontal plane conductor loop and the loop antenna 14 for their electrically effective shortening at least one bridged by a capacitor 16 interruption 5, in particular a plurality of spaced apart, bridged by capacitances 16 interruptions. At least one interruption 5 of the conductor loop forms a loop antenna connection point 3 of the loop antenna 14.
  • At least one further radiator 7 is present, which has a linear polarization and with its radiator junction 2 and with the loop antenna connection point 3 via a matching and phase shifting network 25, 23 is connected, which is so formed that, in reciprocal operation of the antenna as transmitting antenna, the radiation fields of the loop antenna 14 and the at least one further radiator 7 are superimposed in the far field of the antenna with different phases.
  • This at least one of the further radiators 7 has a polarization oriented perpendicular to the polarization of the loop antenna 14. All radiators are essentially formed of slender wire-like conductors similar ladder structures.
  • antennas which from the DE-A-4008505 and the DE-A-10163793 Problems arise from the fact that the individual antenna parts are placed on crossed at a right angle planes and these levels in addition to the conductive ground plane stand vertically.
  • Such antennas can not be produced sufficiently economically, as desired, for example, for use in the automotive industry. This applies in particular to the frequencies of several gigahertz common in satellite antennas, for which a particularly high mechanical accuracy is necessary in the interest of polarization R unit, the impedance matching and the reproducibility of the directional diagram in the series production of the antennas.
  • the required in antennas according to the present invention manufacturing tolerances can be maintained in an advantageous manner much easier.
  • Another very important advantage of the present invention results from the property that in addition to the horizontally polarized loop antenna 14 at least one further radiator 7 is present, which has a polarization oriented perpendicular to the polarization of the loop antenna 14. In the presence of terrestrially vertically polarized signals, this emitter can advantageously also be used to receive these signals.
  • the distribution of the currents on an antenna in receive mode depends on the terminator at the antenna junction.
  • the distribution of the currents on the antenna conductors relative to the supply current at the antenna connection point is independent of the source resistance of the supplying signal source and is thus clearly linked to the directional diagram and the polarization of the antenna.
  • the object of the invention with respect to polarization and radiation patterns on the basis of the design of the antenna structure for generating corresponding currents in the transmission mode of Antenna solved.
  • the object of the invention for the receiving operation is solved. All considerations made below about currents on the antenna structure and their phases or their phase reference point thus refer to the reciprocal operation of the receiving antenna as a transmitting antenna, unless the receiving mode is specifically addressed.
  • the object of the invention is directed to a receiving antenna, the properties of the antenna are described below for better traceability for the reciprocal operation of the antenna as a transmitting antenna, the transmission case but also applies to the directional diagrams of the receiving case due to the naturally valid reciprocity relationship.
  • the property is that according to the reciprocity law when operating the antenna as a transmitting antenna in the far field generated electric field strength vector even at relatively low elevation angles of the radiation describes a purely circular circular polarization with azimuthal omnidirectional in the technical sense.
  • phase-locked combination of the horizontally polarized loop antenna 14 with the at least one vertical emitter 7 is done by superposition of the distant radiation fields of the two emitters by 90 ° by correspondingly different phase supply and corresponding amplitude supply of the two antennas.
  • the distant radiation field in a plane perpendicular to the direction of propagation two mutually perpendicular and by 90 ° in phase differing field strength vectors are generated, which represent the desired circularly polarized field.
  • the phase reference points B - or else the phase centroids - of the two antennas coincide, which is achieved by rotationally symmetrical arrangement about the common center Z of the antennas.
  • the circular or polygonal loop antenna 14 arranged horizontally in a plane with a constant spacing 4 as the height h above the base surface 6.
  • This acts essentially similar to a loop antenna over a conductive surface.
  • the elevation angle of the main beam direction can be adjusted by selecting the height h and the horizontal extent-that is, the radius in a circular design of the loop antenna 14. In this case, a zero point in the vertical direction and in the horizontal direction can be achieved.
  • the achievement of a desired vertical directional pattern requires a horizontal extension of the loop antenna such that its total orbital length is no longer small compared to the free-space electrical wavelength ⁇ 0 .
  • the loop antenna into n equal portions of the cable length .DELTA.s is therefore ⁇ 0/8 divided by break points 5 ', which are connected to each other by inserting a capacitor.
  • the capacitances are preferably selected such that resonances occur at the operating frequency fm together with the properties of the line sections.
  • Such an antenna can advantageously for an azimuthally pure Rund characterizing be designed.
  • the at least one vertical radiator 7, which in the example of the Fig.2 is present in the center Z of the loop antenna 14 and whose azimuthal radiation pattern is also omnidirectional, resulting for the antenna according to the invention, the desired circularly polarized radiation field with pure omnidirectional.
  • the antenna according to the invention is advantageously suitable in particular for satellite radio reception in vehicles, where antennas with azimuthal omnidirectional characteristics are mounted on the electrically conductive vehicle outer skin.
  • Fig. 2 shows a circular loop antenna 14 with radius R, which may also be designed polygonal. At its center in the center Z is its phase reference point B. The structure is subdivided into "n" line sections, each with the length ⁇ s. The total orbital length is S. The antenna acts as a loop antenna with dimensions in the range of the wavelength, wherein nevertheless a homogeneous current distribution is achieved by dividing the structure and inserting capacitances 16 according to the invention. As a result, the length of the antenna is electrically shortened and creates a homogeneous, horizontally polarized electromagnetic field all around.
  • the loop antenna 14 is arranged at a constant height h above the conductive base 6. The main vertical beam direction can be adjusted by selecting the height h and the radius of the loop antenna 14. It can be achieved a zero point in the vertical direction and in the horizontal direction.
  • the conductor impedance of the circulating line over the conductive base 6 is Zw.
  • resonance can be set for the loop antenna 14, so that the antenna impedance occurring at the loop antenna connection point 3 can be made substantially real.
  • the line of length S is to be divided into a sufficient number of sections by insertion of capacitances 16.
  • .DELTA.s S / n made sufficiently small, so the equality is .DELTA.s all sections not necessarily required, as long as a capacitor 16 is inserted only after each section whose value-described upward criterion of the relative length .DELTA.s / ⁇ 0 of the calculated section.
  • radiator 7 is in the example of Fig. 2 in the center Z of the loop antenna 14, an electrically short, vertically oriented monopole 7a attached.
  • the deviation of the positioning of the monopole 7a from the center Z should not exceed in the interest of circularity of the radiation pattern of ⁇ 0 / 20th
  • a matching network 25 with Umsymmetrierglied 29 and a switched after phase shifter network 23 are connected via a two-wire line 26.
  • the radiator junction 2 of the monopole 7a is followed by the matching network 25 for impedance matching and the signals of the monopole 7a and the loop antenna are superimposed in the summing network 53; this in turn is connected to the antenna connection point 28.
  • the phase of the phase shifter network 23 and all the networks are adjusted in their interaction such that the radiation fields of the loop antenna 14 and the monopole 7a in the far field of the antenna with a phase difference of 90 ° and with equal intensity are superimposed.
  • the latter is designed according to the invention in such a way that it acts inductively high impedance with respect to the current flowing in the common mode longitudinal current, which is superimposed on the current in the push-pull current pair on the two conductors. It is thereby achieved that the two-wire line 26 does not influence the radiation field of the monopole 7a.
  • a two-wire line 26 there are a number of possibilities. In practice, for example, it can be advantageously produced by a printed on a support two-wire line, which is designed to increase the inductance as a meander. Additionally, by choosing its length, a desired phase relationship can be established.
  • the vertical radiation pattern can be filled to low elevation angles for these signals.
  • the trained as a rod antenna monopole 7a has in its vertical directional characteristic a similar main beam direction as the horizontally polarized loop antenna 14, but provides for low elevation angle a larger contribution than this.
  • both the weighting of the properties of the two antenna signals can be set differently and additionally the necessary phase condition can be maintained.
  • the influence of a symmetrical vertical feed line not in the center Z in the form of the symmetrical two-wire line 26 does not diminish the polarization purity of the loop antenna 14 itself.
  • the connection of one terminal on the unbalanced side of the matching and Umsymmetrierglieds 25, 29 for further switching of the antenna assembly is advantageously carried out using a guided over the conductive base 6 microstrip line 30.
  • the other terminal on the unbalanced side of Umsymmetrierglieds 29 is electrically connected to the conductive base 6 connected. Due to the symmetry properties of the two-wire line 26, the effects of the currents flowing toward one another in the opposite direction compensate each other sufficiently on the conductors of the two-wire line 26, so that these also do not influence the radiation properties of the loop antenna 14. As explained below, are However, with respect to the azimuthal radiation pattern of the monopole 7a, depending on the radius R of the loop antennas 14, a residual imbalance may occur.
  • both the axial ratio and the spatial orientation of the ellipse for elliptical polarization can be adjusted.
  • This adjustability can according to the invention in a very advantageous manner, for.
  • antenna diversity technologies are used to continuously optimize the receive power by current adjustment of the ellipticity of the polarization in the distorted by multipath propagation reception field.
  • a horizontally arranged loop antenna 14 is placed at a distance of about 1/10 of the wavelength above the conductive base 6.
  • the diameter of the loop antenna 14 is advantageously not chosen substantially smaller than 1/4 of the wavelength.
  • one with a capacity 16 with a reactance of about -200 ohms connected interruption point 5 is introduced at intervals of about 1/8 of the wavelength.
  • the loop antenna 14 By virtue of the capacitances 16 according to the invention, it is possible on the loop antenna 14 to achieve an azimuthally constant current distribution necessary for the round radiation, although the stretched length of the loop antennas 14 is not short in comparison to the wavelength ⁇ . On the other hand, this length is again necessary to effect a practical impedance of the loop antenna 14.
  • Figure 15 (a) For example, the vertical diagram of such an antenna according to the invention is shown.
  • the loop antenna 14 has an edge length of about 3 cm and a height h of 13 mm for the realization of both of the vertical directional diagram Fig. 15 (a) as well as a matching conductor characteristic impedance Zw proved to be favorable.
  • the satellite broadcasting system is additionally supported by the regionally radiating vertically polarized terrestrial signals in another frequency band closely adjacent to the frequency band of similar bandwidth, it is desirable to use the vertical radiation pattern for the vertical component of the electric field strength at low elevation angles fill.
  • the connection according to the invention of the loop antenna 14 and of the further polarized further radiator 7 - mostly realized as a vertical monopole - allows this aspect to be considered in a particularly advantageous manner.
  • Fig. 3 an antenna according to the invention is shown, wherein the further radiator 7, which is oriented perpendicular to the plane of the loop antenna 14, is formed from a group of monopoles 7a. These are arranged rotationally symmetrical to the center Z and within the loop antenna 14. The monopolies are connected to each other at their lower end via lines in the center Z and form there the radiator junction 2. In the not too large diameter of the annulus on which the monopoles 7a are arranged around the center Z and 7a is not too small number of monopolies the azimuthal directional diagram of the thus designed radiator 7 sufficiently omnidirectional.
  • Fig. 4 shows an advantageous embodiment of an antenna according to the invention similar to in FIG. 2 , wherein the loop antenna 14 for reducing the residual asymmetry of the arrangement with respect to the azimuthal directional diagram of the monopole 7 has two antenna connection points 3a, 3b opposite each other in the plane of symmetry SE, to which balancing and matching networks 25, 29 arranged in the loop plane are connected, their outputs via same phase shifter networks 23 are connected in parallel and connected to the two-wire line 26.
  • the arranged in the center Z further radiator 7 is designed as a monopoly 7b with horizontal, rotationally symmetrical to the center Z arranged ladder parts as roof capacity. These ladder parts are symmetrical to the plane of symmetry SE executed.
  • a further advantageous embodiment of the invention is similar to that shown in Figure four, but with conductor parts of the loop antenna 14 are used to form the rotationally symmetrical roof capacity 12.
  • the function of the loop antenna 14 is not affected by the connection of the roof capacitance 12 of the monopoly.
  • Fig. 14 is the antenna according to the invention as in Fig. 5 illustrated, but with a common radiator junction 2 for the common feed of the loop antenna 14 and the vertical monopoly with roof capacity 7b.
  • the circularly polarized field is formed by splitting the waves incident on the vertical monopole antenna and the horizontal arms of the roof capacitance 12 on the loop antenna 14 right and left, the distance to the next capacitance 16 on the loop antenna being to the right is selected differently than the distance to the next capacitance 16 on the loop antenna towards the left side.
  • the loop antenna is thus so to rotate around the z-axis against the Dachkapazi2011 that arise on the left and right sides different angular distances ⁇ and ⁇ between the horizontal arms of the roof capacity and the next capacity.
  • FIG. 6 shows a further advantageous embodiment of the invention according to the principle of operation of the antenna in Fig. 2 but with a vertical feed line 26 arranged in the center Z for supplying the loop antenna 14, the feed line 26 forming a vertical monopole 7a and the loop antenna 14 forming a roofing capacity 12 of the monopole 7.
  • the loop antenna 14 is formed with two antenna connection points 3a, 3b arranged symmetrically to one another and one matching network 25 each in the loop plane and with a central connection to the vertical feed line to the matching network 33, which is designed as a two-wire line 26.
  • the effects of the currents of the loop antenna 14 flowing in push-pull mode in the opposite direction compensate each other on the conductors of the two-wire line 26.
  • the reception voltage of the monopole 7a becomes at its radiator junction 2 as a common mode of the two-wire line 26 at one output and the receiving voltage of the loop antenna 14th is supplied as a push-pull mode of the two-wire line 26 at the other output of the matching network 33 to the power divider and phase shifter network 31 for amplitude and phase-different superposition of the signals at the antenna port 28.
  • Fig. 7 shows a further advantageous embodiment of the antenna according to the principle of operation of the antenna in Fig. 6 , but with a designed as a square with the center Z loop antenna 14, which by four arranged in a square, horizontally disposed and connected at their ends via capacitances 16 dipoles 21 with a connected via leads 18, centrally in the Phase reference point B arranged distribution network 10 is formed.
  • the dipole system acts as a roofing capacity of the vertical monopole formed in this manner, similar to FIG FIG. 5 explained.
  • the reception of horizontal or vertical electric field components is effected via the summation 34 or the difference formation 35 and the phase-different superimposition of the signals via the phase shifter network 23 and the summation network 53.
  • a further advantageous embodiment of the invention is in Fig. 8 an antenna arrangement shown with phase-different superposition of the received voltages from the horizontal and the vertical electric field components of a loop antenna 14 and a monopole antenna 7a formed by the vertical two-wire line 26. Similar to in Fig. 4 Here again, in order to improve the symmetry of the arrangement, two antenna connection points 3a, 3b with matching networks 25 in the plane of the loop antenna 14 are present in the plane of symmetry SE.
  • the adjustment of the common mode to normal ratio on the vertical two-wire line 26 takes place, whereby the ratio of the portion of the vertically polarized low elevation field of the main beam direction to the portion of the horizontally polarized field Field with higher elevation of the main beam direction is set.
  • the adjustment of the phases necessary for the generation of the circular polarization takes place with the aid of this summing network 53.
  • the axial ratio and the spatial orientation of the ellipse for elliptical polarization can be set by selecting the above-mentioned common-mode-to-differential ratio and the phase adjustment ,
  • the antenna is similar to the embodiment as in FIG. 2 - But designed as a multi-frequency area antenna.
  • the capacitances 16 are each formed in each case from identical bipolar networks, preferably each consisting of a circuit comprising a plurality of dummy elements. So that's different Operating frequencies different capacitance values effective, which allow the resonance for the design of the real antenna impedance at these different operating frequencies.
  • FIG. 1 is the situation shown that two satellite radio frequency bands with small bandwidth Bu or Bo closely adjacent at a high frequency in the L-band or in the S-band, at least at a frequency of fm> 1 GHz with the same directions, ie z , B. left-rotating circular polarization (LHCP) are radiated.
  • LHCP left-rotating circular polarization
  • Fig. 10 shows an antenna arrangement with a vertically polarized monopole 7 formed as a rod antenna and a horizontally polarized loop antenna 14 according to the invention with respect to the transmission case common phase reference point B, but with separate supply of signals to the terminal for vertical polarization 49 and for connection for horizontal polarization 48th Der At these terminals, connected hybrid couplers 45 with 90 ° positive and negative phase difference with respect to the LHCP terminal 28a and the RHCP terminal 28b enables the separate availability of LHCP or RHCP signals of different circular polarization directions of rotation.
  • the monopole 7 embodied as a rod antenna 32 has an interruption point 5 connected to a dummy element 8 in order to design its vertical diagram.
  • the one substantially perpendicular monopole 7 contains at least one interruption point 5 which connects or bridges with the design of the vertical diagram with at least one dummy element 8 is.
  • the vertical diagram can be advantageously adapted to the requirements.
  • the antenna connection point 2 is formed at the base of the monopole 7 at the connection to the matching network 33.
  • FIG. 11 A similar antenna arrangement is in Fig. 11 however, the realization of the monopole 7 is similar to the antenna arrangement in FIG. 10 by the combination of acting as a roof capacitance loop antenna 14 and the two-wire line 26 takes place.
  • a combined matching circuit 50 By means of a combined matching circuit 50, both the adaptation of the loop antenna 14 and the adjustment of the monopole 7 as well as the setting of a common phase reference point B are created.
  • a loop antenna 14 - as in FIG. 6 - Provided with two opposing antenna connection points 3a, 3b and connected thereto and located in the loop level matching networks 25, which are implemented, for example, as ⁇ / 4 transformation lines.
  • the outputs of the matching networks 25 are connected in parallel in addition.
  • the received signal is fed via the two-wire line 26 to a matching network 25 located on the base area 6, the output of which is in turn connected to one of the two inputs of a signal combination circuit designed in particular as a 90 ° hybrid coupler 45.
  • the antenna arrangement can also advantageously be used for polarization diversity by switching between reception for LHCP and RHCP waves.
  • FIG. 13 In a further particularly economical embodiment of such an antenna with circularly polarized field with reversible direction of rotation is in FIG. 13 - similar to the antenna in FIG. 12 -
  • the separate monopoly 7 saved.
  • the two-wire line 26 For the reception with vertical polarization is also the two-wire line 26 - similar to FIG. 8 - exploited.
  • the difference of 90 ° between the phases of the horizontal field component picked up by the vertical two-wire line 26 with the loop antenna 14 as the roof capacitance 12 and that picked up by the loop antenna 14 is set their combination with this phase difference is present at the microstrip conductor 30 to the matching network 54 and thus also at the junction 28.
  • the antenna receives a circularly polarized field.
  • a circuit combining the receive signals of the loop antenna 14 at the output of the matching networks 25 from the horizontally polarized electric field and the receiving signals of the vertical two-wire line 26 from the vertically polarized electric field comprises an LHCP / RHCP switch 55 for reversing the polarity of the receiving voltage of the loop antenna 14.
  • the latter can be added in this way with different signs of the received voltage from the vertically polarized electric field, so that between the reception of the LHCP field and the RHCP field by switching the LHCP / RHCP switch 55 can be switched.
  • Triggered by a switchover control between LHCP and RHCP received signals located in the receiver signals of differently polarized polarization of the satellite signals are available alternately on different transmission paths.
  • the antenna in FIG. 8 explained - can also be a corresponding network 61 of reactances in the ground connected strand of the vertical two-wire line 26 are switched.
  • the adjustment of the common mode to differential ratio on the vertical two-wire line 26 can be set.
  • the received voltages from the horizontal and the vertical electric field components are superimposed phase-differently according to the circular polarization.
  • the common-mode to differential ratio on the vertical two-wire line 26 the ratio of the low-polarization vertically-polarized field of the main beam direction to the proportion of the higher polarization horizontally-polarized field of the main beam direction can be adjusted.
  • the antenna is combined with another azimuth circular radiator whose circular polarization is circular and the circular polarization phase rotates with the azimuthal angle of the propagation vector - ie, a complete azimuthal revolution the angle 2 ⁇ .
  • the antenna is combined with another azimuth circular radiator whose circular polarization is circular and the circular polarization phase rotates with the azimuthal angle of the propagation vector - ie, a complete azimuthal revolution the angle 2 ⁇ .
  • FIG. 15a is the vertical directional characteristic of the LHCP polarized electromagnetic field of a previously described inventive antenna shown.
  • the phase of this field is independent of the azimuthal angle and thus the phase for the azimuthal angles 0 ° and 180 ° are each marked with the same angle - in the example 0 °.
  • the antenna gain of the combined antenna arrangement can increase 0 ° for the azimuthal angle and weaken 180 ° for the azimuthal angle and even adjust a zero point of the directional diagram with a suitable adjustment of the amplitudes at a desired elevation angle, as in Fig. 16 is shown.
  • the azimuthal directional diagram while maintaining the elevation directional diagram, results from the same angle .phi., In .sup.-, due to the phase change of the circular polarization of the crossed emitter (7d) with the azimuthal angle of the propagation vector turned one way or the other.
  • the directional diagram of the combined antenna arrangement in mobile use advantageously z. B. be tracked with his main direction pointing to the satellite or, for example, a disturber by directional assignment of the zero point of the directional diagram are selectively hidden.
  • satellite reception on vehicles can hereby be in the context of a dynamically tracked setting of the directional diagram, the signal-noise ratio while driving optimally designed.
  • Fig. 17 the combined antenna arrangement according to the invention is shown with a crossed emitter 7b indicated by the construction space 42, as it is described, for example, in US Pat EP 1 239 543 B1 , there in Fig. 10a , is shown.
  • the vertical antenna conductor 20 indicated there is here in FIG Fig. 17 is executed as an equivalent vertical monopole 7a in the center Z and is decoupled from the junction 56 of the crossed radiator 49 due to symmetry conditions.
  • the latter is connected via the controllable phase shifter 39 to the summing network 53, in which the signals of the loop antenna 14, the vertical monopole 7a and the crossed emitter 49 are combined with the respectively suitable weighting to the received signal of the combined antenna arrangement.
  • an antenna of the type shown in FIG DE-A-4008505 or a patch antenna with the vertical monopole 7a in the center Z, as well as an arrangement over the ground plane of parallel crossed dipoles are combined.
  • All arrangements of n equal horizontal radiating elements 59 can be used for this, if they are arranged so that their centers give the corners of an equilateral polygon, and if the rotation of the arrangement about the z-axis by an angle of 360 ° / n, the structure in depicts itself and if the feed in each case in the direction of rotation of adjacent radiator elements differs in phase by 360 ° / n.
  • Fig. 25 Such arrangements are shown respectively for the example of four and five radiator elements.
  • a novel radiator 7c with circular polarization and azimuthal omnidirectional diagram, the phase of which rotates with the azimuthal angle of the propagation vector, is hereinafter referred to as ring line radiator 7c designated used.
  • ring line radiator 7c designated used.
  • FIG. 15 (b) For example, the vertical diagram of such an antenna according to the invention is shown.
  • the ring line radiator 7c is arranged as a polygonal or circular, arranged rotationally symmetrically about the center Z Ring line in a horizontal plane with the height h1 extending over the conductive base 6, designed.
  • the ring line is fed in such a way that it adjusts the current distribution of a current line wave whose phase difference over a cycle is just 2 ⁇ , thus the elongated length of the ring line corresponds to the wavelength ⁇ , which adjusts itself to the ring line.
  • the radiation contributions of the horizontally polarized individual conductor sections are superimposed in the far field in such a way that the desired radiation with circular polarization and the required phase dependence adjusts itself to the azimuthal propagation direction and the substantially omnidirectional azimuthal directional characteristic.
  • D ⁇ / ⁇ .
  • the wavelength ⁇ on the loop is equal to the free space wavelength ⁇ 0 .
  • the wavelength ⁇ on the loop can be made by increasing the line inductance and / or the line capacitance to the conductive base 6. This can be done in a known per se, for example, preferably by introducing concentrated inductive elements in the line structure or, for example by meandering design of the ring conductor.
  • Fig. 18 shows such a combined antenna arrangement, consisting of the loop antenna 14 and the combined with a phase difference monopole 7a for generating the circularly polarized radiation field with azimuthal independent phase position and a concentric with center Z arranged circular ring radiator 7c with loop connection point 19 for superimposing its circular polarized radiation field, however, with azimuthally dependent phase position and to control the azimuthal main direction via the controllable phase shifter 39.
  • the phase center of the ring line radiator 7c is due to the described phase distribution on the rotationally symmetric loop structure in the center Z of the antenna array and thus falls with the described phase reference point B of the loop antenna 14th and that of the monopole 7a together - regardless of the position of the controllable phase shifter 39.
  • Ring line radiator 7c takes place starting from the ring line connection point 19 via the power divider and phase shifter network 31, at whose outputs are shifted by 90 ° to each other in phase signals, which in each case via a matching network 25 via the leads 18 to ⁇ / 4 apart ring line Supply points 22a and 22b are connected along the loop structure.
  • a ring line radiator 7c of this type has the particular advantage that it is concentric with the loop antenna 14 and designed in comparison to this with a larger diameter.
  • a transverse dimension which is customary for the loop antenna 14 can be designed within wide limits, but is generally smaller than ⁇ / 4 and can therefore be designed within the ring line radiator 7c with a diameter ⁇ / ⁇ .
  • the diameters of the two emitters can be designed within wide limits independently of each other in the interest of designing their vertical directional patterns and the resulting vertical directional pattern of the antenna array at the antenna port 28.
  • the distance h of the plane of the loop antenna 14 from the conductive base 6 from the distance h1 between the plane of the loop emitter 7c and the conductive base 6 can be chosen to be different, although it is particularly economical to manufacture if both emitters are in printed form, for example printed on the same sheet carrier.
  • FIG 16 (a) is an example of the vertical diagram and in Fig. 16 (b) the horizontal diagram of such an antenna according to the invention is shown.
  • the loop antenna 14 has an edge length of about 3 cm and a height h of 13 mm and for the square shaped loop emitter has an edge length of about 3.4 cm, which corresponds to about 1 ⁇ 4 of the wavelength, and a height h of 10 mm for the realization of both the directional diagram according to Fig. 16 proved favorable.
  • the loop antenna 14 is connected via the common-mode high-resistance two-wire line 26 via a matching network 25 and the monopole 7a is connected via a matching network 25 and via the phase shifter network 23 to the summing network 53 to form the circularly polarized radiation with azimuthal phase independence.
  • the ring line connection point 19 is connected via the controllable phase shifter 39 to the summation network 53 and the signals are superimposed there with the appropriate weight for generating the desired vertical directional diagram of the antenna arrangement with adjustable azimuthal main direction at the antenna port 28 the other signals.
  • the generation of the continuous line shaft on the ring line radiator 7c takes place in accordance with FIG. 18 but through the ⁇ / 4 coupling conductor 43 in FIG FIG. 20 , This is performed in a respect to the line impedance characteristic distance over a straight length of ⁇ / 4 parallel to the ring line radiator 7c.
  • the ⁇ / 4 coupling conductor 43 can be economically applied to the same carrier as the ring line radiator 7c and optionally the loop antenna 14 printed.
  • the generation of the continuous line shaft takes place on the ring line radiator 7c in accordance with FIG. 20 however, by ⁇ / 4 directional coupler 44 in FIG FIG. 21 , To a microstrip conductor 30, a ⁇ / 4-coupling conductor 43 is guided in parallel, which forms the ⁇ / 4-directional coupler 44 together with the coupled to the ring line radiator 7c ⁇ / 4-coupler 43.
  • the ring line radiator 7c is similar to an antenna as in FIG. 18 , but formed as a closed square line ring over the conductive base 6 with the edge length of ⁇ / 4 in a plane at a distance h1 above the conductive base 6.
  • the loop antenna 14 is arranged with its capacitances 6 as a square conductor structure within the ring line radiator 7c with the same center Z. The remaining antennas are not shown for reasons of clarity.
  • the ramped ⁇ / 4 coupling conductor 43 is in FIG. 22 the ramped ⁇ / 4 coupling conductor 43 to emphasize.
  • a vertical feed line 18 leads to a coupling spacing 58 at one of the corners, from where it essentially meets the base area 6 according to a ramp function below an adjacent corner in order to electrically connect with the latter to be connected.
  • This form of coupling is particularly advantageous for economic production because, due to the square design of the ring line radiator 7c, the ramped ⁇ / 4 coupling conductor 43 can be designed on a planar support.
  • impedance matching at the ring line connection point 19 can also be brought about in an advantageous manner.
  • the ring line radiator 7c is designed as square as in FIG. 22 , However, is fed at its corners in each case via a feed line 18, which runs in each case over an equal length as a microstrip conductor 30 on the conductive base surface 6 and which each contains an equally long vertical conductor. The remaining antennas are not shown for reasons of clarity.
  • the supply lines 18 are - starting from the ring line connection point 19 - connected to a power distribution network, which consists of connected in chain ⁇ / 4-long microstrip conductors 30 (15a, 15b, 15c).
  • the characteristic impedances of the microstrip conductors 30 are - starting from a low characteristic impedance at the ring line connection point 19 - to which one of the supply lines 18 is directly connected - stepped up in such a way that the signals fed in at the corners into the ring line radiator 7c have the same powers and in each case by 90 ° in the phase continuously lagging differ.
  • the remaining antenna parts are also not shown for reasons of clarity.
  • an advantageous extension of the invention is in the antenna in FIG. 24 another radiator in the form of an outer ring channel radiator 7e present.
  • the ring line radiator 7c whose circumference corresponds to exactly one wavelength ⁇ -ie one full period-the circumference of the outer ring channel radiator 7e is selected to be two wavelengths ⁇ , so that upon excitation with signals shifted in phase by 90 ° to one another at ⁇ / 4 spaced loop feeders 22 along the outer loop structure adjusts a continuous line wave on the loop emitter 7d.
  • This feed takes place in the example in FIG. 24 in both loops in a similar manner via the matching networks 25 and the power divider and phase shifter network 31.
  • the junction 21 of the outer loop radiator 7e is also connected to the summing network 53, so that the effects of the radiation of the outer outer ring radiator 7e depending on the weight Antenna connector 28 occur.
  • the signals at the loop antenna monopole connection point 27, at the ring line connection point 19 and at the connection point 21 of the outer loop emitter 7e are weighted together via controllable phase shifters 39 in the summation network 53, so that at the antenna connection 28 in the set azimuthal main direction increased antenna gain is achieved. Due to the larger diameter of the outer ring line radiator 7e, its contribution is more sharply focused than that of the circularly polarized ring line 7c. Although the polarization is no longer purely circular by connecting the outer loop emitter 7e, the radiation gain for certain situations can be increased by this measure due to the overall sharper focusing.
  • FIG. 26 instead of the ring line radiator 7c in FIG. 22 a circle group radiator 7f from the in FIG. 25 described type shown.
  • This consists of several in a parallel to the conductive base 6 and at a distance to this arranged plane and around the center Z azimuth rotationally symmetrical on a circle K. arranged horizontally polarized radiator elements 59. Via leads 18 with phase shifter network a common circular array radiator junction 60 is provided.
  • each radiating element 59 is energized with a current of equal amplitude but phase-wise such that the magnitude of the current phase equals the azimuth angle ⁇ originating from an azimuthal reference line the azimuthal position of the radiator element 59 is selected so that the current phase increases or decreases with increasing azimuth angle ⁇ .
  • the horizontally polarized radiator elements 59 are arranged at the vertices of a square with center Z and oriented in each case perpendicular to the connecting lines between the relevant vertex and the center Z.
  • the horizontally polarized radiator elements 59 are each connected via an equally long lead 18 to the terminals of a power divider and phase shifter network.
  • the latter is made of chain-connected formed on the conductive base 6 ⁇ / 4-long microstrip conductors 30 with the sections 15a, 15b, 15c, whose characteristic impedance - starting from a low characteristic impedance at the circular array radiator junction 60 - to which one of the leads 18 is directly connected - are staggered in such a way that the signals fed at the corners in the radiating elements 59 have the same powers and each lag 90 ° in the phase continuously lag.

Abstract

Die Erfindung betrifft eine Antenne für den Empfang zirkular in einer Drehrichtung der Polarisation ausgestrahlter Satellitenfunksignale umfassend wenigstens zwei mit einem Antennenanschluss (28) verbundene, jeweils in einer Raumrichtung linear polarisierte und über ein Anpass- und Phasenschieber-Netzwerk (25, 23) verbundene Strahler. Einer der Strahler ist als Schleifenantenne (14) im Wesentlichen in einer horizontalen Ebene parallel über einer im Wesentlichen horizontal orientierten leitenden Grundfläche (6) angeordneten Leiterschleife gebildet. Die Leiterschleife weist für ihre elektrisch wirksame Verkürzung wenigstens eine durch eine Kapazität (16) überbrückte Unterbrechung, insbesondere mehrere im Abstand voneinander angeordnete, durch Kapazitäten (16) überbrückte Unterbrechungen auf. Im Zusammenwirken mit der wenigstens einen Unterbrechung der Leiterschleife ist eine Schleifenantennen-Anschlussstelle (3) der Schleifenantenne (14) zur Einspeisung eines Ringstromes auf der Schleifenantenne (14) gebildet. Der mindestens eine weitere Strahler (7) mit seiner Strahleranschlussstelle (2) sowie die Schleifenantennen-Anschlussstelle (3) der Schleifenantenne (14) sind über ein Anpass- und Phasenschiebernetzwerk (25, 23) verbunden, welches so ausgebildet ist, dass bei reziprokem Betrieb der Antenne die Strahlungsfelder der Schleifenantenne (14) und des mindestens einen weiteren Strahlers (7) im Fernfeld der Antenne mit unterschiedlichen Phasen überlagert sind. Der mindestens eine der weiteren Strahler (7) weist eine im wesentlichen senkrecht zur Polarisation der Schleifenantenne (14) orientierte Polarisation und eine im wesentlichen orthogonale Phase im Fernfeld auf.

Description

  • Die Erfindung betrifft eine Antenne für den Empfang zirkular in einer Drehrichtung der Polarisation ausgestrahlter Satellitenfunksignale
  • Insbesondere bei Satelliten-Rundfunksystemen kommt es besonders auf die Wirtschaftlichkeit sowohl bezüglich der vom Satelliten abgestrahlten Sendeleistung als auch auf die Effizienz der Empfangsantenne an. Satellitenfunksignale werden aufgrund von Polarisationsdrehungen auf dem Übertragungsweg in der Regel mit zirkular polarisierten elektromagnetischen Wellen übertragen. Vielfach werden Programminhalte zum Beispiel in frequenzmäßig dicht nebeneinander liegenden getrennten Frequenzbändern übertragen, wie dies in Figur 1 dargestellt ist. Dies geschieht im Beispiel des SDARS-Satellitenrundfunks bei einer Frequenz von circa 2,33 GHz in zwei benachbarten Frequenzbändern jeweils mit einer Bandbreite von 4 MHz mit einem Abstand der Mittenfrequenzen von 8 MHz. Die Signale werden von unterschiedlichen Satelliten mit einer in einer Richtung zirkular polarisierten elektromagnetischen Welle abgestrahlt. Demzufolge werden zum Empfang in der entsprechenden Drehrichtung zirkular polarisierte Antennen verwendet. Solche Antennen sind zum Beispiel aus DE-A-4008505 und DE-A-10163793 bekannt. Dieses Satelliten-Rundfunksystem wird zusätzlich durch die bereichsweise Ausstrahlung terrestrischer Signale in einem weiteren, zwischen den beiden Satellitensignalen angeordneten Frequenzband gleicher Bandbreite unterstützt. Ähnliche Satelliten-Rundfunksysteme befinden sich zur Zeit in der Planung.
  • Die aus der DE-A-4008505 bekannte Antenne ist auf einer im wesentlichen horizontal orientierten leitenden Grundfläche aufgebaut und besteht aus gekreuzten Horizontaldipolen mit V-förmig nach unten geneigten, aus linearen Leiterteilen bestehenden Dipolhälften, die unter einem azimutalen Winkel von 90 Grad zueinander mechanisch fixiert sind und am oberen Ende eines auf der leitenden Grundfläche befestigten linearen vertikalen Leiters angebracht sind. Die aus der DE-A-10163793 bekannte Antenne ist ebenfalls über einer in der Regel horizontal orientierten leitenden Grundfläche aufgebaut und besteht aus gekreuzten azimutal unter 90° zueinander montierten Rahmenstrukturen. Bei beiden Antennen werden zur Erzeugung der zirkularen Polarisation die jeweils zueinander räumlich um 90° versetzten Antennenteile in der elektrischen Phase um 90° zueinander verschoben zusammengeschaltet.
  • Beide Antennenformen sind besonders für den Empfang von Satellitensignalen geeignet, welche von hoch fliegenden Satelliten - so genannten HEOS - abgestrahlt werden. Die Signale geostationärer Satelliten - von so genannten GEOS - fallen jedoch in den von der Äquatorial-Zonen entfernten Regionen unter niedrigerem Elevationswinkel ein. Der Empfang solcher Signale ist mit den beiden genannten Antennenformen nur mit vergleichsweise kleinem Antennengewinn möglich und deshalb aufgrund der - aus wirtschaftlichen Gründen bedingten - schwachen Senderleistung der Satelliten problematisch. Hinzu kommt die Schwierigkeit der Gestaltung von Antennen mit kleinerer Bauhöhe, welche insbesondere für mobile Anwendungen zwingend gefordert ist. Als weitere Antennen dieser Art sind nach dem Stand der Technik Patch-Antennen bekannt, welche jedoch bezüglich des Empfangs unter niedrigem Elevationswinkel ebenfalls weniger leistungsfähig sind.
  • Aufgabe der Erfindung ist es deshalb, eine Antenne mit geringer Bauhöhe anzugeben, welche insbesondere auch für den leistungsstarken Empfang von unter niedrigen Elevationswinkeln einfallenden zirkular in einer Drehrichtung polarisiert ausgestrahlten Satellitensignalen geeignet ist.
  • Diese Aufgabe wird bei einer Antenne nach dem Oberbegriff des Hauptanspruchs durch die kennzeichnenden Merkmale des Hauptanspruchs und die in den weiteren Ansprüchen vorgeschlagenen Maßnahmen gelöst.
  • Weiterhin ist eine Antenne dieser Art vorteilhaft in einem gemeinsamen Bauraum mit Antennenstrukturen kombinierbar, welche ebenfalls ein zirkular polarisiertes Feld empfangen und welche gemeinsam mit diesen Antennenstrukturen in einem Antennen-Diversitysystem oder einem System für digitale Strahlformung mit azimutaler Strahlschwenkung eingesetzt werden können. Diese Kombination ist insbesondere auch für Empfangssysteme interessant, in denen Signale von GEO-Satelliten und HEO-Satelliten in eng benachbarten Frequenzbändern gleichermaßen empfangen werden sollen. Die Antennenkombination zeichnet sich hierbei durch eine besonders geringe wechselseitige Verkopplung der Antennen untereinander aus.
  • Gemäß der Erfindung umfasst die Antenne für den Empfang zirkular polarisierter Satellitenfunksignale wenigstens zwei mit einem Antennenanschluss 28 verbundene, jeweils in einer Raumrichtung linear polarisierte und über ein Anpass-und Phasenschieber-Netzwerk 25, 31 verbundene Strahler, und ist dadurch gekennzeichnet, dass einer der Strahler als Schleifenantenne 14 im Wesentlichen als in einer horizontalen Ebene angeordneten Leiterschleife gebildet ist und die Schleifenantenne 14 für ihre elektrisch wirksame Verkürzung wenigstens eine durch eine Kapazität 16 überbrückte Unterbrechung 5 , insbesondere mehrere im Abstand voneinander angeordnete, durch Kapazitäten 16 überbrückte Unterbrechungen aufweist. Wenigstens eine Unterbrechung 5 der Leiterschleife bildet eine Schleifenantennen-Anschlussstelle 3 der Schleifenantenne 14. Weiterhin ist mindestens ein weiterer Strahler 7 vorhanden, welcher eine lineare Polarisation aufweist und mit seiner Strahleranschlussstelle 2 sowie mit der Schleifenantennen-Anschlussstelle 3 über ein Anpass- und Phasenschiebernetzwerk 25, 23 verbunden ist, welches so ausgebildet ist, dass bei reziprokem Betrieb der Antenne als Sendeantenne die Strahlungsfelder der Schleifenantenne 14 und des mindestens einen weiteren Strahlers 7 im Fernfeld der Antenne mit unterschiedlichen Phasen überlagert sind. Dieser mindestens eine der weiteren Strahler 7 weist eine senkrecht zur Polarisation der Schleifenantenne 14 orientierte Polarisation auf. Alle Strahler werden im Wesentlichen aus schlanken drahtförmigen Leitern ähnlichen Leiterstrukturen gebildet.
  • Für die Herstellung von Antennen, welche aus der DE-A-4008505 und der DE-A-10163793 bekannt sind, ergeben sich Probleme aus dem Sachverhalt, dass die einzelnen Antennenteile auf unter einem rechten Winkel gekreuzten Ebenen platziert sind und diese Ebenen zusätzlich auf der leitenden Grundebene senkrecht stehen. Solche Antennen lassen sich nicht hinreichend wirtschaftlich herstellen, wie es zum Beispiel für den Einsatz in der Automobilindustrie gewünscht wird. Dies trifft insbesondere für die bei Satellitenantennen üblichen Frequenzen von mehreren Gigahertz zu, für die im Interesse der PolarisationsReinheit, der Impedanz- Anpassung und der Reproduzierbarkeit des Richtdiagramms bei der Serienherstellung der Antennen eine besonders hohe mechanische Genauigkeit notwendig ist. Die bei Antennen nach der vorliegenden Erfindung geforderten Fertigungstoleranzen können in vorteilhafter Weise wesentlich leichter eingehalten werden. Ein weiterer sehr wesentlicher Vorteil der vorliegenden Erfindung ergibt sich aus der Eigenschaft, dass neben der horizontal polarisierten Schleifenantenne 14 mindestens ein weiterer Strahler 7 vorhanden ist, welcher eine senkrecht zur Polarisation der Schleifenantenne 14 orientierte Polarisation aufweist. Dieser Strahler kann bei Vorhandensein terrestrisch vertikal polarisiert ausgestrahlter Signale vorteilhaft auch zum Empfang dieser Signale eingesetzt werden.
  • Die Verteilung der Ströme auf einer Antenne im Empfangsbetrieb ist vom Abschlusswiderstand an der Antennenanschlussstelle abhängig. Im Gegensatz hierzu ist im Sendebetrieb die auf den Speisestrom an der Antennenanschlussstelle bezogene Verteilung der Ströme auf den Antennenleitern vom Quellwiderstand der speisenden Signalquelle unabhängig und ist somit eindeutig mit dem Richtdiagramm und der Polarisation der Antenne verknüpft. Aufgrund dieser Eindeutigkeit in Verbindung mit dem Gesetz der Reziprozität, nach welchem die Strahlungseigenschaften - wie Richtdiagramm und Polarisation - im Sendebetrieb wie im Empfangsbetrieb identisch sind, wird die erfindungsgemäße Aufgabe bezüglich Polarisation und Strahlungsdiagramme an Hand der Gestaltung der Antennenstruktur zur Erzeugung entsprechender Ströme im Sendebetrieb der Antenne gelöst. Damit ist auch die erfindungsgemäße Aufgabe für den Empfangsbetrieb gelöst. Alle im Folgenden durchgeführten Betrachtungen über Ströme auf der Antennenstruktur und deren Phasen beziehungsweise deren Phasenbezugspunkt beziehen sich somit auf den reziproken Betrieb der Empfangsantenne als Sendeantenne, wenn nicht ausdrücklich der Empfangsbetrieb angesprochen ist.
  • Die Erfindung wird im Folgenden an Hand von Ausführungsbeispielen näher erläutert. Die zugehörigen Figuren zeigen im Einzelnen:
    • Fig. 1: Frequenzbänder zweier Satelliten-Rundfunksignale mit in derselben Drehrichtung zirkular polarisierter Ausstrahlung in dichter Frequenznachbarschaft;
    • Fig. 2: Antenne nach der Erfindung mit der Schleifenantenne 14 über leitender Grundfläche 6 mit horizontaler Polarisation und mit einem als Stabantenne ausgebildeten Monopol 7a als weiteren Strahler 7 im Zentrum Z der horizontalen Schleifenantenne 14 für den Empfang vertikal polarisierter Felder mit Anpassnetzwerk 25 und Phasenschieber-Netzwerk 23 zur phasenunterschiedlichen Überlagerung des Empfangs der horizontal und vertikal polarisierten Feldanteile im Summations-Netzwerk 53.
    • Fig. 3: Antenne nach der Erfindung wie in Figur 2, jedoch mit einem aus mehreren rotationssymmetrisch zum Zentrum Z angeordneten Monopolen 7a - deren Empfangssignale im gemeinsamen Phasenbezugspunkt B zusammengefasst sind - als weiterer Strahler 7.
    • Fig. 4: Antenne nach der Erfindung wie in Figur 2, jedoch mit einer Schleifenantenne 14 mit zwei aus Symmetriegründen einander gegenüberliegend gebildeten Antennenanschlussstellen 3a, 3b mit einem im Zentrum Z angeordneten Monopol 7b mit einer aus horizontalen Leiterelementen rotationssymmetrisch zum Zentrum Z gebildeten Dachkapazität als weiteren Strahler 7.
    • Fig. 5: Antenne nach der Erfindung wie in Figur 4, wobei jedoch Leiterteile 14a der Schleifenantenne 14 zur Bildung der rotationssymmetrischen Dachkapazität 12 herangezogen sind.
    • Fig. 6: Antenne nach der Erfindung nach dem Funktionsprinzip der Antenne in Fig. 2, jedoch mit einer vertikalen Zuleitung 26 zur Speisung der Schleifenantenne 14, wobei die Zuleitung 26 zusätzlich einen vertikalen Monopol 7a und die Schleifenantenne 14 eine Dachkapazität 12 des Monopols 7a bildet.
    • Fig. 7: Antenne nach der Erfindung nach dem Funktionsprinzip der Antenne in Fig. 6, jedoch mit einer als Quadrat mit dem Zentrum Z gestalteten Schleifenantenne 14.
    • Fig. 8: Antennenanordnung nach der Erfindung mit phasenunterschiedlicher Überlagerung der Empfangsspannungen aus den horizontalen und den vertikalen elektrischen Feldanteilen einer Schleifenantenne 14 und einer durch die vertikale Zweidrahtleitung 26 gebildeten Monopolantenne 7.
    • Fig. 9 : Antenne nach der Erfindung wie in Fig. 2, wobei anstelle diskreter Kapazitäten die Kapazität 16, die jeweils aus einer Schaltung aus mehreren Blindelementen gebildet ist, derart, dass bei unterschiedlichen Frequenzen unterschiedliche Kapazitätswerte wirksam sind.
    • Fig. 10: kombinierte Antennenanordnung nach der Erfindung für getrennte Verfügbarkeit von LHCP- beziehungsweise RHCP-Signalen unterschiedlicher Satellitensignale an unterschiedlichen Antennenanschlussstellen 28a, 28b mit einem als Stabantenne ausgebildeten, vertikal polarisierten Monopol 7, einer horizontal polarisierten Schleifenantenne 14 und einem 90°-Hybridkoppler 45.
    • Fig. 11: Antennenanordnung nach der Erfindung wie in Figur 10, jedoch mit einer Realisierung des Monopols 7 gemäß der Antennenanordnung in Figur 6 durch die Kombination der Wirkungen der Schleifenantenne 14 als Dachkapazität und der Zweidrahtleitung 26;
    • Fig. 12: Antenne nach der Erfindung zur alternativen Auskopplung von RHCPbeziehungsweise LHCP-Signalen für Diversity-Technologien angesteuert durch einen in einem Radioempfängermodul 52 befindlichen Umschalter.
    • Fig. 13: Antenne nach der Erfindung für Diversity-Technologien mit LHCP/RHCP-Umschalter 55 wie in Fig. 12, jedoch, ähnlich wie bei der Antenne in Fig. 8 ohne gesonderten Monopol 7. Der Empfang bei vertikaler Polarisation ist durch die Zweidrahteitung 26 bewirkt. Der für die Überlagerung der Empfangssignale der Schleifenantenne und des Monopols geforderte Phasenunterschied ist durch das Netzwerk 61 bewirkt.
    • Fig. 14: Antenne nach der Erfindung wie in Fig. 5, jedoch mit einer gemeinsamen Strahleranschlussstelle 2 für die gemeinsame Speisung der Schleifenantenne 14 und des vertikalen Monopols mit Dachkapazität 7b.
    • Fig. 15: Vertikale Richtcharakteristik des LHCP-polarisierten elektromagnetischen Feldes
      1. a) einer Antenne nach der Erfindung wie in Fig. 2 mit zirkularer Polarisation bei niedrigen Elevationswinkeln und mit azimutaler Unabhängigkeit der Phase der Strahlung.
      2. b) eines gekreuzten Strahlers 7d nach dem Stand der Technik bzw. eines Ringleitungsstrahlers 7c nach der Erfindung wie in Fig. 19 mit zirkularer Polarisation bei hohen Elevationswinkeln; wobei sich die Phase der zirkularen Polarisation mit dem azimutalen Winkel des Ausbreitungsvektors dreht
    • Fig. 16:
      1. a) Vertikale Richtcharakteristik des LHCP-polarisierten elektromagnetischen Feldes einer Antenne für 2,3 GHz nach der Erfindung entsprechend Figur 18, bestehend aus einer Schleifenantenne 14 mit vertikalem Monopol 7a in Kombination mit einem Ringleitungsstrahler 7c bei Abmessungen von 3,4cm x 3,4 cm x 1,3 cm der Gesamtstruktur, wobei sich die Charakteristik aus der gleichphasigen Überlagerung der Strahlung gemäß Fig. 15a und Figur 15b für den Azimutwinkel 0° (rechts) und 180° (links) ergibt.
      2. b) Horizontale Richtcharakteristik des LHCP-polarisierten elektromagnetischen Feldes unter einem Elevationswinkel von etwa 30° mit minimaler Strahlung für den Azimutwinkel von 180°.
    • Fig. 17: Antenne nach der Erfindung bestehend aus der Schleifenantenne 14 mit zwei symmetrisch angeordneten Schleifenantennen-Anschlussstellen 3a, 3b und Monopol 7b mit im Zentrum Z gekennzeichnetem Bauraum für einen gekreuzten Strahler 42 mit zirkularer Polarisation nach dem Stand der Technik und Anschlussstelle 56 zur phaseneinstellbaren Überlagerung von dessen Strahlung im Summations-Netzwerk 53 mit Hilfe des steuerbaren Phasendrehglieds 39
    • Fig. 18: Antenne wie in Figur 17, jedoch anstelle eines zentral angebrachten gekreuzten Strahles 42 mit einem erfindungsgemäß neuartigen Ringleitungsstrahler 7c zur Erzeugung eines zirkular polarisierten Feldes mit azimutal abhängiger Phase mit einer durch Einspeisung an A/4 voneinander entfernten Ringleitungs-Einspeisestellen 20a, 20b von um 90° in der Phase unterschiedlichen Signalen zur Erzeugung einer umlaufenden Welle von einer Wellenlänge über den Umfang der Leitung.
    • Fig. 19: Ringleitungsstrahler 7c jedoch über vier jeweils um λ/4 längs der Ringleitung versetzte Einspeisestellen 22 von in der Phase jeweils um 90° versetzten Signalen gespeist. Die Speisequellen können auf an sich bekannte Weise durch Leistungsteilung und 90°-Hybridkoppler 45 gewonnen werden.
    • Fig. 20: Antenne nach der Erfindung wie in Figur 18, jedoch zur Erzeugung der fortlaufenden Leitungswelle mit einem in günstigem Abstand - bezüglich des Leitungs-Wellenwiderstands - parallel zum Ringleitungsstrahler 7c geführten λ/4-Koppelleiter 43
    • Fig. 21: Antenne wie in Figur 20, jedoch mit λ/4-Richtkoppler 44. Zu einem Mikrostreifenleiter 30 ist ein λ/4-Koppelleiter 43 parallel geführt, welcher zusammen mit dem an den Ringleitungsstrahler 7c angekoppelten λ/4-Koppelleiter 43 den λ/4-Richtkoppler 44 bildet.
    • Fig. 22: Antenne nach der Erfindung mit quadratisch ausgeführter Schleifenantenne 14 und einem als geschlossenen quadratischen Leitungsring mit der Kantenlänge von λ/4 gestalteten Ringleitungsstrahler 7c. Die Ankopplung an den Ringleitungsstrahler 7c erfolgt berührungslos über den rampenförmig gestalteten λ/4-Koppelleiter 57 mit der Ringleitungs-Anschlussstelle 19
    • Fig. 23: Antenne nach der Erfindung mit quadratischem Ringleitungsstrahler 7c wie in Figur 22 mit einem Leistungs-Verteilnetzwerk bestehend aus in Kette geschalteten λ/4-langen Mikrostreifenleitern 30 (15a,15b,15c) zur Einspeisung an den Ecken des quadratischen Ringleitungsstrahlers 7c.
    • Fig. 24: Antenne nach der Erfindung mit Schleifenantenne 14, Monopol 7a, Ringleitungsstrahler 7c und dem zusätzlichen äußeren Ringleitungsstrahler 7d, auf dem eine fortlaufende Leitungswelle von zwei Wellenlängen erzeugt ist zur Anhebung des Strahlungsgewinns durch Anhebung der Strahlungsbündelung
    • Fig. 25: Kreisgruppenstrahler nach der Erfindung mit n gleichen rotationssymmetrisch um das Zentrum Z angeordneten horizontal polarisierten Strahlerelementen 59, deren Speisung jeweils im Drehsinn benachbarter Strahlerelemente sich in der Phase um jeweils 360°/n unterscheidet. Fig. 25 oben: n =4. Fig. 25 unten: n =5.
    • Fig. 26: Kreisgruppenstrahler 7f gemäß einer Anordnung wie in Fig. 25 mit an den Eckpunkten eines Quadrats mit Zentrum Z angeordneten horizontal polarisierten Strahlerelementen 59 mit Zuleitungen 18 und Leistungsteiler- und Phasenschiebernetzwerk aus λ/4-langen Mikrostreifenleitern 30 mit den Teilstücken 15a, 15b, 15c.
  • Obwohl die erfindungsgemäße Aufgabe auf eine Empfangsantenne gerichtet ist, werden nachfolgend die Eigenschaften der Antenne aus Gründen der besseren Nachvollziehbarkeit für den reziproken Betrieb der Antenne als Sendeantenne beschrieben, wobei der Sendefall aber aufgrund der naturgemäß geltenden Reziprozitätsbeziehung auch für die Richtdiagramme des Empfangsfalls zutrifft.
  • Im Folgenden werden die Grundlagen zur Gestaltung von Antennen erläutert, welche der erfindungsgemäßen Antenne zugrunde liegen.
  • Der besondere Vorteil einer Antenne nach der Erfindung, wie sie zum Beispiel in Figur 2 dargestellt ist, ist die Eigenschaft, dass der entsprechend dem Reziprozitätsgesetz bei Betrieb der Antenne als Sendeantenne im Fernfeld erzeugte elektrische Feldstärkevektor auch bei verhältnismäßig niedrigen Elevationswinkeln der Strahlung eine im technischen Sinne reine zirkulare Polarisation mit azimutaler Rundcharakteristik beschreibt.
  • Dies wird durch phasenstarre Kombination der horizontal polarisierten Schleifenantenne 14 mit dem mindestens einen vertikalen Strahler 7 erreicht und geschieht durch Überlagerung der fernen Strahlungsfelder der beiden Strahler um 90° durch entsprechend unterschiedliche Phasenpeisung und entsprechender Amplitudenspeisung der beiden Antennen. Damit sind im fernen Strahlungsfeld in einer Ebene senkrecht zur Ausbreitungsrichtung zwei aufeinander senkrecht stehende und um 90° in der Phase sich unterscheidende Feldstärke- Vektoren erzeugt, die das gewünschte zirkular polarisierte Feld darstellen. Für die Erzeugung der Rundcharakteristik ist es erforderlich, dass die Phasenbezugspunkte B - oder auch Phasenschwerpunkte genannt - der beiden Antennen zusammenfallen, was durch rotationssymmetrische Anordnung um das gemeinsame Zentrum Z der Antennen erreicht wird.
  • Dies wird zum einen erreicht durch die kreisförmige oder polygonale horizontal in einer Ebene mit konstantem Abstand 4 als Höhe h über der Grundfläche 6 angeordneten Schleifenantenne14. Diese wirkt im Wesentlichen ähnlich wie eine Rahmenantenne über einer leitenden Fläche. Unter der Voraussetzung einer azimutal konstanten Strombelegung auf der Schleifenantenne 14 kann der Elevationswinkel der Hauptstrahlrichtung über die Wahl der Höhe h und der horizontalen Ausdehnung - das heißt dem Radius bei kreisförmiger Gestaltung der Schleifenantenne 14 - eingestellt werden. Dabei kann eine Nullstelle in vertikaler Richtung und in horizontaler Richtung erreicht werden. Die Erzielung eines gewünschten vertikalen Richtdiagramms erfordert jedoch eine horizontale Ausdehnung der Schleifenantenne in der Weise, dass ihre Gesamt-Umlauflänge nicht mehr klein ist im Vergleich zur elektrischen Freiraum-Wellenlänge λ0. Erfindungsgemäß wird die Schleifenantenne deshalb in n gleiche Leitungsabschnitte der Länge Δs < λ0/8 durch Unterbrechungsstellen 5 unterteilt, welche jeweils durch Einfügen von einer Kapazität miteinander verbunden sind. Die Kapazitäten sind dabei vorzugsweise so gewählt, dass sich zusammen mit den Eigenschaften der Leitungsabschnitte Resonanz bei der Betriebsfrequenz fm einstellt. Eine derartige Antenne kann in vorteilhafter Weise für eine azimutal reine Rundcharakteristik gestaltet werden. In Verbindung mit dem mindestens einen vertikalen Strahler 7, welcher im Beispiel der Fig.2 im Zentrum Z der Schleifenantenne 14 vorhanden ist und dessen azimutales Strahlungsdiagramm ebenfalls omnidirektional ist, ergibt sich für die Antenne nach der Erfindung auch das gewünschte zirkular polarisierte Strahlungsfeld mit reiner Rundcharakteristik. Somit eignet sich die Antenne nach der Erfindung in vorteilhafter Weise insbesondere für den Satelliten-Rundfunkempfang in Fahrzeugen, wo Antennen mit azimutaler Rundcharakteristik auf der elektrisch leitenden Fahrzeugaußenhaut angebracht werden.
  • Fig. 2 zeigt eine kreisförmige Schleifenantenne 14 mit Radius R, welche auch polygonal gestaltet sein kann. In ihrem Mittelpunkt im Zentrum Z befindet sich ihr Phasenbezugspunkt B. Die Struktur ist unterteilt in "n" Leitungsabschnitte, jeweils mit der Länge Δs. Die Gesamt-Umlauflänge beträgt S. Die Antenne wirkt als Rahmenantenne mit Abmessungen im Bereich der Wellenlänge, wobei trotzdem erfindungsgemäß eine homogene Stromverteilung durch Unterteilung der Struktur und Einfügen von Kapazitäten 16 erreicht wird. Dadurch wirkt die Antenne in ihrer Länge elektrisch verkürzt und erzeugt rundum ein homogenes, horizontal polarisiertes elektromagnetisches Feld. Die Schleifenantenne 14 ist mit konstanter Höhe h über der leitenden Grundfläche 6 angeordnet. Die vertikale Hauptstrahlrichtung kann über die Wahl der Höhe h und des Radius der Schleifenantenne 14 eingestellt werden. Es kann eine Nullstelle in vertikaler Richtung und in horizontaler Richtung erreicht werden.
  • Die ringförmig umlaufende Leiterlänge S ist in n gleich lange Stücke mit der Länge Δs = S/n unterteilt. Der Leiter-Wellenwiderstand der umlaufenden Leitung über der leitenden Grundfläche 6 sei Zw. Die kapazitive Reaktanz ΔX pro Leitungstück Δs und damit der in dieses Leiterstück jeweils einzufügende Kapazitätswert C = 1/(ω*ΔX) ist bei Annahme einer gestreckten Länge Δs und bei näherungsweise ringförmiger Leitung mit großem Radius R der ringförmigen Schleifenantenne 14 gegenüber der Leiterhöhe h definiert durch ΔX / Zw = tan 2 π Δs / λ 0 .
    Figure imgb0001
  • Es ergibt sich in guter Näherung für den in das Leitungsstück Δs einzufügenden Kapazitätswert C: C = 1 / ω Zw tan 2 πΔs / λ 0
    Figure imgb0002
  • Kreisfrequenz der Satellitensignale = ω; Freiraumwellenlänge der Satellitensignale = λ0
  • Mit dieser Dimensionierung der Kapazitätswerte C lässt sich für die Schleifenantenne 14 Resonanz einstellen, so dass die an der Schleifenantennen-Anschlussstelle 3 auftretende Antennenimpedanz weitgehend reell gestaltet werden kann.
  • Um in guter Näherung ein Runddiagramm zu erhalten, ist die Leitung der Länge S durch Einfügung von Kapazitäten 16 in ausreichend viele Teilstücke zu teilen. Für eine sinnvolle Unterteilung gilt: Δs/λ0 < 1/8. Sind die Teilstücke Δs = S/n ausreichend klein gewählt, so ist die Gleichheit Δs aller Teilstücke nicht unbedingt erforderlich, solange nur nach jedem Teilstück eine Kapazität 16 eingefügt wird, deren Wert sich nach oben beschriebenem Kriterium aus der relativen Länge Δs/λ0 des betreffenden Teilstücks errechnet.
  • Als weiterer Strahler 7 ist im Beispiel der Fig. 2 im Zentrum Z der Schleifenantenne 14 ein elektrisch kurzer, vertikal orientierter Monopol 7a angebracht. Die Abweichung der Positionierung des Monopols 7a vom Zentrum Z sollte im Interesse der Rundheit des Strahlungsdiagramms λ0/20 nicht überschreiten. An einer Unterbrechungsstelle der Schleifenantenne 14 ist deren Schleifenantennen-Anschlussstelle 3 gebildet, an welche über eine Zweidrahtleitung 26 ein Anpassnetzwerk 25 mit Umsymmetrierglied 29 und ein nach geschaltetes Phasenschieber-Netzwerk 23 angeschlossen sind. Der Strahleranschlussstelle 2 des Monopols 7a ist das Anpassnetzwerk 25 zur Impedanzanpassung nachgeschaltet und die Signale des Monopols 7a und der Schleifenantenne werden in dem Summations-Netzwerk 53 überlagert; dieses ist wiederum mit der Antennenanschlussstelle 28 verbunden. Zur Erzeugung der zirkular polarisierten Strahlung sind die Phase des Phasenschieber-Netzwerks 23 und alle Netzwerke in ihrer Zusammenwirkung in der Weise eingestellt, dass die Strahlungsfelder der Schleifenantenne 14 und die des Monopols 7a im Fernfeld der Antenne mit einem Phasenunterschied von 90° und mit gleicher Intensität überlagert sind.
  • Zur Vermeidung von Unsymmetrien des azimutalen Richtdiagramms des Monopols 7a,bewirkt durch die im Wesentlichen vertikal verlaufende Zweidrahtleitung 26, ist Letztere erfindungsgemäß in der Weise gestaltet, dass sie bezüglich des im Gleichtakt fließenden Längsstroms, welcher dem im Gegentakt fließenden Strompaar auf den beiden Leitern überlagert ist, induktiv hochohmig wirkt. Dadurch wird erzielt, dass die Zweidrahtleitung 26 das Strahlungsfeld des Monopols 7a nicht beeinflusst. Für die Gestaltung einer solchen Zweidrahtleitung 26 gibt es eine Reihe von Möglichkeiten. In der Praxis kann sie zum Beispiel auf vorteilhafte Weise durch eine auf einem Träger gedruckte Zweidrahtleitung hergestellt werden, welche zur Erhöhung der Induktivität als Mäander ausgeführt ist. Zusätzlich kann durch Wahl ihrer Länge eine gewünschte Phasenbeziehung hergestellt werden.
  • Über unterschiedliche Gewichtung bei der Überlagerung der beiden Antennensignale kann das vertikale Richtdiagramm zu niedrigen Elevationswinkeln hin für diese Signale aufgefüllt werden. Der als Stabantenne ausgebildete Monopol 7a besitzt in seiner vertikalen Richtcharakteristik eine ähnliche Hauptstrahlrichtung wie die horizontal polarisierte Schleifenantenne 14, liefert jedoch für niedrige Elevationswinkel einen größeren Beitrag als diese. Mit Hilfe der Netzwerke 25, 23, 53 kann sowohl die Gewichtung der Eigenschaften der beiden Antennensignale unterschiedlich eingestellt werden und zusätzlich die nötige Phasenbedingung eingehalten werden.
  • Der Einfluss einer nicht im Zentrum Z befindlichen symmetrischen vertikalen Speiseleitung in Form der symmetrischen Zweidrahtleitung 26 schmälert die Polarisationsreinheit der Schleifenantenne 14 selbst nicht. Die Verbindung des einen Anschlusses auf der unsymmetrischen Seite des Anpass-und Umsymmetrierglieds 25, 29 zur weiterführenden Schaltung der Antennenanordnung erfolgt vorteilhaft mit Hilfe eines über der leitenden Grundfläche 6 geführten Mikrostreifenleiters 30. Der andere Anschluss auf der unsymmetrischen Seite des Umsymmetrierglieds 29 ist mit der elektrisch leitenden Grundfläche 6 verbunden. Aufgrund der Symmetrieeigenschaften der Zweidrahtleitung 26 kompensieren sich die Wirkungen der zueinander in entgegen gesetzter Richtung fließenden Ströme auf den Leitern der Zweidrahtleitung 26 in ausreichendem Maße, so dass auch diese die Strahlungseigenschaften der Schleifenantenne 14 nicht beeinflussen. Wie im Folgenden erläutert wird, sind auch die vom elektromagnetischen Empfangsfeld erzeugten Ströme auf diesen Leitern ohne Einfluss auf die Wirkungen an der Antennenanschlussstelle 3. Bezüglich des azimutalen Strahlungsdiagramms des Monopols 7a kann sich jedoch abhängig vom Radius R der Schleifenantennen 14 eine Restunsymmetrie einstellen.
  • Es entspricht dem Wesen der vorliegenden Erfindung, dass durch Einstellung der Anpassnetzwerke 25 und des Phasenschieber-Netzwerks 23 sowohl das Achsenverhältnis als auch die räumliche Ausrichtung der Ellipse für elliptische Polarisation eingestellt werden können. Diese Einstellbarkeit kann erfindungsgemäß in sehr vorteilhafter Weise, z. B. in Antennendiversity-Technologien, eingesetzt werden, um im durch Mehrwegeausbreitung verzerrten Empfangsfeld die Empfangsleistung durch aktuelle Anpassung der Elliptizität der Polarisation laufend zu optimieren.
  • Als Beispiel zur Gestaltung des Empfangs im Bereich eines Elevationswinkels zwischen 25° und 65° (typischer Winkelbereich für GEO-stationären Satellitenempfang) bei azimutaler Rundcharakteristik ist eine horizontal angeordnete Schleifenantenne 14 im Abstand von etwa 1/10 der Wellenlänge über der leitenden Grundfläche 6 platziert. Der Durchmesser der Schleifenantenne 14 ist vorteilhaft nicht wesentlich kleiner als 1/4 der Wellenlänge gewählt. Längs der Leiterführung ist in Abständen von etwa 1/8 der Wellenlänge jeweils eine mit einer Kapazität 16 mit einem Blindwiderstand von etwa -200 Ohm beschaltete Unterbrechungsstelle 5 eingebracht. Durch Wirkung der erfindungsgemäßen Kapazitäten 16 ist es möglich auf der Schleifenantenne 14 eine für die Rundstrahlung notwendige azimutal konstante Stromverteilung zu erzielen, obwohl die gestreckte Länge der Schleifenantennen 14 im Vergleich zur Wellenlänge λ nicht kurz ist. Diese Länge ist andererseits wiederum notwendig, um eine praktikable Impedanz der Schleifenantenne 14 zu bewirken. In Figur 15(a) ist beispielhaft das Vertikaldiagramm einer solchen Antenne nach der Erfindung dargestellt. Für das Beispiel einer quadratisch geformten Schleifenantenne 14 mit zentralem kurzem vertikalem Monopol im Frequenzbereich um 2,3 GHz haben sich für die Schleifenantenne 14 eine Kantenlänge von etwa 3 cm und eine Höhe h von 13mm zur Realisierung sowohl des vertikalen Richtdiagramms nach Fig. 15(a) als auch eines passenden Leiter-Wellenwiderstands Zw als günstig erwiesen.
  • Eine weitere gegenüber den aus dem Stand der Technik bekannten Antennen, wie z.B. solchen aus der DE-A-4008505 und der DE-A-10163793 sowie Patchantennen, hervorzuhebende Eigenschaft besteht in der azimutalen Phasenunabhängigkeit der zirkular polarisierten Strahlung einer Antenne nach der vorliegenden Erfindung. Im Gegensatz hierzu ändert sich die Phase bei den oben genannten Antennen nach dem Stande der Technik mit dem azimutalen Winkel des Ausbreitungsvektors, also bei einem kompletten azimutalen Umlauf um den Winkel 2π. Die erfindungsgemäße Bedeutung dieser Eigenschaften bezüglich einer Kombination von Antennen nach dem genannten Stand der Technik mit einer Antenne nach der vorliegenden Erfindung wird weiter unten erläutert.
  • Für den Fall, dass das Satelliten-Rundfunksystem zusätzlich durch die bereichsweise Ausstrahlung vertikal polarisierter terrestrischer Signale in einem weiteren, in der Frequenz dicht benachbartem Frequenzband ähnlicher Bandbreite unterstützt wird, ist es wünschenswert, das vertikale Richtdiagramm für die Vertikalkomponente der elektrischen Feldstärke zu niedrigen Elevationswinkeln hin aufzufüllen. Die erfindungsgemäße Verbindung der Schleifenantenne 14 und des dazu senkrecht polarisierten weiteren Strahlers 7 - zumeist realisiert als vertikaler Monopol - erlaubt es diesen Aspekt in besonders vorteilhafter Weise zu berücksichtigen.
  • In Fig. 3 ist eine Antenne nach der Erfindung dargestellt, wobei der weitere Strahler 7, welcher auf der Ebene der Schleifenantenne 14 senkrecht orientiert ist, aus einer Gruppe von Monopolen 7a gebildet ist. Diese sind rotationssymmetrisch zum Zentrum Z und innerhalb der Schleifenantenne 14 angeordnet. Die Monopole sind an ihrem unteren Ende über Leitungen im Zentrum Z miteinander verbunden und bilden dort die Strahleranschlussstelle 2. Bei nicht zu großem Durchmesser des Kreisrings, auf dem die Monopole 7a um das Zentrum Z angeordnet sind und bei nicht zu geringer Anzahl der Monopole 7a ist das azimutale Richtdiagramm des so gestalteten Strahlers 7 hinreichend omnidirektional.
  • Fig. 4 zeigt eine vorteilhafte Ausgestaltung einer Antenne nach der Erfindung ähnlich wie in Figur 2, wobei die Schleifenantenne 14 zur Verkleinerung der Restunsymmetrie der Anordnung bezüglich des azimutalen Richtdiagramm des Monopols 7 zwei in der Symmetrieebene SE einander gegenüberliegende Antennenanschlussstellen 3a, 3b aufweist, an die in der Schleifenebene angeordnete Umsymmetrier - und Anpassnetzwerke 25, 29 angeschlossen sind, deren Ausgänge über gleiche Phasenschieber-Netzwerke 23 parallel geschaltet und mit der Zweidrahtleitung 26 verbunden sind. Der im Zentrum Z angeordnete weitere Strahler 7 ist als Monopol 7b mit horizontalen, rotationssymmetrisch zum Zentrum Z angeordneten Leiterteilen als Dachkapazität gestaltet. Auch diese Leiterteile sind symmetrisch zur Symmetrieebene SE ausgeführt.
  • In Fig. 5 ist eine weitere vorteilhafte Ausgestaltung der Erfindung ähnlich wie in Figur vier dargestellt, wobei jedoch Leiterteile der Schleifenantenne 14 zur Bildung der rotationssymmetrischen Dachkapazität 12 herangezogen sind. Bei vollkommen symmetrischer Ausgestaltung der Dachkapazität 12 sowohl bezüglich der Rotationssymmetrie als auch ähnlich zu der in Figur 4 dargestellten Symmetrieebene SE ist die Funktion der Schleifenantenne 14 durch den Anschluss der Dachkapazität 12 des Monopols nicht beeinträchtigt.
  • In Fig. 14 ist die Antenne nach der Erfindung wie in Fig 5 dargestellt, jedoch mit einer gemeinsamen Strahleranschlussstelle 2 für die gemeinsame Speisung der Schleifenantenne 14 und des vertikalen Monopols mit Dachkapazität 7b. Das zirkular polarisierte Feld entsteht, indem die Wellen, welche bei Sendebetrieb über die vertikale Monopolantenne und über die Horizontalarme der Dachkapazität 12 an der Schleifenantenne 14 eintreffen sich nach rechts und links aufspalten, wobei der Abstand zur nächsten Kapazität 16 auf der Schleifenantenne nach der rechten Seite hin anders gewählt ist als der Abstand zur nächsten Kapazität 16 auf der Schleifenantenne nach der linken Seite hin. Die Schleifenantenne ist also so gegen die Dachkapaziät um die z-Achse herum zu drehen, dass sich links- und rechtsseitig unterschiedliche Winkelabstände α und β zwischen den Horizontalarmen der Dachkapazität und der jeweils nächsten Kapazität ergeben. Auf diese Weise ist im Zusammenwirken der einspeisenden Horizontalarme der Dachkapazität 12 und den betreffenden Unterbrechungen der Leiterschleife eine Schleifenantennen-Anschlussstelle zur Einspeisung des Ringstromes auf der Schleifenantenne 14 gebildet. Dabei sind die Horizontalarme der Dachkapazität 12 über die Strahleranschlussstelle 2 nicht nur für ihre Wirkung als Dachkapazität sondern darüber hinaus auch zur Erzeugung des Ringstromes auf der Schleifenantenne 14 gespeist, so dass die Speisung der Schleifenantenne 14 und des Monopols 7b mit Dachkapazität in wirtschaftlich sehr vorteilhafter Weise erfindungsgemäß über die gemeinsame Strahleranschlussstelle 2 des Monopols 7b erfolgen kann.
  • Figur 6 zeigt eine weitere vorteilhafte Ausgestaltung der Erfindung nach dem Funktionsprinzip der Antenne in Fig. 2, jedoch mit einer im Zentrum Z angeordneten vertikalen Zuleitung 26 zur Speisung der Schleifenantenne 14 , wobei die Zuleitung 26 einen vertikalen Monopol 7a und die Schleifenantenne 14 eine Dachkapazität 12 des Monopols 7 bildet. Die Schleifenantenne 14 ist mit zwei symmetrisch zueinander angeordneten Antennenanschlussstellen 3a, 3b und je einem Anpassnetzwerk 25 in der Schleifenebene sowie mit zentralem Anschluss an die vertikale als Zweidrahtleitung 26 ausgeführte Zuleitung zum Anpassnetzwerk 33 gebildet. Hierbei kompensieren sich die Wirkungen der im Gegentaktmodus in entgegen gesetzter Richtung fließenden Ströme der Schleifenantenne 14 auf den Leitern der Zweidrahtleitung 26. Die Empfangsspannung des Monopols 7a wird an seiner Strahleranschlussstelle 2 als Gleichtakt-Modus der Zweidrahtleitung 26 an einem Ausgang und die Empfangsspannung der Schleifenantenne 14 wird als Gegentakt-Modus der Zweidrahtleitung 26 am anderen Ausgang des Anpassnetzwerks 33 dem Leistungsteiler- und Phasenschiebernetzwerk 31 zur amplitudengerechten und phasenunterschiedlichen Überlagerung der Signale am Antennenanschluss 28 zugeführt.
  • Fig. 7 zeigt eine weitere vorteilhafte Ausgestaltung der Antenne nach dem Funktionsprinzip der Antenne in Fig. 6, jedoch mit einer als Quadrat mit dem Zentrum Z gestalteten Schleifenantenne 14, welche durch vier in einem Quadrat angeordnete, horizontal liegende und an ihren Enden über Kapazitäten 16 verbundene Dipole 21 mit einem über Zuleitungen 18 verbundenen, zentral im Phasenbezugspunkt B angeordneten Verteilungsnetzwerk 10 gebildet ist. Das Dipolsystem wirkt als Dachkapazität des auf diese Weise gebildeten vertikalen Monopols, ähnlich wie in Figur 5 erläutert. Der Empfang horizontaler bzw. vertikaler elektrischer Feldkomponenten erfolgt über die Summenbildung 34 beziehungsweise die Differenzbildung 35 und die phasenunterschiedliche Überlagerung der Signale über das Phasenschieber-Netzwerk 23 und das Summations-Netzwerk 53.
  • In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist in Fig. 8 eine Antennenanordnung dargestellt mit phasenunterschiedlicher Überlagerung der Empfangsspannungen aus den horizontalen und den vertikalen elektrischen Feldanteilen einer Schleifenantenne 14 und einer durch die vertikale Zweidrahtleitung 26 gebildeten Monopolantenne 7a. Ähnlich wie in Fig. 4 sind auch hier zur Verbesserung der Symmetrie der Anordnung zwei in der Symmetrieebene SE einander gegenüberliegende Antennenanschlussstellen 3a, 3b mit Anpassnetzwerken 25 in der Ebene der Schleifenantenne 14 vorhanden. Mit Hilfe eines in einen der Leiter der Zweidrahtleitung 26 eingebrachten Zweipolnetzwerks 61 erfolgt die Einstellung des Gleichtakt-zu-Gegentakt-Verhältnisses auf der vertikalen Zweidrahtleitung 26, womit das Verhältnis des Anteiles des vertikal polarisierten Feldes mit niedriger Elevation der Hauptstrahlrichtung zu dem Anteil des horizontal polarisierten Feldes mit höherer Elevation der Hauptstrahlrichtung eingestellt wird. Zusätzlich erfolgt die für die Erzeugung der zirkularen Polarisation notwendige Einstellung der Phasen mit Hilfe dieses Summations-Netzwerks 53. Erfindungsgemäß können durch Wahl des o.g. Gleichtakt-zu-Gegentakt-Verhältnisses und der Phaseneinstellung das Achsenverhältnis und die räumliche Ausrichtung der Ellipse für elliptische Polarisation eingestellt werden.
  • In einer weiteren vorteilhaften Ausgestaltung der Erfindung in Fig. 9 ist die Antenne - zum Beispiel ähnlich zu der Ausführungsform wie in Figur 2 - jedoch als Mehrfrequenzbereichsantenne gestaltet. Hierzu werden anstelle diskreter Kapazitäten in der Schleifenantenne 14 die Kapazitäten 16 jeweils aus gleichen Zweipol-Netzwerken vorzugsweise jeweils bestehend aus einer Schaltung aus mehreren Blindelementen gebildet. Damit sind bei unterschiedlichen Betriebsfrequenzen unterschiedliche Kapazitätswerte wirksam, welche bei diesen unterschiedlichen Betriebsfrequenzen die Resonanz für die Gestaltung der reellen Antennenimpedanz ermöglichen.
  • In Figur 1 ist die Situation dargestellt, dass zwei Satelliten-Rundfunk-Frequenzbänder mit kleiner Bandbreite Bu beziehungsweise Bo dicht benachbart bei einer hohen Frequenz im L-Band beziehungsweise im S-Band, jedenfalls bei einer Frequenz von fm >1 GHz mit gleichen Richtungen, das heißt z. B. links drehender zirkularer Polarisation (LHCP) abgestrahlt werden. Bei einer Bandbreite Bu beziehungsweise Bo von einigen Megahertz (typisch etwa 4 -25 MHz) ist der relative Frequenzabstand zwischen den Mittenfrequenzen fmu und fmo derart gering, dass eine frequenzselektive Gestaltung der Antenne nicht möglich und bei geeigneter Frequenzbandbreite der Antenne nicht notwendig ist. Beide Signale können deshalb aufgrund der Gleichheit der Drehrichtungen der Polarisation an derselben Antennenanschlussstelle 28 empfangen werden. Für den Fall, dass ein weiteres Satelliten-Rundfunk-Signal in dichter Frequenznachbarschaft mit der anderen zirkularen Polarisation vorhanden wäre, so kann dies durch Gestaltung zweier gesonderter Antennenanschlussstellen 28a und 28b im Rahmen einer kombinierten Antenne nach der Erfindung gestaltet werden. Fig. 10 zeigt eine Antennenanordnung mit einem als Stabantenne ausgebildeten, vertikal polarisierten Monopol 7 und einer horizontal polarisierten Schleifenantenne 14 nach der Erfindung mit auf den Sendefall bezogen gemeinsamem Phasenbezugspunkt B, jedoch mit getrennter Zuführung der Signale zum Anschluss für Vertikalpolarisation 49 beziehungsweise zum Anschluss für Horizontalpolarisation 48. Der an diesen Anschlüssen nach geschaltete Hybridkoppler 45 mit 90° positivem beziehungsweise negativem Phasenunterschied bezüglich des LHCP-Anschlusses 28a und des RHCP-Anschlusses 28b ermöglicht die getrennte Verfügbarkeit von LHCPbeziehungsweise RHCP-Signalen unterschiedlicher Drehrichtungen der zirkularen Polarisation. Der als Stabantenne 32 ausgeführte Monopol 7 weist zur Gestaltung seines Vertikaldiagramms eine mit einem Blindelement 8 beschaltete Unterbrechungsstelle 5 auf.
  • Insbesondere für den Empfang von geostationären Satelliten, deren Signale in nördlichen Breiten unter vergleichsweise niedriger Elevation einfallen, ist vorgesehen, dass der eine im Wesentlichen senkrechte Monopol 7 mindestens eine Unterbrechungsstelle 5 enthält, die zur Gestaltung des Vertikaldiagramms mit mindestens einem Blindelement 8 beschaltet bzw. überbrückt ist. Auf diese Weise kann das Vertikaldiagramm auf vorteilhafte Weise den Erfordernissen angepasst werden. Die Antennenanschlussstelle 2 ist im Fußpunkt des Monopols 7 am Anschluss zum Anpassnetzwerk 33 gebildet.
  • Eine ähnliche Antennenanordnung ist in Fig. 11 dargestellt, wobei jedoch die Realisierung des Monopols 7 ähnlich der Antennenanordnung in Figur 10 durch die Kombination der als Dachkapazität wirkenden Schleifenantenne 14 und der Zweidrahtleitung 26 erfolgt. Mit Hilfe einer kombinierten Anpassschaltung 50 wird sowohl die Anpassung der Schleifenantenne 14 und die Anpassung des Monopols 7 als auch die Einstellung eines gemeinsamen Phasenbezugspunkts B erstellt.
  • In einer weiteren vorteilhaften Antennenanordnung zur alternativen Auskopplung von RHCP- beziehungsweise LHCP-Signalen ist, wie in Figur 12 dargestellt, eine Schleifenantenne 14 - wie in Figur 6 - mit zwei einander gegenüberliegenden Antennenanschlussstellen 3a, 3b und daran angeschlossenen und in der Schleifenebene befindlichen Anpassnetzwerken 25, welche zum Beispiel als λ/4-Transformationsleitungen realisiert sind, vorgesehen. Die Ausgänge der Anpassnetzwerke 25 sind addierend parallel geschaltet. Das Empfangssignal wird über die Zweidrahtleitung 26 einem auf der Grundfläche 6 befindlichen Anpassnetzwerk 25 zugeführt, dessen Ausgang wiederum an einen der beiden Eingänge einer insbesondere als 90°-Hybridkoppler 45 ausgebildeten Signalkombinierschaltung angeschlossen ist. An der Antennenanschlussstelle 2 im Fußpunkt des im Zentrum Z der Anordnung befindlichen, als Stabantenne ausgebildeten Monopols 7a ist ebenfalls ein Anpassnetzwerk 25 angeschlossen, dessen Ausgang den anderen der beiden Eingänge des 90°-Hybridkopplers 45 speist. Ein an die Ausgänge des 90°-Hybridkopplers 45 angeschalteter LHCP/RHCP-Umschalter 55 stellt an der Anschlussstelle 28 - angesteuert durch eine in einem Radioempfängermodul 52 befindlichen Umschaltsteuerung - Satelliten-Empfangssignale der beiden Drehrichtungen der Polarisation alternativ zur Verfügung. Bei Ansteuerung mit einem in einem LHCP/RHCP-Radiomodul 52 befindlichen Diversity-Steuermodul 38 kann die Antennenanordnung in vorteilhafter Weise ebenso für Polarisations - Diversity durch Umschalten zwischen dem Empfang für LHCP- und RHCP- Wellen eingesetzt werden.
  • In einer weiteren besonders wirtschaftlichen Ausführungsform einer derartigen Antenne mit zirkular polarisiertem Feld bei umschaltbarem Drehsinn ist in Figur 13 - ähnlich wie bei der Antenne in Figur 12 - der gesonderte Monopol 7 eingespart. Für den Empfang bei vertikaler Polarisation wird auch hier die Zweidrahtleitung 26 - ähnlich wie in Figur 8 - ausgenutzt. Durch Einfügen eines geeignet gestalteten Zweipolnetzwerks 61 in einen der Stränge der vertikalen Zweidrahtleitung 26 wird der Unterschied von 90° zwischen den Phasen des von der vertikalen Zweidrahtleitung 26 mit der Schleifenantenne 14 als Dachkapazität 12 und des von der Schleifenantenne 14 aufgenommenen horizontalen Feldanteils so eingestellt, dass deren Kombination mit diesem Phasenunterschied am Mikrostreifenleiter 30 zum Anpassnetzwerk 54 vorliegt und somit ebenso an der Anschlussstelle 28. Damit empfängt die Antenne ein zirkular polarisiertes Feld. Eine die Empfangssignale der Schleifenantenne 14 am Ausgang der Anpassnetzwerke 25 aus dem horizontal polarisierten elektrischen Feld und die Empfangssignale der vertikalen Zweidrahtleitung 26 aus dem vertikal polarisierten elektrischen Feld verknüpfende Schaltung umfasst einen LHCP/RHCP-Umschalter 55 zur Vertauschung der Polarität der Empfangsspannung der Schleifenantenne 14. Letztere kann auf diese Weise mit unterschiedlichem Vorzeichen der Empfangsspannung aus dem vertikal polarisierten elektrischen Feld hinzugefügt werden, so dass zwischen dem Empfang vom LHCP-Feld und vom RHCP-Feld durch Umschaltung der LHCP/RHCP-Umschalter 55 umgeschaltet werden kann. Angesteuert durch eine im Empfänger befindliche Umschaltsteuerung zwischen LHCP und RHCP - Empfangssignalen stehen Signale von auf unterschiedlichen Übertragungswegen unterschiedlich gedrehter Polarisation der Satellitensignale alternierend zur Verfügung.
  • Wie bereits im Zusammenhang mit der Antenne in Figur 8 erläutert - kann auch hier ein entsprechendes Netzwerk 61 aus Blindwiderständen in den mit Masse verbundenen Strang der vertikalen Zweidrahtleitung 26 geschaltet werden. Mit Hilfe des Netzwerks 61, kann die Einstellung des Gleichtakt-zu-Gegentakt-Verhältnisses auf der vertikalen Zweidrahtleitung 26 eingestellt werden. Die Empfangsspannungen aus den horizontalen und den vertikalen elektrischen Feldanteilen werden entsprechend der zirkularen Polarisation phasenunterschiedlich überlagert. Durch Einstellung des Gleichtakt-zu-Gegentakt-Verhältnisses auf der vertikalen Zweidrahtleitung 26 kann das Verhältnis des Anteiles des vertikal polarisierten Feldes mit niederer Elevation der Hauptstrahlrichtung zu dem Anteil des horizontal polarisierten Feldes mit höherer Elevation der Hauptstrahlrichtung eingestellt werden.
  • In einer weiteren besonders vorteilhaften Ausführungsform der Erfindung wird die Antenne in den obigen Ausführungsformen mit einem weiteren Strahler mit azimutalem Runddiagramm kombiniert, dessen Polarisation zirkular ist und die Phase der zirkularen Polarisation sich mit dem azimutalen Winkel des Ausbreitungsvektors dreht - also bei einem kompletten azimutalen Umlauf um den Winkel 2π. Wie bereits oben erwähnt, erfüllen die aus der DE-A-4008505 und der DE-A-10163793 , bzw. EP 1 239 543 B1 , bekannten Antennen aus dem Stande der Technik, sowie andere bekannte Antennenformen diese Bedingung. Die Wirkungsweise dieser Antennen beruht im Wesentlichen darauf, dass die einzelnen Antennenteile auf unter einem rechten Winkel gekreuzten und auf der Grundebene senkrecht stehenden Ebenen platziert sind und die Antennenteile der unterschiedlichen Ebenen zur Erzeugung der zirkularen Polarisation um 90° in der Phase versetzt zusammengeschaltet sind. Selbst die Wirkung von Patchantennen lässt sich auf ähnliche Weise darstellen. Strahler 7d mit azimutalem Runddiagramm, deren Polarisation zirkular ist und deren Phase der zirkularen Polarisation sich mit dem azimutalen Winkel des Ausbreitungsvektors dreht und die aus zwei gekreuzten Strahlern aufgebaut sind, werden im Folgenden zur einfachen Unterscheidung als "gekreuzte Strahler" bezeichnet.
  • Bei Kombination eines derartigen gekreuzten Strahlers 7d in der Weise, dass dessen Phasenbezugspunkt B mit dem der bisher beschriebenen erfindungsgemäßen Antenne zusammenfällt und die Signale der beiden Antennen über ein steuerbares Phasendrehglied 39 und ein Summations-Netzwerk amplitudengerecht zusammengefasst werden, bildet sich in vorteilhafter Weise im azimutalen Richtdiagramm der kombinierten Antennenanordnung eine Hauptrichtung der Strahlung aus, welche von der Einstellung des Phasendrehglieds 39 abhängig ist.
  • Die Wirkungsweise der Überlagerung der Signale wird an Hand der Figuren 15 und 16 erläutert. In Figur 15a ist die vertikale Richtcharakteristik des LHCP-polarisierten elektromagnetischen Feldes einer bisher beschriebenen erfindungsgemäßen Antenne dargestellt. Die Phase dieses Feldes ist vom azimutalen Winkel unabhängig und somit ist die Phase für die azimutalen Winkel 0° und 180° jeweils mit demselben Winkel - im Beispiel 0° - gekennzeichnet. Vergleichend hierzu ist das Elevations-Richtdiagramm eines oben beschriebenen weiteren Strahlers 7d in Figur 15b von einem Typus dargestellt, wie es durch einen oben beschriebenen gekreuzten Strahler 7d erzeugt wird, wobei sich für die azimutalen Winkel 0° und 180° um 180° unterschiedliche Phasenwerte ergeben, die im Beispiel mit 0° und 180° gekennzeichnet sind. Somit lässt sich bei phasengleicher Überlagerung beider Signale der Antennengewinn der kombinierten Antennenanordnung für den azimutalen Winkel 0° steigern und für den azimutalen Winkel 180° schwächen und bei geeigneter Einstellung der Amplituden unter einem gewünschten Elevationswinkel sogar eine Nullstelle des Richtdiagramms einstellen, wie es in Fig. 16 dargestellt ist. Werden die beiden Signale um den einstellbaren Phasenwinkel ϕ gegeneinander verschoben überlagert, so ergibt sich - auf Grund der Phasenänderung der zirkularen Polarisation des gekreuzten Strahlers (7d) mit dem azimutalen Winkel des Ausbreitungsvektors - das azimutale Richtdiagramm unter Beibehaltung des Elevationsrichtdiagramms um denselben Winkel ϕ, in der einen oder der anderen Richtung gedreht. Auf diese Weise kann das Richtdiagramm der kombinierten Antennenanordnung bei mobilem Einsatz in vorteilhafter Weise z. B. mit seiner Hauptrichtung auf den Satelliten weisend nachgeführt werden oder z.B. ein Störer durch Richtungszuweisung der Nullstelle des Richtdiagramms gezielt ausgeblendet werden. Insbesondere beim Satellitenempfang auf Fahrzeugen lässt sich hiermit im Rahmen einer dynamisch nachgeführten Einstellung des Richtdiagramms das Signal-Störverhältnis während der Fahrt stets optimal gestalten.
  • In Fig. 17 ist die erfindungsgemäß kombinierte Antennenanordnung mit einem durch den Bauraum 42 angedeuteten gekreuzten Strahler 7b dargestellt, wie er z.B. in der EP 1 239 543 B1 , dort in Fig. 10a, dargestellt ist. Hierbei ist der dort angegebene vertikale Antennenleiter 20 hier in Fig. 17 äquivalent als Vertikaler Monopol 7a im Zentrum Z ausgeführt und ist auf Grund von Symmetriebedingungen von der Anschlussstelle 56 des gekreuzten Strahlers 49 entkoppelt. Letztere ist über das steuerbare Phasendrehglied 39 mit dem Summations-Netzwerk 53 verbunden, in welchem die Signale der Schleifenantenne 14, des vertikalen Monopols 7a und des gekreuzten Strahlers 49 mit der jeweils geeigneten Gewichtung zum Empfangssignal der kombinierten Antennenanordnung zusammengefasst sind. In äquivalenter Weise kann eine Antenne vom Typ, wie in der DE-A-4008505 beschrieben, oder eine Patchantenne mit dem vertikalen Monopol 7a im Zentrum Z, sowie auch eine Anordnung über der Massefläche parallel gekreuzter Dipole kombiniert werden. Alle Anordnungen von n gleichen horizontalen Strahlerelementen 59 sind hierfür verwendbar, wenn diese so angeordnet sind, dass deren Zentren die Ecken eines gleichseitigen Vielecks ergeben, und wenn die Drehung der Anordnung um die z-Achse um einen Winkel von 360°/n die Struktur in sich selbst abbildet und wenn die Speisung jeweils im Drehsinn benachbarter Strahlerelemente sich in der Phase um jeweils 360°/n unterscheidet. In Fig. 25 sind solche Anordnungen jeweils für das Beispiel von vier und fünf Strahlerelementen dargestellt.
  • In einer besonders vorteilhaften Weiterentwicklung der Erfindung wird an Stelle eines Strahlers vom beschriebenen Typ "gekreuzter Strahler" ein erfindungsgemäß neuartiger weiterer Strahler 7c mit zirkularer Polarisation und azimutalem Rundstrahldiagramm, dessen Phase sich mit dem azimutalen Winkel des Ausbreitungsvektors dreht, im Folgenden zur Unterscheidung als Ringleitungsstrahler 7c bezeichnet, eingesetzt. In Figur 15(b) ist beispielhaft das Vertikaldiagramm einer solchen Antenne nach der Erfindung dargestellt.
  • Erfindungsgemäß ist der Ringleitungsstrahler 7c als eine rotationssymmetrisch um das Zentrum Z angeordnete polygonale oder kreisförmige geschlossene Ringleitung in einer horizontalen Ebene mit der Höhe h1 über der leitenden Grundfläche 6 verlaufend, gestaltet.
  • Erfindungsgemäß wird die Ringleitung in der Weise gespeist, dass sich auf ihr die Stromverteilung einer laufenden Leitungswelle einstellt, deren Phasenunterschied über einen Umlauf gerade 2π beträgt, somit die gestreckte Länge der Ringleitung der Wellenlänge λ entspricht, die sich auf der Ringleitung einstellt. Die Strahlungsbeiträge der horizontal polarisierten einzelnen Leiterabschnitte überlagern sich im Fernfeld in der Weise, dass sich die gewünschte Strahlung mit zirkularer Polarisation und der geforderten Phasenabhängigkeit von der azimutalen Ausbreitungsrichtung und der im Wesentlichen omnidirektionalen azimutalen Richtcharakteristik einstellt. Bei kreisförmiger Gestaltung der Ringleitung beträgt ihre Horizontalausdehnung somit D = λ/π. Bei einer Ringleitung wie sie in Figur 18 dargestellt ist, ist die Wellenlänge λ auf der Ringleitung gleich der Freiraum-Wellenlänge λ0. Zur Reduzierung des Durchmessers D kann die Wellenlänge λ auf der Ringleitung durch Erhöhung der Leitungsinduktivität oder/und der Leitungskapazität zur leitenden Grundfläche 6 erfolgen. Dies kann auf an sich bekannte Weise zum Beispiel bevorzugt durch Einbringung konzentrierter induktiver Elemente in die Leitungsstruktur oder zum Beispiel durch mäanderförmige Ausführung des Ringleiters erfolgen.
  • Fig. 18 zeigt eine derartige kombinierte Antennenanordnung, bestehend aus der Schleifenantenne 14 und dem mit dieser unter einem Phasenunterschied kombinierten Monopol 7a zur Erzeugung des zirkular polarisierten Strahlungsfeldes mit azimutal unabhängiger Phasenlage und einem konzentrisch mit Zentrum Z angeordneten kreisförmigen Ringleitungsstrahler 7c mit Ringleitungs-Anschlussstelle 19 zur Überlagerung seines zirkular polarisierten Strahlungsfeldes jedoch mit azimutal abhängiger Phasenlage und zur Steuerung der azimutalen Hauptrichtung über das steuerbare Phasendrehglied 39. Der Phasenschwerpunkt des Ringleitungsstrahlers 7c liegt in Folge der beschriebenen Phasenverteilung auf der rotationssymmetrischen Ringleitungsstruktur im Zentrum Z der Antennenanordnung und fällt somit mit dem beschriebenen Phasenbezugspunkt B der Schleifenantenne 14 und dem des Monopols 7a zusammen - unabhängig von der Stellung des steuerbaren Phasendrehglieds 39. Die Erzeugung der fortlaufenden Leitungswelle auf dem Ringleitungsstrahler 7c erfolgt ausgehend von der Ringleitungs-Anschlussstelle 19 über das Leistungsteiler- und Phasenschiebernetzwerk 31, an dessen Ausgängen um 90° zueinander in der Phase verschobene Signale stehen, welche jeweils über ein Anpassnetzwerk 25 über die Zuleitungen 18 an um λ/4 voneinander entfernten Ringleitungs-Einspeisestellen 22a und 22b längs der Ringleitungsstruktur angeschlossen sind. Mit einem Ringleitungsstrahler 7c dieser Art ist der besondere Vorteil verbunden, dass er konzentrisch zur Schleifenantenne 14 und im Vergleich zu dieser mit größerem Durchmesser gestaltet ist. Eine für die Schleifenantenne 14 übliche Querabmessung ist in weiten Grenzen gestaltbar, ist jedoch in der Regel kleiner als λ/4 und kann deshalb innerhalb der Ringleitungsstrahlers 7c mit Durchmesser λ/π gestaltet werden. Dies ermöglicht die vorteilhaft freizügige Gestaltbarkeit des im Zentrum Z befindlichen vertikalen Monopols 7b, bzw. Monopolsystems, wie z.B. in den Figuren 3, 4 und 5. Aufgrund der geometrisch bedingten Strahlungsentkopplung zwischen der Schleifenantenne 14 und dem sie umgebenden Ringleitungsstrahler 7c können die Durchmesser der beiden Strahler in weiten Grenzen unabhängig voneinander im Interesse der Gestaltung ihrer vertikalen Richtdiagramme und des daraus resultierenden vertikalen Richtdiagramms der Antennenanordnung am Antennenanschluss 28 gestaltet werden. Ebenso kann der Abstand h der Ebene der Schleifenantenne 14 von der leitenden Grundfläche 6 vom Abstand h1 zwischen der Ebene des Ringleitungsstrahlers 7c und der leitenden Grundfläche 6 unterschiedlich gewählt werden, wenngleich es für die Herstellung besonders wirtschaftlich ist, wenn beide Strahler zum Beispiel in gedruckter Form auf demselben flächigen Träger aufgedruckt sind. In Figur 16(a) ist beispielhaft das Vertikaldiagramm und in Fig 16(b) ist das Horizontaldiagramm einer solchen Antenne nach der Erfindung dargestellt. Für das Beispiel einer quadratisch geformten Schleifenantenne 14 mit zentralem kurzem vertikalem Monopol in Kombination mit einem ebenso quadratisch geformten Ringstrahlungsleiter im Frequenzbereich um 2,3 GHz haben sich für die Schleifenantenne 14 eine Kantenlänge von etwa 3 cm und eine Höhe h von 13mm und für den quadratisch geformten Ringleitungsstrahler eine Kantenlänge von etwa 3,4 cm, welche etwa ¼ der Wellenlänge entspricht, und eine Höhe h von 10mm zur Realisierung sowohl des Richtdiagramms nach Fig. 16 als günstig erwiesen.
  • Die Schleifenantenne 14 ist über die für Gleichtaktströme hochohmige Zweidrahtleitung 26 über ein Anpassnetzwerk 25 und der Monopol 7a ist über ein Anpassnetzwerk 25 und über das Phasenschieber-Netzwerk 23 an das Summations-Netzwerk 53 zur Bildung der zirkular polarisierten Strahlung mit azimutaler Unabhängigkeit der Phase angeschlossen. Ebenso ist die Ringleitungs-Anschlussstelle 19 über das steuerbare Phasendrehglied 39 an das Summations-Netzwerk 53 angeschlossen und die Signale sind dort mit der geeigneten Gewichtung zur Erzeugung des gewünschten vertikalen Richtdiagramms der Antennenanordnung mit einstellbarer azimutaler Hauptrichtung am Antennenanschluss 28 den anderen Signalen überlagert.
  • Zur Vervollkommnung der azimutalen Symmetrie wird vorteilhaft der Ringleitungsstrahler 7c in Figur 19 vorteilhaft über vier jeweils um λ/4 längs der Ringleitung versetzte Einspeisestellen von in der Phase jeweils um 90° versetzten Signalen gespeist. Die Speisequellen können auf an sich bekannte Weise durch Leistungsteilung und 90°-Hybridkoppler 45 gewonnen werden.
  • In einer vorteilhaften Ausführungsform der Erfindung erfolgt die Erzeugung der fortlaufenden Leitungswelle auf dem Ringleitungsstrahler 7c in Anlehnung an Figur 18, jedoch durch den λ/4-Koppelleiter 43 in Figur 20 . Dieser ist in einem bezüglich des Leitungs-Wellenwiderstands günstigen Abstand über eine gestreckte Länge von λ/4 parallel zum Ringleitungsstrahler 7c geführt. Für die Herstellung kann der λ/4-Koppelleiter 43 wirtschaftlich auf denselben Träger wie der Ringleitungsstrahler 7c und gegebenenfalls die Schleifenantenne 14 gedruckt aufgebracht werden.
  • In einer weiteren vorteilhaften Ausführungsform der Erfindung erfolgt die Erzeugung der fortlaufenden Leitungswelle auf dem Ringleitungsstrahler 7c in Anlehnung an Figur 20 jedoch durch λ/4-Richtkoppler 44 in Figur 21 . Zu einem Mikrostreifenleiter 30 ist ein λ/4-Koppelleiter 43 parallel geführt, welcher zusammen mit dem an den Ringleitungsstrahler 7c angekoppelten λ/4-Koppelleiter 43 den λ/4-Richtkoppler 44 bildet.
  • In Figur 22 ist der Ringleitungsstrahler 7c einer Antenne ähnlich wie in Figur 18, jedoch als geschlossener quadratischer Leitungsring über der leitenden Grundfläche 6 mit der Kantenlänge von λ/4 in einer Ebene im Abstand h1 über der leitenden Grundfläche 6 ausgebildet. Ebenso ist die Schleifenantenne 14 mit ihren Kapazitäten 6 als quadratische Leiterstruktur innerhalb des Ringleitungsstrahlers 7c mit dem selben Zentrum Z angeordnet. Die übrigen Antennen sind aus Gründen der Übersichtlichkeit nicht dargestellt. Als besonders vorteilhafte Form der berührungslosen Ankopplung an den Ringleitungsstrahler 7c ist in Figur 22 der rampenförmige λ/4-Koppelleiter 43 hervorzuheben. Ausgehend von dem auf der leitenden Grundfläche 6 befindlichen Ringleitungs-Anschlussstelle 19 führt eine vertikale Zuleitung 18 bis auf einen Koppelabstand 58 an eine der Ecken heran, um von dort im Wesentlichen gemäß einer Rampenfunktion unterhalb einer benachbarten Ecke mit der Grundfläche 6 zusammenzutreffen um mit Letzterer elektrisch leitend verbunden zu werden. Diese Form der Ankopplung ist für eine wirtschaftliche Herstellung besonders vorteilhaft, weil aufgrund der quadratischen Ausführung des Ringleitungsstrahlers 7c der rampenförmige λ/4-Koppelleiter 43 auf einem ebenen Träger gestaltet werden kann. Durch Einstellung eines geeigneten Koppelabstandes 58 kann zudem Impedanzanpassung an der Ringleitungs-Anschlussstelle 19 in vorteilhafter Weise herbeigeführt werden.
  • In Figur 23 ist der Ringleitungsstrahler 7c ebenso quadratisch gestaltet wie in Figur 22, ist jedoch an seinen Ecken jeweils über eine Zuleitung 18 gespeist, welche jeweils über eine gleiche Länge als Mikrostreifenleiter 30 auf der leitenden Grundfläche 6 verläuft und welche jeweils einen gleich langen vertikalen Leiter enthält. Die übrigen Antennen sind aus Gründen der Übersichtlichkeit nicht dargestellt. Die Zuleitungen 18 sind - ausgehend von der Ringleitungs-Anschlussstelle 19 - an ein Leistungs-Verteilnetzwerk angeschlossen, welches aus in Kette geschalteten λ/4-langen Mikrostreifenleitern 30 (15a,15b,15c) besteht. Die Wellenwiderstände der Mikrostreifenleiter 30 sind - ausgehend von einem niedrigen Wellenwiderstand an der Ringleitungs-Anschlussstelle 19 - an welche eine der Zuleitungen 18 direkt angeschlossen ist - in der Weise hochgestuft, dass die an den Ecken in den Ringleitungsstrahler 7c eingespeisten Signale gleiche Leistungen besitzen und sich jeweils um 90° in der Phase fortlaufend nacheilend unterscheiden. Die übrigen Antennenteile sind aus Gründen der Übersicht ebenfalls nicht dargestellt.
  • In einer vorteilhaften Erweiterung der Erfindung ist bei der Antenne in Figur 24 ein weiterer Strahler in Form eines äußeren Ringleitungsstrahlers 7e vorhanden. Im Gegensatz zum Ringleitungsstrahler 7c, dessen Umfang genau einer Wellenlänge λ-also einer vollen Periode - entspricht, ist der Umfang des äußeren Ringleitungsstrahler 7e zwei Wellenlängen λ gewählt, so dass sich bei Erregung mit um 90° zueinander in der Phase verschobenen Signalen an um λ/4 voneinander entfernten Ringleitungs-Einspeisestellen 22 längs der äußeren Ringleitungsstruktur eine fortlaufende Leitungswelle auf dem Ringleitungsstrahler 7d einstellt. Diese Einspeisung geschieht im Beispiel in Figur 24 bei beiden Ringleitungen auf ähnliche Weise über die Anpassnetzwerke 25 und das Leistungsteiler- und Phasenschiebernetzwerk 31. Die Anschlussstelle 21 ders äußeren Ringleitungsstrahlers 7e ist ebenfalls mit dem Summations-Netzwerk 53 verbunden, so dass die Wirkungen der Strahlung des äußeren äußeren Ringleitungsstrahlers 7e je nach Gewichtung am Antennenanschluss 28 auftreten. Die Signale an der Schleifenantenne-Monopol-Anschlussstelle 27, an der Ringleitungs-Anschlussstelle 19 und an der Anschlussstelle 21 des äußeren Ringleitungsstrahlers 7e werden über steuerbare Phasendrehglieder 39 im Summations-Netzwerk 53 gewichtet zusammengefasst, so dass am Antennenanschluss 28 in der eingestellten azimutalen Hauptrichtung ein erhöhter Antennengewinn erzielt wird. Aufgrund des größeren Durchmessers des äußeren Ringleitungsstrahlers 7e ist sein Beitrag schärfer bündelnd als derjenige der zirkular polarisierten Ringleitung 7c. Obgleich durch Zuschalten des äußeren Ringleitungsstrahlers 7e die Polarisation nicht mehr rein zirkular ist, kann aufgrund der insgesamt schärferen Bündelung der Strahlungsgewinn für gewisse Situationen durch diese Maßnahme vergrößert werden.
  • In einer vorteilhaften Weiterentwicklung der Erfindung ist in Figur 26 anstelle des Ringleitungsstrahlers 7c in Figur 22 ein Kreisgruppenstrahler 7f von dem in Figur 25 beschriebenen Typus dargestellt. Dieser besteht aus mehreren in einer parallel zur leitenden Grundfläche 6 und in einem Abstand zu dieser angeordneten Ebene und um das Zentrum Z azimutal rotationssymmetrisch auf einem Kreis K angeordneten horizontal polarisierten Strahlerelementen 59. Über Zuleitungen 18 mit Phasenschieber-Netzwerk ist eine gemeinsame Kreisgruppenstrahler-Anschlussstelle 60 geschaffen. Bei reziprokem Betrieb der Antenne ist die Erregung des Kreisgruppenstrahlers 7f in der Weise bewirkt, dass jedes Strahlerelement 59 mit einem Strom gleicher Amplitude, jedoch der Phase nach in der Weise erregt ist, dass der Betrag der Stromphase gleich dem von einer azimutalen Bezugslinie ausgehenden Azimutwinkel Φ der azimutalen Position des Strahlerelements 59 gewählt ist, so dass die Stromphase mit steigendem Azimutwinkel Φ steigt oder fällt. Hierfür sind die horizontal polarisierten Strahlerelemente 59 an den Eckpunkten eines Quadrats mit Zentrum Z angeordnet und jeweils senkrecht zu den Verbindungslinien zwischen dem betreffenden Eckpunkt und dem Zentrum Z orientiert. Die horizontal polarisierten Strahlerelemente 59 sind jeweils über eine gleich lange Zuleitung 18 mit den Anschlüssen eines Leistungsteiler- und Phasenschiebernetzwerk verbunden. Letzteres ist aus in Kette geschalteten auf der leitenden Grundfläche 6 gebildeten λ/4-langen Mikrostreifenleitern 30 mit den Teilstücken 15a, 15b,15c, gestaltet, deren Wellenwiderstände - ausgehend von einem niedrigen Wellenwiderstand an der Kreisgruppenstrahler-Anschlussstelle 60 - an welche eine der Zuleitungen 18 direkt angeschlossen ist - in der Weise hochgestuft sind, dass die an den Ecken in die Strahlerelemente 59 eingespeisten Signale gleiche Leistungen besitzen und sich jeweils um 90° in der Phase fortlaufend nacheilend unterscheiden.
  • Liste der Bezeichnungen
    • Antenne 1
    • Strahleranschlussstelle 2
    • Schleifenantennen-Anschlussstelle 3
    • Schleifenantennen-Anschlussstellen 3a,3b,3c,3d
    • Abstand der Höhe h, h1 4, 4a
    • Unterbrechung, Unterbrechungsstelle 5
    • Grundfläche 6
    • Strahler 7
    • Vertikaler Monopol 7a
    • Vertikaler Monopol m. Dachkapazität 7b
    • Ringleitungsstrahler 7c
    • Gekreuzter Strahler 7d
    • Äußerer Ringleitungsstrahler 7e
    • Kreisgruppenstrahler 7f,
    • Blindelement 8
    • Kreisantennen-Anschlussstelle (9)
    • Verteilungsnetzwerk 10
    • Horizontale Ausdehnung 11
    • Dachkapazität 12
    • Strahler 13
    • Schleifenantenne 14
    • Leiterteile der Schleifenantennen 14a
    • Leistungsverteilnetzwerk 15a, 15b, 15c
    • Kapazität 16
    • Horizontaldipole 17
    • Zuleitung 18
    • Ringleitungs-Anschlussstelle 19
    • Ringleitungs-Einspeisestelle 20a,20b
    • Äußere Ringleitungs-Anschlussstelle 21
    • Ringleitungs-Einspeisestelle 22
    • Phasenschieber-Netzwerk 23
    • Antenne eines anderen Funk-Dienstes 24
    • Anpassnetzwerk 25
    • Zweidrahtleitung 26
    • Schleifenantenne-Monopol-Anschlussstelle 27
    • Antennenanschluss 28
    • Antennenanschluss für LHCP 28a
    • Antennenanschluss für RHCP 28b
    • Umsymmetrierglied 29
    • Mikrostreifenleiter 30
    • Leistungsteiler- und Phasenschiebernetzwerk 31
    • Stabantenne 32
    • Anpassnetzwerk 33
    • Summenbildung 34
    • Differenzbildung 35
    • Äußere Ringleitung 36
    • Diversity-Umschalters 37
    • Diversity-Steuermodul 38
    • Steuerbares Phasendrehglied 39
    • Abstand 40
    • Blindwiderstand 41
    • gekreuzter Strahler 42
    • Richtkoppelleiter 43
    • zweiter Richtkoppelleiter 44
    • 90"-Hybridkoppler 45
    • LHCP-Anschluss 46
    • RHCP-Anschluss 47
    • Anschluss Horizontalpolarisation 48
    • Anschluss Vertikalpolarisation 49
    • kombinierte Anpassschaltung 50
    • Schaltung aus mehreren Blindelementen 51
    • LHCP/RHCP-Radiomodul 52
    • Summations-Netzwerk 53

Claims (25)

  1. Antenne für den Empfang zirkular in einer Drehrichtung der Polarisation ausgestrahlter Satellitenfunksignale umfassend wenigstens zwei mit einem Antennenanschluss (28) verbundene, jeweils in einer Raumrichtung linear polarisierte und über ein Anpass- und Phasenschieber-Netzwerk (25, 23) verbundene Strahler (7),
    gekennzeichnet durch die folgenden Merkmale:
    - einer der Strahler ist als Schleifenantenne (14) gebildet, welche aus einer im Wesentlichen in einer horizontalen Ebene parallel über einer im Wesentlichen horizontal orientierten leitenden Grundfläche (6) angeordneten Leiterschleife besteht
    - die Leiterschleife weist für ihre elektrisch wirksame Verkürzung wenigstens eine durch eine Kapazität (16) überbrückte Unterbrechung, insbesondere mehrere im Abstand voneinander angeordnete, durch Kapazitäten (16) überbrückte Unterbrechungen auf
    - im Zusammenwirken mit der wenigstens einen Unterbrechung der Leiterschleife ist eine Schleifenantennen-Anschlussstelle (3) der Schleifenantenne (14) zur Einspeisung eines Ringstromes auf der Schleifenantenne (14) gebildet
    - der mindestens eine weitere Strahler (7) mit seiner Strahleranschlussstelle (2) sowie die Schleifenantennen-Anschlussstelle (3) der Schleifenantenne (14) sind über ein Anpass- und Phasenschiebernetzwerk (25, 23) verbunden, welches so ausgebildet ist, dass bei reziprokem Betrieb der Antenne die Strahlungsfelder der Schleifenantenne (14) und des mindestens einen weiteren Strahlers (7) im Fernfeld der Antenne mit unterschiedlichen Phasen überlagert sind
    - der mindestens eine der weiteren Strahler (7) weist eine im wesentlichen senkrecht zur Polarisation der Schleifenantenne (14) orientierte Polarisation und eine im wesentlichen orthogonale Phase im Fernfeld auf.
  2. Antenne nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Anzahl und jeweils der Kapazitätswert der über den Umfang der Schleifenantenne (14) verteilten Kapazitäten (16) in der Weise gewählt sind, dass sowohl eine azimutal konstante Strombelegung auf der Schleifenantenne (14) als auch eine Resonanz der Kapazitäten (16) zusammen mit den Wirkungen der elektrischen Leiter der Schleifenantenne gegeben ist.
    (Fig. 2)
  3. Antenne nach Anspruch 1 bis 2,
    dadurch gekennzeichnet, dass
    bei reziprokem Betrieb der Antenne die Strahlungsfelder der Schleifenantenne (14) und des mindestens einen weiteren Strahlers (7) im Fernfeld der Antenne für die Erzeugung einer Strahlung mit zirkularer Polarisation mit weitgehend gleicher Amplitude im Winkelbereich der Elevation zwischen 30° und 60° und einem Phasenunterschied von 90° überlagert sind.
  4. Antenne nach Anspruch 1 bis 3,
    dadurch gekennzeichnet, dass
    durch die wenigstens eine Unterbrechung der Leiterschleife die Schleifenantennen-Anschlussstelle (3) der Schleifenantenne (14) gebildet ist und die Schleifenantenne (14) rotationssymmetrisch um ein Zentrum Z auf einer Ebene gebildet ist und der mindestens eine weitere Strahler (7) als kurzer, vertikaler, das Zentrum der Schleifenantenne (14) durchlaufender Monopol (7a) über der leitenden Grundfläche (6) gestaltet ist und dass die Strahleranschlussstelle (2) des Monopols (7a) sowie die Schleifenantennen-Anschlussstelle (3) der Schleifenantenne (14) mit dem Antennenausgangsanschluss (28) über das Anpass- und Phasenschiebernetzwerk (25, 23) verbunden sind.
    (Fig. 2)
  5. Antenne nach Anspruch 1 bis 4,
    dadurch gekennzeichnet, dass
    die Ebene der Schleifenantenne (14) im Abstand (4) der Höhe h von der elektrisch leitenden Grundfläche (6) angeordnet ist und der elektrisch kurze, vertikale Monopol (7a) über der elektrisch leitenden Grundfläche (6) der Schleifenantenne (14) angeordnet ist und der Elevationswinkel der Hauptstrahlrichtung über die Wahl des Abstands (4) der Höhe h und der horizontalen Ausdehnung der Schleifenantenne (14) und über das Verhältnis zwischen den Amplituden der Schleifenantenne (14) und dem Monopol (7a) eingestellt ist. (Fig. 2)
  6. Antenne nach Anspruch 1 bis 5,
    dadurch gekennzeichnet, dass
    die wenigstens eine Schleifenantennen-Anschlussstelle (3) der Schleifenantenne (14) über eine zwischen der Ebene der Leiterschleife und der elektrisch leitenden Grundfläche (6) geführte Zweidrahtleitung (26), welche ein Anpassnetzwerk (25) mit Umsymmetrierglied (29) enthält, mit der auf der leitenden Grundfläche (6) platzierten weiterführenden Schaltung mit Phasenschieber-Netzwerk (23) und Summations-Netzwerk (53) mit dem Antennenausgangsanschluss (28) verbunden ist, so dass sich das gewünschte Phasenverhältnis über die Wahl der Länge der Zweidrahtleitung (26) und das Phasenschieber-Netzwerk (23) einstellt.
    (Fig. 2, 3)
  7. Antenne nach Anspruch 1 bis 6,
    dadurch gekennzeichnet, dass
    der weitere Strahler (7), welcher zur Ebene der Schleifenantenne (14) senkrecht orientiert ist, aus einer Gruppe von rotationssymmetrisch zum Zentrum Z und innerhalb der Schleifenantenne (14) angeordneten Monopolen (7a) gebildet ist und die Monopole an ihrem unteren Ende über Leitungen im Zentrum Z miteinander verbunden sind und dort die Strahleranschlussstelle (2) bilden.
    (Fig. 3)
  8. Antenne nach Anspruch 1 bis 7,
    dadurch gekennzeichnet, dass
    in der Schleifenantenne (14) zur Verkleinerung der Restunsymmetrie der Anordnung zwei in der Symmetrieebene SE einander gegenüberliegende Antennenanschlussstellen (3a, 3b) oder mehrere Anschlussstellen in gleichen Abständen zueinander angeordnet sind und diese an die Umsymmetrier - und Anpassnetzwerke (25, 29) angeschlossen sind, deren Ausgänge über gleiche Phasenschieber-Netzwerke (23) parallel geschaltet und mit der Zweidrahtleitung (26) verbunden sind.
    (Fig. 4)
  9. Antenne nach Anspruch 1 bis 6 und 8,
    dadurch gekennzeichnet, dass
    der im Zentrum Z angeordnete weitere Strahler (7) als Monopol (7b) mit horizontalen, rotationssymmetrisch zum Zentrum Z angeordneten Leiterteilen als Dachkapazität gestaltet ist. Auch diese Leiterteile sind symmetrisch zur Symmetrieebene SE ausgeführt.
    (Fig. 4)
  10. Antenne nach Anspruch 9,
    dadurch gekennzeichnet, dass
    Leiterteile der Schleifenantenne (14) mit Leiterteilen des Monopols (7b) zur Bildung der rotationssymmetrischen Dachkapazität (12) elektrisch leitend miteinander verbunden sind und die Dachkapazität (12) sowohl bezüglich der Einhaltung der Rotationssymmetrie als auch der Symmetrie in Bezug auf die Symmetrieebene SE gestaltet ist.
    (Fig. 5)
  11. Antenne nach Anspruch 1 bis 6 und 8 bis 10,
    dadurch gekennzeichnet, dass
    die Zweidrahtleitung (26) zur Speisung der Schleifenantenne (14) im Zentrum Z angeordnet ist und die Zweidrahtleitung (26) einen vertikalen Monopol (7a) und die Schleifenantenne (14) eine Dachkapazität (12) des Monopols (7a) bildet und die Schleifenantenne (14) eine, zwei oder mehrere symmetrisch zueinander angeordnete Antennenanschlussstellen (3a, 3b,...) mit je einem Anpassnetzwerk (25) in der Schleifenebene enthält und die Empfangsspannung des Monopols (7a) an seiner Strahleranschlussstelle (2) als Gleichtakt-Modus der Zweidrahtleitung (26) an einem Ausgang und die Empfangsspannung der Schleifenantennen (14) als Gegentakt-Modus der Zweidrahtleitung (26) am anderen Ausgang des Anpassnetzwerks (33) dem Leistungsteiler- und Phasenschiebernetzwerk (31) zur amplitudengerechten und phasenunterschiedlichen Überlagerung der Signale am Antennenanschluss (28) zugeführt sind.
    (Fig. 6)
  12. Antenne nach Anspruch 11,
    dadurch gekennzeichnet, dass
    einer der beiden Leiter der Zweidrahtleitung (26) für die Gewichtung des Empfangs des horizontal polarisierten und des vertikal polarisierten elektrischen Feldes über ein Zweipolnetzwerk (61) zur Einstellung des Gleichtakt-zu-Gegentakt-Verhältnisses auf der vertikalen Zweidrahtleitung (26) mit der leitenden Grundfläche (6) an einer Masse-Anschlusstelle (62) leitend verbunden ist und der andere der beiden Leiter über das Anpassnetzwerk (54) mit dem Antennenausgangsanschluss (28) verbunden ist und die für die Erzeugung der zirkularen Polarisation notwendige Einstellung der Phasen mit Hilfe dieses Zweipolnetzwerks (61) gegeben ist.
    (Figur 8)
  13. Antenne nach einem der Ansprüche 1 bis 12,
    dadurch gekennzeichnet, dass
    die Antenne als Mehrfrequenzbereichsantenne gestaltet ist und anstelle diskreter Kapazitäten (16) Zweipol-Netzwerke (51), bestehend aus einer Schaltung aus mehreren Blindelementen, in die Unterbrechungsstellen der Schleifenantennen (14) eingebracht sind und die Zweipol-Netzwerke (51) bei unterschiedlichen Betriebsfrequenzen unterschiedliche Blindwiderstandswerte besitzen.
    (Figur 9)
  14. Antenne nach einem der Ansprüche 1 bis 11,
    dadurch gekennzeichnet, dass
    die Empfangssignale der Schleifenantenne (14) und des Monopols (7a) den beiden Eingängen einer insbesondere als 90°-Hybridkoppler (45) ausgebildeten Signalkombinierschaltung zugeführt sind und an die Ausgänge des 90°-Hybridkopplers (45) ein LHCP/RHCP-Umschalter (55) an der Anschlussstelle (28) - angesteuert durch eine in einem Radioempfängermodul (52) befindliche Umschaltsteuerung angeschlossen ist, so dass die Satelliten-Empfangssignale der beiden Drehrichtungen der Polarisation für Polarisations - Diversity alternativ zur Verfügung stehen.
    (Fig. 12)
  15. Antenne nach einem der Ansprüche 1 bis 13,
    dadurch gekennzeichnet, dass
    im Zentrum Z der Antenne ein gekreuzter Strahler (42) mit zirkularer Polarisation und azimutal abhängiger Phase vorhanden ist, dessen Empfangssignale der StrahlerAnschlussstelle (56) über ein steuerbares Phasendrehglied (39) dem Summations-Netzwerk (53) zugeführt sind und dort gewichtet den übrigen Empfangssignalen zur Ausbildung einer Hauptrichtung im azimutalen Richtdiagramm hinzugefügt sind, so dass durch variable Einstellung des Phasendrehglieds (39) die azimutale Hauptrichtung variabel eingestellt ist.
    (Figur 17)
  16. Antenne nach Anspruch 15,
    dadurch gekennzeichnet, dass
    der gekreuzte Strahler (42) durch eine Antenne gemäß EP 1 239 543 B1, Figuren 6a, 6b, 6c, gebildet ist.
  17. Antenne nach Anspruch 15,
    dadurch gekennzeichnet, dass
    der gekreuzte Strahler (42) durch eine Patchantenne für zirkulare Polarisation gebildet ist.
  18. Antenne nach Anspruch 15,
    dadurch gekennzeichnet, dass
    an Stelle eines gekreuzter Strahlers (42) ein Ringleitungsstrahler (7c) mit zirkularer Polarisation und azimutal abhängiger Phase vorhanden ist, welcher als eine rotationssymmetrisch um das Zentrum Z angeordnete polygonale oder kreisförmige geschlossene Ringleitung in einer horizontalen Ebene mit der Höhe h1 über der leitenden Grundfläche (6) verlaufend, gestaltet ist und welcher in der Weise elektrisch erregt ist, dass sich auf der Ringleitung die Stromverteilung einer laufenden Leitungswelle einstellt, deren Phasenunterschied über einen Umlauf gerade 2π beträgt und somit die gestreckte Länge der Ringleitung der Leitungswellenlänge λ entspricht.
    (Figur 18)
  19. Antenne nach Anspruch 18,
    dadurch gekennzeichnet, dass
    dass der Ringleitungsstrahler (7c) kreisförmig mit seinem Mittelpunkt im Zentrum Z ausgebildet ist und zur Erzeugung einer fortlaufenden Leitungswelle auf dem Ringleitungsstrahler (7c) zwei um λ/4 voneinander längs der Ringleitungsstruktur entfernte Ringleitungs-Einspeisestellen (22) vorhanden sind, an welchen über an die geschlossene Ringleitung angeschlossene Zuleitungen (18) gleich große Signale eingespeist sind, welche um 90° zueinander in der Phase verschoben sind.
  20. Antenne nach Anspruch 19,
    dadurch gekennzeichnet, dass
    ein Leistungsteiler- und Phasenschiebernetzwerk (31) vorhanden ist, welches auf einer Seite mit der Ringleitungs-Anschlussstelle (19) verbunden ist und auf der anderen Seite die beiden um 90° zueinander in der Phase verschobenen Signale gleicher Größe zur Einspeisung in die Ringleitung zur Verfügung stehen und die Ringleitungs-Anschlussstelle (19) über ein steuerbares Phasendrehglied (39) dem Summations-Netzwerk (53) zugeführt sind und dort gewichtet den übrigen Empfangssignalen zur Ausbildung der Hauptrichtung im azimutalen Richtdiagramm hinzugefügt sind, so dass durch variable Einstellung des Phasendrehglieds (39) die azimutale Hauptrichtung variabel eingestellt ist.
    (Figur 18)
  21. Antenne nach Anspruch 18 bis 20,
    dadurch gekennzeichnet, dass
    zur Erzeugung einer fortlaufenden Leitungswelle auf dem Ringleitungsstrahler (7c) anstelle der Ringleitungs-Einspeisestellen (22) ein Richtkoppelleiter (43) vorhanden ist, welcher in einem bezüglich des Leitungs-Wellenwiderstands günstigen Koppelabstand über eine gestreckte Länge von λ/4 parallel zum Ringleitungsstrahler (7c) geführt ist und der Richtkoppelleiter (43) auf der einen Seite über eine Zuleitung (18) und ein Anpassnetzwerk (25) mit der Ringleitungs-Anschlussstelle (19) und auf der anderen Seite über eine Zuleitung (18) mit der leitenden Grundfläche (6) verbunden ist.
    (Figur 20)
  22. Antenne nach Anspruch 15 und 21,
    dadurch gekennzeichnet, dass
    die Schleifenantennen (14) als quadratische Schleife mit Schleifenantennen-Anschlussstelle (3) ausgeführt ist und der Ringleitungsstrahler (7c) als geschlossener quadratischer Leitungsring mit der Kantenlänge von λ/4 über der leitenden Grundfläche (6) im Abstand h1 über der leitenden Grundfläche (6) ausgebildet ist und zur Erzeugung einer fortlaufenden Leitungswelle auf dem Ringleitungsstrahler (7c) und zur berührungslosen Ankopplung an den Ringleitungsstrahler (7c) ein rampenförmiger Richtkoppelleiter (57) mit vorteilhafter Länge von λ/4 gestaltet ist, welcher ausgehend von der auf der leitenden Grundfläche (6) befindlichen Ringleitungs-Anschlussstelle (19) über eine vertikale Zuleitung (18) bis auf einen Koppelabstand (58) an eine der Ecken heranführt, um von dort im Wesentlichen gemäß einer Rampenfunktion etwa unterhalb einer benachbarten Ecke mit der Grundfläche (6) zusammentrifft und mit dieser über den Massenanschluss (62) leitend verbunden ist. (Figur 22)
  23. Antenne nach Anspruch 22,
    dadurch gekennzeichnet, dass
    ein weiterer Strahler in Form eines äußeren Ringleitungsstrahlers (7e) vorhanden ist, dessen Umfang zwei Wellenlängen λ entspricht, so dass sich bei Erregung mit um 90° zueinander in der Phase verschobenen Signalen an um λ/4 voneinander entfernten Ringleitungs-Einspeisestellen (22) längs der äußeren Ringleitungsstruktur eine fortlaufende Leitungswelle einstellt und dass die Gewinnung dieser Signale ausgehend von der Anschlussstelle (21) der äußeren Ringleitung auf ähnliche Weise wie zur Speisung des Ringleitungsstrahlers (7c) gegeben ist und die Signale an der Schleifenantenne-Monopol-Anschlussstelle (27) an der Ringleitungs-Anschlussstelle (19) und an der Anschlussstelle (21) der äußeren Ringleitung über steuerbare Phasendrehglieder (39) im Summations-Netzwerk (53) gewichtet zusammengefasst sind, so dass am Antennenanschluss (28) in der eingestellten azimutalen Hauptrichtung ein erhöhter Antennengewinn erzielt wird.
    (Figur 24)
  24. Antenne nach Anspruch 18,
    dadurch gekennzeichnet, dass
    anstelle des Ringleitungsstrahlers (7c) ein Kreisgruppenstrahler (7f), bestehend aus mehreren in einer parallel zur leitenden Grundfläche (6) und in einem Abstand zu dieser angeordneten Ebene und um das Zentrum Z azimutal rotationssymmetrisch auf einem Kreis (K) angeordneten horizontal polarisierten Strahlerelementen (59), mit einer über Zuleitungen (18) mit Leistungsteiler- und Phasenschiebernetzwerk (31) angeschlossenen gemeinsamen Kreisgruppenstrahler-Anschlussstelle (60), gebildet ist und bei reziprokem Betrieb der Antenne die Erregung des Kreisgruppenstrahlers (7f) in der Weise bewirkt ist, dass jedes Strahlerelement (59) mit einem Strom gleicher Amplitude, jedoch der Phase nach in der Weise erregt ist, dass der Betrag der Stromphase gleich dem von einer azimutalen Bezugslinie ausgehenden Azimutwinkel (Φ) der azimutalen Position des Strahlerelements (59) gewählt ist, so dass die Stromphase mit steigendem Azimutwinkel (Φ) steigt oder fällt.
    (Fig. 25)
  25. Antenne nach Anspruch 10 und einem der Ansprüche 15 bis 24
    dadurch gekennzeichnet, dass
    die Speisung der Schleifenantenne (14) durch den Monopol (7b) mit Dachkapazität (12) gebildet wird und beide Antennen somit durch die Strahleranschlussstelle (2) gemeinsam gespeist werden, wobei die Schleifenantenne gegenüber der Dachkapazität um die Achse des Zentrums Z herum azimutal so gedreht ist, dass sich im linken Drehsinn und im rechten Drehsinn unterschiedliche azimutale Winkelabstände α und β zwischen den Horizontalarmen der Dachkapazität (12) und der jeweils nächsten Unterbrechungsstelle (5) mit der dort eingebrachten Kapazität (16) auf der Schleifenantenne (14) ergeben.
    (Fig. 14)
EP10001881.1A 2009-03-03 2010-02-24 Antenne für den Empfang zirkular in einer Drehrichtung der Polarisation ausgestrahlter Satellitenfunksignale Active EP2226895B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009011542A DE102009011542A1 (de) 2009-03-03 2009-03-03 Antenne für den Empfang zirkular in einer Drehrichtung der Polarisation ausgestrahlter Satellitenfunksignale

Publications (3)

Publication Number Publication Date
EP2226895A2 true EP2226895A2 (de) 2010-09-08
EP2226895A3 EP2226895A3 (de) 2010-12-15
EP2226895B1 EP2226895B1 (de) 2013-04-10

Family

ID=42245979

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10001881.1A Active EP2226895B1 (de) 2009-03-03 2010-02-24 Antenne für den Empfang zirkular in einer Drehrichtung der Polarisation ausgestrahlter Satellitenfunksignale

Country Status (3)

Country Link
US (1) US8537063B2 (de)
EP (1) EP2226895B1 (de)
DE (1) DE102009011542A1 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2296227A3 (de) * 2009-09-10 2011-06-29 Delphi Delco Electronics Europe GmbH Antenne für den Empfang Zirkular Polarisierter Satellitenfunksignale
WO2012123125A1 (de) * 2011-03-15 2012-09-20 Delphi Deutschland Gmbh Multiband-empfangsantenne für den kombinierten empfang von satellitensignalen und terrestrisch ausgestrahlten rundfunksignalen
WO2013119410A1 (en) * 2012-02-02 2013-08-15 Harris Corporation Wireless communications device having loop antenna with four spaced apart coupling points and reflector and associated methods
WO2014031303A1 (en) * 2012-08-22 2014-02-27 Symbol Technologies, Inc. Co-located antenna arrangement
EP2858175A1 (de) * 2013-10-01 2015-04-08 Seiko Epson Corporation Antenne und elektronische Vorrichtung
CN110212304A (zh) * 2018-02-28 2019-09-06 丰田自动车株式会社 阵列天线
CN114122684A (zh) * 2020-08-30 2022-03-01 华为技术有限公司 天线装置和无线设备
US11262431B2 (en) * 2014-09-22 2022-03-01 Symbol Technologies, Llc Co-located locationing technologies
CN115966894A (zh) * 2023-03-17 2023-04-14 广东工业大学 一种超宽带双圆极化天线
WO2023139122A1 (de) * 2022-01-19 2023-07-27 Fuba Automotive Electronics Gmbh Antennenmodul für einen empfänger zum mobilen empfang von ortungssatellitensignalen

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103403898B (zh) 2011-01-27 2016-10-19 盖尔创尼克斯有限公司 宽带双极化天线
US20130201065A1 (en) * 2012-02-02 2013-08-08 Harris Corporation Wireless communications device having loop antenna with four spaced apart coupling points and associated methods
US20130201070A1 (en) * 2012-02-02 2013-08-08 Harris Corporation Wireless communications device having loop waveguide transducer with spaced apart coupling points and associated methods
RU2515551C2 (ru) * 2012-05-10 2014-05-10 Олег Кириллович Апухтин Способ поворота плоскости поляризации радиоволны
CN102882004B (zh) * 2012-06-29 2016-08-03 华为技术有限公司 一种电磁耦极子天线
RU2012154791A (ru) * 2012-08-09 2014-10-27 Дмитрий Витальевич Татарников Антенная система (варианты)
WO2014034490A1 (ja) * 2012-08-27 2014-03-06 日本電業工作株式会社 アンテナ
WO2014110508A1 (en) * 2013-01-11 2014-07-17 Chi-Chih Chen Multiple-input multiple-output ultra-wideband antennas
US8923452B2 (en) * 2013-03-18 2014-12-30 Lockheed Martin Corporation Noise-based gain adjustment and amplitude estimation system
GB2512111B (en) * 2013-03-20 2017-02-15 British Broadcasting Corp Antenna arrangement for transmitting two or more polarisations of radio signal
US20140312834A1 (en) * 2013-04-20 2014-10-23 Yuji Tanabe Wearable impact measurement device with wireless power and data communication
US10158178B2 (en) * 2013-11-06 2018-12-18 Symbol Technologies, Llc Low profile, antenna array for an RFID reader and method of making same
US9847571B2 (en) * 2013-11-06 2017-12-19 Symbol Technologies, Llc Compact, multi-port, MIMO antenna with high port isolation and low pattern correlation and method of making same
US9847576B2 (en) * 2013-11-11 2017-12-19 Nxp B.V. UHF-RFID antenna for point of sales application
US9735822B1 (en) * 2014-09-16 2017-08-15 Amazon Technologies, Inc. Low specific absorption rate dual-band antenna structure
JP6077036B2 (ja) * 2015-03-18 2017-02-08 日本電信電話株式会社 ループアンテナ
EP3091610B1 (de) * 2015-05-08 2021-06-23 TE Connectivity Germany GmbH Antennensystem und antennenmodul mit verminderter interferenz zwischen strahlungsmustern
US9912050B2 (en) * 2015-08-14 2018-03-06 The Boeing Company Ring antenna array element with mode suppression structure
CN105514613B (zh) * 2015-08-20 2019-06-18 广东通宇通讯股份有限公司 一种超宽频双极化天线振子
CN107968264B (zh) * 2016-10-20 2020-07-31 上海诺基亚贝尔股份有限公司 多边形环路天线以及通信设备和天线制造方法
DE102018201580B4 (de) 2018-02-01 2019-11-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Schaltungsanordnung
DE102018211931A1 (de) * 2018-07-18 2020-01-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zur Modenverwirbelung
WO2020043872A1 (en) * 2018-08-31 2020-03-05 Hach Lange Gmbh Antenna network matching
US11056800B2 (en) * 2018-10-16 2021-07-06 Google Llc Antenna arrays integrated into an electromagnetic transparent metallic surface
DE102019201262A1 (de) * 2019-01-31 2020-08-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Teilnehmer eines Kommunikationssystems mit einer magnetischen Antenne
KR102236706B1 (ko) * 2020-01-10 2021-04-05 경상국립대학교산학협력단 근거리 루프 안테나
US11165167B2 (en) * 2020-02-07 2021-11-02 Deere & Company Antenna system for circularly polarized signals
CN111816992B (zh) * 2020-06-03 2022-12-06 昆山睿翔讯通通信技术有限公司 一种基于特征模式极化可重构天线实现方法
US11808910B2 (en) * 2020-07-28 2023-11-07 Saudi Arabian Oil Company Method and apparatus for looking ahead of the drill bit
KR20220034547A (ko) * 2020-09-11 2022-03-18 삼성전기주식회사 안테나 장치 및 이를 포함하는 전자 장치
US11764487B2 (en) * 2021-03-30 2023-09-19 Rf Venue, Inc. Diversity antenna with a uniform omnidirectional radiation pattern
US20220345190A1 (en) * 2021-04-22 2022-10-27 Honeywell International Inc. Vehicle communication system with dual transmit antennas
CN113964504B (zh) * 2021-09-09 2023-01-13 华南理工大学 一种多边环形双极化高增益宽带基站天线及通信设备
CN114883777B (zh) * 2022-04-24 2024-03-26 西安矩阵无线科技有限公司 一种高收纳比圆极化天线

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4008505A1 (de) 1990-03-16 1991-09-19 Lindenmeier Heinz Antenne fuer die mobile satellitenkommunikation
DE10163793A1 (de) 2001-02-23 2002-09-05 Heinz Lindenmeier Flachantenne für die mobile Satellitenkommunikation

Family Cites Families (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2217911A (en) * 1938-08-12 1940-10-15 Rca Corp Radio communication
US2460260A (en) * 1945-10-03 1949-01-25 Farnsworth Res Corp Antenna for radiating circularly polarized waves
NL71398C (de) * 1947-09-01
US3623110A (en) * 1968-09-10 1971-11-23 Sony Corp Loop antenna with spaced impedance elements
US3942119A (en) 1973-03-02 1976-03-02 Hans Kolbe & Co. Multiple-transmission-channel active antenna arrangement
DE2552049C3 (de) 1975-11-20 1979-01-04 Hans Heinrich Prof. Dr. 8035 Gauting Meinke Funkentstörte Empfangsantenne in der Nähe der Heizleiter auf der Fensterscheibe eines Kraftfahrzeuges
DE2552002C3 (de) 1975-11-20 1979-07-19 Gerhard Prof. Dr.-Ing. 8012 Ottobrunn Flachenecker Funkentstörte Empfangsantenne in der Nähe der Heizleiter auf der Fensterscheibe eines Kraftfahrzeuges
US4083051A (en) * 1976-07-02 1978-04-04 Rca Corporation Circularly-polarized antenna system using tilted dipoles
DE2907369C2 (de) * 1979-02-24 1984-10-18 Dornier System Gmbh, 7990 Friedrichshafen Antennenanordnung für Schleppflugkörper
JPS5763941A (en) * 1980-10-06 1982-04-17 Nippon Telegr & Teleph Corp <Ntt> Radio transmitter and receiver
DE3315458A1 (de) 1983-04-28 1984-11-08 Gerhard Prof. Dr.-Ing. 8012 Ottobrunn Flachenecker Aktive windschutzscheibenantenne fuer alle polarisationsarten
DE3410415A1 (de) 1984-03-21 1985-09-26 Gerhard Prof. Dr.-Ing. 8012 Ottobrunn Flachenecker Aktive antenne in der heckscheibe eines kraftfahrzeugs
DE3517247A1 (de) 1985-05-13 1986-11-13 Gerhard Prof. Dr.-Ing. 8012 Ottobrunn Flachenecker Antennendiversity-empfangsanlage zur elimination von empfangsstoerungen
DE3618452C2 (de) 1986-06-02 1997-04-10 Lindenmeier Heinz Diversity-Antennenanordnung für den Empfang frequenzmodulierter Signale in der Heckscheibe eines Kraftfahrzeugs mit einem darin befindlichen Heizfeld
DE3820229C1 (de) 1988-06-14 1989-11-30 Heinz Prof. Dr.-Ing. 8033 Planegg De Lindenmeier
DE3907493A1 (de) 1989-03-08 1990-09-20 Lindenmeier Heinz Scheibenantenne mit antennenverstaerker
DE3911178A1 (de) 1989-04-06 1990-10-11 Lindenmeier Heinz Scheibenantennensystem mit antennenverstaerker
US5266960A (en) 1989-05-01 1993-11-30 Fuba Hans Kolbe Co. Pane antenna having at least one wire-like antenna conductor combined with a set of heating wires
DE3914424A1 (de) 1989-05-01 1990-12-13 Lindenmeier Heinz Antenne mit vertikaler struktur zur ausbildung einer ausgedehnten flaechenhaften kapazitaet
US5801663A (en) 1989-05-01 1998-09-01 Fuba Automotive Gmbh Pane antenna having at least one wire-like antenna conductor combined with a set of heating wires
DE4101629C3 (de) 1991-01-21 2003-06-26 Fuba Automotive Gmbh Antennendiversity-Anlage mit mindestens zwei Antennen für den mobilen Empfang von Meter- und Dezimeterwellen
DE4216377A1 (de) 1992-05-18 1993-11-25 Lindenmeier Heinz Funkantennenanordnung in der Nähe von Fahrzeugfensterscheiben
DE4318869C2 (de) 1993-06-07 1997-01-16 Lindenmeier Heinz Funkantennen-Anordnung auf der Fensterscheibe eines Kraftfahrzeugs und Verfahren zur Ermittlung ihrer Beschaltung
DE4441761A1 (de) 1994-11-23 1996-05-30 Lindenmeier Heinz Mehrantennen-Scanning-Diversitysystem für Fahrzeuge
DE19510236A1 (de) 1995-03-21 1996-09-26 Lindenmeier Heinz Flächige Antenne mit niedriger Bauhöhe
WO1997001197A1 (en) * 1995-06-21 1997-01-09 Motorola Inc. Method and antenna for providing an omnidirectional pattern
DE19607045A1 (de) 1996-02-24 1997-08-28 Lindenmeier Heinz Empfangsantennen-Scanningdiversitysystem für den Meterwellenbereich für Fahrzeuge
DE19612958A1 (de) 1996-04-01 1997-10-02 Fuba Automotive Gmbh Antennenverstärker auf einer Fensterscheibe
DE19614068A1 (de) 1996-04-09 1997-10-16 Fuba Automotive Gmbh Flachantenne
DE19618333A1 (de) 1996-05-07 1997-11-13 Lindenmeier Heinz Schaltungsanordnung zur Funktionsprüfung mobiler Rundfunkempfangsanlagen
US5926141A (en) 1996-08-16 1999-07-20 Fuba Automotive Gmbh Windowpane antenna with transparent conductive layer
DE19636125B4 (de) 1996-09-06 2007-12-06 Fuba Automotive Gmbh & Co. Kg Raumdiversity-Verfahren und -Schaltungsanordnung
DE19637327B4 (de) 1996-09-13 2009-04-09 Delphi Delco Electronics Europe Gmbh Frequenzdiversity-Anordnung
DE19740254A1 (de) 1996-10-16 1998-04-23 Lindenmeier Heinz Funkantennen-Anordnung und Patchantenne auf der Fensterscheibe eines Kraftfahrzeuges
DE19646100A1 (de) 1996-11-08 1998-05-14 Fuba Automotive Gmbh Flachantenne
ATE342590T1 (de) 1996-12-13 2006-11-15 Fuba Automotive Gmbh Leitungs-steckverbindung
DE19806834A1 (de) 1997-03-22 1998-09-24 Lindenmeier Heinz Antennenanlage für den Hör- und Fernsehrundfunkempfang in Kraftfahrzeugen
US6130645A (en) 1998-01-14 2000-10-10 Fuba Automotive Gmbh & Co. Kg Combination wide band antenna and heating element on a window of a vehicle
DE19817573A1 (de) 1998-04-20 1999-10-21 Heinz Lindenmeier Antenne für mehrere Funkdienste
DE19834577B4 (de) 1998-07-31 2011-12-29 Delphi Technologies, Inc. Antennensystem
JP2000077934A (ja) * 1998-08-27 2000-03-14 Yasushi Koshiro 偏波切替えループアンテナ
DE19847653A1 (de) 1998-10-15 2000-04-20 Heinz Lindenmeier Einrichtung zur Unterdrückung des Empfangs von fahrzeugemittierter Störstrahlung
DE19847887A1 (de) 1998-10-18 2000-04-20 Heinz Lindenmeier Scanning-Antennen-Diversity-System für Fahrzeuge
DE19854169A1 (de) 1998-11-24 2000-05-25 Heinz Lindenmeier Fensterscheibenantenne mit hochfrequent hochohmig angeschlossenem Heizfeld
DE19858465A1 (de) 1998-12-17 2000-06-21 Heinz Lindenmeier Scanning-Diversity-Antennensystem für Fahrzeuge
DE19916855A1 (de) 1999-04-14 2000-10-26 Heinz Lindenmeier Funktelefonanlage mit Gruppenantenne für Fahrzeuge
DE19930571B4 (de) 1999-07-02 2010-04-29 Delphi Delco Electronics Europe Gmbh Diagnosevorrichtung für eine Mehrantennenanordnung
DE10033336A1 (de) 1999-08-11 2001-04-12 Heinz Lindenmeier Diversityantenne für eine Diversityantennenanlage in einem Fahrzeug
DE10010226A1 (de) 1999-08-31 2001-03-01 Lindenmeier Heinz Antenne auf dem Fenster eines Kraftfahrzeugs
TW432746B (en) * 1999-11-08 2001-05-01 Acer Neweb Corp Circular polarization antenna for wireless data communication
US6960984B1 (en) 1999-12-08 2005-11-01 University Of North Carolina Methods and systems for reactively compensating magnetic current loops
DE10102616A1 (de) 2000-02-17 2001-08-23 Heinz Lindenmeier Antennendiversityanlage mit phasengeregelter Summation von Antennensignalen
US6262690B1 (en) * 2000-10-13 2001-07-17 Motorola, Inc. Method for efficiently generating selectable antenna polarization
DE10100812B4 (de) 2001-01-10 2011-09-29 Heinz Lindenmeier Diversityantenne auf einer dielektrischen Fläche in einer Fahrzeugkarosserie
US6618016B1 (en) * 2001-02-21 2003-09-09 Bae Systems Aerospace Inc. Eight-element anti-jam aircraft GPS antennas
US6768457B2 (en) 2001-03-02 2004-07-27 Fuba Automotive Gmbh & Co. Kg Diversity systems for receiving digital terrestrial and/or satellite radio signals for motor vehicles
DE50206435D1 (de) 2001-03-02 2006-05-24 Fuba Automotive Gmbh Diversity-Anlage zum Empfang digitaler terrestrischer und/oder Satelliten-Funksignale für Fahrzeuge
DE10114769B4 (de) 2001-03-26 2015-07-09 Heinz Lindenmeier Aktive Breitbandempfangsantenne
WO2003071293A1 (de) 2002-02-22 2003-08-28 Daimlerchrysler Ag Verfahren und anordnung zum prüfen mindestens einer antenne
DE10209060B4 (de) 2002-03-01 2012-08-16 Heinz Lindenmeier Empfangsantennenanordnung für Satelliten- und/oder terrestrische Funksignale auf Fahrzeugen
US6812902B2 (en) * 2002-05-13 2004-11-02 Centurion Wireless Technologies, Inc. Low profile two-antenna assembly having a ring antenna and a concentrically-located monopole antenna
DE10245813A1 (de) 2002-10-01 2004-04-15 Lindenmeier, Heinz, Prof. Dr.-Ing. Aktive Breitbandempfangsantenne mit Empfangspegelregelung
DE10258367A1 (de) 2002-12-12 2004-07-08 Daimlerchrysler Ag Mehrzielfähiges Verfahren und mehrzielfähige Sensorvorrichtung für die Abstands- und Winkelortung von Zielobjekten im Nahbereich
DE10304431A1 (de) 2003-02-04 2004-08-05 Lindenmeier, Heinz, Prof. Dr.-Ing. Scanning-Antennen-Diversitysystem für den FM-Hörrundfunk für Fahrzeuge
DE10304911B4 (de) 2003-02-06 2014-10-09 Heinz Lindenmeier Kombinationsantennenanordnung für mehrere Funkdienste für Fahrzeuge
DE10304909B4 (de) 2003-02-06 2014-10-09 Heinz Lindenmeier Antenne mit Monopolcharakter für mehrere Funkdienste
US6927735B2 (en) 2003-02-25 2005-08-09 Fuba Automotive Gmbh & Co. Kg Antenna arrangement in the aperture of an electrically conductive vehicle chassis
JP4297840B2 (ja) * 2004-06-24 2009-07-15 古野電気株式会社 円偏波ループアンテナ
DE102006006266A1 (de) 2005-02-13 2006-08-24 Lindenmeier, Heinz, Prof. Dr. Ing. Anlage zum Empfang von digital modulierten Funksignalen zu einem Fahrzeug unter Verwendung von Antennendiversity
DE202005008338U1 (de) 2005-05-24 2005-12-22 Fuba Automotive Gmbh & Co. Kg Antennenkonfiguration für den Rundfunkempfang in Kfz
WO2007011191A1 (en) * 2005-07-22 2007-01-25 Electronics And Telecommunications Research Institute Small monopole antenna having loop element included feeder
DE102006039357B4 (de) 2005-09-12 2018-06-28 Heinz Lindenmeier Antennendiversityanlage zum Funkempfang für Fahrzeuge
DE102006057520A1 (de) 2005-12-15 2007-06-21 Lindenmeier, Heinz, Prof. Dr. Ing. Empfangsanlage mit Gleichphasung von Antennensignalen
DE102007011636A1 (de) 2007-03-09 2008-09-11 Lindenmeier, Heinz, Prof. Dr. Ing. Antenne für den Rundfunk-Empfang mit Diversity-Funktion in einem Fahrzeug
EP1978647A3 (de) 2007-04-05 2013-10-09 Delphi Delco Electronics Europe GmbH Breitband-Empfangssystem
DE102007017478A1 (de) 2007-04-13 2008-10-16 Lindenmeier, Heinz, Prof. Dr. Ing. Empfangsanlage mit einer Schaltungsanordnung zur Unterdrückung von Umschaltstörungen bei Antennendiversity
EP2037593A3 (de) 2007-07-10 2016-10-12 Delphi Delco Electronics Europe GmbH Antennendiversityanlage für den relativ breitbandigen Funkempfang in Fahrzeugen
DE102007039914A1 (de) 2007-08-01 2009-02-05 Lindenmeier, Heinz, Prof. Dr. Ing. Antennendiversityanlage mit zwei Antennen für den Funkempfang in Fahrzeugen
DE102008003532A1 (de) 2007-09-06 2009-03-12 Lindenmeier, Heinz, Prof. Dr. Ing. Antenne für den Satellitenempfang
EP2034557B1 (de) * 2007-09-06 2012-02-01 Delphi Delco Electronics Europe GmbH Antenne für den Satellitenempfang
DE102008047937A1 (de) 2008-09-18 2010-03-25 Delphi Delco Electronics Europe Gmbh Rundfunk-Empfangssystem

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4008505A1 (de) 1990-03-16 1991-09-19 Lindenmeier Heinz Antenne fuer die mobile satellitenkommunikation
DE10163793A1 (de) 2001-02-23 2002-09-05 Heinz Lindenmeier Flachantenne für die mobile Satellitenkommunikation
EP1239543B1 (de) 2001-02-23 2006-08-09 FUBA Automotive GmbH &amp; Co. KG Flachantenne für die mobile Satellitenkommunikation

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9287623B2 (en) 2009-09-10 2016-03-15 Delphi Deutschland Gmbh Antenna for reception of circularly polarized satellite radio signals
US8599083B2 (en) 2009-09-10 2013-12-03 Delphi Delco Electronics Europe Gmbh Antenna for reception of circularly polarized satellite radio signals
EP2296227A3 (de) * 2009-09-10 2011-06-29 Delphi Delco Electronics Europe GmbH Antenne für den Empfang Zirkular Polarisierter Satellitenfunksignale
US9300047B2 (en) 2009-09-10 2016-03-29 Delphi Deutschland Gmbh Antenna for reception of circularly polarized satellite radio signals
WO2012123125A1 (de) * 2011-03-15 2012-09-20 Delphi Deutschland Gmbh Multiband-empfangsantenne für den kombinierten empfang von satellitensignalen und terrestrisch ausgestrahlten rundfunksignalen
US9553365B2 (en) 2011-03-15 2017-01-24 Delphi Deutschland Gmbh Multiband reception antenna for the combined reception of satellite signals and terrestrially emitted radio signals
WO2013119410A1 (en) * 2012-02-02 2013-08-15 Harris Corporation Wireless communications device having loop antenna with four spaced apart coupling points and reflector and associated methods
WO2014031303A1 (en) * 2012-08-22 2014-02-27 Symbol Technologies, Inc. Co-located antenna arrangement
US8870069B2 (en) 2012-08-22 2014-10-28 Symbol Technologies, Inc. Co-located antenna arrangement
CN104518277A (zh) * 2013-10-01 2015-04-15 精工爱普生株式会社 天线以及电子装置
EP2858175A1 (de) * 2013-10-01 2015-04-08 Seiko Epson Corporation Antenne und elektronische Vorrichtung
US10153552B2 (en) 2013-10-01 2018-12-11 Seiko Epson Corporation Antenna and electronic apparatus
US11262431B2 (en) * 2014-09-22 2022-03-01 Symbol Technologies, Llc Co-located locationing technologies
CN110212304A (zh) * 2018-02-28 2019-09-06 丰田自动车株式会社 阵列天线
CN114122684A (zh) * 2020-08-30 2022-03-01 华为技术有限公司 天线装置和无线设备
WO2023139122A1 (de) * 2022-01-19 2023-07-27 Fuba Automotive Electronics Gmbh Antennenmodul für einen empfänger zum mobilen empfang von ortungssatellitensignalen
CN115966894A (zh) * 2023-03-17 2023-04-14 广东工业大学 一种超宽带双圆极化天线
CN115966894B (zh) * 2023-03-17 2023-05-12 广东工业大学 一种超宽带双圆极化天线

Also Published As

Publication number Publication date
DE102009011542A1 (de) 2010-09-09
US20100253587A1 (en) 2010-10-07
US8537063B2 (en) 2013-09-17
EP2226895A3 (de) 2010-12-15
EP2226895B1 (de) 2013-04-10

Similar Documents

Publication Publication Date Title
EP2226895B1 (de) Antenne für den Empfang zirkular in einer Drehrichtung der Polarisation ausgestrahlter Satellitenfunksignale
EP2458680B1 (de) Antenne für den Empfang zirkular polarisierter Satellitenfunksignale
DE102008003532A1 (de) Antenne für den Satellitenempfang
EP2592691B1 (de) Empfangsantenne für zirkular polarisierte Satellitenfunksignale
EP1277252B1 (de) Dualpolarisierte dipolgruppenantenne
EP2256864B1 (de) Antenne für zirkulare Polarisation mit einer leitenden Grundfläche
EP1239543B1 (de) Flachantenne für die mobile Satellitenkommunikation
EP1327287B1 (de) Dualpolarisiertes antennenarray
EP2664025B1 (de) Multiband-empfangsantenne für den kombinierten empfang von satellitensignalen und terrestrisch ausgestrahlten rundfunksignalen
DE69531655T2 (de) Breitbandige Monopolantenne in uniplanarer gedruckter Schaltungstechnik und Sende- und/oder Empfangsgerät mit einer derartiger Antenne
DE3931752A1 (de) Koaxialschlitzantenne des wanderwellenleitungstyps
DE102014112825B4 (de) Steghornstrahler mit zusätzlicher Rille
EP3289633A1 (de) Antenne
EP1969674B1 (de) Antennenanordnung sowie verwendung
EP2034557B1 (de) Antenne für den Satellitenempfang
WO2019115363A1 (de) Schlitzantenne
EP2546925B1 (de) Antennenmodul
WO1998027612A1 (de) Verfahren und vorrichtung zur richtungsselektiven abstrahlung elektromagnetischer wellen
DE443959C (de) Richtantennensystem
DE2521978C3 (de) Kurzwellen-Steilstrahlantenne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20110517

17Q First examination report despatched

Effective date: 20120405

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 606445

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010002887

Country of ref document: DE

Effective date: 20130606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130410

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130810

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130721

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130812

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130711

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

26N No opposition filed

Effective date: 20140113

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010002887

Country of ref document: DE

Effective date: 20140113

BERE Be: lapsed

Owner name: DELPHI DELCO ELECTRONICS EUROPE G.M.B.H.

Effective date: 20140228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140224

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140224

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140224

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 606445

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100224

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130410

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230220

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230223

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230427

Year of fee payment: 14