EP2220262B1 - Aluminiumband für lithografische druckplattenträger und dessen herstellung - Google Patents

Aluminiumband für lithografische druckplattenträger und dessen herstellung Download PDF

Info

Publication number
EP2220262B1
EP2220262B1 EP08853549.7A EP08853549A EP2220262B1 EP 2220262 B1 EP2220262 B1 EP 2220262B1 EP 08853549 A EP08853549 A EP 08853549A EP 2220262 B1 EP2220262 B1 EP 2220262B1
Authority
EP
European Patent Office
Prior art keywords
aluminium strip
printing plate
content
strip
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP08853549.7A
Other languages
English (en)
French (fr)
Other versions
EP2220262A1 (de
Inventor
Bernhard Kernig
Henk-Jan Brinkman
Jochen Hasenclever
Christoph Settele
Gerd Steinhoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Speira GmbH
Original Assignee
Hydro Aluminium Rolled Products GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39400918&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2220262(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hydro Aluminium Rolled Products GmbH filed Critical Hydro Aluminium Rolled Products GmbH
Priority to EP08853549.7A priority Critical patent/EP2220262B1/de
Publication of EP2220262A1 publication Critical patent/EP2220262A1/de
Application granted granted Critical
Publication of EP2220262B1 publication Critical patent/EP2220262B1/de
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/04Printing plates or foils; Materials therefor metallic
    • B41N1/08Printing plates or foils; Materials therefor metallic for lithographic printing
    • B41N1/083Printing plates or foils; Materials therefor metallic for lithographic printing made of aluminium or aluminium alloys or having such surface layers
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12431Foil or filament smaller than 6 mils

Definitions

  • the invention relates to a process for producing aluminum strips for lithographic printing plate supports, wherein the aluminum strip is produced from a rolling bar, which after optional homogenization hot rolled to a thickness of 2 mm to 7 mm and to a final thickness of 0.15 mm to 0.5 mm cold rolled.
  • the invention relates to a correspondingly produced aluminum strip having a thickness of 0.15 mm to 0.5 mm and a pressure plate carrier made of the aluminum strip according to the invention.
  • the aluminum strip for the production of lithographic printing plate supports is usually subjected to an electrochemical roughening, which should result in a blanket roughening and a structureless appearance without streaking effects.
  • the roughened structure is important for applying a photosensitive layer, which is subsequently exposed.
  • the photo-layer is baked at temperatures of 220 ° C to 300 ° C and annealing times of 3 to 10 minutes, typical combinations of burn-in times being for example 240 ° C at 10 minutes, 260 ° C at 6 minutes and 260 ° C for 4 minutes.
  • the pressure plate carrier must after burning as possible lose little strength, so that it is still easy to handle and can be easily clamped in a printing device.
  • the printing plate support and thus also the correspondingly produced aluminum strip must have the highest possible flexural fatigue strength, so that plate outlier can be virtually eliminated due to mechanical stresses on the printing plate. So far, these requirements have been well met with conventional aluminum strips.
  • printing presses are increasingly used, which require that the printing plate supports are clamped so that they are bent transversely to the rolling direction and therefore mechanically loaded transversely to the rolling direction.
  • the handling of large lithographic printing plate supports becomes more difficult with increasing size and consistent strength values.
  • the present invention has the object to provide a method for producing an aluminum strip for lithographic printing plate support and a corresponding aluminum strip available from which also oversized printing plate support can be produced, which are easy to handle and show only a slight tendency to Plattenr combinern.
  • the above-described object is procedurally achieved in that the aluminum strip consists of an aluminum alloy with the following alloy constituents in percent by weight: 0.3% ⁇ Fe ⁇ 0.4%, 0.4% ⁇ mg ⁇ 1.0%, 0.05% ⁇ Si ⁇ 0.25%, Mn ⁇ 0.1%, optionally Mn ⁇ 0.05%, Cu ⁇ 0.04%,
  • Residual Al and unavoidable impurities individually max. 0.05%, in total max. 0.15%, during the cold rolling an intermediate annealing is carried out at a thickness of 1.5 mm to 0.5 mm, the aluminum strip is then rolled by cold rolling to a final thickness of 0.15 mm to 0.5 mm and for further processing to one lithographic printing plate support is rolled up in hard-rolled condition.
  • the aluminum strip produced according to the invention provides a moderate increase in strength together with a very high flexural fatigue resistance and at the same time very good thermal stability. Coilset corrections are possible without difficulty due to the moderate increase in strength. At the same time, however, the handling of the printing plate even in a baked state, for example when clamping in the printing press, is simple, since a good thermal stability of the aluminum strip is obtained by the method according to the invention. If the aluminum strip is used for the production of very large lithographic printing plate supports, preferably the aluminum strip is cold rolled to a final thickness of 0.25 to 0.5 mm after the intermediate annealing.
  • the particular suitability of the aluminum strips for oversized lithographic printing plate supports produced by the process according to the invention results from the fact that higher strengths and bending resistance are made available due to the low degrees of rolling and the increased magnesium content, which simplify the handling and enables an improved service life of the printing plate supports.
  • Manganese contributes to thermal stability in the alloy. However, in combination with the other alloying constituents, in particular the magnesium fractions, at a content of more than 0.1% by weight, problems of roughening were found. If the manganese content does not exceed 0.05% by weight, a good compromise between thermal stability and roughening properties will be found reached.
  • the aluminum alloy has an Mg content of from 0.4% by weight to 1.0% by weight, preferably from 0.6% by weight to 1% by weight.
  • the high to very high Mg contents of the aluminum alloy for the production of lithographic printing plate supports result in a significantly increased flexural fatigue resistance of the produced printing plate supports transversely to the rolling direction.
  • higher Mg contents make it possible to reduce the degrees of finish after the intermediate annealing while at the same time maintaining or increasing the tensile strength values, in particular also transversely to the rolling direction.
  • the aluminum alloy according to a next alternative embodiment of the present invention has a Mg content of from 0.4% by weight to 0.6% by weight, good strength values with high flexural fatigue resistance can be provided. This is especially true at a Mg content of 0.4 wt .-% to 0.6 wt .-%.
  • the properties according to the invention can be achieved particularly reliably in that the aluminum alloy additionally has a titanium (Ti) content of max. 0.05% by weight, preferably max. 0.015 wt .-%, a zinc (Zn) content of max. 0.05 wt .-% and a chromium (Cr) content of less than 100 ppm, preferably a Cr content by Max. 50 ppm.
  • Ti titanium
  • Zn zinc
  • Cr chromium
  • Chromium is recrystallization inhibiting and should therefore only in very small proportions of less than 100 ppm, preferably of max. 50 ppm contained in the aluminum alloy.
  • the hot strip end temperature is 280 ° C to 350 ° C, a continuous recrystallization of the surface is achieved during hot rolling, which, for example, a good Aufrauley the wall surface during the production of lithographic Pressure plate carrier guaranteed.
  • the metal temperature of the aluminum strip is 200 ° C to 450 ° C.
  • the aluminum strip is then held at the metal temperature for at least one to two hours. This is usually done in batch ovens. Due to the intermediate annealing in the temperature range mentioned, the further processing of the aluminum strip can take place either in a recovered or recrystallized state or a combination of both.
  • the recrystallization starts at temperatures of about 300 to 350 ° C, which depends on the manufacturing parameters, in particular the introduced solidifications.
  • a recovery annealing at lower temperatures however, only a reduction of the solidifications can be achieved, so that very low degrees of rolling are possible after the recovery annealing.
  • a generic aluminum strip for the production of lithographic printing plate supports which consists of an aluminum alloy with the following alloy constituents in% by weight: 0.3% ⁇ Fe ⁇ 0.4%, 0.4% ⁇ mg ⁇ 1.0%, 0.05% ⁇ Si ⁇ 0.25%, Mn ⁇ 0.1%, optionally Mn ⁇ 0.05%, Cu ⁇ 0.04%,
  • the aluminum strip has a bending fatigue resistance transverse to the rolling direction of at least 1850 cycles in the bending cycle test.
  • the aluminum strips according to the invention In the Biege Arnest a strip is cut out of the aluminum strip and bent back and forth between two cylindrical segments with a radius of 30 mm.
  • the aluminum strips according to the invention after a burn-in process achieve bending cycle cycles of more than 1850, also transversely to the rolling direction, which is an increase over the previously used standard alloys of over 70% means.
  • the high number of possible bending cycles of more than 1850 in both the hard and the fired state of the aluminum strip according to the invention shows that the tendency for plate breakers due to mechanical stresses in lithographic printing plate carrier clamped transversely or longitudinally to the rolling direction is low.
  • the aluminum strips preferably have a tensile strength of up to 200 MPa measured in the hard-rolling state along the rolling direction, so that the coil set of the aluminum strip according to the invention can furthermore be corrected in a simple manner.
  • the increase in tensile strength values is preferably with good thermal stability, which is exhibited by a tensile strength of at least 145 MPa after a bake along or across the rolling direction.
  • the handling of the lithographic printing plate supports made from the aluminum strip is also good after a baking process. Even with very large lithographic printing plate supports can be facilitated by the increased strength after baking, the handling of the printing plates.
  • the tensile strength values up to a maximum of 200 MPa in a hard-hard condition can be achieved by reducing the intermediate annealing thickness, which is then, for example, less than 1.1 mm.
  • the flexural fatigue resistance is not affected by this.
  • An aluminum strip with an Mg content of 0.4% by weight to 0.6% by weight allows sufficiently high tensile strength values to be provided in the hard-to-roll state, since, for example, the required strength values for aluminum strip are achieved even at low degrees of rolling after the intermediate annealing.
  • Aluminum tapes with an Mg content of 0.4% by weight to 0.6% by weight show a further increase in flexural fatigue resistance transverse to the rolling direction with consistent properties with regard to roughening properties and improved tensile properties.
  • An alternative embodiment of the aluminum strip according to the invention has an Mg content of from 0.4% by weight to 1.0% by weight, preferably from 0.6% by weight to 1.0% by weight.
  • Aluminum strips with these increased Mg contents are characterized by an exceptionally good flexural fatigue resistance transverse to the rolling direction and, contrary to the expectations of the experts, do not tend to streak during roughening. Only the intermediate annealing thickness must be adjusted to achieve optimum tensile strength values of less than 200 MPa with maximum flex life properties.
  • the properties of the finished aluminum strip are thereby achieved process reliable, that the aluminum alloy has a Ti content of max. 0.05% by weight, preferably max. 0.015 wt .-%, a Zn content of max. 0.05 wt .-% and a Cr content of less than 100 ppm, preferably of max. 10 ppm.
  • the object indicated above is achieved by pressure plate carriers which are produced from an aluminum strip according to the invention.
  • pressure plate carriers which are produced from an aluminum strip according to the invention.
  • Table 1 shows only the essential alloying constituents of the aluminum tapes examined, moreover, the various experimental alloys had a Ti content of less than 0.015 wt%, a Zn content of less than 0.05 wt%, and a Cr content of less than 100 ppm.
  • the ingots cast from the various aluminum alloys have been subjected to homogenization prior to rolling, the ingots being annealed to a temperature of about 580 ° C for more than four hours. Subsequently, the hot rolling was carried out at temperatures of 250 ° C to 550 ° C, the hot strip end temperature was between 280 ° C and 350 ° C.
  • the VRef alloy aluminum hot strip was subjected to intermediate annealing during cold rolling at a thickness of 2 to 2.4 mm, with the cold rolled strip being exposed to a temperature of 300 to 450 ° C for one to two hours.
  • the intermediate annealing thickness for the aluminum strips V581, V582 and VF583 was only 0.9 to 1.2 mm, as well as from Table 2 is apparent.
  • the aluminum strip of the alloy V580 was not annealed. Since the intermediate annealed strips were further cold rolled to final thickness, without a final final annealing, they were coiled up hard as a condition. Tab. 2 Leg . No.
  • the correspondingly produced aluminum strips for lithographic printing plate supports or litho tapes were subjected to further tests. All five aluminum strips are characterized by a very good roughening behavior.
  • the tensile strength in the hard-rolled state was investigated. In order to test the practical handling of the printing plates, especially for oversized lithographic printing plates, tensile strengths were measured even after a baking process of 240 ° C for 10 minutes. In addition, a bending change test was carried out in which the in Fig. 1 schematically illustrated experimental design was used.
  • Fig. 1a shows in a schematic sectional view of the structure of the bending change test device 1 used, which was used to investigate the flexural fatigue resistance of the aluminum strips according to the invention.
  • rehearse 2 of the produced aluminum strips for lithographic printing plate supports are mounted in the bending cycle test device 1 on a movable segment 3 and a fixed segment 4.
  • the segment is reciprocated on the fixed segment 4 by a rolling motion in the bending change test, so that the sample 2 is subjected to bends perpendicular to the extension of the sample 2.
  • the different bending states shows schematically Fig. 1b ).
  • Samples 2 were cut either longitudinally or transversely to the rolling direction from the prepared aluminum platens for lithographic printing plate supports.
  • the radius of the segments 3, 4 was 30 mm.
  • the conventional aluminum strip has a sufficient tensile strength for the correction of the coil set before the baking process and for the handling of the lithographic printing plate support after the baking process as well as a sufficient bending fatigue resistance along the rolling direction.
  • the conventionally manufactured aluminum strip (VRef) only reached 1500 bending cycles transverse to the rolling direction.
  • the comparative aluminum tape V580 also showed good values with respect to flexural fatigue resistance.
  • the very high tensile strengths of 218 or 228 MPa longitudinally and transversely to the rolling direction make it difficult to correct the coil set before Burning in the photo layer of the lithographic printing plate supports.
  • the aluminum strips of the aluminum alloy VF583 according to the invention also showed increased tensile strength values of 212 MPa and 223 MPa along and transverse to the rolling direction.
  • the increase in bending fatigue resistance is very pronounced with a factor of about 2.47 with respect to the reference material across the rolling direction after the baking process.
  • Longitudinally to the rolling direction results in an increase in bending fatigue resistance after a burn-in still with a factor of 1.27. Coupled with unproblematic roughening, this results in the outstanding suitability of the aluminum alloy VF583 for oversized pressure plate carriers clamped transversely to the rolling direction.
  • the improved flex life properties are due to the increased Mg content of 0.97% by weight of the VF583 alloy.
  • the tensile strength values of the alloy VF583 can be further reduced by further reducing the intermediate annealing thickness, for example, to 0.9 mm to less than 1.1 mm, without deteriorating the flexural fatigue property.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Metal Rolling (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von Aluminiumbändern für lithografische Druckplattenträger, wobei das Aluminiumband aus einem Walzbarren hergestellt wird, welcher nach einem optionalen Homogenisieren auf eine Dicke von 2 mm bis 7 mm warmgewalzt und auf eine Enddicke von 0,15 mm bis 0,5 mm kaltgewalzt wird. Daneben betrifft die Erfindung ein entsprechend hergestelltes Aluminiumband mit einer Dicke von 0,15 mm bis 0,5 mm sowie einen Druckplattenträger hergestellt aus dem erfindungsgemäßen Aluminiumband.
  • An die Qualität von Aluminiumbändern für die Herstellung von lithografischen Druckplattenträgern werden sehr hohe Anforderungen gestellt. Das Aluminiumband zur Herstellung von lithografischen Druckplattenträgern wird üblicherweise einer elektrochemischen Aufrauung unterzogen, welche eine flächendeckende Aufrauung und ein strukturloses Aussehen ohne Streifigkeitseffekte zur Folge haben sollte. Die aufgeraute Struktur ist wichtig für das Aufbringen einer fotosensitiven Schicht, welche anschließend belichtet wird. Die Fotoschicht wird bei Temperaturen von 220 °C bis 300 °C und Glühzeiten von 3 bis 10 Minuten eingebrannt, wobei typische Kombinationen von Einbrennzeiten beispielsweise 240 °C bei 10 Minuten, 260 °C bei 6 Minuten und 260 °C für 4 Minuten darstellen. Der Druckplattenträger muss nach dem Einbrennen möglichst wenig an Festigkeit verlieren, so dass dieser noch gut handhabbar ist und leicht in eine Druckvorrichtung eingespannt werden kann. Gleichzeitig muss der Druckplattenträger und damit auch das entsprechend herzustellende Aluminiumband eine möglichst hohe Biegewechselfestigkeit besitzen, so dass Plattenausreißer aufgrund von mechanischen Belastungen der Druckplatte nahezu ausgeschlossen werden können. Bisher konnten diese Anforderungen mit konventionellen Aluminiumbändern gut erfüllt werden. Zur Steigerung der Produktivität werden aber zunehmend Druckmaschinen eingesetzt, welche es erfordern, dass die Druckplattenträger derart eingespannt werden, dass sie quer zur Walzrichtung gebogen und daher auch quer zur Walzrichtung mechanisch belastet werden. Gleichzeitig wird die Handhabung großer lithografischer Druckplattenträger mit zunehmender Größe und gleichbleibenden Festigkeitswerten schwieriger.
  • Beispielsweise ist aus dem auf die Anmelderin zurückgehenden europäischen Patent EP 1 065 071 B1 ein Band zur Herstellung von lithografischen Druckplattenträgern bekannt, welches sich durch eine gute Aufraubarkeit kombiniert mit einer hohen Biegewechselbeständigkeit und einer ausreichenden thermischen Stabilität nach einem Einbrennvorgang auszeichnet. Aufgrund der zunehmenden Größe der Druckmaschinen und der daraus resultierenden Vergrößerung der benötigten Druckplattenträger hat sich jedoch die Notwenigkeit ergeben, die Eigenschaften der bekannten Aluminiumlegierung und der daraus hergestellten lithografischen Druckplattenträger weiter zu verbessern. Eine einfache Erhöhung der Zugfestigkeiten, welche beispielsweise durch eine Änderung der Aluminiumlegierung möglich ist, führte nicht zu dem gewünschten Erfolg, da bei hoher Zugfestigkeit die Korrektur des Coilsets des Aluminiumbandes schwieriger wurde. Diese wird üblicherweise im walzharten Zustand vor dem Einbrennvorgang durchgeführt.
  • Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zugrunde, ein Verfahren zur Herstellung eines Aluminiumbandes für lithografische Druckplattenträger sowie ein entsprechendes Aluminiumband zur Verfügung zu stellen, aus welchem auch übergroße Druckplattenträger herstellbar sind, die leicht handhabbar und nur eine geringe Neigung zu Plattenreißern zeigen.
  • Die Erfindung ist in den Ansprüchen angegeben.
  • Gemäß einer ersten Lehre der vorliegenden Erfindung wird die oben aufgezeigte Aufgabe verfahrensmäßig dadurch gelöst, dass das Aluminiumband aus einer Aluminiumlegierung mit folgenden Legierungsbestandteilen in Gewichtsprozent besteht:
    0,3 % ≤ Fe ≤ 0,4 %,
    0,4 % ≤ Mg ≤ 1,0 %,
    0,05 % ≤ Si ≤ 0,25 %,
    Mn ≤ 0,1 %, optional Mn ≤ 0,05 %,
    Cu ≤ 0,04 %,
  • Rest Al sowie unvermeidbare Verunreinigungen, einzeln max. 0,05 %, in Summe max. 0,15 %, während des Kaltwalzens eine Zwischenglühung bei einer Dicke von 1,5 mm bis 0,5 mm durchgeführt wird, das Aluminiumband anschließend durch Kaltwalzen auf eine Enddicke von 0,15 mm bis 0,5 mm gewalzt wird und zur Weiterverarbeitung zu einem lithografischen Druckplattenträger in walzhartem Zustand aufgehaspelt wird.
  • Das erfindungsgemäß hergestellte Aluminiumband stellt eine moderate Festigkeitserhöhung zusammen mit einer sehr hohen Biegewechselbeständigkeit und einer gleichzeitig sehr guten thermischen Stabilität bereit. Coilsetkorrekturen sind aufgrund der moderaten Festigkeitssteigerung ohne Schwierigkeiten möglich. Gleichzeitig ist aber auch das Handling der Druckplatte auch in eingebranntem Zustand, beispielsweise beim Einspannen in die Druckmaschine, einfach, da eine gute thermische Stabilität des Aluminiumbandes mit dem erfindungsgemäßen Verfahren erhalten wird. Wird das Aluminiumband für die Herstellung von sehr großen lithografischen Druckplattenträgern eingesetzt, wird vorzugsweise das Aluminiumband auf eine Enddicke von 0,25 bis 0,5 mm nach dem Zwischenglühen kaltgewalzt. Die besondere Eignung der nach dem erfindungsgemäßen Verfahren hergestellten Aluminiumbänder für übergroße lithografische Druckplattenträger ergibt sich daraus, dass aufgrund der geringen Abwalzgrade und den erhöhten Magnesiumanteil höhere Festigkeiten und Biegewechselbeständigkeiten zur Verfügung gestellt werden, die das Handling vereinfachen und eine verbesserte Standzeit der Druckplattenträger ermöglicht. Mangan trägt in der Legierung zur thermischen Stabilität bei. Allerdings zeigten sich in Kombination mit den anderen Legierungsbestandteilen, insbesondere der Magnesiumanteile, bei einem Gehalt von mehr als 0,1 Gew.-% Probleme in der Aufraubarkeit. Übersteigt der ManganGehalt nicht 0,05 Gew,-% wird ein guter Kompromiss zwischen thermischer Stabilität und Aufraueigenschaften erreicht.
  • Gemäß einer ersten Ausgestaltung des erfindungsgemäßen Verfahrens weist die Aluminiumlegierung einen Mg-Gehalt von 0,4 Gew.-% bis 1,0 Gew.-%, vorzugsweise 0,6 Gew.-% bis 1 Gew.-% auf. Die hohen bis sehr hohen Mg-Gehalte der Aluminiumlegierung zur Herstellung von lithographischen Druckplattenträgern ergeben eine deutlich erhöhte Biegewechselbeständigkeit der hergestellten Druckplattenträger quer zur Walzrichtung. Gleichzeitig zeigten sich entgegen den Erwartungen der Fachwelt keine Probleme bei der Aufrauung der aus einer entsprechenden Aluminiumlegierung hergestellten Bänder. Höhere Mg-Gehalte ermöglichen eine Verringerung der Abwalzgrade nach der Zwischenglühung bei gleichzeitigem Erhalt oder Vergrößerung der Zugfestigkeitswerte, insbesondere auch quer zur Walzrichtung.
  • Weist die Aluminiumlegierung gemäß einer nächsten alternativen Ausgestaltung der vorliegenden Erfindung einen Mg-Gehalt von 0,4 Gew.-% bis 0,6 Gew.-%, können gute Festigkeitswerte bei hoher Biegewechselbeständigkeit zur Verfügung gestellt werden. Dies gilt insbesondere bei einem Mg-Gehalt von 0,4 Gew.-% bis 0,6 Gew.-%.
  • Gemäß einer Ausgestaltung der vorliegenden Erfindung können die erfindungsgemäßen Eigenschaften besonders prozesssicher dadurch erreicht werden, dass die Aluminiumlegierung zusätzlich einen Titan(Ti)-Gehalt von max. 0,05 Gew.-%, vorzugsweise max. 0,015 Gew.-%, einen Zink(Zn)-Gehalt von max. 0,05 Gew.-% und einen Chrom(Cr)-Gehalt von weniger als 100 ppm, vorzugsweise einen Cr-Gehalt von max. 50 ppm aufweist. Titan wird üblicherweise zur Kornfeinung beim Gießen eingesetzt. Ein erhöhter Ti-Gehalt führt jedoch zu Gießproblemen. Zink beeinflusst die Aufraubarkeit, so dass dessen Gehalt max. 0,05 Gew.-% betragen sollte. Typische Probleme ergeben sich bei erhöhtem Zn-Gehalt aufgrund von Inhomogenitäten beim Aufrauen der lithografischen Druckplattenträger. Chrom ist rekristallisationshemmend und sollte daher nur in ganz geringen Anteilen von weniger als 100 ppm, vorzugsweise von max. 50 ppm in der Aluminiumlegierung enthalten sein.
  • Durch die Einstellung der Warmwalztemperaturen im Bereich von 250 °C bis 550 °C, wobei die Warmbandendtemperatur 280 °C bis 350 °C beträgt, wird eine durchgehende Rekristallisation der Oberfläche beim Warmwalzen erzielt, was beispielsweise eine gute Aufraubarkeit der Wandoberfläche während der Herstellung der lithografischen Druckplattenträger gewährleistet.
  • Vorzugsweise beträgt während der Zwischenglühung die Metalltemperatur des Aluminiumbandes 200 °C bis 450 °C. Das Aluminiumband wird dann für mindestens ein bis zwei Stunden auf der Metalltemperatur gehalten. Dies erfolgt üblicherweise in Batchöfen. Durch die Zwischenglühung in dem genannten Temperaturbereich kann die Weiterverarbeitung des Aluminiumbandes entweder in erholtem oder rekristallisiertem Zustand oder einer Kombination aus beidem erfolgen. Die Rekristallisation beginnt etwa ab Temperaturen von 300 bis 350 °C, wobei diese von den Fertigungsparametern, insbesondere den eingebrachten Verfestigungen abhängig ist. Durch ein Erholungsglühen bei niedrigeren Temperaturen kann dagegen lediglich ein Abbau der Verfestigungen erzielt werden, so dass sehr geringe Abwalzgrade nach dem Erholungsglühen möglich sind. Abhängig von den jeweiligen Abwalzgraden nach dem Zwischenglühen und der Legierungszusammensetzung kann es jedoch auch notwendig sein, ein Rekristallisationsglühen als Zwischenglühung vorzunehmen.
  • Gemäß einer zweiten Lehre der vorliegenden Erfindung wird die oben aufgezeigte Aufgabe durch ein gattungsgemäßes Aluminiumband zur Herstellung von lithografischen Druckplattenträgern gelöst, welches aus einer Aluminiumlegierung mit folgenden Legierungsbestandteilen in Gew.-% besteht:
    0,3 % ≤ Fe ≤ 0,4 %,
    0,4 % ≤ Mg ≤ 1,0 %,
    0,05 % ≤ Si ≤ 0,25 %,
    Mn ≤ 0,1 %, optional Mn ≤ 0,05 %,
    Cu ≤ 0,04 %,
  • Rest Al sowie unvermeidbare Verunreinigungen, einzeln max. 0,05 %, in Summe max. 0,15 %;
    das Aluminiumband eine Biegewechselbeständigkeit quer zur Walzrichtung von mindestens 1850 Zyklen im Biegewechseltest aufweist.
  • Im Biegewechseltest wird ein Streifen aus dem Aluminiumband herausgeschnitten und zwischen zwei zylinderförmigen Segmenten mit einem Radius von 30 mm hin- und hergebogen. Im Gegensatz zu den bisher hergestellten Aluminiumbändern für lithografische Druckplattenträger erreichen die erfindungsgemäßen Aluminiumbänder nach einem Einbrennvorgang Biegewechselzyklen von mehr als 1850 auch quer zur Walzrichtung, was einen Anstieg gegenüber den bisher verwendeten Standardlegierungen von über 70 % bedeutet. Zudem zeigt die hohe Anzahl von möglichen Biegewechselzyklen von mehr als 1850 sowohl im walzharten als auch im eingebrannten Zustand des erfindungsgemäßen Aluminiumbandes, dass die Neigung zu Plattenreißern aufgrund von mechanischen Belastungen bei quer oder längs zur Walzrichtung eingespannten lithografischen Druckplattenträger gering ausgeprägt ist.
  • Bevorzugt weisen die Aluminiumbänder eine Zugfestigkeit bis zu 200 MPa in walzhartem Zustand längs zur Walzrichtung gemessen auf, so dass der Coilset des erfindungsgemäßen Aluminiumbandes weiterhin auf einfache Weise korrigiert werden kann. Gepaart ist ist die Steigerung in den Zugfestigkeitswerten vorzugsweise mit einer guten thermischen Stabilität, welche sich durch eine Zugfestigkeit von mindestens 145 MPa nach einem Einbrennvorgang längs oder quer zur Walzrichtung zeigt. Das Handling der aus dem Aluminiumband hergestellten lithografischen Druckplattenträger ist auch nach einem Einbrennvorgang gut. Selbst bei sehr großen lithografischen Druckplattenträgern kann durch die erhöhte Festigkeiten nach dem Einbrennen das Handling der Druckplatten erleichtert werden. Bei erhöhten Mg-Gehalten können die Zugfestigkeitswerte bis maximal 200 MPa in walzhartem Zustand durch eine Reduzierung der Zwischenglühungsdicke erreicht werden, welche dann beispielsweise weniger als 1,1 mm beträgt. Die Biegewechselbeständigkeit wird hierdurch nicht beeinflusst.
  • Ein Aluminiumband mit einem Mg-Gehalt von 0,4 Gew.-% bis 0,6 Gew.-%, ermöglicht ausreichend hohe Zugfestigkeitswerte im walzharten Zustand bereitzustellen, da beispielsweise bereits bei geringen Abwalzgraden nach dem Zwischenglühen die notwendigen Festigkeitswerte für Aluminiumband erreicht werden. Aluminiumbänder mit einem Mg-Gehalt von 0,4 Gew.-% bis 0,6 Gew.-% zeigen einen weiteren Anstieg der Biegewechselbeständigkeit quer zur Walzrichtung bei gleichbleibenden Eigenschaften hinsichtlich Aufraubarkeit und verbesserten Zugfestigkeitseigenschaften.
  • Eine alternative Ausgestaltung des erfindungsgemäßen Aluminiumbandes weist einen Mg-Gehalt von 0,4 Gew.-% bis 1,0 Gew.-%, vorzugsweise 0,6 Gew.-% bis 1,0 Gew.-% auf. Aluminiumbänder mit diesen erhöhten Mg-Gehalten zeichnen sich durch eine außergewöhnlich gute Biegewechselbeständigkeit quer zur Walzrichtung aus und neigen entgegen den Erwartungen der Fachwelt nicht zur Streifigkeit während der Aufrauung. Lediglich die Zwischenglühungsdicke muss angepasst werden, um optimale Zugfestigkeitswerte von kleiner 200 MPa bei maximalen Biegewechselbeständigkeitseigenschaften zu erzielen.
  • Gemäß einer weiteren Ausgestaltung des erfindungsgemäßen Aluminiumbandes werden die Eigenschaften des fertig hergestellten Aluminiumbandes dadurch prozesssicher erreicht, dass die Aluminiumlegierung einen Ti-Gehalt von max. 0,05 Gew.-%, vorzugsweise max. 0,015 Gew.-%, einen Zn-Gehalt von max. 0,05 Gew.-% und einen Cr-Gehalt von weniger als 100 ppm, vorzugsweise von max. 10 ppm aufweist.
  • Aus Aluminiumbändern mit einer Dicke von 0,25 bis 0,5 mm können gemäß einer letzten Ausgestaltung des erfindungsgemäßen Aluminiumbandes besonderes gut übergroße Druckplattenträger hergestellt und auf einfache Weise prozessiert und gehandhabt werden.
  • Gemäß einer dritten Lehre der vorliegenden Erfindung wird die oben aufgezeigte Aufgabe durch Druckplattenträger gelöst, welche aus einem erfindungsgemäßen Aluminiumband hergestellt sind. Hinsichtlich der Vorteile der erfindungsgemäßen Druckplattenträger wird auf die obigen Ausführungen zum Verfahren zur Herstellung eines Aluminiumbandes sowie zum erfindungsgemäßen Aluminiumband verwiesen.
  • Es gibt nun eine Vielzahl von Möglichkeiten das erfindungsgemäße Verfahren zur Herstellung von Aluminiumbänder für lithografische Druckplattenträger, das Aluminiumband für lithografische Druckplattenträger sowie den Druckplattenträger selbst weiterzuentwickeln und auszugestalten. Hierzu wird verwiesen einerseits auf die den Patentansprüchen 1 und 4 nachgeordneten Patentansprüche sowie auf die Beschreibung von Ausführungsbeispielen in Verbindung mit der Zeichnung. In der Zeichnung zeigt die einzige Figur eine schematische Darstellung des Biegewechseltests zur Prüfung der Biegewechselbeständigkeit.
  • Ein Vergleich zwischen einem konventionellen Aluminiumband zur Herstellung von lithografischen Druckplattenträgern sowie zwei erfindungsgemäßen Aluminiumbändern und einem Vergleichsaluminiumband, welche ebenfalls für die Herstellung von lithografischen Druckplattenträgern geeignet sind, wird im Folgenden dargestellt. Die Legierungsbestandteile der unterschiedlichen, getesteten Aluminiumbänder sind in Tabelle 1 dargelegt. Tab.1
    Leg.-Nr. Fe Mn Mg Si Cu /Gew.-%
    Vref 0,32 - 0,17 0,12 7 ppm Stand der Technik
    VF583 0,3 0,0291 0,97 0,11 0,0233 Erfindung
    V582 0,36 0,0034 0,3 0,09 3 ppm Vergl.
    V581 0,36 0,018 0,2 0,08 5 ppm Vergl.
    V580 0,4 0,10 0,11 0,08 < 10 ppm Vergleich
  • Die Tabelle 1 zeigt nur die wesentlichen Legierungsbestandteile der untersuchten Aluminiumbänder darüber hinaus wiesen die verschiedenen Versuchslegierungen einen Ti-Gehalt von weniger als 0,015 Gew.-%, einen Zn-Gehalt von weniger als 0,05 Gew.-% sowie einen Cr-Gehalt von weniger als 100 ppm auf. Die aus den verschiedenen Aluminiumlegierungen gegossenen Walzbarren sind vor dem Walzen einer Homogenisierung unterzogen worden, wobei die Walzbarren auf eine Temperatur von etwa 580 °C für mehr als vier Stunden geglüht wurden. Anschließen erfolgte das Warmwalzen bei Temperaturen von 250 °C bis 550 °C, wobei die Warmbandendtemperatur zwischen 280 °C und 350 °C betrug. Das Aluminiumwarmband aus der Legierung VRef wurde während des Kaltwalzens bei einer Dicke von 2 bis 2,4 mm einer Zwischenglühung unterzogen, wobei das kaltgewalzte Band einer Temperatur von 300 bis 450 °C für ein bis zwei Stunden ausgesetzt war. Bei gleichen Zwischenglühungstemperaturen betrug die Zwischenglühungsdicke für die Aluminiumbänder V581, V582 und VF583 nur 0,9 bis 1,2 mm, wie auch aus der Tabelle 2 ersichtlich ist. Das Aluminiumband aus der Legierung V580 wurde dagegen nicht zwischengeglüht. Da die zwischengeglühten Bänder auf Enddicke weiter kaltgewalzt wurden, ohne dass eine abschließende Endglühung erfolgte, wurden diese im Zustand walzhart aufgehaspelt. Tab. 2
    Leg.-Nr. Warmbandenddicke Zwischenglühungsdicke Enddicke Zustand
    Vref 3 - 4 mm 2 - 2,4 mm 0,29 mm walzhart
    VF583 3- 4 mm 0,9 - 1,2 mm 0,28 mm walzhart
    V582 3 - 4 mm 0,9 - 1,2 mm 0,28 mm walzhart
    V581 3 - 4 mm 0,9 - 1,2 mm 0,28 mm walzhart
    V580 3 - 4 mm - 0,28 mm walzhart
  • Die entsprechend hergestellten Aluminiumbänder für lithografische Druckplattenträger bzw. Lithobänder, wurden weiteren Tests unterzogen. Alle fünf Aluminiumbänder zeichnen sich durch ein sehr gutes Aufrauverhalten aus. Darüber hinaus wurde die Zugfestigkeit im walzharten Zustand untersucht. Um die praktische Handhabung der Druckplatten, insbesondere bei übergroßen lithografischen Druckplatten zu prüfen wurden Zugfestigkeiten auch nach einem Einbrennvorgang von 240 °C für 10 Minuten gemessen. Zusätzlich wurden Biegewechseltest durchgeführt, bei welchem die in Fig. 1 schematisch dargestellte Versuchsanordnung verwendet wurde.
  • Fig. 1a) zeigt in einer schematischen Schnittansicht den Aufbau der verwendeten Biegewechseltestvorrichtung 1, welche zur Untersuchung der Biegewechselbeständigkeit der erfindungsgemäßen Aluminiumbänder eingesetzt wurde. Proben 2 aus den hergestellten Aluminiumbändern für lithografische Druckplattenträger werden in der Biegewechseltestvorrichtung 1 auf einem beweglichen Segment 3 sowie einem feststehenden Segment 4 befestigt. Das Segment wird beim Biegewechseltest auf dem feststehenden Segment 4 durch eine Abrollbewegung hin- und herbewegt, so dass die Probe 2 Biegungen senkrecht zur Erstreckung der Probe 2 ausgesetzt ist. Die verschiedenen Biegezustände zeigt schematisch Fig. 1b). Die Proben 2 wurden entweder längs oder quer zur Walzrichtung aus den hergestellten Aluminiumbändern für lithografische Druckplattenträger ausgeschnitten. Der Radius der Segmente 3, 4 betrug 30 mm.
  • Die Zugfestigkeiten wurden nach DIN gemessen. Die Ergebnisse der Zugfestigkeitsmessungen im walzharten Zustand bzw. nach einem Einbrennvorgang sowie die Biegewechseltestergebnisse sind in Tabelle 3a und 3b dargestellt. Tab. 3a
    Leg.-Nr. Zugfestigkeit (MPa) walzhart Zugfestigkeit (MPA) 240°/10 min.
    längs quer längs quer
    Vref 198 201 154 154
    VF583 212 223 179 185
    V582 184 201 153 161
    V581 177 192 145 155
    V580 218 228 157 169
    Tab. 3b
    Leg.-Nr. Biegewechseltest nach 260°/4 min. Anzahlzyklen Biegewechseltest walzhart Anzahlzyklen
    längs quer längs quer
    Vref 3400 1500 3030 1930
    VF583 4150 3430 3760 2950
    V582 4570 2670 4070 2320
    V581 4230 2150 4100 2000
    V580 3190 2090 2840 2200
  • Es zeigte sich, dass das konventionelle Aluminiumband zwar eine für die Korrektur des Coilsets vor dem Einbrennvorgang und für das Handling des lithografischen Druckplattenträgers nach dem Einbrennvorgang ausreichende Zugfestigkeit sowie eine ausreichende Biegewechselbeständigkeit längs zur Walzrichtung aufweist. Quer zur Walzrichtung erreichte das konventionell hergestellte Aluminiumband (VRef) jedoch lediglich 1500 Biegezyklen. Die Aluminiumbänder V582, V581 zeigen dagegen sehr gute Zugfestigkeiten in Bezug auf eine Coilsetkorrektur und das Handling der Druckplatte nach einem Einbrennvorgang sowie eine sehr hohe Biegewechselbeständigkeit. Es wurde eine bis zu 78 % höhere Anzahl an Biegezyklen erreicht, vgl. Legierung V582. Im Vergleich dazu zeigte das Vergleichsaluminiumband V580 zwar ebenfalls gute Werte bezüglich der Biegewechselbeständigkeit. Die sehr hohen Zugfestigkeiten von 218 bzw. 228 MPa längs respektive quer zur Walzrichtung erschweren die Korrektur des Coilsets vor dem Einbrennen der Fotoschicht der lithografischen Druckplattenträger.
  • Die Aluminiumbänder aus der erfindungsgemäßen Aluminiumlegierung VF583 zeigten ebenfalls erhöhte Zugfestigkeitswerte von 212 MPa und 223 MPa längs respektive quer zur Walzrichtung. Der Anstieg bei der Biegewechselbeständigkeit fällt aber mit einem Faktor von etwa 2,47 gegenüber dem Referenzmaterial quer zur Walzrichtung nach dem Einbrennvorgang sehr deutlich aus. Längs zur Walzrichtung ergibt sich eine Steigerung der Biegewechselbeständigkeit nach einem Einbrennvorgang immerhin noch mit einem Faktor von 1,27. Gepaart mit einer unproblematischen Aufraubarkeit ergibt dies eine hervorragende Eignung der Aluminiumlegierung VF583 für übergroße, quer zur Walzrichtung eingespannten Druckplattenträgern. Es wird davon ausgegangen, dass die verbesserten Biegewechselbeständigkeitseigenschaften durch den erhöhten Mg-Anteil von 0,97 Gew.-% der Legierung VF583 verursacht werden. Die Zugfestigkeitswerte der Legierung VF583 lassen sich aber noch durch eine weitere Verringerung der Zwischenglühungsdicke beispielsweise auf 0,9 mm bis weniger als 1,1 mm weiter reduzieren, ohne dass die Biegewechselbeständigkeitseigenschaften verschlechtert werden.
  • Im walzharten Zustand, welcher für negativ Druckplatten verwendet wird, zeigte sich insbesondere längs zur Walzrichtung eine deutliche Verbesserung der Biegewechselbeständigkeit. Quer zur Walzrichtung erhöhten sich die Werte ebenfalls. Dies gilt insbesondere auch für die Aluminiumlegierung VF583, welche quer zur Walzrichtung auch in walzhartem Zustand eine maximale Anzahl an Biegezyklen ermöglichte.
  • Es hat sich gezeigt, dass durch Auswahl einer speziell auf die Bedürfnisse großer lithografischer Druckplattenträger abgestimmter Aluminiumlegierung in Kombination mit ausgewählten Verfahrensparametern die Herstellung von deutlich verbesserten lithografischen Druckplattenträgern ermöglicht, welche auch bei der Verwendung von Übergrößen, d.h. wenn diese quer zur Walzrichtung eingespannt werden, auf einfache Weise gehandhabt werden können und dennoch resistent gegen Plattenreißer sind.

Claims (7)

  1. Verfahren zur Herstellung von Aluminiumbändern für lithografische Druckplattenträger, wobei das Aluminiumband aus einem Walzbarren hergestellt wird, welcher nach einem optionalen Homogenisieren auf eine Dicke von 2 bis 7 mm warmgewalzt und durch Kaltwalzen des Warmbandes das Aluminiumband auf eine Enddicke von 0,15 bis 0,5 mm kaltgewalzt wird,
    dadurch gekennzeichnet, dass das Aluminiumband aus einer Aluminiumlegierung mit folgenden Legierungsbestandteilen in Gewichtsprozent besteht: 0,3 % ≤ Fe ≤ 0,4 %, 0,4 % ≤ Mg ≤ 1,0 %, 0,05 % ≤ Si ≤ 0,25 %, Mn ≤ 0,1 %, optional Mn ≤ 0,05 %, Cu ≤ 0,04 %,
    gegeben falls einen Ti-Gehalt von max. 0,05 Gew.-%, einen Zn-Gehalt von max. 0,05 Gew.-% und einen Cr-Gehalt von weniger als 100 ppm,
    Rest Al sowie unvermeidbare Verunreinigungen, einzeln max. 0,05 %, in Summe max. 0,15 %; während des Kaltwalzens eine Zwischenglühung bei einer Dicke von 1,5 mm bis 0,5 mm durchgeführt wird und das
    Aluminiumband anschließend durch Kaltwalzen auf eine Enddicke von 0,15 mm bis 0,5 mm gewalzt wird und zur Weiterverarbeitung zu einem lithografischen Druckplattenträger in walzhartem Zustand aufgehaspelt wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass das Warmwalzen bei einer Temperatur von 250 °C bis 550 °C erfolgt, wobei die Warmbandendtemperatur 280 °C bis 350 °C beträgt.
  3. Verfahren nach einem der Ansprüche 1 bis 2,
    dadurch gekennzeichnet, dass während der Zwischenglühung die Metalltemperatur 200 °C bis 450 °C beträgt und das Aluminiumband für mindestens ein bis zwei Stunden auf der genannten Metalltemperatur gehalten wird.
  4. Aluminiumband zur Herstellung von lithografischen Druckplattenträgern, mit einer Dicke von 0,15 mm bis 0,5 mm, insbesondere hergestellt nach einem Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Aluminiumband aus einer Aluminiumlegierung mit folgenden Legierungsbestandteilen in Gewichtsprozent: 0,3 % ≤ Fe ≤ 0,4 %, 0,4 % ≤ Mg ≤ 1,0 %, 0,05 % ≤ Si ≤ 0,25 %, Mn ≤ 0,1 %, optional Mn ≤ 0,05 %, Cu ≤ 0,04 %,
    gegebenfalls einen Ti-Gehalt von max. 0,05 Gew.-%, einen Zn-Gehalt von max. 0,05 Gew.-% und einen Cr-Gehalt von weniger als 50 ppm,
    Rest Al sowie unvermeidbare Verunreinigungen, einzeln max. 0,05 %, in Summe max. 0,15 % besteht und eine Biegewechselbeständigkeit quer zur Walzrichtung von mindestens 1850 Zyklen im Biegewechseltest aufweist.
  5. Aluminiumband nach Anspruch 4,
    dadurch gekennzeichnet, dass das Aluminiumband eine Zugfestigkeit von bis zu 200 MPa in walzhartem Zustand längs zur Walzrichtung und eine Zugfestigkeit von mindestens 145 MPa nach einem Einbrennvorgang längs oder quer zur Walzrichtung aufweist.
  6. Aluminiumband nach einem der Ansprüche 4 bis 5, dadurch gekennzeichnet, dass das Aluminiumband eine Dicke von 0,25 bis 0,5 mm aufweist.
  7. Druckplattenträger hergestellt aus einem Aluminiumband nach einem der Ansprüche 4 bis 6.
EP08853549.7A 2007-11-30 2008-11-24 Aluminiumband für lithografische druckplattenträger und dessen herstellung Revoked EP2220262B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08853549.7A EP2220262B1 (de) 2007-11-30 2008-11-24 Aluminiumband für lithografische druckplattenträger und dessen herstellung

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07023245.9A EP2067871B2 (de) 2007-11-30 2007-11-30 Aluminiumband für lithografische Druckplattenträger und dessen Herstellung
EP08853549.7A EP2220262B1 (de) 2007-11-30 2008-11-24 Aluminiumband für lithografische druckplattenträger und dessen herstellung
PCT/EP2008/066086 WO2009068502A1 (de) 2007-11-30 2008-11-24 Aluminiumband für lithografische druckplattenträger und dessen herstellung

Publications (2)

Publication Number Publication Date
EP2220262A1 EP2220262A1 (de) 2010-08-25
EP2220262B1 true EP2220262B1 (de) 2014-01-08

Family

ID=39400918

Family Applications (2)

Application Number Title Priority Date Filing Date
EP07023245.9A Active EP2067871B2 (de) 2007-11-30 2007-11-30 Aluminiumband für lithografische Druckplattenträger und dessen Herstellung
EP08853549.7A Revoked EP2220262B1 (de) 2007-11-30 2008-11-24 Aluminiumband für lithografische druckplattenträger und dessen herstellung

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP07023245.9A Active EP2067871B2 (de) 2007-11-30 2007-11-30 Aluminiumband für lithografische Druckplattenträger und dessen Herstellung

Country Status (9)

Country Link
US (1) US11326232B2 (de)
EP (2) EP2067871B2 (de)
JP (1) JP5319693B2 (de)
CN (1) CN101883876A (de)
BR (1) BRPI0819596B8 (de)
DE (1) DE202008018332U1 (de)
ES (2) ES2407655T5 (de)
SI (1) SI2067871T2 (de)
WO (1) WO2009068502A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9914318B2 (en) 2005-10-19 2018-03-13 Hydro Aluminium Deutschland Gmbh Aluminum strip for lithographic printing plate supports
ES2407655T5 (es) 2007-11-30 2023-02-23 Speira Gmbh Banda de aluminio para soportes para planchas de impresión litográfica y su producción
EP2192202B2 (de) 2008-11-21 2022-01-12 Speira GmbH Aluminiumband für lithographische Druckplattenträger mit hoher Biegewechselbeständigkeit
WO2012059362A1 (en) 2010-11-04 2012-05-10 Novelis Inc. Aluminium lithographic sheet
EP2495106B1 (de) * 2011-03-02 2015-05-13 Hydro Aluminium Rolled Products GmbH Aluminiumband für lithografische Druckplattenträger mit Wasser basierenden Beschichtungen
JP2013177685A (ja) * 2013-04-11 2013-09-09 Kobe Steel Ltd 自動製版印刷版用高強度アルミニウム合金板
CN103667819B (zh) * 2013-11-22 2015-09-16 中铝瑞闽股份有限公司 Ctp版基及其制作方法
WO2017182506A1 (de) 2016-04-20 2017-10-26 Hydro Aluminium Rolled Products Gmbh Lithobandfertigung mit hoher kaltwalzstichabnahme
CN107868887A (zh) * 2016-09-23 2018-04-03 镇江龙源铝业有限公司 一种led灯具用铝带新材料
JP7378615B2 (ja) * 2019-11-12 2023-11-13 スペイラ ゲゼルシャフト ミット ベシュレンクテル ハフツング 調整された箔熱処理
EP4015658A1 (de) * 2020-12-18 2022-06-22 Speira GmbH Aluminiumfolie mit verbesserter barriereeigenschaft

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH493642A (de) * 1967-12-29 1970-07-15 Alusuisse Verfahren zur Herstellung von feinkörnigen Bändern aus manganhaltigen Aluminium-Legierungen
JPS5842745A (ja) * 1981-09-03 1983-03-12 Furukawa Alum Co Ltd 印刷用アルミニウム合金板とその製造方法
JPS605861A (ja) 1983-06-22 1985-01-12 Furukawa Alum Co Ltd 平版印刷版用支持体の製造方法
JPS60230951A (ja) * 1984-04-27 1985-11-16 Fuji Photo Film Co Ltd 平版印刷版用アルミニウム合金支持体
JPS6126746A (ja) * 1984-07-18 1986-02-06 Kobe Steel Ltd 平版印刷版用アルミニウム合金
DE3507402A1 (de) 1985-03-02 1986-09-04 Vereinigte Aluminium-Werke AG, 1000 Berlin und 5300 Bonn Aluminiumoffsetband und verfahren zu seiner herstellung
CA1287013C (en) * 1985-07-25 1991-07-30 Yasuhisa Nishikawa Aluminum alloy support for lithographic printing plates
JPH07100844B2 (ja) * 1985-10-04 1995-11-01 日本軽金属株式会社 オフセツト印刷用アルミニウム合金支持体の製造方法
JPS6286143A (ja) 1985-10-11 1987-04-20 Sky Alum Co Ltd 印刷版支持体用アルミニウム合金素板
JPS62181191A (ja) 1986-02-06 1987-08-08 Furukawa Alum Co Ltd 平版印刷原版の製造方法
JPS62181190A (ja) 1986-02-06 1987-08-08 Furukawa Alum Co Ltd 平版印刷版用アルミニウム合金支持体の製造方法
JPS62230946A (ja) 1986-04-01 1987-10-09 Furukawa Alum Co Ltd 平版印刷版用アルミニウム合金支持体
JPS6347348A (ja) * 1986-08-18 1988-02-29 Sky Alum Co Ltd 平版印刷版用アルミニウム合金支持体
JPS6347349A (ja) 1986-08-18 1988-02-29 Sky Alum Co Ltd 平版印刷版用アルミニウム合金支持体
JPS6347347A (ja) * 1986-08-18 1988-02-29 Sky Alum Co Ltd 平版印刷版用アルミニウム合金支持体
JPH10195568A (ja) 1997-01-10 1998-07-28 Konica Corp 平版印刷版用アルミニウム合金板
EP0887430B2 (de) 1997-06-26 2009-06-24 Sky Aluminium Co., Ltd. Träger aus einer Aluminiumlegierung für eine lithographische Druckplatte
JP3915944B2 (ja) 1997-08-22 2007-05-16 古河スカイ株式会社 平版印刷版用アルミニウム合金支持体の製造方法および平版印刷版用アルミニウム合金支持体
JPH11161364A (ja) 1997-11-25 1999-06-18 Mitsubishi Electric Corp 半導体回路装置
DE19956692B4 (de) * 1999-07-02 2019-04-04 Hydro Aluminium Deutschland Gmbh Lithoband
DE29924474U1 (de) * 1999-07-02 2003-08-28 Hydro Aluminium Deutschland Lithoband
JP4056682B2 (ja) 2000-07-11 2008-03-05 富士フイルム株式会社 平版印刷版用支持体
ES2259311T3 (es) 2000-12-11 2006-10-01 Novelis, Inc. Aleacion de aluminio para plancha litografica.
WO2006122852A1 (en) 2005-05-19 2006-11-23 Hydro Aluminium Deutschland Gmbh Conditioning of a litho strip
US9914318B2 (en) 2005-10-19 2018-03-13 Hydro Aluminium Deutschland Gmbh Aluminum strip for lithographic printing plate supports
US20080035488A1 (en) * 2006-03-31 2008-02-14 Martin Juan Francisco D R Manufacturing process to produce litho sheet
ES2407655T5 (es) 2007-11-30 2023-02-23 Speira Gmbh Banda de aluminio para soportes para planchas de impresión litográfica y su producción
US20110039121A1 (en) 2007-11-30 2011-02-17 Hydro Aluminium Deutschland Gmbh Aluminum strip for lithographic printing plate carriers and the production thereof

Also Published As

Publication number Publication date
ES2407655T3 (es) 2013-06-13
WO2009068502A1 (de) 2009-06-04
BRPI0819596A2 (pt) 2020-08-25
BRPI0819596B8 (pt) 2023-01-10
CN101883876A (zh) 2010-11-10
DE202008018332U1 (de) 2013-02-07
EP2067871B2 (de) 2022-10-19
SI2067871T2 (sl) 2023-01-31
JP2011505493A (ja) 2011-02-24
JP5319693B2 (ja) 2013-10-16
EP2067871B1 (de) 2013-02-20
SI2067871T1 (sl) 2013-06-28
US20170253952A1 (en) 2017-09-07
ES2407655T5 (es) 2023-02-23
BRPI0819596B1 (pt) 2021-03-02
ES2456269T3 (es) 2014-04-21
US11326232B2 (en) 2022-05-10
EP2067871A1 (de) 2009-06-10
EP2220262A1 (de) 2010-08-25

Similar Documents

Publication Publication Date Title
EP2220262B1 (de) Aluminiumband für lithografische druckplattenträger und dessen herstellung
EP2770071B9 (de) Aluminiumlegierung zur Herstellung von Halbzeugen oder Bauteilen für Kraftfahrzeuge, Verfahren zur Herstellung eines Aluminiumlegierungsbands aus dieser Aluminiumlegierung sowie Aluminiumlegierungsband und Verwendungen dafür
EP3314031B1 (de) Hochfestes und gut umformbares almg-band sowie verfahren zu seiner herstellung
EP1937860B1 (de) Aluminiumband für lithographische druckplattenträger
EP2192202B9 (de) Aluminiumband für lithographische Druckplattenträger mit hoher Biegewechselbeständigkeit
EP2570509B1 (de) Herstellverfahren für AlMgSi-Aluminiumband
EP2270249B1 (de) AlMgSi-Band für Anwendungen mit hohen Umformungsanforderungen
DE10116636A1 (de) Verfahren zur Herstellung von AIMn-Bändern oder Blechen
DE112009002076T5 (de) Hochfeste Aluminiumlegierungsplatte für eine lithographische Platte und Herstellungsverfahren dafür
EP3445887B1 (de) Lithobandfertigung mit hoher kaltwalzstichabnahme
EP2243848B1 (de) Mangan- und magnesiumreiches Aluminiumband
EP2703508B1 (de) Gegen interkristalline Korrosion beständige Aluminiumlegierung
EP2243849B1 (de) Mangan- und hoch magnesiumreiches Aluminiumband
EP1748088B1 (de) Verfahren zur Herstellung eines Halbzeugs oder Bauteils von Fahrwerk- oder Strukturanwendungen im Kraftfahrzeug
EP1990433B1 (de) Cu - Ni - Metall-Legierung
DE69027122T2 (de) Für lithographiedruckplatten geeignete aluminiumlegierungen
DE102019105598A1 (de) Verfahren zur Herstellung eines Aluminiumbands mit hoher Festigkeit und hoher elektrischer Leitfähigkeit
DE19956692B4 (de) Lithoband

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100519

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20111216

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130726

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HYDRO ALUMINIUM ROLLED PRODUCTS GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 648824

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008011206

Country of ref document: DE

Effective date: 20140220

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2456269

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140421

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140508

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140508

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502008011206

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

26 Opposition filed

Opponent name: NOVELIS INC.

Effective date: 20141007

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502008011206

Country of ref document: DE

Effective date: 20141007

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141124

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141201

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 648824

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20081124

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140108

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APBY Invitation to file observations in appeal sent

Free format text: ORIGINAL CODE: EPIDOSNOBA2O

APCA Receipt of observations in appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNOBA4O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20191120

Year of fee payment: 12

Ref country code: DE

Payment date: 20191121

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20191220

Year of fee payment: 12

Ref country code: IT

Payment date: 20191128

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20191120

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191120

Year of fee payment: 12

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008011206

Country of ref document: DE

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 502008011206

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 502008011206

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20201201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201201

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201124

REG Reference to a national code

Ref country code: FI

Ref legal event code: MGE

27W Patent revoked

Effective date: 20210625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201124

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 648824

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201125