WO2017182506A1 - Lithobandfertigung mit hoher kaltwalzstichabnahme - Google Patents
Lithobandfertigung mit hoher kaltwalzstichabnahme Download PDFInfo
- Publication number
- WO2017182506A1 WO2017182506A1 PCT/EP2017/059261 EP2017059261W WO2017182506A1 WO 2017182506 A1 WO2017182506 A1 WO 2017182506A1 EP 2017059261 W EP2017059261 W EP 2017059261W WO 2017182506 A1 WO2017182506 A1 WO 2017182506A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aluminum
- cold rolling
- strip
- rolling
- cold
- Prior art date
Links
- 238000005097 cold rolling Methods 0.000 title claims abstract description 102
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 87
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 87
- 238000007639 printing Methods 0.000 claims abstract description 36
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 34
- 238000004519 manufacturing process Methods 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims abstract description 31
- 238000005096 rolling process Methods 0.000 claims abstract description 27
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 8
- 239000000956 alloy Substances 0.000 claims abstract description 8
- 238000005098 hot rolling Methods 0.000 claims abstract description 7
- 239000012535 impurity Substances 0.000 claims abstract description 7
- 238000005266 casting Methods 0.000 claims abstract description 3
- 239000011777 magnesium Substances 0.000 claims description 20
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 14
- 229910052749 magnesium Inorganic materials 0.000 claims description 14
- 238000000137 annealing Methods 0.000 claims description 9
- 239000000470 constituent Substances 0.000 claims description 3
- 239000000969 carrier Substances 0.000 abstract description 6
- 229910052804 chromium Inorganic materials 0.000 abstract description 6
- 229910052802 copper Inorganic materials 0.000 abstract description 3
- 238000012360 testing method Methods 0.000 description 24
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 15
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 238000005554 pickling Methods 0.000 description 12
- 238000007788 roughening Methods 0.000 description 10
- 230000007547 defect Effects 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000000047 product Substances 0.000 description 7
- 239000011651 chromium Substances 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000011572 manganese Substances 0.000 description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 235000011121 sodium hydroxide Nutrition 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 238000005238 degreasing Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000009991 scouring Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000012876 topography Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- DGLFSNZWRYADFC-UHFFFAOYSA-N chembl2334586 Chemical compound C1CCC2=CN=C(N)N=C2C2=C1NC1=CC=C(C#CC(C)(O)C)C=C12 DGLFSNZWRYADFC-UHFFFAOYSA-N 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41C—PROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
- B41C1/00—Forme preparation
- B41C1/10—Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
- B41C1/1075—Mechanical aspects of on-press plate preparation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41N—PRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
- B41N1/00—Printing plates or foils; Materials therefor
- B41N1/04—Printing plates or foils; Materials therefor metallic
- B41N1/08—Printing plates or foils; Materials therefor metallic for lithographic printing
- B41N1/083—Printing plates or foils; Materials therefor metallic for lithographic printing made of aluminium or aluminium alloys or having such surface layers
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
- B21B2003/001—Aluminium or its alloys
Definitions
- the invention relates to a method for producing an aluminum strip for lithographic printing plate supports made of an aluminum alloy, wherein the
- Aluminum alloy of the aluminum strip for lithographic printing plate supports has the following alloy constituents in% by weight:
- Aluminum tapes must simultaneously meet a variety of requirements to provide sufficient quality for lithographic printing plate supports.
- An area-wide roughening of the aluminum strip must result in a structureless appearance of the aluminum strip without streaking effects.
- a photosensitive layer is applied, which depending on the application type is baked after application at a temperature of 220 ° C to 300 ° C for 3-10 minutes. Typical combinations of bake times are for example 240 ° C for 10 minutes, 260 ° C for 6 minutes, 270 ° C for 7 minutes and 280 ° C for 4 minutes.
- the pressure plate carrier may lose as little as possible after firing strength, so this is still easy to handle and easy in one
- Printing device can be clamped.
- large-format printing plate supports in particular the handling after the burning of the photosensitive layer is problematic.
- the printing plate should survive later in use as many printing cycles, so that the aluminum strip as high as possible
- European Patent Application EP 2 192 202 A1 has examined how an aluminum alloy strip can be adjusted to a desired final strength so that, for example, a coil set present in the aluminum strip can be removed again and at the same time high bending cycle cycles and good Aufraueigenschaften can be provided.
- Aluminum alloy composition could be achieved here the goal.
- Hthographic pressure plate carriers are known in which a magnesium-free
- Aluminum alloy is processed by applying cold rolling passes with Stichabures above 50%. Magnesium levels above 0.02 wt% are considered problematic in terms of recovery of the cold rolled strip and the appearance of excessively high strengths after cold rolling.
- JP H11229101 also discloses the processing of magnesium-free
- magnesium-containing are magnesium-containing. It has been found that magnesium offers particular advantages in terms of fatigue resistance when using the printing plate supports and the roughening of the printing plates. Therefore, magnesium is alloyed to a specified content of the aluminum alloy.
- the ribbons for lithographic printing plate supports are generally not rolled in rolling stands with multiple stitches. Maximum control of the individual cold rolling passes is desired. In a simple cold rolling pass, however, it is sometimes necessary to cool the strips after each cold roll pass in the coil until they can be used again for a next cold-rolled pass. Become too big Stichab portions made in a cold roll pass, can be broken out of the aluminum strip partially material of the surface, resulting in
- the present invention the object of a method for producing an aluminum strip for lithographic
- Pressure plate carrier having to provide magnesium-containing aluminum alloys, with which aluminum strips for lithographic
- Print plate carrier produced with high quality and at the same time the costs can be reduced.
- the above-mentioned object is achieved for a method for producing an aluminum strip for lithographic printing plate support that during cold rolling of the hot strip, the product of the relative end thicknesses of the aluminum strip after the first and after the second cold rolling pass of the aluminum strip 15% 24%, preferably 17% to 22%.
- the relative final thickness (b) after a cold rolling pass is the thickness of the aluminum strip after a cold rolling pass in relation to the starting thickness before the cold rolling pass in percent, ie the quotient of resulting thickness and initial thickness.
- Kaltwalzstiches then gives the relative final thickness in relation to the initial thickness before both cold rolling passes and thus a measure of the thickness decrease of
- Thickness reduction of the aluminum strip in the first two cold rolling passes opened the possibility to save a complete cold rolling pass in the manufacturing process. Surprisingly, it was found that the
- the hot-rolled aluminum strip preferably passes through the following steps in compliance with the specification for the product of the first two cold-rolling passes:
- a preferred embodiment of the method according to the invention is provided by the fact that during cold rolling of the hot strip, the product of the relative end thicknesses of the aluminum strip after the first and after the second
- Cold rolling pass is preferably 17% to 20%. This achieves a good compromise with regard to process reliability for providing high surface qualities and the possibility of saving a cold roll pass.
- the production of an aluminum strip with a final thickness of 0.1 mm to 0.5 mm after cold rolling can be achieved according to a further embodiment of the method in two or three cold rolling passes, when the hot strip thickness from 2.3 mm to 3.7 mm, preferably 2 , 5 mm to 3.0 mm. Below 2.3 mm, there is a risk that the hot strip during hot strip production may be damaged
- Cold rolling-off acceptance not only involves the risk of surface defects on the aluminum strip, but also the risk of damaging the cold roll itself.
- a hot-rolled strip thickness of 2.5 mm to 3.0 mm prevents both the collapse of the hot strip and the use of high pass rates during cold rolling.
- the first cold rolling pass is carried out with a maximum reduction of 65%, preferably with a maximum of 60%. It turned out that above one
- Stitch loss of 65% in the first cold-rolled pass after hot-rolling significantly increases the risk of surface defects. Preference is given to a maximum of 60%
- this preferably has a maximum reduction of 60% in order to avoid corresponding errors in the
- the second cold rolling pass is therefore to be assessed more critically with regard to the surface quality.
- Both the first and the second cold roll pass preferably have more than 50% reduction in the number of stitches, since this reduces the number of passes required to reach the
- desired relative end thicknesses can be better distributed to both cold rolling passes. Overall, then in both cold rolling passes no maximum
- three cold rolling passes are made to final thickness, wherein the final thickness of the aluminum strip after cold rolling is 0.2 mm to 0.4 mm. So far, at least four cold rolling passes have been required for these final thicknesses. In particular, for end thicknesses of 0.2 mm to 0.4 mm, such a method can be provided, which in addition to an adequate surface quality has reduced costs.
- the inventive method can contribute to cost reduction.
- Production of aluminum strips in the condition H19 and aluminum strips with intermediate annealing in the state H18 can be produced according to the invention.
- the third or fourth cold roll pass preferably the last cold roll pass of the
- Kaltwalzens preferably has a maximum reduction of 52%, so that the third or fourth or last, the surface more strongly influenced cold rolling pass has the least possible impact on the surface quality of the aluminum strip.
- Aluminum strip consisting of an aluminum alloy with the following
- Cu maximally 400 ppm, preferably maximally 100 ppm
- Zn ⁇ 0.05% preferably 50 ppm to 250 ppm
- Alloy composition is due.
- the selected range of the alloying constituent silicon from 0.05% by weight to 0.25% by weight, ensures that in electrochemical thawing, a high number of sufficiently deep
- the iron content of 0.2% ⁇ Fe ⁇ 1%, preferably 0.3% ⁇ Fe ⁇ 1%, particularly preferably 0.3% ⁇ Fe ⁇ 0.6% or 0.4% ⁇ Fe ⁇ 0.6% provides in combination, in particular with the manganese content to a maximum of 0.30 wt .-% for a heat-resistant aluminum alloy, which after baking the photosensitive layer has only a small decrease in strength with respect to yield strength and tensile strength.
- the preferred manganese content of up to 0.30 wt .-%, preferably 30 ppm to 800 ppm, ensures, as already stated, in combination with the iron content improved heat resistance of the aluminum strip after a baking process and affects the flexural fatigue of the
- the aluminum alloy preferably has almost no chromium.
- the chromium content is limited to a maximum of 100 ppm, preferably a maximum of 50 ppm. Higher chromium contents have been found to be negative for the roughening properties of the aluminum strip during electrochemical roughening. Zinc lowers the electrochemical potential of the aluminum alloys of the aluminum strip, so that the
- Zinc is therefore present in the aluminum alloy at a level of up to a maximum of 500 ppm. Higher zinc contents in turn negatively influence the roughening properties of the aluminum strip. The presence of zinc at a level of 50 ppm to 250 ppm results
- the aluminum strip according to the invention is moreover almost free of titanium. It contains less than 0.030% by weight of titanium, which above the stated limit value, the properties of
- Impurities to a maximum of 0.03 wt .-% and a maximum of 0.15 wt .-% be present without affecting the properties of the aluminum alloy strip in the given manufacturing process negative.
- FIG. 1 is a schematic view of the basic process steps for producing an aluminum strip it for lithographic printing plate support
- Fig. 2 is a schematic sectional view of the implementation of a
- step 1 shows schematically the various process steps in the production of an aluminum strip for lithographic printing plate supports.
- step 1 the aluminum alloy is poured into a rolling ingot.
- the ingot is subjected to homogenization in step 2, wherein the
- Rolling bar is heated to temperatures of 450 ° C to 600 ° C at a residence time of at least 1 hour.
- the homogenised ingot is prepared for hot rolling and then hot rolled at temperatures in excess of 280 ° C.
- the temperature of the billet is about 450 ° C to 550 ° C.
- the hot rolling end temperature is usually 280 ° C to 350 ° C.
- the hot strip thicknesses can be between 2 mm and 9 mm, but preference is given to hot strip thicknesses of 2.3 mm to 3.7 mm.
- the hot strip is fed to cold rolling in step 4. During cold rolling, the hot strip is cold rolled to final thickness.
- the cold rolling, and in particular the final cold rolling pass determines the surface properties of the cold rolled aluminum strip, since the surface topography of the cold roll is directly on the cold rolled
- Aluminum band is transmitted. During the rolling pass, errors may occur during cold rolling, which are then transferred to the surface or on the surface
- lithographic printing plate supports inhomogeneous looking, for example, striped surfaces can not be accepted.
- the cold rolling according to step 4 can take place both with and without intermediate annealing.
- the intermediate annealing is carried out at temperatures of 230 ° C to 490 ° C for at least 1 h in the chamber furnace or continuously in the continuous strip furnace for at least 10 s, usually before the last cold rolling pass.
- the intermediate annealing can be used to set the final strength of the aluminum strip for lithographic printing plate supports in certain areas before the last cold-rolled pass.
- the intermediate annealing also causes costs, so that a particularly cost-efficient production is preferably carried out without intermediate annealing.
- FIG. 2 shows a corresponding rolling stand 5, which comprises a unwinding reel 6, a take-up reel 7 and a roll arrangement 11 with two work rolls 9 and 10.
- 2 shows an example of a quarto
- roller arrangements can be designed both as a duo, quarto or sexto rolling stand. Also indicated is an additional one
- Roller assembly 11 in the roll assembly 11 'another roll pass so a total of a multiple stitch is subjected.
- the aluminum strip can be fed again to a cold rolling pass.
- FIGS. 3 a) to 3 c] are scanning electron micrographs of FIG.
- Fig. 3a shows at identical magnification to Fig. 3b) viewed from the surface as inconspicuous band.
- the roll bars can be recognized by the ground rolls, which have been pressed in the aluminum strip. Perpendicular to Rolling direction, however, hardly any structures exist, so that the overall impression of the surface is classified as non-streaky.
- FIGS. 3b) and 3c) show that one is not classified as homogeneous
- FIGS. 3b) and 3c) show surface defects, in particular enlarged in FIG. 3c), which have regions extending transversely to the rolling direction in which material has been lifted off the surface of the strip. It is believed that this error is due to cold rolling.
- the width of the problematic area is about 20 ⁇ perpendicular to the rolling direction and is visible by visual inspection.
- Aluminum ribbons of six different aluminum alloys A to H have now been used using the above-explained and illustrated in FIG.
- the aluminum alloys differ in particular in different contents in the range of silicon, iron, manganese and magnesium.
- the various alloy compositions are shown in Table 1 with their weight percent alloying ingredients.
- all of the alloys containing chromium less than 50 ppm and unavoidable impurities individually contained a maximum of 0.03 wt% and a maximum of 0.15 wt%.
- the hot strip thickness of the aluminum strips produced was varied from 2.3 mm to 3.0 mm and produced from the different thickness hot strips aluminum strips for lithographic printing plate support by cold rolling without intermediate annealing with a final thickness of 0.274 mm to 0.285 mm.
- the first and second cold rolling passes were selected so that a maximum of three cold rolling passes of final thickness were required starting from the final hot strip thickness, with the last cold roll pass having a maximum stitch loss of 51%.
- the product P of the relative final thicknesses after the first and after the second cold-rolled passes is 18.57% to 21.74% due to the reduction in the first two cold-rolling passes. That is, by the first two
- the strip was rolled to an intermediate thickness of 18.57% to 21.74% of the hot strip thickness.
- Table 2 shows the embodiments according to the invention and the associated stitching decreases and the values for the product of the relative final thicknesses after the first and second cold rolling passes.
- the K-test is intended to reveal whether, due to the grain distribution, a stiffness effect can be recognized in the surface.
- the samples thus cut are first sanded for 60 seconds with an orbital sander, the orbital sander being wrapped with a damp cloth and scouring milk used to polish the samples.
- a simple household scrub milk can be used here.
- the samples After rinsing the surface with water, the samples are immersed in 30% sodium hydroxide at a temperature of 60 ° C for 15 seconds and then rinsed with water.
- a macroetching takes place in a macroetching solution. This consists of 400 ml of water,
- Neutralization is carried out with a solution of 40.5 ml of 85 percent phosphoric acid and 900 ml of water at room temperature for about 60 seconds. The sample is then rinsed with water and dried at room temperature. After drying, the samples are visually evaluated for streakiness. Reference samples with Numbers from 1 to 10 are used to determine streakiness in the K-test
- the value 10 stands here for non-streaky.
- the value 1 corresponds to a striped appearance. This streakiness is, as already stated, caused by the grain distribution of the aluminum strips and can be evaluated well with this test.
- Nabuclean 60S at 60 ° C for 10 seconds.
- the concentration of the degreasing medium is 15 g / l.
- the sample is immersed in a caustic soda solution and etched at 50 ° C for about 10 seconds.
- the sodium hydroxide solution is 50 g / l.
- the samples are evaluated using also reference samples, each of which is assigned values from 0 to 5, with the value 0 of one as non-streaky and the value 5 of one as is assigned to a striped evaluated surface.
- the pickling test the samples were compared and evaluated with reference samples before and after pickling.
- Stitch tests in the first cold-rolled pass increase the surface quality in the pickling test. In general, it was shown that in spite of a cold rolling pass, a reduction of 60% in the first and in the second cold rolling pass achieved good surfaces in the pickling test.
- Pressure plate carrier can be saved without affecting the surface quality too strong. As a result, a production route can be made available which, while saving a cold rolling pass, is less expensive
- Aluminum bands for lithographic printing plate support can provide. Table 3
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Metal Rolling (AREA)
- Printing Plates And Materials Therefor (AREA)
- Manufacture Or Reproduction Of Printing Formes (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112018070957-3A BR112018070957B1 (pt) | 2016-04-20 | 2017-04-19 | Método para produção de uma faixa de alumínio para suportes de placa de impressão litográfica de uma liga de alumínio |
CN201780024753.8A CN109072389B (zh) | 2016-04-20 | 2017-04-19 | 具有高冷轧压下率的平版印刷带材制造 |
ES17717202T ES2748106T3 (es) | 2016-04-20 | 2017-04-19 | Fabricación de banda litográfica con alta disminución por pasada de laminación en frío |
JP2018554528A JP6629992B2 (ja) | 2016-04-20 | 2017-04-19 | 高率の冷間圧延パス短縮によるリソ・ストリップの製造方法 |
EP17717202.0A EP3445887B1 (de) | 2016-04-20 | 2017-04-19 | Lithobandfertigung mit hoher kaltwalzstichabnahme |
US16/165,424 US10696040B2 (en) | 2016-04-20 | 2018-10-19 | Litho strip with high cold-rolling pass reduction |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16166182.2 | 2016-04-20 | ||
EP16166182 | 2016-04-20 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/165,424 Continuation US10696040B2 (en) | 2016-04-20 | 2018-10-19 | Litho strip with high cold-rolling pass reduction |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017182506A1 true WO2017182506A1 (de) | 2017-10-26 |
Family
ID=55862548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2017/059261 WO2017182506A1 (de) | 2016-04-20 | 2017-04-19 | Lithobandfertigung mit hoher kaltwalzstichabnahme |
Country Status (7)
Country | Link |
---|---|
US (1) | US10696040B2 (de) |
EP (1) | EP3445887B1 (de) |
JP (1) | JP6629992B2 (de) |
CN (1) | CN109072389B (de) |
BR (1) | BR112018070957B1 (de) |
ES (1) | ES2748106T3 (de) |
WO (1) | WO2017182506A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102020125252A1 (de) | 2020-09-28 | 2022-03-31 | Speira Gmbh | Verfahren zur Bereitstellung von Aluminiumdosenmaterial |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023515242A (ja) | 2020-03-26 | 2023-04-12 | スペイラ ゲゼルシャフト ミット ベシュレンクテル ハフツング | 平坦なトポグラフィーを有するリソストリップおよびそれから製作される印刷版 |
CN111363908A (zh) * | 2020-04-03 | 2020-07-03 | 江苏鼎胜新能源材料股份有限公司 | 一种电站空冷用高强度铝带及其制造方法 |
CN113005337A (zh) * | 2021-03-17 | 2021-06-22 | 内蒙古联晟新能源材料有限公司 | 一种容器箔坯料的制造方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3571910A (en) * | 1967-08-11 | 1971-03-23 | Reynolds Metals Co | Method of making wrought aluminous metal articles |
US5350010A (en) * | 1992-07-31 | 1994-09-27 | Fuji Photo Film Co., Ltd. | Method of producing planographic printing plate support |
JPH11229101A (ja) | 1998-02-09 | 1999-08-24 | Furukawa Electric Co Ltd:The | 平版印刷版用アルミニウム合金支持体の製造方法 |
JP2000096172A (ja) * | 1998-09-21 | 2000-04-04 | Kobe Steel Ltd | 表面処理用アルミニウム合金板およびその製造方法 |
DE69920831T2 (de) | 1998-07-30 | 2005-11-17 | Fuji Photo Film Co., Ltd., Minami-Ashigara | Verfahren zur Herstellung eines Aluminiumsubstrats für eine lithographische Druckplatte |
EP2192202A1 (de) | 2008-11-21 | 2010-06-02 | Hydro Aluminium Deutschland GmbH | Aluminiumband für lithographische Druckplattenträger mit hoher Biegewechselbeständigkeit |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3397044A (en) * | 1967-08-11 | 1968-08-13 | Reynolds Metals Co | Aluminum-iron articles and alloys |
JP3915944B2 (ja) * | 1997-08-22 | 2007-05-16 | 古河スカイ株式会社 | 平版印刷版用アルミニウム合金支持体の製造方法および平版印刷版用アルミニウム合金支持体 |
JP2000017412A (ja) * | 1998-07-01 | 2000-01-18 | Furukawa Electric Co Ltd:The | アルミニウム合金板の製造方法 |
EP1341942B1 (de) * | 2000-12-11 | 2006-03-15 | Novelis, Inc. | Aluminiumlegierung für lithographische druckplatte |
ES2435404T5 (es) * | 2005-10-19 | 2021-02-22 | Hydro Aluminium Rolled Prod | Procedimiento para la fabricación de una banda de aluminio para soportes de planchas de impresión litográficos |
SI2067871T2 (sl) * | 2007-11-30 | 2023-01-31 | Speira Gmbh | Aluminijev trak za litografske nosilce tiskarskih plošč in njegova izdelava |
CN101182611B (zh) * | 2007-12-11 | 2010-10-13 | 乳源东阳光精箔有限公司 | 一种印刷版用铝板基及其制造方法 |
EP2495106B1 (de) * | 2011-03-02 | 2015-05-13 | Hydro Aluminium Rolled Products GmbH | Aluminiumband für lithografische Druckplattenträger mit Wasser basierenden Beschichtungen |
CN105170652B (zh) * | 2015-08-31 | 2017-03-01 | 东北大学 | 一种多层异种金属复合极薄带的制备方法 |
-
2017
- 2017-04-19 CN CN201780024753.8A patent/CN109072389B/zh active Active
- 2017-04-19 BR BR112018070957-3A patent/BR112018070957B1/pt active IP Right Grant
- 2017-04-19 WO PCT/EP2017/059261 patent/WO2017182506A1/de active Application Filing
- 2017-04-19 ES ES17717202T patent/ES2748106T3/es active Active
- 2017-04-19 JP JP2018554528A patent/JP6629992B2/ja active Active
- 2017-04-19 EP EP17717202.0A patent/EP3445887B1/de active Active
-
2018
- 2018-10-19 US US16/165,424 patent/US10696040B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3571910A (en) * | 1967-08-11 | 1971-03-23 | Reynolds Metals Co | Method of making wrought aluminous metal articles |
US5350010A (en) * | 1992-07-31 | 1994-09-27 | Fuji Photo Film Co., Ltd. | Method of producing planographic printing plate support |
JPH11229101A (ja) | 1998-02-09 | 1999-08-24 | Furukawa Electric Co Ltd:The | 平版印刷版用アルミニウム合金支持体の製造方法 |
DE69920831T2 (de) | 1998-07-30 | 2005-11-17 | Fuji Photo Film Co., Ltd., Minami-Ashigara | Verfahren zur Herstellung eines Aluminiumsubstrats für eine lithographische Druckplatte |
JP2000096172A (ja) * | 1998-09-21 | 2000-04-04 | Kobe Steel Ltd | 表面処理用アルミニウム合金板およびその製造方法 |
EP2192202A1 (de) | 2008-11-21 | 2010-06-02 | Hydro Aluminium Deutschland GmbH | Aluminiumband für lithographische Druckplattenträger mit hoher Biegewechselbeständigkeit |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102020125252A1 (de) | 2020-09-28 | 2022-03-31 | Speira Gmbh | Verfahren zur Bereitstellung von Aluminiumdosenmaterial |
DE102020125252A9 (de) | 2020-09-28 | 2022-06-02 | Speira Gmbh | Verfahren zur Bereitstellung von Aluminiumdosenmaterial |
Also Published As
Publication number | Publication date |
---|---|
CN109072389B (zh) | 2020-05-19 |
BR112018070957B1 (pt) | 2022-08-30 |
US20190047279A1 (en) | 2019-02-14 |
EP3445887A1 (de) | 2019-02-27 |
ES2748106T3 (es) | 2020-03-13 |
CN109072389A (zh) | 2018-12-21 |
JP6629992B2 (ja) | 2020-01-15 |
BR112018070957A2 (pt) | 2019-01-29 |
US10696040B2 (en) | 2020-06-30 |
JP2019518606A (ja) | 2019-07-04 |
EP3445887B1 (de) | 2019-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69516336T2 (de) | Verfahren zur herstellung eines stahlbleches mit hoher korrosionsbeständigkeit | |
EP3445887B1 (de) | Lithobandfertigung mit hoher kaltwalzstichabnahme | |
EP2067871B2 (de) | Aluminiumband für lithografische Druckplattenträger und dessen Herstellung | |
DE2362658C3 (de) | Verfahren zum Herstellen von Stahlblech mit hervorragender Preßverformbarkeit | |
EP1065071B1 (de) | Lithoband und Verfahren zu seiner Herstellung | |
EP2270249B2 (de) | AlMgSi-Band für Anwendungen mit hohen Umformungsanforderungen | |
DE69919031T2 (de) | Verfahren zur herstellung rostfreier stahlbänder und integrierter walzstrasse | |
DE69823112T2 (de) | Verfahren zur Herstellung von Blech aus einer Titanlegierung | |
DE60021682T2 (de) | Rostfreie stahplatte für schattenmaske, schattenmaske und verfahren zu deren herstellung | |
WO2013037919A1 (de) | HERSTELLVERFAHREN FÜR AlMgSi-ALUMINIUMBAND | |
DE69302025T2 (de) | Dünnes Metallblech für Schattenmaske | |
EP2192202B1 (de) | Aluminiumband für lithographische Druckplattenträger mit hoher Biegewechselbeständigkeit | |
DE2945467A1 (de) | Lochmaske fuer eine braunsche farbfernsehroehre sowie verfahren zur herstellung derselben | |
DE69839353T2 (de) | Stahldraht und verfahren zu dessen herstellung | |
DE3116419C2 (de) | Verfahren zur Herstellung eines kornorientierten, elektromagnetischen Siliciumstahlbandes | |
DE60005128T2 (de) | Verfahren zur Herstellung von Werkstoffen aus Metallen und Legierungen mit einem feinen Gefüge oder mit feinen nicht-metallischen Einschlüssen und mit geringerer Segregation der Legierungselemente | |
DE2408435C3 (de) | Verfahren zur Herstellung einer Lochmaske für eine Farbfernsehröhre | |
WO2010122143A1 (de) | Mangan- und magnesiumreiches aluminiumband | |
DE1903554A1 (de) | Verfahren zur Herstellung von warmgewalztem Bandstahl | |
DE2942046C2 (de) | Verfahren zur Herstellung eines Stahlstreifenmaterials, geeignet für die Verwendung bei der Herstellung einer Lochmaske für eine Fernsehröhre | |
DE69312477T2 (de) | Legierung für Schattenmaske und Verfahren zu dessen Herstellung | |
DE2737116C2 (de) | Verfahren zum Herstellen von Blechen und Bändern aus ferritischen, stabilisierten, rostfreien Chrom-Molybdän-Nickel-Stählen | |
DE3029669A1 (de) | Verfahren zum herstellen eines stahlstreifens fuer weissblech und unverzinntes stahlblech in verschiedenen haertegraden | |
WO2010122144A1 (de) | Mangan- und hoch magnesiumreiches aluminiumband | |
EP1748088A1 (de) | Warm- und kaltumformbare Aluminiumlegierung vom Typ Al-Mg-Mn |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2018554528 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112018070957 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017717202 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017717202 Country of ref document: EP Effective date: 20181120 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17717202 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 112018070957 Country of ref document: BR Kind code of ref document: A2 Effective date: 20181010 |