EP2570509B1 - Herstellverfahren für AlMgSi-Aluminiumband - Google Patents

Herstellverfahren für AlMgSi-Aluminiumband Download PDF

Info

Publication number
EP2570509B1
EP2570509B1 EP11181519.7A EP11181519A EP2570509B1 EP 2570509 B1 EP2570509 B1 EP 2570509B1 EP 11181519 A EP11181519 A EP 11181519A EP 2570509 B1 EP2570509 B1 EP 2570509B1
Authority
EP
European Patent Office
Prior art keywords
strip
hot
temperature
rolling
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP11181519.7A
Other languages
English (en)
French (fr)
Other versions
EP2570509A1 (de
Inventor
Werner Kehl
Dietmar Schröder
Henk-Jan Brinkman
Natalie Hörster
Kai-Friedrich Karhausen
Eike Brünger
Thomas Wirtz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Speira GmbH
Original Assignee
Hydro Aluminium Rolled Products GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46851493&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2570509(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hydro Aluminium Rolled Products GmbH filed Critical Hydro Aluminium Rolled Products GmbH
Priority to PT111815197T priority Critical patent/PT2570509E/pt
Priority to EP11181519.7A priority patent/EP2570509B1/de
Priority to ES11181519.7T priority patent/ES2459307T3/es
Priority to CN201280044926.XA priority patent/CN103842550B/zh
Priority to RU2014114792/02A priority patent/RU2576976C2/ru
Priority to KR1020157031267A priority patent/KR101974624B1/ko
Priority to KR1020147009878A priority patent/KR20140057666A/ko
Priority to CA2848457A priority patent/CA2848457C/en
Priority to JP2014530230A priority patent/JP5699255B2/ja
Priority to PCT/EP2012/068005 priority patent/WO2013037919A1/de
Publication of EP2570509A1 publication Critical patent/EP2570509A1/de
Publication of EP2570509B1 publication Critical patent/EP2570509B1/de
Application granted granted Critical
Priority to US14/205,645 priority patent/US20150152535A2/en
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions

Definitions

  • the invention relates to a method for producing a strip of AlMgSi alloy, in which a ingot of an AlMgSi alloy is cast, the ingot is subjected to homogenization, the hot rolled to rolled slab is rolled, then optionally cold rolled to final thickness and finished rolled strip is solution-tempered and quenched. Moreover, the invention relates to advantageous uses of a correspondingly produced AlMgSi aluminum strip.
  • AlMgSi alloys whose main alloying constituents are magnesium and silicon have relatively high strengths in the state T6 with at the same time good forming behavior in the state T4 and excellent corrosion resistance.
  • AlMgSi alloys are the alloy types AA6XXX, for example, the alloy types AA6016, AA6014, AA6181, AA6060 and AA6111.
  • Aluminum tapes of AlMgSi alloy are produced by casting a roll bar, homogenizing the roll bar, hot rolling the roll bar, and cold rolling the hot strip. The homogenisation of the rolling ingot takes place at a temperature of 380 to 580 ° C for more than one hour.
  • the tapes can be delivered in condition T4.
  • the state T6 is set after quenching by thermal aging at temperatures between 100 ° C and 220 ° C.
  • the AlMgSi alloy strip has a maximum temperature of 130 ° C immediately after discharge from the last hot rolling pass and is wound at this or a lower temperature.
  • the hot strip By quenching the hot strip with this method, it was possible to produce aluminum strips in state T4, which in state T4 has an elongation at break of A80 of more than 30% or an equi-elongation Ag of more than 25%.
  • very high elongation at break values were found in the T6 state.
  • this temperature range at the outlet of the last hot roll pass leads to problems in the flatness of the hot strip, so that the subsequent manufacturing steps were disturbed.
  • the present invention based on the object to provide an improved process for the production of an aluminum strip of an AlMgSi alloy available, with which AlMgSi aluminum strips can be produced with a very good forming behavior in the state T4 process reliable.
  • the stated object of a method is achieved in that the hot strip immediately after leaving the last Hot rolling pass a temperature of more than 130 ° C, preferably 135 ° C to a maximum of 250 ° C, preferably 135 ° C to a maximum of 230 ° C and the hot strip is wound at this temperature.
  • this cooling takes place within the last two hot rolling passes, ie the cooling to more than 130 ° C, preferably 135 ° C to 250 ° C, preferably 135 ° C to 230 ° C within seconds, maximum within of five minutes. It has been found that in this procedure, the increased Gleichurgidehnungshong at usual strength or Dehngrenzhong in the state T4 and the improved hardenability in the state T6 are achieved particularly reliable process.
  • a process-reliable cooling of the hot strip is achieved by quenching the hot strip itself to coiling temperature using at least one sinker cooler and the hot rolling passes applied with emulsion.
  • a board cooler consists of an array of coolant or lubricant nozzles which spray a rolling emulsion onto the aluminum strip.
  • the sinker may be present in a hot rolling mill to cool rolled hot strip to rolling temperature prior to hot rolling and to achieve higher production speeds.
  • the temperature of the hot strip prior to the start of the cooling process which takes place preferably within the last two rolling passes, at least 400 ° C, preferably 470 ° C to 490 ° C, is achieved according to a next embodiment of the method that particularly small Mg 2 Si precipitates are present in the quenched hot strip, since the largest proportion of the alloying constituents magnesium and silicon are present at these temperatures in the dissolved state in the aluminum matrix.
  • This advantageous state of the hot strip is quasi "frozen" by quenching.
  • the temperature of the hot strip after the penultimate rolling pass is 290 ° C to 310 ° C. It has been found that these temperatures both allow a sufficient freezing of the precipitates and on the other hand at the same time the last pass can be carried out without problems.
  • the thickness of the finished hot strip is 3 mm to 12 mm, preferably 5 mm to 8 mm, so that conventional cold rolling stands for cold rolling can be used.
  • the aluminum alloy used is of the alloy type AA6xxx, preferably AA6014, AA6016, AA6060, AA6111 or AA6181.
  • All alloy types AA6xxx have in common that they have a particularly good forming behavior characterized by high elongation values in the state T4 and high strength or yield strength in the operating condition T6, for example, after a heat aging at 205 ° C / 30 min.
  • the finished rolled aluminum strip is subjected to a heat treatment, wherein the aluminum strip is heated after solution treatment and quenching to more than 100 ° C and then at a temperature of more than 55 ° C, preferably more than 85 ° C. wound up and outsourced.
  • This embodiment of the method after cold aging by a shorter heating phase at lower temperatures, allows to set the state T6 in the strip or sheet in which the sheet-formed or strip-formed components are used in the application.
  • These fast-curing aluminum strips are for this purpose only to temperatures of about 185 ° C for only 20 min. heated to reach the higher yield limits in state T6.
  • the elongation at break values A 80 of the aluminum strips produced in this embodiment of the method according to the invention in state T4 are slightly below 29%.
  • the aluminum strip produced according to the invention is still characterized by a very good uniform elongation Ag of more than 25% after aging in state T4.
  • Equilibrium Ag is understood as the maximum elongation of the sample at which no constriction of the sample occurs during the tensile test. The sample is thus stretched evenly in the region of the uniform expansion.
  • the uniform elongation significantly influences the forming behavior, since this determines the maximum degree of deformation of the material used in practice.
  • an aluminum strip with very good forming properties can be made available with the method according to the invention, which can also be transferred to the condition T6 via an accelerated thermal aging (185 ° C./20 min.).
  • An aluminum alloy of the type AA6016 has the following alloy constituents in percent by weight: 0 . 25 % ⁇ mg ⁇ 0 . 6 % . 1 . 0 % ⁇ Si ⁇ 1 . 5 % . Fe ⁇ 0 . 5 % . Cu ⁇ 0 . 2 % . Mn ⁇ 0 . 2 % . Cr ⁇ 0 . 1 % . Zn ⁇ 0 . 1 % . Ti ⁇ 0 . 1 % and residual Al and unavoidable impurities in the sum total of 0.15%, individually a maximum of 0.05%.
  • the manganese content of less than 0.2% by weight reduces the tendency to form coarser manganese precipitates.
  • chromium ensures a fine microstructure, it should be limited to 0.1% by weight in order to avoid coarse precipitation.
  • the presence of manganese improved the weldability by reducing the cracking tendency or the quenching sensitivity of the manganese aluminum strip according to the invention.
  • a reduction of the zinc content to a maximum of 0.1% by weight improves in particular the corrosion resistance of the aluminum alloy or of the finished sheet in the respective application.
  • titanium provides grain refining during casting, but should be limited to a maximum of 0.1% by weight to ensure good castability of the aluminum alloy.
  • An aluminum alloy of the type AA6060 has the following alloy constituents in percent by weight: 0 . 35 % ⁇ mg ⁇ 0 . 6 % . 0 . 3 % ⁇ Si ⁇ 0 . 6 % . 0 . 1 % ⁇ Fe ⁇ 0 . 3 % Cu ⁇ 0 . 1 % . Mn ⁇ 0 . 1 % . Cr ⁇ 0 . 05 % . Zn ⁇ 0 . 10 % . Ti ⁇ 0 . 1 % and Residual Al and unavoidable impurities up to a total of 0.15%, individually up to a maximum of 0.05%.
  • the combination of a precisely predetermined magnesium content with a reduced Si content and narrowly specified Fe content in comparison to the first embodiment results in an aluminum alloy in which the formation of Mg 2 Si precipitates after hot rolling can be prevented particularly well by the method according to the invention, so that a sheet with improved elongation and high yield strengths can be provided compared to conventionally produced sheets.
  • the lesser Upper limits of the alloying constituents Cu, Mn and Cr additionally reinforce the effect of the process according to the invention. With regard to the effects of the upper limit of Zn and Ti, reference is made to the comments on the first embodiment of the aluminum alloy.
  • An aluminum alloy of type AA6014 has the following alloy constituents in percent by weight: 0 . 4 % ⁇ mg ⁇ 0 . 8th % . 0 . 3 % ⁇ Si ⁇ 0 . 6 % . Fe ⁇ 0 . 35 % Cu ⁇ 0 . 25 % . 0 . 05 % ⁇ Mn ⁇ 0 . 20 % . Cr ⁇ 0 . 20 % . Zn ⁇ 0 . 10 % . 0 . 05 % ⁇ V ⁇ 0 . 20 % . Ti ⁇ 0 . 1 % and Residual Al and unavoidable impurities up to a total of 0.15%, individually up to a maximum of 0.05%.
  • An AA6181 aluminum alloy has the following alloy components in weight percent: 0 . 6 % ⁇ mg ⁇ 1 . 0 % . 0 . 8th % ⁇ Si ⁇ 1 . 2 % . Fe ⁇ 0 . 45 % Cu ⁇ 0 . 10 % . Mn ⁇ 0 . 15 % . Cr ⁇ 0 . 10 % . Zn ⁇ 0 . 20 % . Ti ⁇ 0 . 1 % and Residual Al and unavoidable impurities up to a total of 0.15%, individually up to a maximum of 0.05%.
  • An AA6111 aluminum alloy has the following alloy components in weight percent: 0 . 5 % ⁇ mg ⁇ 1 . 0 % . 0 . 7 % ⁇ Si ⁇ 1 . 1 % . Fe ⁇ 0 . 40 % 0 . 50 % ⁇ Cu ⁇ 0 . 90 % . 0 . 15 % ⁇ Mn ⁇ 0 . 45 % . Cr ⁇ 0 . 10 % . Zn ⁇ 0 . 15 % . Ti ⁇ 0 . 1 % and Residual Al and unavoidable impurities up to a total of 0.15%, individually up to a maximum of 0.05%. Due to the increased copper content, the AA6111 alloy generally shows higher strength values in the T6 application, but is to be classified as more susceptible to corrosion.
  • All the aluminum alloys shown are specifically adapted to different applications in their alloy components.
  • tapes made of these aluminum alloys, which were produced using the method according to the invention exhibit particularly high uniform strain values in state T4 coupled with a particularly pronounced increase in the yield strength, for example after heat aging at 205 ° C./30 min. This also applies to the aluminum strips subjected to a heat treatment after solution heat treatment in the condition T4.
  • a fast-setting AlMgSi alloy ribbon having excellent forming properties can be provided by an aluminum alloy ribbon produced according to the present invention, which is subjected to solution annealing followed by heat treatment after its production.
  • state T4 it has, as already stated, a uniform elongation Ag of more than 25%, for example, at a yield strength Rp0.2 of 80 to 140 MPa.
  • a fast-hardening AlMgSi alloy strip which can also be easily formed at the same time, can be made available.
  • the heat aging to reach the state T6 can be 185 ° C for 20 min., To the required
  • an aluminum alloy strip produced according to the invention has an equiaxial elongation Ag of more than 25% in the rolling direction, transverse to the rolling direction and diagonally to the rolling direction, so that a particularly isotropic forming capability is made possible.
  • the aluminum strips produced according to the invention preferably have a thickness of 0.5 mm to 12 mm.
  • Aluminum strips with thicknesses of 0.5 mm to 2 mm are preferably used for body parts, for example in the automotive industry, while aluminum bands with larger thicknesses of 2 to 4.5 mm, for example, find in chassis parts in automotive applications.
  • Individual components can also be manufactured in a cold-rolled strip with a thickness of up to 6 mm.
  • aluminum strips with thicknesses of up to 12 mm can be used. These very thick aluminum strips are usually provided only by hot rolling.
  • FIG. 1 a schematic flow diagram of an embodiment of the inventive method for producing a strip of a MgSi aluminum alloy with the steps of a) producing and homogenizing the rolling ingot, b) hot rolling, c) cold rolling and d) solution treatment with quenching.
  • an aluminum alloy ingot 1 having the following alloy components by weight is poured: 0 . 25 % ⁇ mg ⁇ 0 . 6 % . 1 . 0 % ⁇ Si ⁇ 1 . 5 % . Fe ⁇ 0 . 50 % . Cu ⁇ 0 . 20 % . Mn ⁇ 0 . 20 % . Cr ⁇ 0 . 10 % . Zn ⁇ 0 . 20 % . Ti ⁇ 0 . 15 % and Residual Al and unavoidable impurities up to a total of 0.15%, individually up to a maximum of 0.05%.
  • the ingot produced in this way is homogenized in a furnace 2 for 8 hours at a homogenization temperature of about 550 ° C., so that the alloyed components alloyed in are present in a particularly homogeneous distribution in the rolling ingot.
  • Fig. 1a The ingot produced in this way is homogenized in a furnace 2 for 8 hours at a homogenization temperature of about 550 ° C., so that the alloyed components alloyed in are present in a particularly homogeneous distribution in the rolling ingot.
  • Fig. 1a The ingot produced in this way is homogenized in a furnace 2 for 8 hours at a homogenization temperature of about 550 ° C.
  • the hot strip 4 preferably has a temperature of at least 400 ° C, preferably 470 ° C to 490 ° C.
  • the hot strip is cooled here to a temperature of 290 ° C to 310 ° C before the last hot rolling pass.
  • the sinker 5 sprayed only schematically, the hot strip 4 with cooling rolling emulsion and ensures an accelerated cooling of the hot strip 4 to the last-mentioned temperatures.
  • the work rolls of the hot rolling stand 3 are also subjected to emulsion and cool the hot strip 4 in the last hot roll pass down further.
  • the hot strip 4 at the outlet of the sinker cooler 5 'in the present embodiment has a temperature of 200 ° C to 230 ° C and is then wound on the take-up reel 6 at this temperature.
  • the hot strip 4 directly at the outlet of the last hot roll pass a temperature of more than 135 ° C to 250 ° C, preferably 200 ° C to 230 ° C or optionally in the last two hot rolling passes using the sinker cooler 5 and the work rolls of the hot rolling stand 3 is brought to said temperatures, the hot strip 4, despite the elevated coiling temperature, has a frozen crystal structure state, which leads to very good uniform elongation properties Ag of more than 25% in the state T4. It can still be processed faster and better due to the higher coiling temperature.
  • the hot strip with a thickness of 3 to 12 mm, preferably 5 to 8 mm is wound on the take-up reel 6.
  • the coiling temperature in the present exemplary embodiment is preferably 135 ° C. to 250 ° C.
  • the hot strip 4 has a very favorable for further processing crystal state and can be unwound from the unwinding reel 7, for example, fed to a cold rolling mill 9 and rewound on a take-up reel 8, Fig. 1c ).
  • the resulting cold-rolled strip 11 is wound up. Subsequently, it is supplied to a solution annealing at temperatures of 520 ° C to 570 ° C and quenching 10, Fig. 1d ). For this purpose, it is again unwound from the coil 12, solution-annealed in an oven 10 and quenched again wound into a coil 13.
  • the aluminum strip can then be delivered after a cold aging at room temperature in the state T4 with maximum formability. Alternatively (not shown), the aluminum strip 11 can be singulated into individual sheets, which are present after a cold aging in the state T4.
  • the aluminum strip or the aluminum sheet is brought by cold aging at 100 ° C to 220 ° C in order to achieve maximum values for the yield strength.
  • a thermal aging can also be performed at 205 ° C / 30 min.
  • the aluminum strips produced according to the illustrated embodiment have a thickness of 0.5 to 4.5 mm after cold rolling.
  • Tape thicknesses of 0.5 to 2 mm are commonly used for body applications or tape thicknesses of 2.0 mm to 4.5 mm for chassis parts in the automotive industry.
  • the improved uniform strain values in the manufacture of the components are of crucial advantage, since mostly strong deformations of the sheets are carried out and still high strengths in the operating condition (T6) of the end product are required.
  • Table 1 shows the alloy compositions of aluminum alloys from which aluminum tapes have been produced conventionally or according to the invention.
  • the aluminum strips contain aluminum and impurities as a residual proportion, individually not more than 0.05% by weight and in total not more than 0.15% by weight.
  • the tapes (samples) 251 and 252 were made by a process according to the invention, in which the hot strip was heated to about 135 ° C to 250 ° C within the last two hot rolling passes from about 470 ° C to 490 ° C Board cooler and the hot rolling itself cooled and wound up. Table 2 shows the measured values of these bands as "Inv.” characterized. This was followed by cold rolling to a final thickness of 0.865 mm.
  • the tapes (samples) 491-1 and 491-11 were made with conventional hot rolling and cold rolling and with a "conv.” characterized.
  • the strips were subjected to solution annealing with subsequent quenching and subsequent cold aging for eight days at room temperature.
  • the T6 state was achieved by cold aging followed by aging at 205 ° C for 30 minutes.
  • the samples marked L were cut in the rolling direction, the samples marked Q were cut transversely to the rolling direction, and the samples denoted D were cut diagonally to the rolling direction.
  • the samples 491-1 and 491-11 were each measured transversely to the rolling direction.
  • the advantageous microstructure which was set in the bands 251 and 252 by means of the method according to the invention, permits a significant increase in the uniform elongation Ag with identical yield strength Rp0.2 and strength Rm.
  • the uniform elongation Ag increased from 23.0% to a maximum of 26.6% across the rolling direction in the According to the invention produced bands compared to the conventionally produced tapes.
  • the microstructure set with the method according to the invention leads to the particularly advantageous combination of high uniform elongation Ag of more than 25% at very high values for the yield strength Rp0.2 of 80 to 140 MPa.
  • the yield strength Rp0.2 increases to at least 185 MPa, with the uniform elongation Ag still remaining at more than 12%.
  • the curability with a ⁇ Rp0.2 of 97 and 107 MPa is still very good in the tapes produced according to the invention.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung eines Bandes aus einer AlMgSi-Legierung, bei welchem ein Walzbarren aus einer AlMgSi-Legierung gegossen wird, der Walzbarren einer Homogenisierung unterzogen wird, der auf Walztemperatur gebrachte Walzbarren warmgewalzt wird, anschließend optional auf Enddicke kaltgewalzt und das fertig gewalzte Band lösungsgelüht und abgeschreckt wird. Darüber hinaus betrifft die Erfindung vorteilhafte Verwendungen eines entsprechend hergestellten AlMgSi-Aluminiumbandes.
  • Vor allem im Kraftfahrzeugbau aber auch in anderen Anwendungsgebieten, beispielsweise dem Flugzeugbau oder Schienenfahrzeugbau werden Bleche aus Aluminiumlegierungen benötigt, welche sich nicht nur durch besonders hohe Festigkeitswerte auszeichnen, sondern gleichzeitig ein sehr gutes Umformverhalten aufweisen und hohe Umformgrade ermöglichen. Im Kraftfahrzeugbau sind typische Anwendungsgebiete die Karosserie und Fahrwerkteile. Bei sichtbaren, lackierten Bauteilen, beispielsweise außen sichtbaren Karosserieblechen, kommt hinzu, dass das Umformen der Werkstoffe so erfolgen muss, dass die Oberfläche nach der Lackierung nicht durch Fehler wie Fließfiguren oder Zugrilligkeit (Roping) beeinträchtigt ist. Dies ist beispielsweise für die Verwendung von Aluminiumlegierungsblechen zur Herstellung von Motorhauben und anderen Karosseriebauteilen eines Kraftfahrzeuges besonders wichtig. Es schränkt die Werkstoffwahl hinsichtlich der Aluminiumlegierung allerdings ein. Insbesondere AlMgSi-Legierungen, deren Hauptlegierungsbestandteile Magnesium und Silizium sind, weisen relativ hohe Festigkeiten im Zustand T6 auf bei gleichzeitig gutem Umformverhalten im Zustand T4 sowie hervorragender Korrosionsbeständigkeit. AlMgSi-Legierungen sind die Legierungstypen AA6XXX, beispielsweise der Legierungstyp AA6016, AA6014, AA6181, AA6060 und AA6111. Üblicherweise werden Aluminiumbänder aus einer AlMgSi-Legierung durch Gießen eines Walzbarrens, Homogenisieren des Walzbarrens, Warmwalzen des Walzbarrens und Kaltwalzen des Warmbandes hergestellt. Die Homogenisierung des Walzbarrens erfolgt bei einer Temperatur von 380 bis 580 °C für mehr als eine Stunde. Durch ein abschließendes Lösungsglühen bei typischen Temperaturen von 500 °C bis 570 °C mit nachfolgendem Abschrecken und Kaltauslagern etwa bei Raumtemperatur für mindestens drei Tage können die Bänder im Zustand T4 ausgeliefert werden. Der Zustand T6 wird nach dem Abschrecken durch eine Warmauslagerung bei Temperaturen zwischen 100 °C und 220 °C eingestellt.
  • Problematisch ist, dass in warmgewalzten Aluminiumbändern aus AlMgSi-Legierungen grobe Mg2Si-Ausscheidungen vorliegen, welche im anschließenden Kaltwalzen durch hohe Umformgrade gebrochen und verkleinert werden. Warmbänder einer AlMgSi-Legierung werden in der Regel in Dicken von 3 mm bis 12 mm hergestellt und einem Kaltwalzen mit hohen Umformgraden zugeführt. Da der Temperaturbereich in dem sich die AlMgSi-Phasen bilden, beim konventionellen Warmwalzen sehr langsam durchlaufen wird, bilden sich diese Phasen sehr grob aus. Der Temperaturbereich zur Bildung der obengenannten Phasen ist legierungsabhängig. Er liegt aber zwischen 230°C und 550°C also im Bereich der Warmwalztemperaturen. Es konnte experimentell nachgewiesen werden, dass diese groben Phasen im Warmband die Dehnung des Endprodukts negativ beeinflussen. Das bedeutet, dass das Umformverhalten von Aluminiumbändern aus AlMgSi-Legierungen bisher nicht vollständig ausgeschöpft werden konnte.
  • Aus der veröffentlichten europäischen Patentanmeldung EP 2 270 249 A1 , welche auf die Anmelderin zurückgeht, wurde vorgeschlagen, dass das AlMgSi-Legierungsband unmittelbar nach dem Auslauf aus dem letzten Warmwalzstich eine Temperatur von maximal 130 °C aufweist und mit dieser oder einer geringeren Temperatur aufgewickelt wird. Durch das Abschrecken des Warmbandes mit diesem Verfahren konnten Aluminiumbänder im Zustand T4 hergestellt werden, welche im Zustand T4 eine Bruchdehnung von A80 von mehr als 30 % oder eine Gleichmaßdehnung Ag von mehr als 25 % aufweist. Darüber hinaus ergaben sich auch sehr hohe Werte für die Bruchdehnung im Zustand T6. Es hat sich aber gezeigt, dass dieser Temperaturbereich am Auslauf des letzten Warmwalzstiches zu Problemen bei der Planheit des Warmbandes führt, so dass die nachfolgenden Fertigungsschritte gestört wurden. Darüber hinaus konnte die vorgegebene Abkühlrate nur mit verringerten Produktionsgeschwindigkeiten erreicht werden.
    Ausgehend von diesem Stand der Technik liegt der vorliegenden Erfindung die Aufgabe zu Grunde, ein verbessertes Verfahren zur Herstellung eines Aluminiumbandes aus einer AlMgSi-Legierung zur Verfügung zu stellen, mit welchem AlMgSi-Aluminiumbänder mit sehr gutem Umformverhalten im Zustand T4 prozesssicher hergestellt werden können.
  • Gemäß einer ersten Lehre der vorliegenden Erfindung wird die aufgezeigte Aufgabe für ein Verfahren dadurch gelöst, dass das Warmband unmittelbar nach dem Auslauf aus dem letzten Warmwalzstich eine Temperatur von mehr als 130 ° C, vorzugsweise 135 °C bis maximal 250 °C, bevorzugt 135 °C bis maximal 230 °C aufweist und das Warmband mit dieser Temperatur aufgewickelt wird.
  • Im Gegensatz zu dem bekannten Verfahren mit besonders niedrigen Aufwickeltemperaturen zeigte sich überraschenderweise, dass sich die mechanischen Eigenschaften in Bezug auf die das Umformverhalten bestimmende Gleichmaßdehnung Ag trotz der geänderten Aufwickeltemperaturen nicht oder nur unwesentlich veränderte. Die erfindungsgemäß gefertigten AlMgSi-Legierungsbänder im Zustand T4 zeigten weiterhin eine Gleichmaßdehnung von mehr als 25 % im Zugversuch gemäß DIN EN. Darüber hinaus zeigten sie die sehr gute Aushärtbarkeit im Zustand T6, wie dieses aus der Voranmeldung der Anmelderin bekannt ist. Allerdings konnte das Herstellverfahren deutlich stabilisiert und eine höhere Produktionsgeschwindigkeit erreicht werden.
  • Gemäß einer vorteilhaften Ausführungsform des erfindungsgemäßen Verfahrens erfolgt dieser Abkühlvorgang innerhalb der letzten beiden Warmwalzstiche, d.h. die Abkühlung auf mehr als 130 °C, vorzugsweise 135 °C bis 250 °C, bevorzugt 135 °C bis 230 °C erfolgt innerhalb von Sekunden, maximal innerhalb von fünf Minuten. Es hat sich gezeigt, dass bei dieser Vorgehensweise die erhöhten Gleichmaßdehnungswerte bei üblichen Festigkeits- bzw. Dehngrenzwerten im Zustand T4 und die verbesserte Aushärtbarkeit im Zustand T6 besonders prozesssicher erreicht werden.
  • Gemäß einer weiteren Ausgestaltung des erfindungsgemäßen Verfahrens wird ein prozesssicheres Abkühlen des Warmbandes dadurch erreicht, dass das Warmband unter Verwendung von mindestens einem Platinenkühler und der mit Emulsion beaufschlagten Warmwalzstiche selbst auf Aufwickeltemperatur abgeschreckt wird. Ein Platinenkühler besteht aus einer Anordnung von Kühl- bzw. Schmiermitteldüsen, welche eine Walzemulsion auf das Aluminiumband sprühen. Der Platinenkühler kann in einem Warmwalzwerk vorhanden sein, um gewalzte Warmbänder vor dem Warmwalzen auf Walztemperatur zu kühlen und um höhere Produktionsgeschwindigkeiten erreichen zu können..
  • Beträgt die Temperatur des Warmbandes vor Start des Abkühlprozesses, welcher vorzugsweise innerhalb der letzten beiden Walzstiche stattfindet, mindestens 400 °C, vorzugsweise 470 °C bis 490 °C, wird gemäß einer nächsten Ausgestaltung des Verfahrens erreicht, dass besonders kleine Mg2Si-Ausscheidungen im abgeschreckten Warmband vorhanden sind, da der größte Anteil der Legierungsbestandteile Magnesium und Silizium bei diesen Temperaturen in gelöstem Zustand in der Aluminiummatrix vorliegen. Dieser vorteilhafte Zustand des Warmbandes wird durch das Abschrecken quasi "eingefroren".
  • Gemäß einer weiteren Ausgestaltung des Verfahrens beträgt die Temperatur des Warmbandes nach dem vorletzten Walzstich 290 °C bis 310 °C. Es hat sich gezeigt, dass diese Temperaturen sowohl eine ausreichendes Einfrieren der Ausscheidungen ermöglicht und andererseits gleichzeitig der letzte Walzstich ohne Probleme durchgeführt werden kann.
  • Hat das gewalzte Warmband am Auslauf unmittelbar nach dem letzten Warmwalzstich eine Temperatur von 200°C bis 230 °C kann eine optimale Prozessgeschwindigkeit beim Warmwalzen erreicht werden, ohne die Eigenschaften des hergestellten Aluminiumbandes zu verschlechtern.
  • Die Dicke des fertigen Warmbandes beträgt 3 mm bis 12 mm, vorzugsweise 5 mm bis 8 mm, so dass übliche Kaltwalzgerüste für das Kaltwalzen verwendet werden können.
  • Vorzugsweise ist die verwendete Aluminiumlegierung vom Legierungstyp AA6xxx, vorzugsweise AA6014, AA6016, AA6060, AA6111 oder AA6181. Allen Legierungstypen AA6xxx ist gemein, dass sie ein besonders gutes Umformverhalten gekennzeichnet durch hohe Dehnungswerte im Zustand T4 sowie hohe Festigkeiten bzw. Dehngrenzen im Einsatzzustand T6, beispielsweise nach einem Warmauslagern bei 205 °C / 30 Min. aufweisen.
  • Gemäß einer weiteren Ausgestaltung des erfindungsgemäßen Verfahrens wird das fertig gewalzte Aluminiumband einer Wärmebehandlung unterzogen, wobei das Aluminiumband nach dem Lösungsglühen und Abschrecken auf mehr als 100 °C erwärmt wird und anschließend mit einer Temperatur von mehr als 55 °C, vorzugsweise mehr als 85 °C aufgewickelt und ausgelagert. Diese Ausführungsform des Verfahrens ermöglicht es nach der Kaltauslagerung durch eine kürzere Erwärmungsphase mit niedrigeren Temperaturen den Zustand T6 in dem Band oder Blech einzustellen, in welchem die zu Bauteilen umgeformten Bleche oder Bänder in der Anwendung eingesetzt werden. Diese schnell aushärtende Aluminiumbänder werden hierzu lediglich auf Temperaturen von etwa 185 °C für lediglich 20 Min. erwärmt, um die höheren Streckgrenzwerte im Zustand T6 zu erreichen.
  • Zwar liegen die Bruchdehnungswerte A80 der mit dieser Ausführungsform des erfindungsgemäßen Verfahrens hergestellten Aluminiumbänder im zustand T4 leicht unterhalb von 29 %. Das erfindungsgemäß hergestellte Aluminiumband zeichnet sich aber nach der Auslagerung im Zustand T4 weiterhin durch eine sehr gute Gleichmaßdehnung Ag von mehr als 25 % aus. Unter der Gleichmaßdehnung Ag versteht man die maximale Dehnung der Probe, bei welcher sich beim Zugversuch keine Einschnürung der Probe zeigt. Die Probe wird im Bereich der Gleichmaßdehnung also gleichmäßig gedehnt. Der Wert für die Gleichmaßdehnung lag bisher bei ähnlichen Werkstoffen bei maximal 22 % bis 23 %. Die Gleichmaßdehnung beeinflusst maßgeblich das Umformverhalten, da diese den in der Praxis verwendeten maximalen Umformgrad des Werkstoffs bestimmt. Insofern kann mit dem erfindungsgemäßen Verfahren ein Aluminiumband mit sehr guten Umformeigenschaften zur Verfügung gestellt werden, welches auch über eine beschleunigte Warmauslagerung (185°C/ 20 Min.) in den Zustand T6 überführt werden kann.
  • Eine Aluminiumlegierung vom Typ AA6016 weist folgende Legierungsbestandteile in Gewichtsprozent auf: 0 , 25 % Mg 0 , 6 % ,
    Figure imgb0001
    1 , 0 % Si 1 , 5 % ,
    Figure imgb0002
    Fe 0 , 5 % ,
    Figure imgb0003
    Cu 0 , 2 % ,
    Figure imgb0004
    Mn 0 , 2 % ,
    Figure imgb0005
    Cr 0 , 1 % ,
    Figure imgb0006
    Zn 0 , 1 % ,
    Figure imgb0007
    Ti 0 , 1 %
    Figure imgb0008

    und Rest Al sowie unvermeidbare Verunreinigungen maximal in Summe 0,15 %, einzeln maximal 0,05 %.
  • Bei Magnesiumgehalten von weniger als 0,25 Gew.-% ist die Festigkeit des Aluminiumbandes, welches für Strukturanwendungen vorgesehen ist zu gering, andererseits verschlechtert sich die Umformbarkeit bei Magnesiumgehalten oberhalb von 0,6 Gew.-%. Silizium ist im Zusammenspiel mit Magnesium im Wesentlichen für die Aushärtbarkeit der Aluminiumlegierung verantwortlich und somit auch für die hohen Festigkeiten, welche im Anwendungsfall beispielsweise nach einem Lackiereinbrennen erzielt werden können. Bei Si-Gehalten von weniger als 1,0 Gew.-% ist die Aushärtbarkeit des Aluminiumbandes verringert, so dass im Anwendungsfall nur verringerte Festigkeiten bereitgestellt werden können. Si-Gehalte von mehr als 1,5 Gew.-% führen zu keiner Verbesserung des Aushärteverhaltens der Legierung. Der Fe-Anteil sollte auf maximal 0,5 Gew-% begrenzt werden, um grobe Ausscheidungen zu verhindern. Eine Beschränkung des Kupfergehalts auf maximal 0,2 Gew.-% führt vor allem zu einer verbesserten Korrosionsbeständigkeit der Aluminiumlegierung in der spezifischen Anwendung. Der Mangangehalt von weniger als 0,2 Gew.-% verringert die Tendenz zur Bildung von gröberen Mangangausscheidungen. Chrom sorgt zwar für ein feines Gefüge, ist aber auf 0,1 Gew.-% zu beschränken, um ebenfalls grobe Ausscheidungen zu vermeiden. Das Vorhandensein von Mangan verbesserte dagegen die Schweißbarkeit durch Verringerung der Rissneigung beziehungsweise Abschreckempfindlichkeit des erfindungsgemäßen Aluminiumbandes. Eine Reduzierung des Zink-Gehaltes auf maximal 0,1 Gew.-% verbessert insbesondere die Korrosionsbeständigkeit der Aluminiumlegierung bzw. des fertigen Blechs in der jeweiligen Anwendung. Dagegen sorgt Titan für eine Kornfeinung während des Gießens, sollte aber auf maximal 0,1 Gew.-% beschränkt werden, um eine gute Gießbarkeit der Aluminiumlegierung zu gewährleisten.
  • Eine Aluminiumlegierung vom Typ AA6060 weist folgende Legierungsbestandteile in Gewichtsprozent auf: 0 , 35 % Mg 0 , 6 % ,
    Figure imgb0009
    0 , 3 % Si 0 , 6 % ,
    Figure imgb0010
    0 , 1 % Fe 0 , 3 %
    Figure imgb0011
    Cu 0 , 1 % ,
    Figure imgb0012
    Mn 0 , 1 % ,
    Figure imgb0013
    Cr 0 , 05 % ,
    Figure imgb0014
    Zn 0 , 10 % ,
    Figure imgb0015
    Ti 0 , 1 %
    Figure imgb0016
    und
    Rest Al sowie unvermeidbare Verunreinigungen maximal in Summe 0,15 %, einzeln maximal 0,05 %.
  • Die Kombination aus genau vorgegebenem Magnesiumgehalt mit einem im Vergleich zur ersten Ausführungsform reduzierten Si-Gehalt und eng spezifiziertem Fe-Gehalt ergibt eine Aluminiumlegierung, bei welcher besonders gut die Bildung Mg2Si Ausscheidungen nach dem Warmwalzen mit dem erfindungsgemäßen Verfahren verhindert werden kann, so dass ein Blech mit einer verbesserten Dehnung und hohen Dehngrenzen im Vergleich zu konventionell hergestellten Blechen bereitgestellt werden kann. Die geringeren Obergrenzen der Legierungsbestandteile Cu, Mn und Cr verstärken den Effekt des erfindungsgemäßen Verfahrens zusätzlich. Hinsichtlich der Auswirkungen der Obergrenze von Zn und Ti wird auf die Ausführungen zur ersten Ausführungsform der Aluminiumlegierung verwiesen.
  • Eine Aluminiumlegierung vom Typ AA6014 weist folgende Legierungsbestandteile in Gewichtsprozent auf: 0 , 4 % Mg 0 , 8 % ,
    Figure imgb0017
    0 , 3 % Si 0 , 6 % ,
    Figure imgb0018
    Fe 0 , 35 %
    Figure imgb0019
    Cu 0 , 25 % ,
    Figure imgb0020
    0 , 05 % Mn 0 , 20 % ,
    Figure imgb0021
    Cr 0 , 20 % ,
    Figure imgb0022
    Zn 0 , 10 % ,
    Figure imgb0023
    0 , 05 % V 0 , 20 % ,
    Figure imgb0024
    Ti 0 , 1 %
    Figure imgb0025
    und
    Rest Al sowie unvermeidbare Verunreinigungen maximal in Summe 0,15 %, einzeln maximal 0,05 %.
  • Eine Aluminiumlegierung vom Typ AA6181 weist folgende Legierungsbestandteile in Gewichtsprozent auf: 0 , 6 % Mg 1 , 0 % ,
    Figure imgb0026
    0 , 8 % Si 1 , 2 % ,
    Figure imgb0027
    Fe 0 , 45 %
    Figure imgb0028
    Cu 0 , 10 % ,
    Figure imgb0029
    Mn 0 , 15 % ,
    Figure imgb0030
    Cr 0 , 10 % ,
    Figure imgb0031
    Zn 0 , 20 % ,
    Figure imgb0032
    Ti 0 , 1 %
    Figure imgb0033
    und
    Rest Al sowie unvermeidbare Verunreinigungen maximal in Summe 0,15 %, einzeln maximal 0,05 %.
  • Eine Aluminiumlegierung vom Typ AA6111 weist folgende Legierungsbestandteile in Gewichtsprozent auf: 0 , 5 % Mg 1 , 0 % ,
    Figure imgb0034
    0 , 7 % Si 1 , 1 % ,
    Figure imgb0035
    Fe 0 , 40 %
    Figure imgb0036
    0 , 50 % Cu 0 , 90 % ,
    Figure imgb0037
    0 , 15 % Mn 0 , 45 % ,
    Figure imgb0038
    Cr 0 , 10 % ,
    Figure imgb0039
    Zn 0 , 15 % ,
    Figure imgb0040
    Ti 0 , 1 %
    Figure imgb0041
    und
    Rest Al sowie unvermeidbare Verunreinigungen maximal in Summe 0,15 %, einzeln maximal 0,05 %. Die Legierung AA6111 zeigt grundsätzlich augrund des erhöhten Kupfergehaltes höhere Festigkeitswerte im Einsatzzustand T6, ist aber als korrosionsanfälliger anzustufen.
  • Alle aufgezeigten Aluminiumlegierungen sind spezifisch in ihren Legierungsbestandteilen auf unterschiedliche Anwendungen angepasst. Wie bereits ausgeführt, zeigen Bänder aus diese Aluminiumlegierungen, welche unter Verwendung des erfindungsgemäßen Verfahrens hergestellt wurden, besonders hohe Gleichmaßdehnungswerte im Zustand T4 gepaart mit einer besonders ausgeprägten Steigerung der Dehngrenze beispielsweise nach einem Warmauslagern bei 205 °C / 30 Min.. Dies gilt auch für die nach dem Lösungsglühen einer Wärmebehandlung unterzogenen Aluminiumbändern im Zustand T4.
  • Aufgrund der hervorragenden Kombination zwischen guter Umformbarkeit im Zustand T4, hoher Korrosionsbeständigkeit sowie hohen Werten für die Dehngrenze Rp0,2 im Einsatzzustand (Zustand T6) wird die oben aufgeführte Aufgabe gemäß einer zweiten Lehre der vorliegenden Erfindung durch die Verwendung eines nach dem erfindungsgemäßen Verfahren hergestellten AlMgSi-Legierungsband für ein Bauteil, Fahrwerks- oder Strukturteil und -blech im Kraftfahrzeug-, Flugzeug- oder Schienenfahrzeugbau, insbesondere als Komponente, Fahrwerksteil, Außen- oder Innenblech im Kraftfahrzeugbau, vorzugsweise als Karosseriebauelement, gelöst. Vor allem sichtbare Karosserieteile, beispielsweise Motorhauben, Kotflügel etc. sowie Außenhautteile eines Schienenfahrzeugs oder Flugzeugs profitieren von den hohen Dehngrenzen Rp0,2 bei guten Oberflächeneigenschaften auch nach einem Umformen mit hohen Umformgraden.
  • Ein schnell aushärtendes AlMgSi-Legierungsband mit hervorragenden Umformeigenschaften kann daher durch ein erfindungsgemäß hergestelltes Aluminiumlegierungsband, welches nach dessen Herstellung einem Lösungsglühen mit anschließender Wärmebehandlung unterzogen wird bereitgestellt werden. Im Zustand T4 weist es, wie bereits ausgeführt, eine Gleichmaßdehnung Ag von mehr als 25 % beispielsweise bei einer Dehngrenze Rp0,2 von 80 bis 140 MPa auf. Mit dieser Variante kann ein schnellaushärtbares und zugleich sehr gut umformbares AlMgSi-Legierungsband zur Verfügung gestellt werden. Die Warmauslagerung zur Erzielung des Zustandes T6 kann 185 °C für 20 Min. erfolgen, um die erforderlichen
  • Dehngrenzsteigerungen zu erzielen.
  • Ein erfindungsgemäß hergestelltes Aluminiumlegierungsband weist gemäß einer nächsten Ausgestaltung eine Gleichmaßdehnung Ag von mehr als 25 % in Walzrichtung, quer zur Walzrichtung und diagonal zur Walzrichtung auf, so dass ein besonders isotropes Umformvermögen ermöglicht werden.
  • Vorzugsweise weisen die erfindungsgemäß hergestellten Aluminiumbänder eine Dicke von 0,5 mm bis 12 mm auf. Aluminiumbänder mit Dicken von 0,5 mm bis 2 mm werden bevorzugt für Karosserieteile beispielsweise im Kraftfahrzeugbau verwendet, während Aluminiumbänder mit größeren Dicken von 2 bis 4,5 mm beispielsweise in Fahrwerksteilen im Kraftfahrzeugbau Anwendungen finden. Einzelne Komponenten können im Kaltband auch mit einer Dicke von bis 6 mm gefertigt werden. Daneben können in spezifischen Anwendungen auch Aluminiumbänder mit Dicken von bis zu 12 mm verwendet werden. Diese Aluminiumbänder mit sehr großer Dicke werden üblicherweise nur durch Warmwalzen bereitgestellt.
  • Die Erfindung soll nun anhand von Ausführungsbeispielen in Verbindung mit der Zeichnung näher erläutert werden.
  • Die Zeichnung zeigt in der einzigen Figur 1 ein schematisches Ablaufdiagramm eines Ausführungsbeispiels des erfindungsgemäßen Verfahrens zur Herstellung eines Bandes aus einer MgSi-Aluminiumlegierung mit den Schritten a) Herstellen und Homogenisieren des Walzbarrens, b) Warmwalzen, c) Kaltwalzen und d) Lösungsglühen mit Abschrecken.
  • Zunächst wird ein Walzbarren 1 aus einer Aluminiumlegierung mit den folgenden Legierungsbestandteilen in Gewichtsprozent gegossen: 0 , 25 % Mg 0 , 6 % ,
    Figure imgb0042
    1 , 0 % Si 1 , 5 % ,
    Figure imgb0043
    Fe 0 , 50 % ,
    Figure imgb0044
    Cu 0 , 20 % ,
    Figure imgb0045
    Mn 0 , 20 % ,
    Figure imgb0046
    Cr 0 , 10 % ,
    Figure imgb0047
    Zn 0 , 20 % ,
    Figure imgb0048
    Ti 0 , 15 %
    Figure imgb0049

    und
    Rest Al sowie unvermeidbare Verunreinigungen maximal in Summe 0,15 %, einzeln maximal 0,05 %.
  • Der so hergestellte Walzbarren wird bei einer Homogenisierungstemperatur von etwa 550 °C für 8 h in einem Ofen 2 homogenisiert, so dass die zulegierten Legierungsbestandteile besonders homogen verteilt im Walzbarren vorliegen, Fig 1a).
  • In Fig 1b) ist dargestellt, wie der Walzbarren 1 in dem vorliegenden Ausführungsbeispiel des erfindungsgemäßes Verfahrens durch ein Warmwalzgerüst 3 reversierend warmgewalzt wird, wobei der Walzbarren 1 eine Temperatur von 400 bis 550 °C während des Warmwalzens aufweist. In diesem Ausführungsbeispiel hat nach Verlassen des Warmwalzgerüsts 3 und vor dem vorletzten Warmwalzstich das Warmband 4 vorzugsweise eine Temperatur von mindestens 400 °C, vorzugsweise 470 °C bis 490 °C. Vorzugsweise erfolgt bei dieser Warmbandtemperatur die Abschreckung des Warmbandes 4 unter Verwendung eines Platinenkühlers 5 und der Arbeitswalzen des Warmwalzgerüstes 3. Vorzugsweise wird das Warmband hier auf eine Temperatur von 290 °C bis 310 °C vor dem letzten Warmwalzstich abgekühlt. Hierzu besprüht der Platinenkühler 5, nur schematisch dargestellt, das Warmband 4 mit kühlender Walzemulsion und sorgt für eine beschleunigte Abkühlung des Warmbandes 4 auf die zuletzt genannten Temperaturen. Die Arbeitswalzen des Warmwalzgerüstes 3 sind ebenfalls mit Emulsion beaufschlagt und kühlen das Warmband 4 beim letzten Warmwalzstich weiter herunter. Nach dem letzten Walzstich hat das Warmband 4 am Ausgang des Platinenkühlers 5' im vorliegenden Ausführungsbeispiel eine Temperatur von 200 °C bis 230 °C und wird anschließend über die Aufwickelhaspel 6 mit dieser Temperatur aufgewickelt.
  • Dadurch, dass das Warmband 4 unmittelbar am Auslauf des letzten Warmwalzstichs eine Temperatur von mehr als 135 °C bis 250 °C, bevorzugt 200 °C bis 230 °C aufweist bzw. optional in den letzten beiden Warmwalzstichen unter Verwendung des Platinenkühlers 5 und der Arbeitswalzen des Warmwalzgerüstes 3 auf die genannten Temperaturen gebracht wird, weist das Warmband 4 trotz der erhöhten Aufwickeltemperatur einen eingefrorenen Kristallgefügezustand auf, welcher zu sehr guten Gleichmaßdehnungseigenschaften Ag von mehr als 25 % im Zustand T4 führt. Es kann aufgrund der höheren Aufwickeltemperatur dennoch schneller und besser verarbeitet werden. Das Warmband mit einer Dicke von 3 bis 12 mm, vorzugsweise 5 bis 8 mm wird über die Aufwickelhaspel 6 aufgewickelt. Wie bereits ausgeführt, beträgt die Aufwickeltemperatur im vorliegenden Ausführungsbeispiel bevorzugt 135 °C bis 250 °C.
  • Bei dem erfindungsgemäßen Verfahren können sich in dem aufgewickelten Warmband 4 jetzt keine oder nur wenige grobe Mg2Si-Ausscheidungen bilden. Das Warmband 4 hat einen für die Weiterverarbeitung sehr günstigen Kristallzustand und kann von der Abwickelhaspel 7 abgewickelt beispielsweise einem Kaltwalzgerüst 9 zugeführt und wieder auf einer Aufwickelhaspel 8 aufgewickelt werden, Fig. 1c).
  • Das resultierende, kaltgewalzte Band 11 wird aufgewickelt. Anschließend wird es einem Lösungsglühen bei Temperaturen von 520 °C bis 570 °C und einem Abschrecken 10 zugeführt, Fig. 1d). Hierzu wird es erneut vom Coil 12 abgewickelt, in einem Ofen 10 lösungsgeglüht und abgeschreckt wieder zu einem Coil 13 aufgewickelt. Das Aluminiumband kann dann nach einer Kaltauslagerung bei Raumtemperatur im Zustand T4 mit maximaler Umformbarkeit ausgeliefert werden. Alternativ (nicht dargestellt) kann das Aluminiumband 11 in einzelne Bleche vereinzelt werden, welche nach einem Kaltauslagern im Zustand T4 vorliegen.
  • Bei größeren Aluminiumbanddicken, beispielsweise bei Fahrwerksanwendungen oder Komponenten wie beispielsweise Bremsankerplatten können auch alternativ Stückglühungen durchgeführt werden und die Bleche anschließend abgeschreckt werden.
  • Im Zustand T6 wird das Aluminiumband oder das Aluminiumblech durch eine Warmauslagerung bei 100 °C bis 220 °C gebracht, um maximale Werte für die Dehngrenze zu erzielen. Beispielsweise kann eine Warmauslagerung auch bei 205 °C / 30 Min. durchgeführt werden.
  • Die gemäß dem dargestellten Ausführungsbeispiel hergestellten Aluminiumbänder weisen nach dem Kaltwalzen beispielsweise eine Dicke von 0,5 bis 4,5 mm auf. Banddicken von 0,5 bis 2 mm werden üblicherweise für Karosserieanwendungen bzw. Banddicken von 2,0 mm bis 4,5 mm für Fahrwerksteile im Kraftfahrzeugsbau verwendet. In beiden Anwendungsbereichen sind die verbesserten Gleichmaßdehnungswerte bei der Herstellung der Bauteile von entscheidendem Vorteil, da zumeist starke Umformungen der Bleche durchgeführt werden und trotzdem hohe Festigkeiten im Einsatzzustand (T6) des Endprodukt benötigt werden.
  • In Tabelle 1 sind die Legierungszusammensetzungen von Aluminiumlegierungen angegeben, aus welchen konventionell oder erfindungsgemäß Aluminiumbänder hergestellt wurden. Neben den gezeigten Gehalten an Legierungsbestandteilen enthalten die Aluminiumbänder als Restanteil Aluminium und Verunreinigungen, einzeln maximal 0,05 Gew.-% und in Summe maximal 0,15 Gew.-%. Tabelle 1
    Bänder Si Ges.-% Fe Gew.-% Cu Gew.-% Mn Gew.-% Mg Gew.-% Cr Gew.-% Zn Ges.-% Ti Gew.-%
    251 1,3 0,19 - 0,06 0,3 - 0,01 0,02
    252 1,3 0,19 - 0,06 0,3 - 0,01 0,02
    491-1 1,39 0,18 0,002 0,062 0,30 0,0006 0,01 0,0158
    491-11 1,40 0,18 0,002 0,063 0,31 0,0006 0,0104 0,0147
  • Die Bänder (Proben) 251 und 252 wurden mit einem erfindungsgemäßen Verfahren hergestellt, bei welchem das Warmband innerhalb der letzten beiden Warmwalzstiche von etwa 470°C bis 490 °C auf 135 °C bis 250 °C unter Verwendung eines Platinenkühlers sowie der Warmwalzen selbst abgekühlt und aufgewickelt wurde. In Tabelle 2 sind die Messwerte dieser Bänder mit "Inv." gekennzeichnet. Anschließend erfolgte ein Kaltwalzen auf eine Enddicke von 0,865 mm.
  • Die Bänder (Proben) 491-1 und 491-11 wurden mit einem konventionellen Warmwalzen und Kaltwalzen hergestellt und mit einem "Konv." gekennzeichnet.
  • Die in Tabelle 2 dargestellten Resultate der mechanischen Eigenschaften zeigen deutlich den Unterschied in den erzielbaren Gleichmaßdehnungswerten Ag. Tabelle2
    Bänder T4 T6 205 °C / 30 Min.
    Dicke (mm) Rp0,2 (MPa) Rm (MPa) Ag (%) A80 (%) Rp0,2 (MPa) Rm (MPa) Ag (%) ΔRp0,2 (MPa)
    251 L Inv. 0,865 93 207 26,3 30,4
    251 Q Inv. 0,865 86 203 26,4 29,0 193 249 12,4 107
    251 D Inv. 0,865 87 203 27,0 30,0
    252 L Inv. 0,865 93 206 26,1 31,5
    252 Q Inv. 0,865 88 205 26,6 29,0 185 244 12,2 97
    252 D Inv. 0,865 87 202 27,3 31,1
    491-1 Konv. 1,09 92 202 23,1 27,8 180 235 10,7 88
    491-11 Konv. 1,04 88 196 23,0 27,4 179 232 11,2 91
  • Zur Erzielung des T4-Zustands wurden die Bänder einem Lösungsglühen mit nachfolgender Abschreckung und einer anschließender Kaltauslagerung für acht Tage bei Raumtemperatur unterworfen. Der T6-Zustand wurde durch eine an die Kaltauslagerung anschließende Warmauslagerung bei 205 °C für 30 Minuten erreicht.
  • Die mit L bezeichneten Proben wurden in Walzrichtung, die mit Q bezeichneten Proben quer zur Walzrichtung und die mit D bezeichneten Proben diagonal zur Walzrichtung ausgeschnitten. Die Proben 491-1 und 491-11 wurden jeweils quer zur Walzrichtung vermessen.
  • Es zeigte sich, dass das vorteilhafte Gefüge, welches über das erfindungsgemäße Verfahren in den Bänder 251 und 252 eingestellt wurde, bei identischer Dehngrenze Rp0,2 und Festigkeit Rm eine deutliche Steigerung der Gleichmaßdehnung Ag ermöglicht. Die Gleichmaßdehnung Ag erhöhte sich von 23,0 % auf maximal 26,6 % quer zur Walzrichtung bei den erfindungsgemäß hergestellten Bändern im Vergleich zu den konventionell hergestellten Bändern.
  • Das mit dem erfindungsgemäßen Verfahren eingestellte Gefüge führt zu der besonders vorteilhaften Kombination aus hoher Gleichmaßdehnung Ag von mehr als 25 % bei sehr hohen Werten für die Dehngrenze Rp0,2 von 80 bis 140 MPa. Im Zustand T6 steigt die Dehngrenze Rp0,2 bis auf mindestens 185 MPa an, wobei die Gleichmaßdehnung Ag weiterhin bei mehr als 12 % verbleibt. Die Aushärtbarkeit mit einem ΔRp0,2 von 97 bzw. 107 MPa ist bei den erfindungsgemäß gefertigten Bändern weiterhin sehr gut.
  • Im Zustand T6 konnte die Steigerung der Gleichmaßdehnung Ag im Vergleich zu konventionell hergestellten Bändern nahezu konserviert werden.
  • Die Bruchdehnungswerte Ag und A80, die Dehngrenzwerte Rp0,2 und die Zugfestigkeitswerte Rm in den Tabellen wurden nach DIN EN gemessen.

Claims (9)

  1. Verfahren zur Herstellung eines Bands aus einer AlMgSi-Legierung, bei welchem ein Walzbarren aus einer AlMgSi-Legierung gegossen wird, der Walzbarren einer Homogenisierung unterzogen wird, der auf Warmwalztemperatur gebrachte Walzbarren warmgewalzt, anschließend optional auf Enddicke kaltgewalzt und das fertig gewalzte Band lösungsgelüht und abgeschreckt wird,
    dadurch gekennzeichnet, dass das Warmband unmittelbar nach dem Auslauf aus dem letzten Warmwalzstich eine Temperatur von mehr als 130 °C bis 250 °C, vorzugsweise bis 230 °C aufweist und das Warmband mit dieser Temperatur aufgewickelt wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass das Warmband unter Verwendung von mindestens einem Platinenkühler und der emulsionsbeaufschlagten Warmwalzstiche selbst auf die Auslauftemperatur abgeschreckt wird.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass die Temperatur des Warmbandes vor dem Start des Abkühlprozesses während des Warmwalzens mehr als 400 °C beträgt.
  4. Verfahren nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass die Temperatur des Warmbandes nach dem vorletzten Walzstich mehr als 250 °C beträgt.
  5. Verfahren nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass die Temperatur des Warmbandes nach dem letzten Walzstich vor dem Aufhaspeln 200 °C bis 230 °C beträgt.
  6. Verfahren nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, dass die Dicke des fertigen Warmbandes 3 mm bis 12 mm, vorzugsweise 5 mm bis 8 mm beträgt.
  7. Verfahren nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet, dass die Aluminiumlegierung vom Legierungstyp AA6xxx, vorzugsweise AA6014, AA6016, AA6060, AA6111 oder AA6181 ist.
  8. Verfahren nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet, dass das fertig gewalzte Aluminiumband einer Wärmebehandlung unterzogen, bei welcher das Aluminiumband nach dem Lösungsglühen und Abschrecken auf mehr als 100 °C erwärmt wird und anschließend mit einer Temperatur von mehr als 55 °C, vorzugsweise mehr als 85 °C aufgewickelt und ausgelagert wird.
  9. Verwendung eines Aluminiumbands hergestellt mit einem Verfahren nach einem der Ansprüche 1 bis 8 für ein Bauteil, Fahrwerks- oder Strukturteil bzw. Blech im Kraftfahrzeug-, Flugzeug- oder Schienenfahrzeugbau, insbesondere als Komponente, Fahrwerksteil, Außen- oder Innenblech im Kraftfahrzeugbau, vorzugsweise als Karosseriebauelement.
EP11181519.7A 2011-09-15 2011-09-15 Herstellverfahren für AlMgSi-Aluminiumband Revoked EP2570509B1 (de)

Priority Applications (11)

Application Number Priority Date Filing Date Title
PT111815197T PT2570509E (pt) 2011-09-15 2011-09-15 Processo de produção de uma banda de alumínio almgsi
EP11181519.7A EP2570509B1 (de) 2011-09-15 2011-09-15 Herstellverfahren für AlMgSi-Aluminiumband
ES11181519.7T ES2459307T3 (es) 2011-09-15 2011-09-15 Procedimiento de producción para banda de aluminio de AlMgSi
KR1020147009878A KR20140057666A (ko) 2011-09-15 2012-09-13 Almgsi 알루미늄 스트립 제조 방법
RU2014114792/02A RU2576976C2 (ru) 2011-09-15 2012-09-13 СПОСОБ ПРОИЗВОДСТВА AlMgSi ПОЛОСЫ
KR1020157031267A KR101974624B1 (ko) 2011-09-15 2012-09-13 Almgsi 알루미늄 스트립 제조 방법
CN201280044926.XA CN103842550B (zh) 2011-09-15 2012-09-13 AlMgSi铝带的制造方法
CA2848457A CA2848457C (en) 2011-09-15 2012-09-13 Method for manufacturing almgsi aluminium strip
JP2014530230A JP5699255B2 (ja) 2011-09-15 2012-09-13 AlMgSi系アルミニウムストリップの製造方法
PCT/EP2012/068005 WO2013037919A1 (de) 2011-09-15 2012-09-13 HERSTELLVERFAHREN FÜR AlMgSi-ALUMINIUMBAND
US14/205,645 US20150152535A2 (en) 2011-09-15 2014-03-12 Method for manufacturing AlMgSi aluminium strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11181519.7A EP2570509B1 (de) 2011-09-15 2011-09-15 Herstellverfahren für AlMgSi-Aluminiumband

Publications (2)

Publication Number Publication Date
EP2570509A1 EP2570509A1 (de) 2013-03-20
EP2570509B1 true EP2570509B1 (de) 2014-02-19

Family

ID=46851493

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11181519.7A Revoked EP2570509B1 (de) 2011-09-15 2011-09-15 Herstellverfahren für AlMgSi-Aluminiumband

Country Status (10)

Country Link
US (1) US20150152535A2 (de)
EP (1) EP2570509B1 (de)
JP (1) JP5699255B2 (de)
KR (2) KR101974624B1 (de)
CN (1) CN103842550B (de)
CA (1) CA2848457C (de)
ES (1) ES2459307T3 (de)
PT (1) PT2570509E (de)
RU (1) RU2576976C2 (de)
WO (1) WO2013037919A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2270249B2 (de) 2009-06-30 2020-05-27 Hydro Aluminium Deutschland GmbH AlMgSi-Band für Anwendungen mit hohen Umformungsanforderungen
DE102013221710A1 (de) 2013-10-25 2015-04-30 Sms Siemag Aktiengesellschaft Aluminium-Warmbandwalzstraße und Verfahren zum Warmwalzen eines Aluminium-Warmbandes
AU2016206897B2 (en) 2015-01-12 2019-01-17 Novelis Inc. Highly formable automotive aluminum sheet with reduced or no surface roping and a method of preparation
EP3314031B1 (de) 2015-06-25 2018-11-07 Hydro Aluminium Rolled Products GmbH Hochfestes und gut umformbares almg-band sowie verfahren zu seiner herstellung
MX356992B (es) * 2015-07-20 2018-06-22 Novelis Inc Hoja de aleacion de aluminio aa6xxx con alta calidad anodizada y un metodo para fabricar la misma.
MX2018008367A (es) 2016-01-08 2018-12-10 Arconic Inc Nuevas aleaciones de aluminio 6xxx, y metodos para su fabricacion.
EP3622096B1 (de) 2017-05-11 2021-09-22 Aleris Aluminum Duffel BVBA Verfahren zur herstellung eines walzblechprodukts aus einer al-si-mg-legierung mit ausgezeichneter formbarkeit
US10030295B1 (en) 2017-06-29 2018-07-24 Arconic Inc. 6xxx aluminum alloy sheet products and methods for making the same
DE102020123740A1 (de) 2020-09-11 2022-03-17 Speira Gmbh Verfahren und Vorrichtung zur elektrostatischen Beschichtung von Metallbändern
FR3124196B1 (fr) 2021-06-17 2023-09-22 Constellium Neuf Brisach Bande en alliage 6xxx et procédé de fabrication
EP4190932A1 (de) * 2021-12-01 2023-06-07 Constellium Bowling Green LLC Bleche, platten oder zuschnitte aus einer aluminiumlegierung der serie 6xxx mit verbesserter formbarkeit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808247A (en) 1986-02-21 1989-02-28 Sky Aluminium Co., Ltd. Production process for aluminum-alloy rolled sheet
EP0761837A1 (de) 1995-08-31 1997-03-12 KAISER ALUMINUM & CHEMICAL CORPORATION Verfahren zur Herstellung von ALuminiumlegierungen mit superplastischen Eigenschaften
EP0786535A1 (de) 1994-02-16 1997-07-30 Sumitomo Light Metal Industries, Ltd. Verfahren zur herstellung eines grobblechesaus aluminium-legierung zum pressen
NL1006511C2 (nl) 1997-07-09 1998-05-29 Hoogovens Aluminium Nv Werkwijze voor het vervaardigen van een goed felsbare aluminiumplaat.
JP2007254825A (ja) 2006-03-23 2007-10-04 Kobe Steel Ltd 曲げ加工性に優れたアルミニウム合金板の製造方法
EP1967598A1 (de) 2001-03-28 2008-09-10 Sumitomo Light Metal Industries, Ltd. Aluminium-Legierungsblech mit ausgezeichneter Formbarkeit und Brennhärtbarkeit, sowie Herstellungsverfahren dafür

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE198915T1 (de) * 1994-09-06 2001-02-15 Alcan Int Ltd Wärmebehandlungsverfahren für blech aus aluminium-legierung
US6423164B1 (en) * 1995-11-17 2002-07-23 Reynolds Metals Company Method of making high strength aluminum sheet product and product therefrom
WO1998040528A1 (en) * 1997-03-07 1998-09-17 Alcan International Limited Process for producing aluminium sheet
JP3495263B2 (ja) * 1998-09-16 2004-02-09 昭和電工株式会社 熱伝導性および強度に優れたAl−Mg−Si系合金板の製造方法
US6060438A (en) * 1998-10-27 2000-05-09 D. A. Stuart Emulsion for the hot rolling of non-ferrous metals
US6613167B2 (en) * 2001-06-01 2003-09-02 Alcoa Inc. Process to improve 6XXX alloys by reducing altered density sites
AU2003212970A1 (en) * 2002-02-08 2003-09-02 Nichols Aluminium Method and apparatus for producing a solution heat treated sheet
AU2003211572A1 (en) * 2002-03-01 2003-09-16 Showa Denko K.K. PROCESS FOR PRODUCING Al-Mg-Si ALLOY PLATE, Al-Mg-Si ALLOY PLATE AND Al-Mg-Si ALLOY MATERIAL
CN100347330C (zh) * 2002-06-24 2007-11-07 克里斯铝轧制品有限公司 高强度al-mg-si平衡合金的生产方法以及所述合金的可焊接产品
US6940540B2 (en) * 2002-06-27 2005-09-06 Microsoft Corporation Speaker detection and tracking using audiovisual data
JP4495623B2 (ja) * 2005-03-17 2010-07-07 株式会社神戸製鋼所 伸びフランジ性および曲げ加工性に優れたアルミニウム合金板およびその製造方法
JP4515363B2 (ja) * 2005-09-15 2010-07-28 株式会社神戸製鋼所 成形性に優れたアルミニウム合金板およびその製造方法
JP2007154273A (ja) * 2005-12-06 2007-06-21 Kobe Steel Ltd 剪断加工時の切り粉発生が少ないアルミニウム合金板およびその剪断加工方法
JP2007169740A (ja) * 2005-12-22 2007-07-05 Kobe Steel Ltd 成形性に優れたアルミニウム合金板およびその製造方法
JP5059423B2 (ja) * 2007-01-18 2012-10-24 株式会社神戸製鋼所 アルミニウム合金板
CN101960031B (zh) * 2008-03-31 2012-11-14 株式会社神户制钢所 成形加工后的表面性状优异的铝合金板及其制造方法
JP4444354B2 (ja) * 2008-08-04 2010-03-31 株式会社東芝 画像処理装置、および画像処理方法
EP2270249B2 (de) 2009-06-30 2020-05-27 Hydro Aluminium Deutschland GmbH AlMgSi-Band für Anwendungen mit hohen Umformungsanforderungen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808247A (en) 1986-02-21 1989-02-28 Sky Aluminium Co., Ltd. Production process for aluminum-alloy rolled sheet
EP0786535A1 (de) 1994-02-16 1997-07-30 Sumitomo Light Metal Industries, Ltd. Verfahren zur herstellung eines grobblechesaus aluminium-legierung zum pressen
EP0761837A1 (de) 1995-08-31 1997-03-12 KAISER ALUMINUM & CHEMICAL CORPORATION Verfahren zur Herstellung von ALuminiumlegierungen mit superplastischen Eigenschaften
NL1006511C2 (nl) 1997-07-09 1998-05-29 Hoogovens Aluminium Nv Werkwijze voor het vervaardigen van een goed felsbare aluminiumplaat.
EP1967598A1 (de) 2001-03-28 2008-09-10 Sumitomo Light Metal Industries, Ltd. Aluminium-Legierungsblech mit ausgezeichneter Formbarkeit und Brennhärtbarkeit, sowie Herstellungsverfahren dafür
JP2007254825A (ja) 2006-03-23 2007-10-04 Kobe Steel Ltd 曲げ加工性に優れたアルミニウム合金板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PECHINEY: "Aluminium alloy semis", ALUMINIUM SEMI-FINISHED PRODUCTS, May 1997 (1997-05-01), pages 14 - 15, XP055405720

Also Published As

Publication number Publication date
CA2848457A1 (en) 2013-03-21
KR101974624B1 (ko) 2019-05-02
KR20140057666A (ko) 2014-05-13
US20140190595A1 (en) 2014-07-10
US20150152535A2 (en) 2015-06-04
KR20150126975A (ko) 2015-11-13
PT2570509E (pt) 2014-04-30
ES2459307T3 (es) 2014-05-08
JP5699255B2 (ja) 2015-04-08
RU2014114792A (ru) 2015-10-20
CN103842550B (zh) 2017-05-03
JP2014532114A (ja) 2014-12-04
WO2013037919A1 (de) 2013-03-21
RU2576976C2 (ru) 2016-03-10
CN103842550A (zh) 2014-06-04
EP2570509A1 (de) 2013-03-20
CA2848457C (en) 2016-10-04

Similar Documents

Publication Publication Date Title
EP2570509B1 (de) Herstellverfahren für AlMgSi-Aluminiumband
EP2270249B1 (de) AlMgSi-Band für Anwendungen mit hohen Umformungsanforderungen
EP2770071B1 (de) Aluminiumlegierung zur Herstellung von Halbzeugen oder Bauteilen für Kraftfahrzeuge, Verfahren zur Herstellung eines Aluminiumlegierungsbands aus dieser Aluminiumlegierung sowie Aluminiumlegierungsband und Verwendungen dafür
EP2570257B1 (de) Aluminiumverbundwerkstoff mit AlMgSi-Kernlegierungsschicht
EP3314031B1 (de) Hochfestes und gut umformbares almg-band sowie verfahren zu seiner herstellung
EP2888382B1 (de) Gegen interkristalline korrosion beständiges aluminiumlegierungsband und verfahren zu seiner herstellung
EP2067871B1 (de) Aluminiumband für lithografische Druckplattenträger und dessen Herstellung
DE3829911A1 (de) Aluminiumblech mit verbesserter schweissfaehigkeit, filiformer korrosionsfestigkeit, waermebehandlungshaertbarkeit und verformbarkeit sowie verfahren zur herstellung desselben
DE2103614B2 (de) Verfahren zur Herstellung von Halbzeug aus AIMgSIZr-Legierungen mit hoher Kerbschlagzähigkeit
WO2002083967A1 (de) VERFAHREN ZUR HERSTELLUNG VON AlMn-BÄNDERN ODER -BLECHEN
EP2888383B1 (de) Hochumformbares und ik-beständiges almg-band
EP2192202B9 (de) Aluminiumband für lithographische Druckplattenträger mit hoher Biegewechselbeständigkeit
DE112019000856T5 (de) Verfahren zur Herstellung von Aluminiumlegierungsbauelementen
DE602004005529T2 (de) Schmiedealuminiumlegierung
EP1748088B1 (de) Verfahren zur Herstellung eines Halbzeugs oder Bauteils von Fahrwerk- oder Strukturanwendungen im Kraftfahrzeug
EP1918404B1 (de) Verfahren zum Herstellen von Stahl-Flachprodukten aus einem mit Aluminium legierten Mehrphasenstahl
EP3690076A1 (de) Verfahren zur herstellung eines blechs oder bands aus einer aluminiumlegierung sowie ein dadurch hergestelltes blech, band oder formteil
DE60310381T2 (de) Blech oder band aus al-mg-legierung zur herstellung von gebogenen teilen mit kleinem biegeradius
EP2426228B1 (de) Magnesiumblechhalbzeuge mit verbessertem Kaltumformvermögen
EP3970964A1 (de) Aluminiumverbundwerkstoff für crashanwendungen
EP2924135B1 (de) Verfahren zur Herstellung eines Bandes aus einer hochumformbaren, mittelfesten Aluminiumlegierung für Halbzeuge oder Bauteile von Kraftfahrzeugen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120824

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130704

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 652833

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011002167

Country of ref document: DE

Effective date: 20140403

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20140421

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2459307

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140508

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140219

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140219

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140619

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140219

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140219

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140219

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502011002167

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140219

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140219

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140219

26 Opposition filed

Opponent name: ALERIS ALUMINUM DUFFEL BVBA

Effective date: 20140905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140219

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140219

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140219

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140219

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502011002167

Country of ref document: DE

Effective date: 20140905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140219

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140219

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: ALCOA INC.

Effective date: 20141119

Opponent name: NOVELIS INC.

Effective date: 20141118

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140915

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140219

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140219

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140219

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140520

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140219

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110915

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

R26 Opposition filed (corrected)

Opponent name: ARCONIC INC.

Effective date: 20141119

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 652833

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160915

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160915

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140219

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140219

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20190821

Year of fee payment: 9

Ref country code: SE

Payment date: 20190918

Year of fee payment: 9

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: ARCONIC CORPORATION

Effective date: 20141119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200925

Year of fee payment: 10

Ref country code: FR

Payment date: 20200914

Year of fee payment: 10

Ref country code: GB

Payment date: 20200922

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200922

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 502011002167

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 502011002167

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20201120

Year of fee payment: 10

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: FI

Ref legal event code: MGE

27W Patent revoked

Effective date: 20210114

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20210114

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 652833

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210114

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011002167

Country of ref document: DE

Owner name: SPEIRA GMBH, DE

Free format text: FORMER OWNER: HYDRO ALUMINIUM ROLLED PRODUCTS GMBH, 41515 GREVENBROICH, DE