EP2888383B1 - Hochumformbares und ik-beständiges almg-band - Google Patents

Hochumformbares und ik-beständiges almg-band Download PDF

Info

Publication number
EP2888383B1
EP2888383B1 EP13756053.8A EP13756053A EP2888383B1 EP 2888383 B1 EP2888383 B1 EP 2888383B1 EP 13756053 A EP13756053 A EP 13756053A EP 2888383 B1 EP2888383 B1 EP 2888383B1
Authority
EP
European Patent Office
Prior art keywords
aluminium alloy
alloy strip
rolling
aluminum alloy
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP13756053.8A
Other languages
English (en)
French (fr)
Other versions
EP2888383A1 (de
Inventor
Henk-Jan Brinkman
Olaf Engler
Natalie Hörster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Speira GmbH
Original Assignee
Hydro Aluminium Rolled Products GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49084999&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2888383(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hydro Aluminium Rolled Products GmbH filed Critical Hydro Aluminium Rolled Products GmbH
Priority to EP13756053.8A priority Critical patent/EP2888383B1/de
Publication of EP2888383A1 publication Critical patent/EP2888383A1/de
Application granted granted Critical
Publication of EP2888383B1 publication Critical patent/EP2888383B1/de
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon

Definitions

  • the invention relates to a cold-rolled aluminum alloy strip consisting of an AlMg-aluminum alloy and a process for its preparation. Furthermore, it is also intended to propose corresponding components made of the aluminum alloy strips.
  • Aluminum magnesium (AIMg) alloys of the type AA 5xxx are used in the form of sheets or plates or strips for the construction of welded or joined structures in shipbuilding, automobile and aircraft construction. They are characterized in particular by a high strength, which increases with increasing magnesium content. AlMg alloys of the type AA 5xxx with Mg contents of more than 3%, in particular more than 4%, are increasingly prone to intercrystalline corrosion when exposed to elevated temperatures. At temperatures of 70 - 200 ° C, ⁇ -Al5Mg3 phases separate out along the grain boundaries, which are called ⁇ -particles and can be selectively dissolved in the presence of a corrosive medium.
  • the susceptibility to intergranular corrosion is usually tested in a standard test (NAMLT test) according to ASTM G67, in which the samples are exposed to nitric acid and the mass loss due to intergranular corrosion is measured.
  • NAMLT test NAMLT test
  • ASTM G67 the mass loss for materials which are not resistant to intergranular corrosion is more than 15 mg / cm 2 .
  • Automotive sheets require very good formability, as in the case of interior door parts, for example.
  • the requirements are essentially determined by the rigidity of the respective component, where the strength of the material plays only a minor role.
  • the components often go through multi-stage forming processes, such as door interiors with integrated window frame areas.
  • the formability of the AlMg aluminum alloy has a major influence on the possibilities for using these materials.
  • the previously known materials meant that the side walls of a motor vehicle could not be pulled deep from a single sheet, which not only made a redesign of the side wall, but also additional process steps to provide the side wall portion of a motor vehicle required.
  • the forming behavior can be measured, for example, in a stretch-drawing test by a cupping test according to Erichsen (DIN EN ISO 20482), in which a test piece is pressed against the sheet, so that cold deformation occurs. During cold working, the force as well as the punch travel of the test specimen is measured until there is a load drop, which causes the formation of a crack.
  • the SZ32 stretch drawing measurements mentioned in the application were carried out with a punch head diameter of 32 mm and a die diameter of 35.4 mm with the aid of a Teflon drawing film to reduce the friction.
  • thermoformability was made by the so-called Plane-Strain-Tiefungs slaughter with a Nakajima geometry according to DIN EN ISO 12004 with a punch diameter of 100 mm.
  • specimens with a specified geometry are subjected to deepening tests until the formation of cracks, the subsidence during the crack is then used as a measure of the formability of the material.
  • an aluminum composite chassis member having aluminum alloy layers as outer layers is known. Due to the alloying components used therein, the AL composite material is excellent in strength with high corrosion resistance and low weight.
  • composite solutions consisting of high Mg-containing AA5xxx aluminum alloys with corrosion-protective outer aluminum alloy layers have the disadvantage that the production is complex and also at joints where the aluminum composite is connected to other parts, such as cut edges, holes and breakthroughs continue to increase Risk of corrosion is given.
  • the present invention is therefore concerned with single-layer aluminum materials. Proceeding from this, the object of the present invention is to provide a single-layered aluminum alloy strip which has sufficient resistance to intergranular corrosion and is nevertheless very easy to form, so that large-area deep-drawn parts, for example door parts of motor vehicles, can be provided with sufficient strength , In addition, a method is to be specified with which single-layer aluminum alloy strips can be produced.
  • the object indicated is achieved by a cold-rolled aluminum alloy strip consisting of an AlMg aluminum alloy, the aluminum alloy having the following alloy constituents: Si ⁇ 0.2% by weight, Fe ⁇ 0.35% by weight, Cu ⁇ 0.15% by weight, 0.2% by weight ⁇ Mn ⁇ 0.35% by weight, 4.1% by weight ⁇ mg ⁇ 4.5% by weight, Cr ⁇ 0.1% by weight, Zn ⁇ 0.25% by weight, Ti ⁇ 0.1% by weight,
  • the aluminum alloy strip additionally has one or more of the following restrictions on the contents of alloy components: 0.03% by weight Si ⁇ 0.10% by weight, Cu ⁇ 0.1%, preferably 0.04% ⁇ Cu ⁇ 0.08%, Cr ⁇ 0.05% by weight, Zn ⁇ 0.05% by weight, 0.01% by weight ⁇ Ti ⁇ 0.05% by weight
  • the limited alloying content of copper to at most 0.1% by weight leads to an improvement in the corrosion resistance of the aluminum alloy strip.
  • a Cu content of 0.04 wt .-% to 0.08 wt .-% is achieved that copper participates in an increase in strength, but still does not reduce the corrosion resistance too strong.
  • Higher contents of silicon, chromium, zinc and titanium than the stated values lead to a deteriorated formability of the aluminum alloy.
  • the amount of silicon present in the alloy of 0.03 to 0.1 wt .-% leads in combination with the iron and manganese in the specified amounts, in particular to relatively uniformly distributed, compact particles of the quaternary ⁇ -Al (Fe, Mn) Si Phase, which increase the strength of the aluminum alloy without adversely affecting other properties such as formability or corrosion behavior.
  • Titanium is commonly added in continuous casting of the aluminum alloy as a grain refining agent, for example in the form of Ti-boride wire or rods. Therefore, in another embodiment, the aluminum alloy has a Ti content of at least 0.01% by weight.
  • a further improvement of the corrosion behavior and the formability of the aluminum alloy strip can be achieved in that the aluminum alloy additionally has one or more of the following restrictions on the contents of alloy constituents: Cr ⁇ 0.02 wt.%, Zn ⁇ 0.02% by weight
  • chromium significantly influences the formability of the aluminum alloy strip in contents below the contamination threshold of 0.05% by weight and thus in the smallest possible amounts in the aluminum alloy of the aluminum alloy strip according to the invention may be included.
  • the zinc content is set below the impurity threshold of 0.05% by weight so as not to deteriorate the general corrosion behavior of the aluminum alloy ribbon.
  • iron within the values allowed according to the AA5182 aluminum alloy, in combination with the silicon and manganese contents as described above, has an effect on formability. Iron contributes to the temperature resistance of the aluminum alloy ribbon in combination with silicon and manganese, so that the Fe content of the aluminum alloy ribbon according to a next aspect is preferably 0.1 wt% to 0.25 wt% or 0.10 wt%. to 0.20 wt .-% is.
  • the Mn content according to another embodiment of the aluminum alloy strip which should preferably be limited to 0.20 wt .-% to 0.30 wt .-%, in order to achieve optimum formability of the aluminum alloy strip.
  • a particularly good compromise between the provision of high strength, good corrosion resistance against intergranular corrosion and improved forming properties can be achieved according to a further embodiment of the aluminum alloy strip having a Mg content of 4.2 wt .-% to 4.4 wt .-%.
  • the aluminum alloy strip according to a next embodiment has a thickness of 0.5 mm to 4 mm.
  • the thickness is 1 mm to 2.5 mm, as in this area are the most applications of the aluminum alloy strip.
  • the aluminum alloy strip in the soft state has a yield strength R p0.2 of min. 110 MPa and a tensile strength R m of min. 255 MPa. It has been found that especially aluminum alloy tapes with corresponding yield strengths and tensile strengths are particularly well suited for use in the automotive sector.
  • an aluminum alloy strip with mean particle sizes of 15 .mu.m-30 .mu.m can be produced, which has sufficient resistance to intercrystalline corrosion, provides sufficient strength and, in addition, has very good forming properties , deep-drawn sheet metal parts can be produced.
  • the homogenization of the rolling ingot ensures a homogenous structure and a homogeneous distribution of the alloy components in the hot rolling bar to be rolled. Hot rolling at temperatures of 280 ° C - 500 ° C allows for continuous recrystallization during hot rolling with hot rolling typically to a thickness of 2.8mm - 8mm.
  • the final cold rolling step is limited to a degree of rolling of 40% to 70% or 50% to 60%, to provide in both cases in the soft annealing for a continuous recrystallization of the aluminum alloy strip.
  • the soft annealing of the finished rolled aluminum alloy strip takes place in the continuous furnace, which usually heating rates of 1-10 ° C / sec.
  • the intermediate annealing of the aluminum alloy strip can take place both in the chamber furnace and in the continuous furnace. An influence on the formability could not be determined.
  • the decisive factor is which degree of rolling is achieved during cold rolling to final thickness and whether the soft annealing of the strip takes place in the continuous furnace.
  • the aluminum alloy strip according to a further embodiment of the method after annealing to a temperature of max. 100 ° C, preferably to max. Cooled to 70 ° C and then wound up.
  • the intermediate annealing can be carried out in a batch furnace or in a continuous furnace.
  • the typical application areas, especially in automotive very well convertible sheets are available, which can be deep-drawn extensively and simultaneously provide high strength combined with adequate corrosion resistance to intergranular corrosion.
  • the soft annealing is carried out in a continuous furnace at a metal temperature of 350 ° C - 550 ° C, preferably at 400 ° C - 450 ° C for 10 sec. - 5 min., Preferably 20 sec. - 1 min.
  • a metal temperature of 350 ° C - 550 ° C, preferably at 400 ° C - 450 ° C for 10 sec. - 5 min., Preferably 20 sec. - 1 min.
  • a component for a motor vehicle which consists of the aluminum alloy strip according to the invention.
  • the components are characterized by the fact that they, as already stated, can be deep-drawn over a large area and thus, for example, large-area components can be made available for the automotive industry. In addition, these have due to the provided strength also the necessary rigidity and corrosion resistance, which are required for use in motor vehicle construction on.
  • the component is according to a further embodiment, a body part or a body part of a motor vehicle, which is loaded in addition to high strength requirements and temperature.
  • the "body-in-white parts”, for example a door inner part or a tailgate inner part, are preferably produced from the aluminum alloy strip according to the invention.
  • Fig. 1 shows the sequence of embodiments for the production of aluminum strips.
  • the flowchart of Fig. 1 shows schematically the various process steps of the manufacturing process of the aluminum alloy strip according to the invention.
  • step 1 a rolling ingot of an AlMg aluminum alloy is cast with the following alloying constituents, for example in DC continuous casting: Si ⁇ 0.2% by weight, Fe ⁇ 0.35% by weight, Cu ⁇ 0.15% by weight, 0.2% by weight ⁇ Mn ⁇ 0.35% by weight, 4.1% by weight ⁇ mg ⁇ 4.5% by weight, Cr ⁇ 0.1% by weight, Zn ⁇ 0.25% by weight, Ti ⁇ 0.1% by weight,
  • Residual Al and unavoidable impurities individually a maximum of 0.05 wt .-%, in total not more than 0.15 wt .-%.
  • the rolling ingot in process step 2 is subjected to homogenization, which can be carried out in one or more stages.
  • a homogenization temperatures of the rolling ingot are reached from 480 to 550 ° C for at least 0.5 h.
  • the rolling ingot is then hot rolled, with typical temperatures of 280 ° C to 500 ° C can be achieved.
  • the final thicknesses of the hot strip are, for example, 2.8 to 8 mm.
  • the hot strip thickness can be selected so that after hot rolling only a cold rolling step 4 takes place, in which the hot strip with a rolling degree of 40% to 70%, preferably 50% to 60% in its thickness is reduced to the final thickness.
  • the aluminum alloy strip cold rolled to final thickness is subjected to soft annealing.
  • the soft annealing is carried out according to the invention in a continuous furnace.
  • the second way was used with an intermediate glow.
  • the hot strip after hot rolling according to process step 3 is fed to a cold rolling 4a, which cold rolls the aluminum alloy strip to an intermediate thickness, which is determined such that the final cold rolling degree of final thickness 40% to 70% or 50% to 60%.
  • the aluminum alloy ribbon is preferably recrystallized throughout.
  • the intermediate annealing was carried out in the embodiments either in a continuous furnace at 400 ° C to 450 ° C or in the chamber furnace at 330 ° C to 380 ° C.
  • the intermediate annealing is in Fig. 1 represented by the method step 4b.
  • method step 4c according to Fig. 1
  • the intermediate annealed aluminum alloy strip is fed to cold rolling to final thickness, wherein the degree of rolling in step 4c is between 40% and 70%, preferably between 50% and 60%.
  • the aluminum alloy strip is again transferred to the soft state by a soft annealing, wherein the soft annealing is carried out according to the invention in a continuous furnace at 400 ° C to 450 ° C.
  • the anneals of Comparative Examples in Table 4 were carried out in the chamber furnace (KO) at 330 ° C to 380 ° C. In the various tests, different degrees of rolling were set after intermediate annealing in addition to different aluminum alloys.
  • the values for the degree of rolling after the intermediate annealing are also given in Tables 1 and 4.
  • the mean grain diameter of the soft-annealed aluminum alloy strip was determined.
  • longitudinal slices were anodized according to the Barker method and then measured under the microscope in accordance with ASTM E1382 and the mean grain size determined by the mean grain diameter.
  • the aluminum alloy strips were additionally stored for 200 hours or 500 hours at 80 ° C. and then subjected to the corrosion test.
  • the aluminum alloy tapes were further stretched by about 15%, subjected to heat treatment at elevated temperature, and then subjected to intergranular corrosion test according to ASTM G67, in which the mass loss was measured.
  • Table 1 the alloy contents of a total of four different aluminum alloys which are within the specification of the AA5182 aluminum alloy are indicated.
  • the reference alloy represents the material used hitherto and is given in comparison to variants 1, 2 and 3.
  • Table 1 gives an indication of the type of final annealing, the degree of final rolling and the measured mean grain size (grain diameter) in ⁇ m.
  • the variants 1 and 2 differed only in the final rolling, which leads to the formation of a different grain size.
  • variant 2 differs from variant 1, apart from almost identical alloy components, essentially by a final rolling degree of 57% at identical belt continuous furnace conditions. The result was that variant 2 had a mean particle size of 18 ⁇ m compared to 33 ⁇ m of variant 1.
  • the tapes in Table 1 were brought to a temperature of 400 ° C - 450 ° C in a continuous band oven for 20 sec. -1 min., Then cooled and wound up at less than 100 ° C. The samples taken were then measured according to the corresponding DIN EN ISO standards as indicated in Table 2.
  • variant 1 does not reach the value of 110 MPa with respect to the yield strength and that it has a value of less than 110 MPa in the diagonal measurement, marked with the symbol D.
  • the measurement in the rolling direction L and transverse to the rolling direction Q showed that variant 1 just reached a yield strength R p0.2 of 110 MPa.
  • the reference as well as the variants 2 and 3 were clearly above this lower limit for the yield strength.
  • the embodiment variant 2 according to the invention certainly reached the yield strength values of at least 110 MPa in all tensile directions.
  • variant 3 with the highest Mg content of 4.95% by weight achieves the highest yield strength and tensile strength values.
  • the varying degree of rolling between variants 1 and 2 not only significantly affects the grain size, but in particular raises the yield strength to a value of significantly more than 110 MPa.
  • the alloy variant 2 according to the invention has a lower anisotropy compared to the reference, which is reflected in low values of the planar anisotropy ⁇ r .
  • the planar anisotropy ⁇ r is defined as 1 ⁇ 2 ⁇ (r L + rQ-2r D ), where r L , r Q and r D correspond to the r values in the longitudinal, transverse or diagonal direction.
  • the mean r-value is different r calculated from 1/4 x (rL + rQ + 2r D ), not significantly different from that of the reference material.
  • Table 3 now shows the measured values taken with respect to intergranular corrosion resistance. It has been found that variant 2 according to the invention has comparable values with respect to the measured values of the reference, in particular with regard to the long-term loading, both in the stretched state and in the unstretched state. Here the variant 2 and the reference are nearly identical. Variant 3, which has the highest yield strength and tensile strength values, showed in the corrosion test, however, that the excessive Mg content would lead to excessive mass loss, especially in the long-term tests, which in addition to a short temperature cycle of 20 min of 200 hrs. at 80 ° C have resulted in.
  • variant 2 was superior to the reference alloy in the stretch-drawing properties in the SZ32 deepening test as well as in the plane-strain creep test.
  • the significantly improved forming behavior of the aluminum alloy strip according to Variant 2 over the reference aluminum alloy strip shows that even with a reduced Mg content, equivalent yield strengths and tensile strengths can be achieved with the reference alloy without sacrificing resistance to intergranular corrosion. This was demonstrated in particular by the mass loss measurement according to ASTM G67 in the NAML test.
  • variant 2 was used to determine an improvement of the thermoforming behavior in the Erichsen crimping test by 7% and in the plane strain crimping test by about 10%, which shows the additional forming potential of the aluminum alloy strips according to the invention.
  • This additional forming potential can be used to produce deep-drawn, large-area sheet-metal shaped parts, for example, door inner parts of a car.
  • FIG. 2a the geometry of the sample body 1 is shown. From a circular sheet metal blank of the waisted specimen 1 is cut so that the web 4 has a width of 100 mm and the radii 2 at the waistings 20 mm. With the measure 3, which is 100 mm, the punch diameter is shown.
  • Fig. 2b now shows the specimen 1 clamped between two hold-downs 5, 6. The specimen 1, which was placed on a receptacle 8 and was pressed over the holders 5, 6 against the support, with a punch 7, which is a hemispherical tip with a radius of 100 mm, pulled in the direction of the arrow.
  • the hold-downs additionally have inlet radii of 5 or 10 mm on their side facing the support 8. The force with which the tilling test is performed becomes during deformation measured and a sudden load drop, which signals the formation of a crack, leading to the measurement of the corresponding Ziehstempelianae.
  • a similar structure shows the deepening trial "Suzin SZ32" according to Erichsen, although no waisted samples are used.
  • a test piece 9 is held between a hold-down 10 and a receptacle 11 and pulled with a punch 12 until a load drop in the pulling force can also be measured. Subsequently, in turn, the corresponding position of the punch is measured.
  • the opening of the die in Fig. 3 was 35.4 mm, the punch head diameter 32 mm, ie the punch radius was 16 mm.
  • a Teflon drawing film was used to reduce friction in SZ32.
  • a corresponding body-in-white part in the form of a door inner part, can be produced using the aluminum alloy strip of the present invention from a single, deep-drawn sheet metal, the sheet thickness being preferably 1.0-2.5 mm
  • further parts of a motor vehicle in a sheet metal shell design are conceivable, such as the inner parts of the boot lid, bonnet, as well as components in the vehicle structure, which have high demands on formability and intergranular corrosion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)
  • Conductive Materials (AREA)

Description

  • Die Erfindung betrifft ein kaltgewalztes Aluminiumlegierungsband bestehend aus einer AlMg-Aluminiumlegierung sowie ein Verfahren zu seiner Herstellung. Ferner sollen auch noch entsprechende Bauteile hergestellt aus den Aluminiumlegierungsbändern vorgeschlagen werden.
  • Aluminiummagnesium-(AIMg-)legierungen vom Typ AA 5xxx werden in Form von Blechen oder Platten bzw. Bändern für die Konstruktion von geschweißten oder gefügten Strukturen im Schiffs-, Automobil- und Flugzeugbau verwendet. Sie zeichnen sich insbesondere durch eine hohe Festigkeit aus, welche mit zunehmendem Magnesiumgehalt steigt. AlMg-Legierungen vom Typ AA 5xxx mit Mg-Gehalten von mehr als 3 %, insbesondere mehr als 4 % neigen zunehmend zur interkristallinen Korrosion, wenn sie erhöhten Temperaturen ausgesetzt sind. Bei Temperaturen von 70 - 200°C scheiden sich β-Al5Mg3 Phasen entlang der Korngrenzen aus, welche als β-Partikel bezeichnet werden und in Anwesenheit eines korrosiven Mediums selektiv aufgelöst werden können. Dies hat zur Folge, dass insbesondere die sehr gute Festigkeitseigenschaften sowie eine sehr gute Umformbarkeit aufweisende Aluminiumlegierung vom Typ AA 5182 (Al 4,5 % Mg 0,4 % Mn) nicht in wärmebelasteten Bereichen eingesetzt wird, sofern mit der Anwesenheit eines korrosiven Mediums, beispielsweise Wasser in Form von Feuchtigkeit, gerechnet werden muss. Dies betrifft insbesondere die Bauteile eines Kraftfahrzeugs, welche üblicherweise einer kathodischen Tauch-Lackierung (KTL) unterzogen und anschließend in einem Einbrennvorgang getrocknet werden, da bereits durch diesen Einbrennvorgang bei üblichen Aluminiumlegierungsbändern eine Sensibilisierung bezüglich interkristalliner Korrosion hervorgerufen werden kann. Darüber hinaus muss für den Einsatz im Automobilbereich die Umformung bei der Herstellung eines Bauteils sowie die anschließende Betriebsbelastung des Bauteils berücksichtigt werden.
  • Die Anfälligkeit gegen interkristalline Korrosion wird üblicherweise in einem Standardtest (NAMLT Test) gemäß ASTM G67 geprüft, bei welchem die Proben einer Salpetersäure ausgesetzt werden und der Massenverlust aufgrund der interkristallinen Korrosion gemessen wird. Gemäß ASTM G67 beträgt der Massenverlust bei Werkstoffen, welche nicht resistent gegen interkristalline Korrosion sind, mehr als 15 mg/cm2.
  • Bleche für den Automobilbereich erfordern, wie beispielsweise bei Türinnenteilen, eine sehr gute Umformbarkeit. Die Anforderungen werden dabei im Wesentlichen von der Steifigkeit des jeweiligen Bauteils bestimmt, wo die Festigkeit des Werkstoffes nur eine untergeordnete Rolle spielt. Die Bauteile durchlaufen oft mehrstufige Umformprozesse, wie beispielsweise Türinnenteile mit integrierten Fensterrahmenbereichen.
  • So hat neben den Korrosionseigenschaften auch die Umformbarkeit der AlMg-Aluminiumlegierung einen hohen Einfluss auf die Möglichkeiten zum Einsatz dieser Werkstoffe. Beispielsweise haben die bisher bekannten Werkstoffe dazu geführt, dass die Seitenwände eines Kraftfahrzeugs nicht aus einem einzigen Blech tief gezogen werden konnten, was nicht nur eine Neukonstruktion der Seitenwand, sondern auch zusätzliche Verfahrensschritte zur Bereitstellung des Seitenwandteils eines Kraftfahrzeugs erforderlich machte.
  • Das Umformverhalten kann beispielsweise in Streckziehversuch durch eine Tiefungsprüfung nach Erichsen (DIN EN ISO 20482) gemessen werden, bei welcher ein Prüfkörper gegen das Blech gedrückt wird, so dass es zu einer Kaltverformung kommt. Während der Kaltverformung wird die Kraft sowie der Stempelweg des Prüfkörpers gemessen, bis es zu einem Lastabfall, welcher die Bildung eines Risses als Ursache hat, kommt. Die in der Anmeldung genannten Streckziehmessungen SZ32 wurden mit einem Stempelkopfdurchmesser von 32 mm und einem Matrizendurchmesser von 35,4 mm unter Zuhilfenahme einer Teflon-Ziehfolie zur Reduzierung der Reibung durchgeführt. Weitere Messungen der Tiefziehfähigkeit wurden durch den sogenannten Plane-Strain-Tiefungsversuch mit einer Nakajima-Geometrie nach DIN EN ISO 12004 mit einem Stempeldurchmesser von 100 mm durchgeführt. Hierzu werden Proben mit einer spezifizierten Geometrie Tiefungsprüfungen bis zur Rissentstehung unterzogen, die Tiefung beim Anriss wird dann als Maß für die Umformbarkeit des Werkstoffs herangezogen.
  • Aus der JP 2011-052290 A ist ein Aluminiumlegierungsband für Dosendeckel bekannt, das trotz seiner geringen Dicke möglichst belastbar sein soll. Dabei weist das Band ein rekristallisiertes Gefüge auf.
  • Des Weiteren ist aus der EP 2 302 087 A1 ist ein Fahrwerkteil aus einem Aluminiumverbundwerkstoff bekannt, der als äußere Schichten Aluminiumlegierungsschichten aufweist Aufgrund der dabei verwendeten Legierungsbestandteile zeichnet sich der AL-Verbundwerkstoff durch hervorragende Festigkeitswerte mit einer hohen Korrosionsbeständigkeit bei niedrigem Gewicht aus.
  • Verbundwerkstofflösungen bestehend aus hoch Mg-haltigen AA5xxx Aluminiumlegierungen mit vor Korrosion schützenden äußeren Aluminiumlegierungsschichten haben jedoch den Nachteil, dass die Herstellung aufwändig ist und zudem an Verbindungsstellen, an welchen der Aluminiumverbundwerkstoff mit weiteren Teilen verbunden ist, beispielsweise an Schnittkanten, Bohrungen und Durchbrüchen weiterhin eine erhöhte Korrosionsgefahr gegeben ist.
  • Die vorliegende Erfindung beschäftigt sich daher mit einschichtigen Aluminiumwerkstoffen. Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zu Grunde, ein einschichtiges Aluminiumlegierungsband zur Verfügung zu stellen, welches eine ausreichende Beständigkeit gegen interkristalline Korrosion aufweist und dennoch sehr gut umformbar ist, so dass auch großflächige Tiefziehteile, beispielsweise Türinnenteile von Kraftfahrzeugen mit ausreichender Festigkeit bereitgestellt werden können. Darüber hinaus soll ein Verfahren angegeben werden, mit welchem einschichtige Aluminiumlegierungsbänder hergestellt werden können.
  • Schließlich sollen aus den erfindungsgemäßen Aluminiumlegierungsbändern hergestellte Bauteile angegeben werden.
  • Gemäß einer ersten Lehre der vorliegenden Erfindung wird die aufgezeigte Aufgabe durch ein kaltgewalztes Aluminiumlegierungsband bestehend aus einer AlMg-Aluminiumlegierung gelöst, wobei die Aluminiumlegierung die folgenden Legierungsbestandteile aufweist:
    Si 0,2 Gew.-%,
    Fe 0,35 Gew.-%,
    Cu 0,15 Gew.-%,
    0,2 Gew.-% Mn 0,35 Gew.-%,
    4,1 Gew.-% Mg 4,5 Gew.-%,
    Cr 0,1 Gew.-%,
    Zn 0,25 Gew.-%,
    Ti 0,1 Gew.-%,
  • Rest Al und unvermeidbare Verunreinigungen einzeln max. 0,05 Gew.-%, in Summe max. 0,15 Gew.-%, wobei das Aluminiumlegierungsband ein rekristallisiertes Gefüge aufweist, die mittlere Korngröße des Gefüges zwischen 15 µm und 30 µm, vorzugsweise zwischen 15 µm und 25 µm beträgt und die Schlussweichglühung des Aluminiumlegierungsbandes in einem Durchlaufofen durchgeführt worden ist.
  • Es hat sich herausgestellt, dass es innerhalb der Spezifikation der Aluminiumlegierung vom Typ AA5182 einen spezifizierten, eng begrenzten Legierungsbereich gibt, welcher einerseits eine ausreichende Beständigkeit gegen interkristalline Korrosion aufweist und gleichzeitig bei Berücksichtigung bestimmter Nebenbedingungen, wie beispielsweise der mittleren Korngröße und der Art der Schlussweichglühung, auch ein hervorragendes Umformverhalten aufweist. Insbesondere die Kombination der mittleren Korngröße mit den beanspruchten Legierungsbestandteilen der Aluminiumlegierung des Aluminiumlegierungsbandes ermöglichen es, Umformgrade zu erreichen, die bei ausreichender Festigkeit die Herstellung von großflächig ausgebildeten, tiefgezogenen Aluminiumblechteilen ermöglichen. Insbesondere hat sich gezeigt, dass die Verwendung eines Durchlaufofens statt einer üblicherweise durchgeführten Coilglühung in einem Kammerofen die Umformbarkeit noch einmal signifikant erhöht.
  • Gemäß einer ersten Ausgestaltung des Aluminiumlegierungsbandes weist die Aluminiumlegierung zusätzlich eine oder mehrere der folgenden Beschränkungen der Gehalte an Legierungsbestandteilen auf:
    0,03 Gew.-% Si 0,10 Gew.-%,
    Cu 0,1 %, vorzugsweise 0,04 % ≤ Cu ≤ 0,08 %,
    Cr 0,05 Gew.-%,
    Zn 0,05 Gew.-%,
    0,01 Gew.-% Ti 0,05 Gew.-%
  • Der eingeschränkte Legierungsgehalt für Kupfer auf maximal 0,1 Gew.-% führt zu einer Verbesserung der Korrosionsbeständigkeit des Aluminiumlegierungsbands. Bei einem Cu-Gehalt von 0,04 Gew.-% bis 0,08 Gew.-% wird erreicht, dass Kupfer an einer Festigkeitssteigerung beteiligt ist, aber dennoch die Korrosionsbeständigkeit nicht zu stark herabsetzt. Höhere Gehalte an Silizium, Chrom, Zink und Titan als die angegebenen Werte führen zu einer verschlechterten Umformbarkeit der Aluminiumlegierung. Der in der Legierung vorhandene Siliziumanteil von 0,03 bis 0,1 Gew.-% führt in Kombination mit den Eisen- und Mangananteilen in den angegebenen Mengen insbesondere zu relativ gleichförmig verteilten, kompakten Partikeln der quaternären α-Al(Fe,Mn)Si-Phase, die die Festigkeit der Aluminiumlegierung steigern, ohne andere Eigenschaften wie die Umformbarkeit oder das Korrosionsverhalten negativ zu beeinflussen.
  • Titan wird üblicherweise beim Stranggießen der Aluminiumlegierung als Kornfeinungsmittel zum Beispiel in Form von Ti-Borid-Draht oder -Stangen hinzugegeben. Daher weist die Aluminiumlegierung in einer weiteren Ausführungsform einen Ti-Anhalt von mindestens 0,01 Gew.-% auf.
  • Eine weitere Verbesserung des Korrosionsverhaltens und der Umformbarkeit des Aluminiumlegierungsbandes kann dadurch erreicht werden, dass die Aluminiumlegierung zusätzlich eine oder mehrere der folgenden Beschränkungen der Gehalte an Legierungsbestandteilen aufweist:
    Cr 0,02 Gew.-%,
    Zn 0,02 Gew.-%
  • Es hat sich herausgestellt, dass Chrom deutlich in Gehalten unterhalb der Verunreinigungsschwelle von 0.05 Gew% die Umformbarkeit des Aluminiumlegierungsbandes beeinflusst und damit in möglichst geringen Anteilen in der Aluminiumlegierung des erfindungsgemäßen Aluminiumlegierungsbandes enthalten sein darf. Der Zinkgehalt wird unterhalb der Verunreinigungsschwelle von 0.05 Gew% eingestellt, um das allgemeine Korrosionsverhalten des Aluminiumlegierungsbandes nicht zu verschlechtern.
  • Darüber hinaus hat sich herausgestellt, dass Eisen innerhalb der gemäß der Aluminiumlegierung vom Typ AA5182 zugelassen Werte in Verbindung mit den Silizium- und Mangan-Gehalten wie oben beschrieben einen Effekt auf die Umformbarkeit aufweist. Eisen trägt in Kombination mit Silizium und Mangan zur Temperaturbeständigkeit des Aluminiumlegierungsbandes bei, so dass bevorzugt der Fe-Gehalt des Aluminiumlegierungsbandes gemäß einer nächsten Ausgestaltung 0,1 Gew.-% bis 0,25 Gew.-% oder 0,10 Gew.-% bis 0,20 Gew.-% beträgt.
  • Gleiches gilt auch für den Mn-Gehalt gemäß einer weiteren Ausgestaltung des Aluminiumlegierungsbandes, welcher vorzugsweise auf 0,20 Gew.-% bis 0,30 Gew.-% beschränkt werden sollte, um eine optimale Umformbarkeit des Aluminiumlegierungsbandes zu erreichen.
  • Einen besonders guten Kompromiss zwischen der Bereitstellung hoher Festigkeiten, guter Korrosionsbeständigkeit gegen interkristalline Korrosion sowie verbesserte Umformeigenschaften können gemäß einer weiteren Ausgestaltung des Aluminiumlegierungsbandes mit einem Mg-Gehalt von 4,2 Gew.-% bis 4,4 Gew.-% erreicht werden.
  • Um die notwendigen Festigkeiten für die Anwendungsbereiche bereitzustellen, weist das Aluminiumlegierungsband gemäß einer nächsten Ausführungsform eine Dicke von 0,5 mm bis 4 mm auf. Bevorzugt beträgt die Dicke 1 mm bis 2,5 mm, da in diesem Bereich die meisten Anwendungsgebiete des Aluminiumlegierungsbandes liegen.
  • Schließlich werden insbesondere Anwendungsgebiete im Automobilbereich für das erfindungsgemäße Aluminiumlegierungsband dadurch ermöglicht, dass das Aluminiumlegierungsband im weichen Zustand eine Streckgrenze Rp0,2 von min. 110 MPa und eine Zugfestigkeit Rm von min. 255 MPa aufweist. Es hat sich herausgestellt, dass insbesondere Aluminiumlegierungsbänder mit entsprechenden Streckgrenzen und Zugfestigkeiten besonders gut für die Anwendung im Automobilbereich geeignet sind.
  • Gemäß einer zweiten Lehre der vorliegenden Erfindung wird die oben aufgezeigte Aufgabe durch ein Verfahren zur Herstellung eines Aluminiumlegierungsbandes entsprechend den oben beschriebenen Ausführungsbeispielen dadurch gelöst, dass das Verfahren die folgenden Verfahrensschritte umfasst:
    • Gießen eines Walzbarrens, vorzugsweise im DC-Strangguss,
    • Homogenisieren des Walzbarrens bei 480 °C - 550 °C für min. 0,5 Std.,
    • Warmwalzen des Walzbarrens bei einer Temperatur von 280 °C bis 500 °C,
    • Kaltwalzen des Aluminiumlegierungsbandes an Enddicke mit einem Abwalzgrad von 40 % bis 70 % oder 50 % bis 60 % und
    • Weichglühen des fertig gewalzten Aluminiumlegierungsbandes bei 300 °C - 500 °C in einem Durchlaufofen
  • Es hat sich herausgestellt, dass mit den angegebenen Parametern in Verbindung mit den genannten Aluminiumlegierungsbestandteilen ein Aluminiumlegierungsband mit mittleren Korngrößen von 15 µm - 30µm herstellbar ist, das ausreichende Beständigkeit gegenüber interkristalliner Korrosion aufweist, ausreichende Festigkeiten bereitstellt und zudem sehr gute Umformungseigenschaften besitzt, so dass großflächige, tiefgezogene Blechteile hergestellt werden können. Das Homogenisieren des Walzbarrens sorgt für ein homogenes Gefüges und eine homogene Verteilung der Legierungsbestandteile im zu walzenden Warmwalzbarren. Das Warmwalzen bei Temperaturen von 280 °C - 500 °C ermöglicht eine durchgehende Rekristallisierung während des Warmwalzens, wobei das Warmwalzen typischerweise bis zu einer Dicke von 2,8 mm - 8 mm durchgeführt wird. Der abschließende Kaltwalzschritt ist beschränkt auf einen Abwalzgrad von 40 % bis 70 % oder 50 % bis 60 %, um in beiden Fällen bei der Weichglühung für eine durchgehende Rekristallisierung des Aluminiumlegierungsbandes zu sorgen. Je größer der Abwalzgrad des Aluminiumlegierungsbandes, desto geringer werden die mittleren Korngrößen, wobei sich herausgestellt hat, dass oberhalb von 70 % Abwalzgrad beim abschließenden Weichglühen eine zu geringe mittlere Korngröße entstehen kann. Unterhalb von 40 % Abwalzgrad werden bei der Weichglühung die mittleren Korngrößen wiederum zu groß, so dass zwar die Beständigkeit gegen interkristalline Korrosion steigt, allerdings die Umformbarkeit reduziert ist. Die Weichglühung des fertig gewalzten Aluminiumlegierungsbandes findet im Durchlaufofen statt, welche üblicherweise Aufheizraten von 1-10 °C/Sek. aufweisen und damit im Gegensatz zu Kammeröfen, bei welchen ein gesamtes Coil erhitzt wird, aufgrund der schnellen Erwärmung einen deutlichen Einfluss auf die späteren Eigenschaften des Gefüges des Aluminiumlegierungsbandes haben. Es konnte insbesondere festgestellt werden, dass bei einer Weichglühung im Durchlaufofen eine verbesserte Umformbarkeit des Bandes im Vergleich zu im Kammerofen geglühten Varianten erreicht wird.
  • Alternativ kann gemäß einer weiteren Ausführungsform des Verfahrens das Aluminiumlegierungsband auch mit einer Zwischenglühung hergestellt werden. Gemäß dieser alternativen Variante werden nach dem Warmwalzen alternativ die folgenden Verfahrensschritte durchgeführt:
    • Kaltwalzen des warmgewalzten Aluminiumlegierungsbandes auf eine Zwischendicke, welche derart bestimmt ist, dass der abschließende Kaltwalzgrad an Enddicke 40 % bis 70 % oder 50 % bis 60 % beträgt
    • Zwischenglühen des Aluminiumlegierungsbandes bei 300 °C bis 500 °C,
    • Kaltwalzen des Aluminiumlegierungsbandes an Enddicke mit einem Abwalzgrad von 40 % bis 70 % oder 50 % bis 60 %,
    • Weichglühen des fertig gewalzten Aluminiumlegierungsbandes bei 300 °C bis 500 °C in einem Durchlaufofen
  • Die Zwischenglühung des Aluminiumlegierungsbandes kann sowohl im Kammerofen als auch im Durchlaufofen erfolgen. Ein Einfluss auf die Umformbarkeit konnte nicht ermittelt werden. Entscheidend ist, welcher Abwalzgrad beim Kaltwalzen an Enddicke erreicht wird und ob die Weichglühung des Bandes im Durchlaufofen stattfindet.
  • Hierdurch werden unabhängig von der Art der Zwischenglühung die Umformbarkeit und die Korrosionsbeständigkeit in Verbindung mit der Legierungszusammensetzung bestimmt.
  • Um eine weitere Veränderung des Gefügezustandes im aufgewickelten Zustand nach der Weichglühung zu verhindern, wird das Aluminiumlegierungsband gemäß einer weiteren Ausgestaltung des Verfahrens nach dem Weichglühen auf eine Temperatur von max. 100 °C, vorzugsweise auf max. 70 °C abgekühlt und anschließend aufgehaspelt.
  • Wie bereits zuvor ausgeführt kann die Zwischenglühung gemäß einer weiteren Ausgestaltung des Verfahrens in einem Batchofen oder in einem Durchlaufofen durchgeführt werden.
  • Wird das Aluminiumlegierungsband auf eine Enddicke von 0,5 mm - 4 mm, vorzugsweise auf eine Enddicke von 1 mm - 2,5 mm kaltgewalzt, stehen den typischen Anwendungsgebieten insbesondere im Kraftfahrzeugbau sehr gut umformbare Bleche zur Verfügung, welche großflächig tiefgezogen werden können und gleichzeitig hohe Festigkeiten verbunden mit ausreichender Korrosionsbeständigkeit gegen interkristalline Korrosion bereitstellen.
  • Bevorzugt wird die Weichglühung im Durchlaufofen bei einer Metalltemperatur von 350 °C - 550 °C, vorzugsweise bei 400 °C - 450 °C für 10 Sek. - 5 Min., vorzugsweise 20 Sek. -1 Min. durchgeführt. Hierdurch wird erreicht, dass das Kaltband ausreichend durchrekristallisiert und die entsprechenden Eigenschaften in Bezug auf die sehr gute Umformbarkeit und die mittlere Korngröße mit hoher Prozesssicherheit und Wirtschaftlichkeit erreicht werden.
  • Schließlich wird die oben gezeigte Aufgabe durch ein Bauteil für ein Kraftfahrzeug gelöst, welches aus dem erfindungsgemäßen Aluminiumlegierungsband besteht. Die Bauteile zeichnen sich dadurch aus, dass diese, wie bereits ausgeführt, großflächig tiefgezogen werden können und so beispielsweise großflächige Bauteile für den Kraftfahrzeugbau zur Verfügung gestellt werden können. Darüber hinaus weisen diese aufgrund der bereitgestellten Festigkeiten auch die notwendige Steifigkeit sowie die Korrosionsbeständigkeit, welche für den Einsatz im Kraftfahrzeugbau erforderlich sind, auf.
  • Denkbar ist beispielsweise, dass das Bauteil gemäß einer weiteren Ausgestaltung ein Karosseriebauteil oder ein Karosserieanbauteil eines Kraftfahrzeuges ist, welches neben hohen Festigkeitsanforderungen auch Temperatur belastet ist. Vorzugsweise werden die "Body-in-White-Teile", beispielsweise ein Türinnenteil oder ein Heckklappeninnenteil, aus dem erfindungsgemäßen Aluminiumlegierungsband hergestellt.
  • Im Weiteren soll die Erfindung anhand von Ausführungsbeispielen in Verbindung mit der Zeichnung näher erläutert werden. Die Zeichnung zeigt in
  • Fig. 1
    Ein schematisches Ablaufdiagramm eines Ausführungsbeispiels des Herstellungsverfahrens des Aluminiumlegierungsbandes,
    Fig. 2a
    in einer Draufsicht die Probengeometrie für die Plane-Strain-Tiefungsmessung gemäß DIN EN ISO 12004,
    Fig. 2b
    in einer Schnittansicht den schematischen Versuchsaufbau der Plane-Strain-Tiefungsmessung gemäß DIN EN ISO 12004,
    Fig. 3
    in einer Schnittansicht die Versuchsanordnung zur Tiefungsmessung SZ32 im Erichsen Tiefungsversuch nach DIN EN ISO 20482 und
    Fig. 4
    ein typisches Ausführungsbeispiel für ein großflächiges, tiefbezogenes Blechteil gemäß der vorliegenden Erfindung.
  • Fig. 1 zeigt den Ablauf von Ausführungsbeispielen zur Herstellung von Aluminiumbändern. Das Ablaufdiagramm von Fig. 1 zeigt schematisch die verschiedenen Verfahrensschritte des Herstellprozess des erfindungsgemäßen Aluminiumlegierungsbandes.
  • In Schritt 1 wird ein Walzbarren aus einer AlMg-Aluminiumlegierung mit folgenden Legierungsbestandteilen, beispielsweise im DC-Strangguss gegossen:
    Si 0,2 Gew.-%,
    Fe 0,35 Gew.-%,
    Cu 0,15 Gew.-%,
    0,2 Gew.-% Mn 0,35 Gew.-%,
    4,1 Gew.-% Mg 4,5 Gew.-%,
    Cr 0,1 Gew.-%,
    Zn 0,25 Gew.-%,
    Ti 0,1 Gew.-%,
  • Rest Al und unvermeidbare Verunreinigungen einzeln maximal 0,05 Gew.-%, in Summe maximal 0,15 Gew.-%.
  • Anschließend wird der Walzbarren im Verfahrensschritt 2 einem Homogenisieren, welches ein- oder mehrstufig durchgeführt werden kann, unterzogen. Bei einem Homogenisieren werden Temperaturen des Walzbarrens vom 480 bis 550 °C für mindestens 0,5 h erreicht. Im Verfahrensschritt 3 wird dann der Walzbarren warmgewalzt, wobei typische Temperaturen von 280 °C bis 500 °C erreicht werden. Die Enddicken des Warmbandes betragen beispielsweise 2,8 bis 8 mm. Die Warmbandenddicke kann so gewählt werden, dass nach dem Warmwalzen lediglich ein Kaltwalzschritt 4 erfolgt, bei welchem das Warmband mit einem Abwalzgrad von 40% bis 70 %, bevorzugt 50 % bis 60 % in seiner Dicke bis zur Enddicke reduziert wird.
  • Anschließend wird das an Enddicke kaltgewalzte Aluminiumlegierungsband einer Weichglühung unterzogen. Die Weichglühung wird erfindungsgemäß in einem Durchlaufofen durchgeführt. Bei den in Tabelle 1 dargestellten Ausführungsbeispielen wurde der zweite Weg mit einer Zwischenglühung angewendet. Hierzu wird das Warmband nach dem Warmwalzen gemäß Verfahrensschritt 3 einem Kaltwalzen 4a zugeführt, welches das Aluminiumlegierungsband auf eine Zwischendicke kaltwalzt, welche derart bestimmt ist, dass der abschließende Kaltwalzgrad an Enddicke 40 % bis 70 % oder 50 % bis 60 % beträgt. Bei einem nachfolgenden Zwischenglühen wird das Aluminiumlegierungsband vorzugsweise durchgehend rekristallisiert. Die Zwischenglühung wurde bei den Ausführungsbeispielen entweder im Durchlaufofen bei 400 °C bis 450 °C oder im Kammerofen bei 330 °C bis 380 °C durchgeführt.
  • Die Zwischenglühung ist in Fig. 1 mit dem Verfahrensschritt 4b dargestellt. Im Verfahrensschritt 4c gemäß Fig. 1 wird das zwischengeglühte Aluminiumlegierungsband schließlich einem Kaltwalzen an Enddicke zugeführt, wobei der Abwalzgrad im Verfahrensschritt 4c zwischen 40%, und 70 %, bevorzugt zwischen 50 % und 60 % beträgt. Anschließend wird das Aluminiumlegierungsband wieder in den weichen Zustand durch eine Weichglühung überführt, wobei die Weichglühung erfindungsgemäß im Durchlaufofen bei 400 °C bis 450 °C durchgeführt wird. Die Glühungen der Vergleichsbeispiele in Tabelle 4 wurden im Kammerofen (KO) bei 330 °C bis 380 °C durchgeführt. Bei den verschiedenen Versuchen wurden neben unterschiedlichen Aluminiumlegierungen auch verschiedene Abwalzgrade nach der Zwischenglühung eingestellt. Die Werte für den Abwalzgrad nach der Zwischenglühung sind ebenfalls in Tabelle 1 und 4 angegeben. Zudem wurde der mittlere Korndurchmesser des weichgeglühten Aluminiumlegierungsbandes ermittelt. Hierzu wurden Längsschliffe gemäß der Barker-Methode anodisiert und anschließend unter dem Mikroskop gemäß ASTM E1382 vermessen und die mittlere Korngröße durch den mittleren Korndurchmesser bestimmt.
  • An den entsprechend hergestellten Aluminiumlegierungsbändern wurden mechanische Kennwerte, insbesondere die Streckgrenze Rp0,2, Zugfestigkeit Rm, die Gleichmaßdehnung Ag und die Dehnung A80mm bestimmt, Tabelle 2, 5. Neben den gemäß EN 10002-1 bzw. ISO 6892 gemessenen mechanischen Kenngrößen der Aluminiumlegierungsbänder sind zudem die mittleren Korngrößen nach ASTM E1382 in µm angegeben. Darüber hinaus wurde die Korrosionsbeständigkeit gegen interkristalline Korrosion gemäß ASTM G67 gemessen, und zwar ohne zusätzliche Wärmebehandlung im Ausgangszustand (Ausgang 0h). Um den Einsatz im Kraftfahrzeug zu simulieren, wurden die Aluminiumlegierungsbänder vor dem Korrosionstest darüber hinaus unterschiedlichen Wärmebehandlungen unterzogen. Eine erste Wärmebehandlung bestand aus einer Lagerung der Aluminiumbänder für 20 Minuten bei 185 °C, um den KTL-Zyklus abzubilden.
  • In einer weiteren Messreihe wurden die Aluminiumlegierungsbänder zusätzlich 200 Stunden bzw. 500 Stunden bei 80°C gelagert und anschließend dem Korrosionstest unterzogen. Da Umformungen von Aluminiumlegierungsbändern oder -blechen zusätzlich die Korrosionsbeständigkeit beeinflussen können, wurden die Aluminiumlegierungsbänder in einem weiteren Versuch um etwa 15 % gereckt, einer Wärmebehandlung bzw. einer Lagerung bei erhöhter Temperatur unterzogen und dann einem Test auf interkristalline Korrosion gemäß ASTM G67 unterzogen, bei welchem der Massenverlust gemessen wurde.
  • In Tabelle 1 sind die Legierungsgehalte von insgesamt vier verschiedenen Aluminiumlegierungen, welche innerhalb der Spezifikation der Aluminiumlegierung vom Typ AA5182 liegen, angegeben. Die Referenzlegierung stellt das bisher verwendete Material dar und ist im Vergleich zu den Varianten 1, 2 und 3 angeführt. Zusätzlich findet sich in der Tabelle 1 eine Angabe über die Art der Schlussglühung, den Endabwalzgrad und die gemessene mittlere Korngröße (Korndurchmesser) in µm. Die Varianten 1 und 2 unterschieden sich dabei lediglich in dem Endabwalzgrad, welcher zur Ausbildung einer anderen Korngröße führt. So unterscheidet sich die Variante 2 von Variante 1 abgesehen von fast identischen Legierungsbestandteilen im Wesentlichen durch einen Endabwalzgrad von 57 % bei identischen Banddurchlaufofenbedingungen. Das Ergebnis war, dass Variante 2 eine mittlere Korngröße von 18 µm im Vergleich zu 33 µm der Variante 1 aufwies. Die Bänder in der Tabelle 1 wurden im Banddurchlaufofen für 20 Sek. -1 Min. auf eine Temperatur von 400 °C - 450 °C gebracht, anschließend abgekühlt und mit weniger als 100 °C aufgewickelt. Die entnommenen Proben wurden dann wie in der Tabelle 2 angegeben gemäß den entsprechenden DIN EN ISO Normen vermessen.
  • Anhand Tabelle 2 wird deutlich, dass die Variante 1 in Bezug auf die Streckgrenze den Wert von 110 MPa nicht sicher erreicht und bei der diagonalen Messung, gekennzeichnet mit dem Symbol D, einen Wert von unterhalb von 110 MPa aufweist. Die Messung in Walzrichtung L und quer zur Walzrichtung Q zeigten dagegen, dass Variante 1 gerade eine Streckgrenze Rp0,2 von 110 MPa erreichte. Die Referenz sowie die Varianten 2 und 3 lagen deutlich über diesem unteren Grenzwert für die Streckgrenze. Das erfindungsgemäße Ausführungsbeispiel Variante 2 erreichte sicher die Streckgrenzwerte von mindestens 110 MPa in allen Zugrichtungen. Deutlich zu erkennen ist, dass die Variante 3 mit dem höchsten Mg-Gehalt von 4,95 Gew.-% die höchsten Streckgrenz- und Zugfestigkeitswerte erreicht. Darüber hinaus ist zu erkennen, dass der unterschiedliche Abwalzgrad zwischen den Varianten 1 und 2 nicht nur die Korngröße deutlich beeinflusst, sondern insbesondere die Streckgrenze auf einen Wert von deutlich mehr als 110 MPa anhebt.
  • Insbesondere weist die erfindungsgemäße Legierung Variante 2 eine gegenüber der Referenz niedrigere Anisotropie auf, die sich in niedrigen Werten der planaren Anisotropie Δr widerspiegelt. Dabei ist die planare Anisotropie Δr definiert als ½·(rL+rQ-2rD), wobei rL,rQ und rD den r-Werten in Längs-, Quer- bzw. Diagonalenrichtung entsprechen. Dabei unterscheidet sich der mittlere r-Wert r , berechnet aus 1/4·(rL+rQ+2rD), nicht wesentlich von dem des Referenzmaterials.
  • In Tabelle 3 sind nun die Messwerte, welche in Bezug auf die Beständigkeit gegen interkristalline Korrosion aufgenommen wurden, dargestellt. Es zeigte sich, dass die erfindungsgemäße Variante 2 gegenüber den Messwerten der Referenz insbesondere in Bezug auf die Langzeitbelastung vergleichbare Werte sowohl im gereckten Zustand als auch im ungereckten Zustand aufweist. Hier sind die Variante 2 und die Referenz nahezu identisch. Die Variante 3, welche zwar die größten Streckgrenzwerte und Zugfestigkeitswerte aufweist, zeigte im Korrosionstest allerdings, dass der zu große Mg-Gehalt einen zu großen Massenverlust insbesondere bei den Langzeittests, welche neben einem kurzen Temperaturzyklus von 20 Min. bei 185 °C zusätzlich eine Langzeitbelastung von 200 Std. bei 80 °C durchlaufen haben, zur Folge hat.
  • In Bezug auf die Messwerte in Tabelle 3 bezüglich der Umformbarkeit zeigte sich, dass insbesondere die Variante 2 in den Streckzieheigenschaften im Tiefungsversuch SZ32 sowie im Plane-Strain-Tiefungsversuch der Referenzlegierung überlegen war. Das deutlich verbesserte Umformverhalten des Aluminiumlegierungsbandes gemäß Variante 2 gegenüber dem Referenzaluminiumlegierungsband zeigt, dass selbst bei verringertem Mg-Gehalt gleichwertige Streckgrenzwerte und Zugfestigkeitswerte mit der Referenzlegierung erreicht werden können, ohne große Einbußen in Bezug auf die Beständigkeit gegenüber interkristalliner Korrosion. Dies zeigten insbesondere die gemäß ASTM G67 im NAML-Test gemachten Massenverlustmessung. Signifikant konnte mit der Variante 2 eine Verbesserung des Tiefziehverhaltens im Tiefungsversuch nach Erichsen um 7 % sowie im Plane-Strain-Tiefungsversuch um etwa 10 % ermittelt werden, welche das zusätzliche Umformpotential der erfindungsgemäßen Aluminiumlegierungsbänder zeigt. Dieses zusätzliche Umformpotential kann genutzt werden, um tiefgezogene, großflächige Blechformteile, beispielsweise Türinnenteile eines PKWs, herzustellen.
  • Im Weiteren soll kurz die Versuchsanordnung für den Versuch "Tiefung SZ32" nach DIN EN ISO 20482 sowie der Plane-Strain-Tiefungsversuch gemäß mit Nakajima-Geometrie nach DIN EN ISO 12004 erläutert werden.
  • In der Fig. 2a ist die Geometrie des Probenkörpers 1 dargestellt. Aus einem kreisrunden Blechzuschnitt wird der taillierte Probekörper 1 derart zugeschnitten, dass der Steg 4 eine Breite von 100 mm hat und die Radien 2 an den Taillierungen 20 mm betragen. Mit dem Maß 3, welches 100 mm beträgt, ist der Stempeldurchmesser dargestellt. Fig. 2b zeigt nun den Probekörper 1 eingespannt zwischen zwei Niederhaltern 5, 6. Der Probekörper 1, welcher auf einer Aufnahme 8 aufgelegt wurde und über die Niederhaltern 5, 6 gegen die Auflage gedrückt wurde, ist mit einem Stempel 7, welcher eine halbkugelförmige Spitze mit einem Radius von 100 mm aufweist, in Pfeilrichtung gezogen worden. Die Niederhalter besitzen zusätzlich Einlaufradien von 5 bzw. 10 mm an ihrer zur Auflage 8 weisenden Seite. Die Kraft, mit welcher der Tiefungsversuch durchgeführt wird, wird während der Verformung gemessen und ein plötzlicher Lastabfall, welcher die Ausbildung eines Risses signalisiert, führt zur Messung der entsprechenden Ziehstempeltiefe.
  • Einen ähnlichen Aufbau zeigt der Tiefungsversuch "Tiefung SZ32" nach Erichsen, wobei allerdings keine taillierten Proben verwendet werden. Hier wird lediglich ein Probekörper 9 zwischen einem Niederhalter 10 und einer Aufnahme 11 gehalten und mit einem Stempel 12 gezogen, bis ebenfalls ein Lastabfall in der Ziehkraft gemessen werden kann. Anschließend wird wiederum die entsprechende Position des Stempels vermessen. Die Öffnung der Matrize in Fig. 3 betrug 35,4 mm, der Stempelkopfdurchmesser 32 mm, d. h. der Stempelradius betrug 16 mm. Zusätzlich wurde eine Teflon-Ziehfolie zur Reduzierung der Reibung im Tiefungsversuch SZ32 verwendet.
  • In den Tabellen 4 und 5 wurden nun weitere Ausführungsbeispiele und Vergleichsbeispiele hergestellt und in Bezug auf ihre mechanischen Eigenschaften sowie auf die Beständigkeit gegen interkristalline Korrosion vermessen. Es zeigte sich, dass die Kombination aus dem Einsatz des Durchlaufofens in Verbindung mit einer spezifisch gewählten Korngröße von 15 µm - 30 µm, vorzugsweise von 15µm - 25 µm zu einem guten Kompromiss zwischen Korrosionsbeständigkeit und mechanischen Messwerten führt. So sind beispielsweise die erfindungsgemäßen Ausführungsbeispiele Nr. 3, 4, 7 und 11 mit einer ausreichenden Beständigkeit gegen interkristalline Korrosion ausgestattet und weisen zudem die für den Einsatz im Automobilbereich notwendigen mechanischen Messwerte Rp0,2 und Rm auf, so dass diese ideal für die Bereitstellung von großflächigen, tiefgezogenen Bauteilen geeignet sind.
  • In Fig. 4 ist beispielsweise ein entsprechendes "Body-in-White-Teil, in Form eines Türinnenteils dargestellt, welches unter Verwendung des Aluminiumlegierungsbandes der vorliegenden Erfindung aus einem einzigen, tiefgezogenen Blech hergestellt werden kann. Die Blechdicke beträgt dabei vorzugsweise 1,0 - 2,5 mm. Darüber hinaus sind weitere Teile eines Kraftfahrzeuges in Blechschalenbauweise denkbar, wie die Innenteile von Heckdeckel, Motorhaube, sowie Bauteile in der Fahrzeugstruktur, die hohen Anforderungen an Umformbarkeit und interkristalline Korrosion haben. Tabelle 1
    Werkstoff [Gew.-%] Si Fe Cu Mn Mg Cr Zn Ti Verunreinigungen Schlussglühung Endabwalzgrad (Kaltwalzen) % Korngröße [µm]
    min. 0,20 4,0 Einzeln max. 0,05
    AA 5182 max. 0,20 0,35 0,15 0,50 5,0 0,10 0,25 0,10 in Summe max. 0,15
    Referenz 0,07 0,24 0,036 0,3 4,57 0,005 0.007 0,016 0,05 BDLO 46 15
    0,15
    Var. 1 0,06 0,16 0,004 0,27 4,37 0,008 0,002 0,013 0,05 BDLO 21 33
    0,15
    Var. 2 0,06 0,16 0,004 0,27 4,38 0,008 0,003 0,013 0,05 BDLO 57 18
    0,15
    Var. 3 0,05 0,17 0,023 0,26 4,95 0,008 0,003 0,026 0,05 BDLO 57 17
    0,15
    Tabelle 2
    Probe Pos. R p0,2 R m A g A g (gegl.) A 80mm A 80mm(Hand ) Z-Wert n-Wert r-Wert Δr r
    N/mm 2 N/mm 2 % % % % %
    Referenz L 137 284 21,3 20,7 24,5 25,2 69 0,316 0,827 0,197 0,754
    D 133 276 22,2 21,4 25,2 25,8 72 0.306 0,704
    Q 133 277 21,9 21,6 25,5 26,3 71 0,305 0,779
    Var.1 L 110 262 21,2 21,9 25,9 26,4 71 0,335 0,668 -0,363 0,779
    D 107 256 24,7 23,0 27,7 28,7 72 0,338 0,870
    Q 111 259 22,0 21,2 24,6 25,7 65 0,332 0,708
    Var.2 L 128 266 23,2 22,7 26,8 27,7 67 0,332 0,724 0,035 0,693
    D 127 261 23,1 22,2 26,2 27,0 67 0,332 0,685
    Q 128 262 23,9 22,5 26,5 27,6 66 0,333 0,681
    Var.3 L 141 290 24,1 23,5 28,4 29,1 70 0,335 0,697 -0,12 0,710
    D 140 286 22,6 23.4 27,0 27,8 68 0,336 0,740
    Q 141 286 22,6 23,3 27,1 27,7 65 0,335 0,663
    DIN EN ISO 6892-1:2009 DIN EN ISO 10275:2009 DIN EN ISO 10113:2009
    Tabelle 3
    IK-Massenverluste Umformbarkeit
    Variante nicht thermisch behandelt 20 min. 185°C 20 min 185°C plus 200 h 80°C 17h 130°C 15% gereckt 20 min. 185°C 15% gereckt 20 min.185°C plus 200 h 80°C Tiefung SZ32 [mm] Plane-Strain Tiefung [mm]
    Grenzwert 2,0 4,0 35,0 50,0 15,0 45,0
    Referenz 1,2 2,1 29,8 48,8 10,4 42,1 14,2 27,9
    Var. 1 (Vergl.) 1,2 1,7 10,4 21,3 4,4 12,9 14,5 30,3
    Var. 2 (Erf.) 1,2 2,4 33,7 42,2 13,5 40,1 14,6 30,7
    Var. 3 (Vergl.) 1,3 5,3 41,7 55,0 30,4 53,5 14,6 31,6
    Tabelle 4
    Nr Legierung Endwalzgrad [%] Schlussglühung Korngröße [µm] Si Fe Cu Mn Mg Cr Zn Ti
    1 III 46 KO 16 0,07 0,24 0,040 0,30 4,50 0,005 0,007 0,016
    3 II 57 BDLO 18 0,06 0,16 0,004 0,27 4,35 0,008 0,002 0,013
    4 I 45 BDLO 18 0,03 0,13 0,002 0,25 4,15 0,001 0,004 0,021
    6 I 45 KO 21 0,03 0,13 0,002 0,25 4,15 0,001 0,004 0,021
    7 III 30 BDLO 22 0,07 0,24 0,040 0,30 4,50 0,005 0,007 0,016
    11 III 25 BDLO 27 0,07 0,24 0,040 0,30 4,50 0,005 0,007 0,016
    13 I 32 BDLO 29 0,03 0,13 0,002 0,25 4,15 0,001 0,004 0,021
    15 III 30 KO 30 0,07 0,24 0,040 0,30 4,50 0,005 0,007 0,016
    16 I 25 BDLO 31 0,03 0,13 0,002 0,25 4,15 0,001 0,004 0,021
    18 II 21 BDLO 33 0,06 0,16 0,004 0,27 4,35 0,008 0,002 0,013
    20 I 20 BDLO 34 0,03 0,13 0,002 0,25 4,15 0,001 0,004 0,021
    Tabelle 5
    IK-Massenverluste, ungereckt** IK-Massenverluste,15%gereckt** mechanische Kennwerte, Zustand weich
    Nr Ausgang[0h) 20 min. 185°C 20 Min. 185°C + 200 h 80°C 20Min. 185° C + 500 h /80°C 20 Min, 185°C 20 Min. 185°C + 200 h 80°C R p0,2 Rm Ag A80mm Ergebnis
    1 III 15,4 16,6 25,7 26,9 18,8 33,6 135 279 20,7 25,2 Vergleich
    3 II 1,2 2,4 33,7 36,7 13,5 40,1 128 262 23,9 26,5 Erfindung
    4 I 1,3 1,9 17,8 22,2 1,6 20,1 117 258 22,8 25,3 Erfindung
    6 I 8,2 10,8 18,6 22.1 9,6 20,7 106 250 23,8 26,7 Vergleich
    7 III 1,1 1,7 18,0 24,5 3,3 25,1 119 276 20,3 24,9 Erfindung
    11 III 1,1 1,6 14,3 17,7 2,8 19,8 116 275 20,2 24,4 Erfindung
    13 I 1,1 1,2 13,3 16,7 2,1 17,4 104 251 22,2 24,8 Vergleich
    15 III 2,8 3,0 7,9 10,9 6,4 18,0 125 281 19,5 23,6 Vergleich
    16 I 1,1 1,3 10,8 13,1 1,9 14,2 103 252 21,6 26,1 Vergleich
    18 II 1,2 1,7 10,4 12,5 4,4 12,9 109 259 22,0 24,6 Vergleich
    20 1 1,1 1,2 8,3 11,1 1,7 12,4 101 251 20,8 25,1 Vergleich

Claims (16)

  1. Kaltgewalztes Aluminiumlegierungsband bestehend aus einer AlMg-Aluminiumlegierung,
    dadurch gekennzeichnet, dass
    die Aluminiumlegierung die folgenden Legierungsbestandteile aufweist: Si 0,2 Gew.-%, Fe 0,35 Gew.-%, Cu 0,15 Gew.-%, 0,2 Gew.-% Mn 0,35 Gew.-%, 4,1 Gew.-% Mg 4,5 Gew.-%, Cr 0,1 Gew.-%, Zn 0,25 Gew.-%, Ti 0,1 Gew.-%,
    Rest A1 und unvermeidbare Verunreinigungen einzeln maximal 0,05 Gew.-%, in Summe maximal 0,15 Gew.-%, wobei das Aluminiumlegierungsband ein rekristallisiertes Gefüge aufweist, die Korngröße des Gefüges zwischen 15µm und 25 µm beträgt und die Schlussweichglühung des Aluminiumlegierungsbandes in einem Durchlaufofen durchgeführt worden ist
  2. Aluminiumlegierungsband nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Aluminiumlegierung zusätzlich eine oder mehrere der folgenden Beschränkungen der Gehalte an Legierungsbestandteilen aufweist: 0,03 Gew.-% Si 0,10 Gew.-%, Cu 0,1%, Cr 0,05 Gew.-%, Zn 0,05 Gew.-%, 0,01 Gew.-% Ti 0,05 Gew.-%.
  3. Aluminiumlegierungsband nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    die Aluminiumlegierung zusätzlich einen oder mehrere der folgenden Beschränkungen der Gehalte an Legierungsbestandteilen aufweist: Cr 0,02 Gew.-%, Zn 0,02 Gew.-%.
  4. Aluminiumlegierungsband nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass
    der Fe-Gehalt 0,10 Gew.-% bis 0,25 Gew.-% oder 0,10 Gew.-% bis 0,2 Gew.-% beträgt.
  5. Aluminiumlegierungsband nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass
    der Mn-Gehalt 0,20 Gew.-% bis 0,30 Gew.-% beträgt
  6. Aluminiumlegierungsband nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, dass
    der Mg-Gehalt 4,2 Gew.-% bis 4,4 Gew.-% beträgt.
  7. Aluminiumlegierungsband nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet, dass
    das Aluminiumlegierungsband eine Dicke von 0,5 mm bis 4 mm aufweist
  8. Aluminiumlegierungsband nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet, dass
    das Aluminiumlegierungsband im weichen Zustand eine Streckgrenze Rp0,2 von mindestens 110 MPa und eine Zugfestigkeit Rm von mindestens 255 MPa aufweist.
  9. Verfahren zur Herstellung eines Aluminiumlegierungsbandes nach einem der Ansprüche 1 bis 8 umfassend die folgenden Verfahrensschritte:
    - Gießen eines Walzbarrens,
    - Homogenisieren des Walzbarrens bei 480 °C bis 550 °C für mindestens 0,5 h,
    - Warmwalzen des Walzbarrens bei einer Temperatur von 280 °C bis 500 °C,
    - Kaltwalzen des Aluminiumlegierungsbandes an Enddicke mit einem Abwalzgrad von 40% bis 70 % oder 50 % bis 60 % und
    - Weichglühen des fertig gewalzten Aluminiumlegierungsbandes bei 300 °C bis 500 °C in einem Durchlaufofen.
  10. Verfahren nach Anspruch 9, wobei nach dem Warmwalzen alternativ die folgenden Verfahrensschritte durchgeführt werden:
    - Kaltwalzen des warmgewalzten Aluminiumlegierungsbandes auf eine Zwischendicke, welche derart bestimmt ist, dass der abschließende Kaltwalzgrad an Enddicke 40 % bis 70 % oder 50 % bis 60 % beträgt,
    - Zwischenglühen des Aluminiumlegierungsbandes bei 300 °C bis 500 °C,
    - Kaltwalzen des Aluminiumlegierungsbandes an Enddicke mit einem Abwalzgrad von 40% bis 70 % oder 50 % bis 60 %
    - Weichglühen des fertig gewalzten Aluminiumlegierungsbandes bei 300 °C bis 500 °C in einem Durchlaufofen.
  11. Verfahren nach Anspruch 9 oder 10,
    dadurch gekennzeichnet, dass
    das Aluminiumlegierungsband nach dem Weichglühen auf eine Temperatur von maximal 100 °C abgekühlt wird und aufgehaspelt wird.
  12. Verfahren nach einem der Ansprüche 10 oder 11,
    dadurch gekennzeichnet, dass
    die Zwischenglühung in einem Batchofen oder in einem Durchlaufofen durchgeführt wird.
  13. Verfahren nach einem der Ansprüche 9 bis 12,
    dadurch gekennzeichnet, dass
    das Aluminiumlegierungsband auf eine Enddicke von 0,5 mm bis 4 mm kaltgewalzt wird.
  14. Verfahren nach einem der Ansprüche 9 bis 13,
    dadurch gekennzeichnet, dass
    die Weichglühung im Durchlaufofen bei einer Metalltemperatur von 350 °C bis 550 °C für 10 s bis 5 Min. erfolg.
  15. Bauteil für ein Kraftfahrzeug bestehend aus einem Aluminiumlegierungsband gemäß einem der Ansprüche 1 bis 8.
  16. Bauteil nach Anspruch 15,
    dadurch gekennzeichnet, dass
    das Bauteil ein Karosseriebauteil oder ein Karosserieanbauteil eines Kraftfahrzeugs ist.
EP13756053.8A 2012-08-22 2013-08-22 Hochumformbares und ik-beständiges almg-band Revoked EP2888383B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13756053.8A EP2888383B1 (de) 2012-08-22 2013-08-22 Hochumformbares und ik-beständiges almg-band

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP12181356 2012-08-22
EP2013064736 2013-07-11
EP13756053.8A EP2888383B1 (de) 2012-08-22 2013-08-22 Hochumformbares und ik-beständiges almg-band
PCT/EP2013/067487 WO2014029856A1 (de) 2012-08-22 2013-08-22 Hochumformbares und ik-beständiges almg-band

Publications (2)

Publication Number Publication Date
EP2888383A1 EP2888383A1 (de) 2015-07-01
EP2888383B1 true EP2888383B1 (de) 2016-03-30

Family

ID=49084999

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13756053.8A Revoked EP2888383B1 (de) 2012-08-22 2013-08-22 Hochumformbares und ik-beständiges almg-band

Country Status (9)

Country Link
US (1) US20150159250A1 (de)
EP (1) EP2888383B1 (de)
JP (1) JP5923665B2 (de)
KR (1) KR101709289B1 (de)
CN (1) CN104937120B (de)
CA (1) CA2882614C (de)
ES (1) ES2569945T3 (de)
RU (1) RU2608931C2 (de)
WO (1) WO2014029856A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015027037A1 (en) * 2013-08-21 2015-02-26 Taheri Mitra Lenore Annealing process
WO2016196921A1 (en) * 2015-06-05 2016-12-08 Novelis Inc. High strength 5xxx aluminum alloys and methods of making the same
JP6481052B2 (ja) * 2015-06-25 2019-03-13 ハイドロ アルミニウム ロールド プロダクツ ゲゼルシャフト ミット ベシュレンクテル ハフツングHydro Aluminium Rolled Products GmbH 高強度かつ容易に成形可能なAlMgストリップおよび同を製造するための方法
MX2019010192A (es) * 2017-02-28 2019-10-02 Tata Steel Ijmuiden Bv Metodo para producir un producto de acero recubierto formado en caliente.
WO2020182506A1 (en) 2019-03-08 2020-09-17 Aleris Aluminum Duffel Bvba Method of manufacturing a 5xxx-series sheet product
CN113186413A (zh) * 2021-04-29 2021-07-30 郑州明泰实业有限公司 一种新能源汽车用5083-o态电池壳侧板的制备方法
CN117897511A (zh) 2021-09-03 2024-04-16 斯佩拉有限公司 变形优化的铝合金带材及制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4151013A (en) 1975-10-22 1979-04-24 Reynolds Metals Company Aluminum-magnesium alloys sheet exhibiting improved properties for forming and method aspects of producing such sheet
JPS62207850A (ja) 1986-03-10 1987-09-12 Sky Alum Co Ltd 成形加工用アルミニウム合金圧延板およびその製造方法
EP0259700A1 (de) 1986-09-09 1988-03-16 Sky Aluminium Co., Ltd. Verfahren zur Herstellung eines gewalzten Bleches aus Aluminiumlegierung
EP0681034A1 (de) 1994-05-06 1995-11-08 The Furukawa Electric Co., Ltd. Verfahren zur Herstellung von Fahrzeugkarosserieblech aus einer Aluminium-Legierung und dadurch hergestelltes Legierungsblech
EP0818553A1 (de) 1996-06-28 1998-01-14 Hoogovens Aluminium N.V. Blech aus Aluminium vom Typ AA5000 und Verfahren zu seiner Herstellung
EP0769564B1 (de) 1995-10-18 2001-12-12 Pechiney Rhenalu Geschweisste Strukturen mit verbesserten mechanischen Eigenschaften aus AlMg-Legierungen

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998040528A1 (en) * 1997-03-07 1998-09-17 Alcan International Limited Process for producing aluminium sheet
DE10231437B4 (de) * 2001-08-10 2019-08-22 Corus Aluminium N.V. Verfahren zur Herstellung eines Aluminiumknetlegierungsprodukts
RU2230131C1 (ru) * 2002-09-20 2004-06-10 Региональный общественный фонд содействия защите интеллектуальной собственности Сплав системы алюминий-магний-марганец и изделие из этого сплава
ATE370256T1 (de) * 2003-04-08 2007-09-15 Hydro Aluminium Deutschland Flächiges, gewalztes halbzeug aus einer aluminiumlegierung
JP4534573B2 (ja) * 2004-04-23 2010-09-01 日本軽金属株式会社 高温高速成形性に優れたAl‐Mg合金板およびその製造方法
RU2280705C2 (ru) * 2004-09-15 2006-07-27 Открытое акционерное общество "Каменск-Уральский металлургический завод" Сплав на основе алюминия и изделие из него
EP1852251A1 (de) * 2006-05-02 2007-11-07 Aleris Aluminum Duffel BVBA Verbundblech aus Aluminium
JP2008202134A (ja) * 2007-02-22 2008-09-04 Kobe Steel Ltd プレス成形性に優れたアルミニウム合金熱延板
JP5432642B2 (ja) * 2009-09-03 2014-03-05 株式会社Uacj 缶エンド用アルミニウム合金板及びその製造方法。
ES2392131T3 (es) * 2009-09-15 2012-12-04 Hydro Aluminium Rolled Products Gmbh Pieza de mecanismo de traslación de material compuesto de AL

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4151013A (en) 1975-10-22 1979-04-24 Reynolds Metals Company Aluminum-magnesium alloys sheet exhibiting improved properties for forming and method aspects of producing such sheet
JPS62207850A (ja) 1986-03-10 1987-09-12 Sky Alum Co Ltd 成形加工用アルミニウム合金圧延板およびその製造方法
EP0259700A1 (de) 1986-09-09 1988-03-16 Sky Aluminium Co., Ltd. Verfahren zur Herstellung eines gewalzten Bleches aus Aluminiumlegierung
EP0681034A1 (de) 1994-05-06 1995-11-08 The Furukawa Electric Co., Ltd. Verfahren zur Herstellung von Fahrzeugkarosserieblech aus einer Aluminium-Legierung und dadurch hergestelltes Legierungsblech
EP0769564B1 (de) 1995-10-18 2001-12-12 Pechiney Rhenalu Geschweisste Strukturen mit verbesserten mechanischen Eigenschaften aus AlMg-Legierungen
EP0818553A1 (de) 1996-06-28 1998-01-14 Hoogovens Aluminium N.V. Blech aus Aluminium vom Typ AA5000 und Verfahren zu seiner Herstellung

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys", ALUMINIUM ASSOCIATION TEAL SHEETS, February 2009 (2009-02-01), pages 7 - 8, XP055136121
"Process for producing an AA5000 aluminum alloy sheet with excellent formability", RESEARCH DISCLOSURE 505004, vol. 505, no. 4, May 2006 (2006-05-01), XP007136144
L. RABET ET AL.: "Particle Stimulated Nucleation During Continuous Annealing Of A Cold Rolled AA5182 Alloy?", ICAA-5, MATERIALS SCIENCE FORUM, vol. 217-222, 1996, pages 465 - 470, XP055337024
LUC RABET: "Textuurontwikkeling tijdens de rekristallisatie van een koudvervormde Al-Mg legering voor automobieltoepassingen", KATHOLIEKE UNIVERSITEIT LEUVEN., March 1996 (1996-03-01), XP055339886
STEFAN LANG: "Entwicklung einer neuen AIMg-Legierung fur Außenhaut- Karosseriebleche mit verbesserter Umformbarkeit", PHD THESIS, 1999, pages 1 - 197, XP055525920
STEFAN LANG: "Entwicklung einer neuen AIMg-Legierung fur Außenhaut- Karosseriebleche mit verbesserter Umformbarkeit", PHD THESIS, 1999, pages 44 - 49 , 78-79, 86-89, 130-133 and 182-183, XP055525920
T. KOMATSUBARA ET AL.: "New Al-Mg-Cu Alloys for Autobody Sheet Applications", SOCIETY OF AUTOMOTIVE ENGINEERS, INC., 1989, XP055525913

Also Published As

Publication number Publication date
KR101709289B1 (ko) 2017-02-22
CA2882614A1 (en) 2014-02-27
KR20150076151A (ko) 2015-07-06
US20150159250A1 (en) 2015-06-11
RU2608931C2 (ru) 2017-01-26
CN104937120A (zh) 2015-09-23
CA2882614C (en) 2018-01-02
JP5923665B2 (ja) 2016-05-24
EP2888383A1 (de) 2015-07-01
WO2014029856A1 (de) 2014-02-27
ES2569945T3 (es) 2016-05-13
RU2015110021A (ru) 2016-10-20
CN104937120B (zh) 2017-11-17
JP2015532679A (ja) 2015-11-12

Similar Documents

Publication Publication Date Title
EP3314031B1 (de) Hochfestes und gut umformbares almg-band sowie verfahren zu seiner herstellung
EP2888383B1 (de) Hochumformbares und ik-beständiges almg-band
EP2770071B2 (de) Aluminiumlegierung zur Herstellung von Halbzeugen oder Bauteilen für Kraftfahrzeuge, Verfahren zur Herstellung eines Aluminiumlegierungsbands aus dieser Aluminiumlegierung sowie Aluminiumlegierungsband und Verwendungen dafür
EP2888382B1 (de) Gegen interkristalline korrosion beständiges aluminiumlegierungsband und verfahren zu seiner herstellung
EP2270249B1 (de) AlMgSi-Band für Anwendungen mit hohen Umformungsanforderungen
EP2570257B1 (de) Aluminiumverbundwerkstoff mit AlMgSi-Kernlegierungsschicht
EP2570509B1 (de) Herstellverfahren für AlMgSi-Aluminiumband
DE112019000856T5 (de) Verfahren zur Herstellung von Aluminiumlegierungsbauelementen
EP3497256B1 (de) Aluminiumlegierung und aluminiumlegierungsband für den fussgängeraufprallschutz
EP2703508B1 (de) Gegen interkristalline Korrosion beständige Aluminiumlegierung
EP4132743A1 (de) Hochfester lotplattierter al-mg-si-aluminiumwerkstoff
EP1748088B1 (de) Verfahren zur Herstellung eines Halbzeugs oder Bauteils von Fahrwerk- oder Strukturanwendungen im Kraftfahrzeug
EP3690076A1 (de) Verfahren zur herstellung eines blechs oder bands aus einer aluminiumlegierung sowie ein dadurch hergestelltes blech, band oder formteil
CH700835B1 (de) Aluminium-Verbundwalzblechprodukt.
EP3178952B9 (de) Hochumformbare, mittelfeste aluminiumlegierung zur herstellung von halbzeugen oder bauteilen von kraftfahrzeugen
EP4396387A1 (de) Umformoptimiertes aluminiumlegierungsband und verfahren zur herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150219

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20150928

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 785478

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20160427

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013002395

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2569945

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160513

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160630

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160701

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160330

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160730

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502013002395

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: ALERIS ALUMINUM DUFFEL BVBA

Effective date: 20161220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: NOVELIS INC.

Effective date: 20161229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160822

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 785478

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180822

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20190719

Year of fee payment: 7

Ref country code: SE

Payment date: 20190821

Year of fee payment: 7

Ref country code: ES

Payment date: 20190924

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180822

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200823

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210819

Year of fee payment: 9

Ref country code: IT

Payment date: 20210830

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210819

Year of fee payment: 9

Ref country code: GB

Payment date: 20210820

Year of fee payment: 9

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013002395

Country of ref document: DE

Owner name: SPEIRA GMBH, DE

Free format text: FORMER OWNER: HYDRO ALUMINIUM ROLLED PRODUCTS GMBH, 41515 GREVENBROICH, DE

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SPEIRA GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 502013002395

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 502013002395

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

REG Reference to a national code

Ref country code: FI

Ref legal event code: MGE

27W Patent revoked

Effective date: 20220113

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20220113

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 785478

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200823