EP3178952B9 - Hochumformbare, mittelfeste aluminiumlegierung zur herstellung von halbzeugen oder bauteilen von kraftfahrzeugen - Google Patents

Hochumformbare, mittelfeste aluminiumlegierung zur herstellung von halbzeugen oder bauteilen von kraftfahrzeugen Download PDF

Info

Publication number
EP3178952B9
EP3178952B9 EP17151174.4A EP17151174A EP3178952B9 EP 3178952 B9 EP3178952 B9 EP 3178952B9 EP 17151174 A EP17151174 A EP 17151174A EP 3178952 B9 EP3178952 B9 EP 3178952B9
Authority
EP
European Patent Office
Prior art keywords
weight
aluminium alloy
components
aluminum alloy
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17151174.4A
Other languages
English (en)
French (fr)
Other versions
EP3178952A1 (de
EP3178952B1 (de
Inventor
Dr. Thomas Hentschel
Dr. Simon Miller-Jupp
Dr. Henk-Jan BRINKMAN
Dr. Olaf Engler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Speira GmbH
Original Assignee
Hydro Aluminium Rolled Products GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydro Aluminium Rolled Products GmbH filed Critical Hydro Aluminium Rolled Products GmbH
Priority to EP17151174.4A priority Critical patent/EP3178952B9/de
Publication of EP3178952A1 publication Critical patent/EP3178952A1/de
Publication of EP3178952B1 publication Critical patent/EP3178952B1/de
Application granted granted Critical
Publication of EP3178952B9 publication Critical patent/EP3178952B9/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions

Definitions

  • the reduction of the Cu content to a maximum of 0.05% by weight, preferably a maximum of 0.01% by weight, has a similar effect, while at the same time the tendency to filiform corrosion or intergranular corrosion due to the reduction in the Cu content generally declining.
  • the homogenization at a temperature of 500 ° C. to 600 ° C. for at least 0.5 h, preferably at least 2 h ensures that a homogeneous structure is achieved the further processing of the billet is provided.
  • the hot rolling temperatures enable good recrystallization during hot rolling so that the structure is as fine-grained as possible after hot rolling. This fine-grain structure is only stretched by cold rolling and recrystallized again in the final soft annealing.
  • the cold rolling produces a particularly high number of dislocations in the structure, which in the final soft annealing produces a very fine-grain, fully recrystallized structure.
  • the degree of rolling of the final thickness before the final soft annealing must be at least 50%, preferably at least 70% of the desired final thickness.
  • the homogenization takes place in two stages, whereby the rolling billet is first heated to 550 ° C to 600 ° C for at least 0.5 h and then the rolling billet at 450 ° C to 550 ° for at least 0.5 h, preferably at least 2 h. The billet is then hot rolled.
  • An aluminum alloy strip or sheet can be produced from an aluminum alloy according to the invention, the strip having a thickness of 0.2 mm to 5 mm and, in the soft-annealed state, a yield point R p0.2 of at least 45 MPa and a uniform elongation A g of at least 23% and an elongation at break A 80mm of at least 35%.
  • the prerequisites are given that the aluminum alloy strip or sheet can be used for components in motor vehicles which, in addition to very good forming properties, also have very good Have resistance to intergranular corrosion or filiform corrosion. This also applies in particular to painted or coated components.
  • the stated object is achieved by a structural part of a motor vehicle, in particular an inner door part of a motor vehicle, comprising at least one formed sheet metal from a Aluminum alloy according to the invention solved.
  • the aluminum alloy according to the invention not only provides the required forming properties in the soft-annealed state, but also ensures the necessary corrosion resistance and strength of the structural parts at the same time.
  • the structural part according to the invention is produced from a strip which has been produced using the method described. It has been shown that the forming properties as well as the strength properties of the structural part can be achieved in a process-reliable manner with the method, so that an economical production of the structural parts that meet the stated requirements is possible.
  • the degree of rolling must be at least 50%, preferably at least 70%, in order to produce a sufficiently fine-grain structure during the final soft annealing.
  • the final soft annealing in which the strip recrystallizes again, takes place in the chamber furnace at 300 ° C. to 400 ° C., preferably at 330 ° C. to 370 ° C. in step 10.
  • inventive alloy components of Mg, Si, Fe and Mn it is used a continuous furnace for the production of the aluminum alloy strip is not possible, since other structures would be provided due to the different heating and cooling speeds.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

  • Die Erfindung betrifft eine Aluminiumlegierung zur Herstellung von Halbzeugen oder Bauteilen von Kraftfahrzeugen sowie ein Strukturteil eines Kraftfahrzeugs bestehend aus einem Aluminiumlegierungsblech.
  • Halbzeuge und Bauteile für Kraftfahrzeuge müssen abhängig von Ihrem Einsatzort und Einsatzzweck im Kraftfahrzeug unterschiedliche Anforderungen erfüllen. Während der Herstellung der Halbzeuge und Bauteile für Kraftfahrzeuge sind die Umformeigenschaften der Aluminiumlegierung bzw. der daraus hergestellten Bänder und Bleche entscheidend. Beim späteren Einsatz im Kraftfahrzeug spielen die Festigkeitswerte aber auch insbesondere die Korrosionseigenschaften eine erhebliche Rolle.
  • Beispielsweise werden bei Strukturteilen eines Kraftfahrzeugs, wie beispielsweise Türinnenteilen, die mechanischen Eigenschaften vorwiegend durch die Steifigkeit bestimmt, welche vor allem von der Formgebung der Türinnenteile abhängt. Demgegenüber hat beispielsweise die Zugfestigkeit einen eher untergeordneten Einfluss. Allerdings dürfen die verwendeten Werkstoffe für ein Türinnenteil auch nicht zu weich sein. Eine gute Umformbarkeit ist dagegen für die Einführung von Aluminiumlegierungswerkstoffen in den Kraftfahrzeugbereich besonders wichtig, da die Bauteile und Halbzeuge bei deren Herstellung besonders komplexe Umformprozesse durchlaufen. Dies betrifft insbesondere Bauteile, die in einer einteiligen Blechschalenbauweise hergestellt werden, wie z. B. Blechinnentürteile mit integriertem Fensterrahmenbereich. Solche Bauteile haben durch die Einsparung von Fügeoperationen erhebliche Kostenvorteile gegenüber einer beispielweise gefügten Aluminiumprofillösung für den Fensterrahmen. Ziel ist es beispielsweise Halbzeuge oder Bauteile einteilig aus einer Aluminiumlegierung herstellen zu können und dabei möglichst wenige Umformoperationen anzuwenden. Dies erfordert eine Maximierung des Umformverhaltens der einzusetzenden Aluminiumlegierung. Die für ähnliche Anwendungen gelegentlich eingesetzte Aluminiumlegierung vom Typ AA5005 (AlMg1) erfüllt diese Voraussetzungen nicht, da diese aufgrund von Verfestigungen beim Umformen kein ausreichendes Umformvermögen besitzt.
  • Eine weitere wichtige Rolle spielt die Korrosionsbeständigkeit, da Bauteile von Kraftfahrzeugen häufig Schwitzwasser, Spritzwasser und Kondenswasser ausgesetzt sind. Die zu verwendende Aluminiumlegierung sollte daher möglichst korrosionsbeständig, insbesondere im lackierten Zustand gegenüber interkristalliner Korrosion und gegen Filiform-Korrosion sein. Unter Filiform-Korrosion wird ein Korrosionstyp verstanden, der bei beschichteten Bauteilen auftritt und einen fadenförmigen Verlauf aufzeigt. Die Filiform-Korrosion tritt bei hoher Luftfeuchtigkeit in Gegenwart von Chlorid-Ionen auf. Die Aluminiumlegierung vom Typ AA8006 (AlFe1,5Mn 0,5) weist zwar eine ausreichende Festigkeit und eine sehr hohe Umformbarkeit auf, sie ist aber anfällig für Filiform-Korrosion. Die Legierung AA8006 ist damit für beschichtete, insbesondere lackierte Bauteile wie Türinnenteile weniger geeignet.
  • Aus der bisher noch nicht veröffentlichten internationalen Patentanmeldung der Anmelderin PCT/EP2014/053323 ist eine Aluminiumlegierung als Alternative zur Aluminiumlegierung vom Typ AA8006 bekannt, welche die folgenden Legierungsbestandteile in Gew.-% aufweist:
    • Fe ≤ 0,8 %,
    • Si ≤ 0,5 %,
    • 0,9 % ≤ Mn ≤ 1,5 %,
    • Mg ≤ 0,25 %,
    • Cu ≤ 0,20 %,
    • Cr ≤ 0,05 %,
    • Ti ≤ 0,05 %,
    • V ≤ 0,05 %,
    • Zr ≤ 0,05 %,
  • Rest Aluminium, unvermeidliche Begleitelemente einzeln < 0,05 %, in Summe < 0,15 %, wobei die Summe der Mg und Cu-Gehalte folgende Relation erfüllt:
    0,15 % ≤ Mg +Cu ≤ 0,25 %.
  • Es hat sich gezeigt, dass auch diese Aluminiumlegierung insbesondere in Bezug auf deren Umformverhalten noch verbesserungswürdig ist. Darüber hinaus kann der hohe Mn-Gehalt zu Problemen beim Recycling dieser Aluminiumlegierung führen, wenn sie im Schrottkreislauf mit den in Automobilanwendungen üblicherweise eingesetzten Al-Mg-Si-Legierungen vom Legierungstyp AA6XXX vermischt werden.
  • Aus der JP 2006-152358 A ist eine Aluminiumlegierung zur Herstellung von Getränkedosen bekannt, welche eine gute Umformbarkeit und Festigkeit für Getränkedosen zeigt.
  • Von diesem Stand der Technik ausgehend liegt der vorliegenden Erfindung daher die Aufgabe zugrunde, eine Aluminiumlegierung zur Herstellung von Halbzeugen oder Bauteilen für Kraftfahrzeuge zur Verfügung zu stellen, die hoch-umformbar, mittelfest und sehr korrosionsbeständig ist. Darüber hinaus soll ein Strukturteil eines Kraftfahrzeugs vorgeschlagen werden.
  • Gemäß einer ersten Lehre der vorliegenden Erfindung wird die oben aufgezeigte Aufgabe durch eine Aluminiumlegierung zur Herstellung von Halbzeugen oder Bauteilen von Kraftfahrzeugen gelöst, welche die folgenden Legierungsbestandteile in Gew.-% aufweist:
    • 0,6 % ≤ Si ≤ 0,9 %,
    • 0,6 % ≤ Fe ≤ 1,0 %,
      Cu ≤ 0,1 %,
    • 0,6 % ≤ Mn ≤ 0,9 %,
    • 0,5 % ≤ Mg ≤ 0,8 %,
      Cr ≤ 0,05 %,
  • Rest Al und Verunreinigungen, einzeln maximal 0,05 Gew.-%, in Summe maximal 0,15 Gew.-%.
  • Anders als die bisherigen Ansätze geht die vorliegende Aluminiumlegierung von der Erkenntnis aus, dass Al-Mg-Si-Legierungen vom Legierungstyp AA6XXX in weichgeglühtem Zustand eine sehr gute Umformbarkeit aufweisen. Allerdings waren sie für die bisherigen Anwendungen zu weich. Die Untergrenzen der zwangsweise vorgesehenen Legierungselemente von 0,6 Gew.-% für Si, 0,6 Gew.-% für Fe, 0,6 Gew.-% für Mn und 0,5 Gew.-% für Mg gewährleisten, dass die Aluminiumlegierung in weichgeglühtem Zustand ausreichende Festigkeiten bereitstellen kann. Die Obergrenzen von 0,9 Gew.-% für Si, 1,0 Gew.-% für Fe, 0,9 Gew.-% für Mn und 0,8 Gew.-% für Mg verhindern, dass die Bruchdehnung sinkt und damit das Umformverhalten verschlechtert wird. Aus dem gleichen Grund werden auch die Legierungselemente Cu auf maximal 0,1 Gew.-% und Cr auf maximal 0,05 Gew.-% begrenzt. Durch die Kombination der vorgesehenen Legierungsbestandteile an Si, Fe, Mg und Mn wird damit sichergestellt, dass einerseits das sehr gute Umformverhalten der Al-Mg-Si-Legierungen mit einer erhöhten Festigkeit kombiniert wird, ohne zu starke Einbußen in der Duktilität zu besitzen. Die Untersuchungen zeigten, dass die angegebene Aluminiumlegierung in weichgeglühtem Zustand die Anforderungen an die Umformbarkeit und insbesondere an die Korrosionsbeständigkeit erfüllen und damit für die Herstellung von Halbzeugen oder Bauteilen in Kraftfahrzeugen geeignet ist. Mit den genannten Bereichen der zwangsweise vorgesehenen Legierungselemente Si, Fe, Mn und Mg fällt die erfindungsgemäße Aluminiumlegierung in die Klasse der Al-Mg-Si-Legierungen vom Legierungstyp AA6XXX. Das ermöglicht eine verbesserte Rezyklierbarkeit dieser Aluminiumlegierung, wenn sie im Schrottkreislauf mit den in Automobilanwendungen üblicherweise eingesetzten Al-Mg-Si-Legierungen vom Legierungstyp AA6XXX vermischt werden.
  • Gemäß einer ersten Ausführungsform der erfindungsgemäßen Aluminiumlegierung weisen die Legierungsbestandteile Si, Fe, Mn und Mg die folgenden Anteile in Gew.-% auf:
    • 0,7 % ≤ Si ≤ 0,9 %,
    • 0,7 % ≤ Fe ≤ 1,0 %,
    • 0,7 % ≤ Mn ≤ 0,9 % und
    • 0,6 % ≤ Mg ≤ 0,8 %.
  • Durch die Anhebung der unteren Grenzen für Si, Fe, Mn und Mg wird erreicht, dass die Festigkeit der Aluminiumlegierung noch weiter zunimmt, ohne das Umformverhalten bzw. die Bruchdehnung der aus Aluminiumlegierung hergestellten, weichen Bleche oder Bänder zu verschlechtern.
  • Eine weitere Verbesserung der erfindungsgemäßen Aluminiumlegierung in Bezug auf eine maximale Bruchdehnung wird dadurch erreicht, dass die Legierungsbestandteile Si, Fe, Mn und Mg die folgenden Anteile in Gew.-% aufweisen:
    • 0,7 % ≤ Si ≤ 0,8 %,
    • 0,7 % ≤ Fe ≤ 0,8 %,
    • 0,7 % ≤ Mn ≤ 0,8 % und
    • 0,6 % ≤ Mg ≤ 0,7 %.
  • Es hat sich herausgestellt, dass durch diesen engen Korridor an Zwangsgehalten in Bezug auf die Legierungsbestandteile Si, Fe, Mn und Mg ein sehr guter Kompromiss zwischen erzielter Festigkeit und Bruchdehnungseigenschaften, d. h. Umformeigenschaften der Aluminiumlegierung erzielt wird.
  • Zwar hat die erfindungsgemäße Aluminiumlegierung gute Korrosionseigenschaften, allerdings kann gemäß einer weiteren Ausgestaltung der Aluminiumlegierung die Beständigkeit gegen interkristalline Korrosion dadurch weiter verbessert werden, dass der Si-Gehalt der Legierung den Mg-Gehalt um maximal 0,2 Gew.-%, vorzugsweise maximal 0,1 Gew.-% übersteigt.
  • Gemäß einer weiteren Ausgestaltung der erfindungsgemäßen Aluminiumlegierung kann die Bruchdehnung der Aluminiumlegierung dadurch weiter verbessert werden, dass der Cr-Gehalt weiter reduziert wird, auf einen Wert von maximal 0,01 Gew.-%, vorzugsweise auf maximal 0,001 Gew.-%. Es hat sich gezeigt, dass Chrom sich bereits in sehr geringen Konzentrationen negativ auf die Bruchdehnungseigenschaften auswirkt.
  • Einen ähnlichen Effekt hat auch die Reduzierung der Cu-Gehalte auf maximal 0,05 Gew.-%, vorzugsweise maximal 0,01 Gew.-%, wobei gleichzeitig die Neigung zur Filiform-Korrosion bzw. interkristallinen Korrosion durch die Reduzierung der Cu-Gehalte allgemein zurückgeht.
  • Ein Verfahren zur Herstellung eines Bandes aus einer erfindungsgemäßen Aluminiumlegierung weist die folgenden Verfahrensschritte auf:
    • Gießen eines Walzbarrens,
    • Homogenisieren bei einer Temperatur zwischen 500°C und 600°C für mindestens 0,5 h
    • Warmwalzen des Walzbarrens bei Temperaturen von 280°C bis 500° C, vorzugsweise bei Temperaturen von 300°C bis 400°C auf eine Dicke von 3 mm bis 12 mm,
    • Kaltwalzen mit oder ohne Zwischenglühung mit einem Abwalzgrad von mindestens 50%, bevorzugt mindestens 70% auf eine Enddicke von 0,2 mm bis 5 mm und
    • Schlussweichglühung bei 300°C bis 400°C, bevorzugt 330°C bis 370°C für mindestens 0,5 h, vorzugsweise mindestens 2 h in einem Kammerofen.
  • Nach dem Gießen sorgt die Homogenisierung bei einer Temperatur von 500°C bis 600°C für mindestens 0,5 h, bevorzugt mindestens 2 h dafür, dass ein homogenes Gefüge für die weitere Verarbeitung des Walzbarrens bereitgestellt wird. Die Warmwalztemperaturen ermöglichen dabei eine gute Rekristallisation während des Warmwalzens, sodass das Gefüge nach dem Warmwalzen möglichst feinkörnig ist. Durch das Kaltwalzen wird dieses feinkörnige Gefüge lediglich gestreckt und im Schlussweichglühen erneut rekristallisiert. Bei einer Fertigung ohne Zwischenglühung wird durch das Kaltwalzen eine besonders hohe Anzahl an Versetzungen in dem Gefüge erzeugt, welches bei der Schlussweichglühung ein sehr feinkörniges durchrekristallisiertes Gefüge erzeugt. Hierzu muss der Abwalzgrad an Enddicke vor der Schlussweichglühung mindestens 50%, bevorzugt mindestens 70 % auf die angestrebte Enddicke aufweisen.
  • Ein weiterer positiver Einfluss auf die Feinkörnigkeit des Gefüges kann dadurch erreicht werden, dass gemäß einer weiteren Ausgestaltung des Verfahrens die Homogenisierung zweistufig erfolgt, wobei der Walzbarren zunächst auf 550°C bis 600°C für mindestens 0,5 h erwärmt wird und anschließend der Walzbarren auf 450°C bis 550° für mindestens 0,5 h, bevorzugt mindestens 2 h gehalten wird. Anschließend wird der Walzbarren warmgewalzt.
  • Die Korrosionseigenschaften können dadurch verbessert werden, dass der Walzbarren nach dem Gießen oder nach dem Homogenisieren auf der Ober- und Unterseite gefräst wird, um Verunreinigungen von der Ober- und Unterseite des Walzbarrens, welche die Korrosionsbeständigkeit negativ beeinflussen können, auszuschließen.
  • Gemäß einer weiteren Ausgestaltung des Verfahrens wird mindestens eine Zwischenglühung nach einem ersten Kaltwalzen bei einer Temperatur von 300°C bis 400°C, vorzugsweise bei einer Temperatur von 330°C bis 370°C für mindestens 0,5 h erfolgen, wobei vor und nach der Zwischenglühung der Abwalzgrad mindestens 50 %, bevorzugt mindestens 70 % beträgt. Durch die gewählten Abwalzgrade vor der Zwischenglühung bzw. nach der Zwischenglühung wird erreicht, dass das Gefüge während der Zwischenglühung ausreichend durchrekristallisiert. Die Zwischenglühungsdauer beträgt mindestens 0,5 h, bevorzugt mindestens 2 h.
  • Findet die Zwischenglühung bei einer Temperatur von 330°C bis 370°C statt, wird sichergestellt, dass aufgrund der angehobenen unteren Temperatur von 330°C eine ausreichende Rekristallisation stattfindet und gleichzeitig durch die Verringerung der Obergrenze eine effiziente Zwischenglühung durchgeführt wird, welche möglichst wenig Wärmeenergie benötigt.
  • Ein Aluminiumlegierungsband oder -blech kann aus einer erfindungsgemäßen Aluminiumlegierung hergestellt werden, wobei das Band eine Dicke von 0,2 mm bis 5 mm besitzt und im weichgeglühten Zustand eine Streckgrenze Rp0.2 von mindestens 45 MPa sowie eine Gleichmaßdehnung Ag von mindestens 23 % und eine Bruchdehnung A80mm von mindestens 35 % aufweist. Insbesondere bei der angegebenen Dicke des Bandes in Verbindung mit der Legierungszusammensetzung und den daraus resultierenden mechanischen Eigenschaften im weichgeglühten Zustand sind die Voraussetzungen gegeben, dass das Aluminiumlegierungsband bzw. -blech für Bauteile im Kraftfahrzeug verwendet werden kann, welche neben sehr guten Umformeigenschaften auch eine sehr gute Beständigkeit gegen interkristalline Korrosion bzw. Filiform-Korrosion aufweisen. Dies gilt insbesondere auch für lackierte bzw. beschichtete Bauteile.
  • Insofern löst auch die Verwendung des Aluminiumlegierungsbandes zur Herstellung von Halbzeugen oder Bauteilen eines Kraftfahrzeugs, insbesondere Strukturteile eines Kraftfahrzeugs, die oben genannte Aufgabe. Insbesondere Strukturteile können mit sehr großen Umformgraden hergestellt werden und sehr komplexe Formen annehmen ohne besonders komplizierte Umformoperationen zu benötigen. Insbesondere sind diese auch in lackierter Form besonders korrosionsbeständig, insbesondere gegen interkristalline Korrosion und Filiform-Korrosion.
  • Gemäß einer weiteren Lehre der vorliegenden Erfindung wird die aufgezeigte Aufgabe durch ein Strukturteil eines Kraftfahrzeugs, insbesondere ein Türinnenteil eines Kraftfahrzeugs aufweisend mindestens ein umgeformtes Blech aus einer erfindungsgemäßen Aluminiumlegierung gelöst. Wie bereits zuvor ausgeführt, haben die Untersuchungen gezeigt, dass die erfindungsgemäße Aluminiumlegierung nicht nur die erforderlichen Umformeigenschaften in weichgeglühtem Zustand bereitstellt, sondern auch gleichzeitig die notwendige Korrosionsbeständigkeit und Festigkeit der Strukturteile gewährleistet.
  • Um die optimalen Umformgrade zu erzielen, wird das erfindungsgemäße Strukturteil aus einem Band hergestellt, welches mit dem beschriebenen Verfahren hergestellt worden ist. Es hat sich gezeigt, dass mit dem Verfahren die Umformeigenschaften sowie auch die Festigkeitseigenschaften des Strukturteils auf prozesssichere Weise erreicht werden können, sodass eine wirtschaftliche Produktion der Strukturteile, welche die genannten Voraussetzungen erfüllen, möglich ist.
  • Im Weiteren soll die Erfindung anhand von Ausführungsbeispielen in Verbindung mit der Zeichnung näher erläutert werden. Die Zeichnung zeigt in
    • Fig. 1 ein Ablaufdiagramm eines ersten Ausführungsbeispiels des Verfahrens zur Herstellung eines Aluminiumlegierungsbandes,
    • Fig. 2 ein Ablaufdiagramm für ein weiteres Ausführungsbeispiel des Verfahrens und
    • Fig. 3 ein schematisch dargestelltes Ausführungsbeispiel eines Strukturteils eines Kraftfahrzeugs.
  • Ein erstes Ausführungsbeispiel in einem schematischen Ablaufdiagramm zeigt nun Fig. 1. In einem ersten Schritt 2 wird der Walzbarren gegossen, beispielsweise im DC-Stranggussverfahren oder im Bandgussverfahren. Im Verfahrensschritt 4 wird der Barren dann auf eine Temperatur von 500°C bis 600°C erwärmt und für mindestens 0,5 h, bevorzugt mindestens 2 h auf dieser Temperatur zur Homogenisierung gehalten. Der so homogenisierte Walzbarren wird anschließend bei einer Temperatur von 280°C bis 500°C, bevorzugt 300°C bis 400°G bis auf eine Enddicke von 3 bis 12 mm warmgewalzt. Anschließend erfolgt im Schritt 8 ein Kaltwalzen auf Enddicke, an welches sich eine rekristallisierende Schlussweichglühung gemäß Schritt 10 anschließt. Beim Kaltwalzen auf Enddicke in einem oder mehreren Stichen muss der Abwalzgrad mindestens 50%, bevorzugt mindestens 70 % betragen, um bei der Schlussweichglühung ein ausreichend feinkörniges Gefüge zu erzeugen. Die Schlussweichglühung, bei welcher das Band erneut rekristallisiert, erfolgt im Kammerofen bei 300°C bis 400°C, bevorzugt bei 330°C bis 370°C im Schritt 10. Trotz der erfindungsgemäßen Legierungskomponenten von Mg, Si, Fe und Mn ist der Einsatz eines Durchlaufofens zur Herstellung des Aluminiumlegierungsbandes nicht möglich, da aufgrund der unterschiedlichen Aufheiz- und Abkühlgeschwindigkeiten andere Gefüge bereit gestellt würden.
  • Alternativ zur Fertigung des Aluminiumlegierungsbandes ohne Zwischenglühung kann gemäß Schritt 14 auch eine Zwischenglühung in einem Kammerofen bei 300°C bis 400°C, vorzugsweise bei 330°C bis 370°C erfolgen, wobei sowohl vor der Zwischenglühung als auch nach der Zwischenglühung ein Abwalzgrad von mindestens 50%, bevorzugt mindestens 70% gewährleistet werden sollte, um die Feinkörnigkeit des Gefüges nach der rekristallisierenden Schlussweichglühung positiv zu beeinflussen. Optional kann nach dem Gießen des Walzbarrens in Schritt 2 auch ein Fräsen gemäß Schritt 12 der Ober- und Unterseite des Walzbarrens erfolgen, um den Einfluss von Verunreinigungen an den Rändern der Barren bei der Walzbarrenherstellung auf das fertige Produkt zu minimieren. Insbesondere hat dies einen positiven Einfluss auf die Korrosionsbeständigkeit der Bauteile.
  • Fig. 2 zeigt nun ein weiteres Ablaufdiagramm, welches alternativ zum Schritt 4 den Schritt 16 der Homogenisierung zeigt. Die Homogenisierung hat einen Einfluss auf die Feinkörnigkeit des angestrebten Endgefüges des Bandes oder fertigen Bauteils. Um die Feinkörnigkeit des Gefüges weiter zu verbessern, wird das Homogenisieren mehrstufig ausgeführt. So wird anstelle des Schrittes 4 in Fig. 1 in Fig. 2 ein Homogenisierungsschritt 16 durchgeführt. Der Homogenisierungsschritt 16 weist zunächst eine erste Homogenisierungsphase, Schritt 18, auf, bei welcher der gefräste oder ungefräste Walzbarren auf eine Temperatur von 550°C bis 600°C für mindestens 0,5 h, bevorzugt mindestens 2 h erhitzt wird. In einem nächsten Schritt 20 wird der so aufgeheizte Walzbarren auf eine Temperatur von 450°C bis 550°C abgekühlt und für mindestens 0,5 h, bevorzugt mindestens 2 h auf dieser Temperatur gehalten, was in Fig. 2 im Schritt 22 dargestellt ist.
  • Alternativ kann der Walzbarren nach dem ersten Hömogenisierungsschritt 18 auch in einem Schritt 24 auf Raumtemperatur abgekühlt und in einem nachfolgenden Schritt 26 auf die Temperatur für das zweite Homogenisieren angewärmt werden. Dies ist beispielsweise notwendig, wenn der Walzbarren zwischen dem Homogenisierungsschritt gelagert werden muss. Optional kann diese Phase bei Raumtemperatur dazu verwendet werden, den Walzbarren an Ober- und Unterseite zu fräsen, Schritt 28. Nach dem zweiten Homogenisierungsschritt 22 erfolgt das Warmwalzen wie in Fig. 1 dargestellt mit den dort angegebenen Parametern. Es hat sich gezeigt, dass die mehrstufige Homogenisierung, insbesondere die zweistufige Homogenisierung zu einem feineren Gefüge im Endprodukt führt.
  • Der erfindungsgemäße Effekt der Bereitstellung einer mittelfesten und sehr hoch umformbaren Aluminiumlegierung bzw. eines Aluminiumlegierungsbandes wurde anhand von 10 Ausführungsbeispielen nachgewiesen.
  • Zunächst wurden 10 verschiedene Walzbarren bestehend aus unterschiedlichen Legierungen im DC-Strangguss gegossen. Die Ober- und Unterseiten der Walzbarren wurden nach dem Gießen entsprechend dem Schritt 12 gefräst. Anschließend erfolgte eine zweistufige Homogenisierung, bei welcher zunächst die Walzbarren für 3,5 h bei 600°C und anschließend für 2 h bei 500°C gehalten wurden. Unmittelbar nach dem Homogenisieren wurden die Walzbarren direkt bei ca 500°C zu einem Aluminiumlegierungswarmband mit einer Dicke von 8 mm warmgewalzt. Das 8 mm dicke Warmband wurde schließlich ohne Zwischenglühung jeweils auf eine Enddicke von 1,5 mm kaltgewalzt, d. h. mit einem Abwalzgrad von mehr als 70%. Die rekristallisierende Schlussweichglühung der kaltgewalzten Aluminiumlegierungsbänder mit einer Dicke von 1,5 mm erfolgte für 1 h bei 350°C in einem Kammerofen. Die verschiedenen, getesteten Aluminiumlegierungen zeigt Tabelle 1. Tabelle 1
    (V):Vergleich (E):Erfindung Aluminiumlegierungsbestandteile in Gew.-%,
    Variante Si Fe Cu Mn Mg Cr
    1 V 0,66 0,66 0,26 0,7 0,62 0,14
    2 V 0,53 0,46 0,19 0,52 0,44 0,13
    3 V 0,67 0,66 0,27 0,69 0,61 0,0005
    4 V 0,73 0,68 0,0016 1,0 0,67 0,0002
    5 E 0,72 0,69 0,0016 0,74 0,66 0,0006
    6 E 0,67 0,65 0,07 0,69 0,61 0,0005
    7 E 0,72 1,0 0,0017 0,72 0,66 0,0004
    8 E 0,8 0,68 0,0015 0,72 0,63 0,0003
    9 V 0,4 0,41 0,004 0,47 0,41 0,001
    10 V 0,5 0,27 0,0013 0,66 0,42 0,0008
  • Die Varianten 1 bis 4 sowie 9 und 10 sind Vergleichsbeispiele, welche nicht der erfindungsgemäßen Aluminiumlegierung entsprechen. Die Ausführungsbeispiele 5 bis 8 entsprechen dagegen der erfindungsgemäß beanspruchten Aluminiumlegierungszusammensetzungen.
  • An den so hergestellten, kalt gewalzten Aluminiumlegierungsbändern wurden sowohl die Streckgrenze Rp0,2, die Zugfestigkeit Rm, die Gleichmaßdehnung Ag, die Bruchdehnung A80mm und die beim Streckziehen erreichte Tiefung SZ 32 in Millimeter gemessen. Die Werte für die Dehngrenze Rp0,2 sowie die Zugfestigkeit Rm wurden im Zugversuch senkrecht zur Walzrichtung des Blechs nach DIN EN ISO 6892-1:2009 gemessen. Gemäß derselben Norm wurden die Gleichmaßdehnung Ag sowie die Bruchdehnung A80mm in Prozent gemessen jeweils senkrecht zur Walzrichtung des Blechs mit einer Flachzug-Probe nach DIN EN ISO 6892-1:2009, Anhang B, Form 2. Das Umformverhalten kann darüber hinaus beispielsweise in einem Streckziehversuch SZ 32 durch eine Tiefungsprüfung nach Erikson (DIN EN ISO 20482) gemessen werden, bei welcher ein Prüfkörper gegen das Blech gedrückt wird, so dass es zu einer Kaltverformung kommt. Während der Kaltverformung werden die Kraft sowie der Stempelweg des Prüfkörpers gemessen, bis es zu einem Lastabfall, welcher die Bildung eines Risses als Ursache hat, kommt. In den vorliegenden Ausführungsbeispielen wurde die Tiefungsprüfung mit einem auf die Blechdecke abgestimmten Stempelkopfdurchmesser von 32 mm und Matrizendurchmesser von 35,4 mm unter Zuhilfenahme einer Teflon-Ziehfolie zur Reduzierung der Reibung durchgeführt. Die Übersicht der Ergebnisse ist in Tabelle 2 dargestellt. Tabelle 2
    Variante M:Vergleich (E):Erfindung R p0,2 N/mm2 R m N/mm2 A g % A 80mm % SZ 32 mm
    1 V 65 145 19,6 26,5 15,8
    2 V 52 131 21,9 30,3 16,2
    3 V 60 135 22,7 30,3 16,4
    4 V 51 122 22,3 33,5 15,6
    5 E 48 112 23,1 35,3 16,0
    6 E 47 118 23,5 35,0 16,5
    7 E 50 120 23,4 36,2 16,1
    8 E 47 112 23,8 36,6 15,0
    9 V 41 98 23,6 37,9 16,5
    10 V 41 102 24,2 38,0 16,3
  • Die Ausführungsbeispiele zeigen durch den Vergleich beispielsweise der Variante 2 mit den erfindungsgemäßen Varianten 5 bis 8, dass eine zu starke Reduzierung der Gehalte Si, Fe, Mn, Mg mit einer Anhebung der Gehalte für Cu und Cr dazu führt, dass zwar die Streckgrenzwerte oberhalb von 45 MPa verbleibt, allerdings die Bruchdehnung deutlich zurückgeht auf etwa 30 %. Dieser Effekt lässt sich auch nachweisen, wenn allein der Mn-Gehalt beispielsweise 1,0 % beträgt, was bereits die Bruchdehnung A80mm auf unter 35 % drückt, Variante 4. Die Varianten 9 und 10 zeigen den Effekt reduzierter Gehalte an Si, Fe, Mn und Mg. Die Vergleichsbeispiele 9 und 10 zeigen zwar eine sehr gute Bruchdehnung A80mm mit mehr als 35 %, allerdings liegt die Streckgrenze mit 41 MPa unterhalb der der erfindungsgemäßen Ausführungsbeispiele 5 bis 8.
  • Die erfindungsgemäßen Ausführungsbeispiele zeigten insbesondere bei starken Umformungen ein sehr gutes Umformverhalten, was an den sehr guten Streckziehergebnissen SZ 32 und den hohen Dehnungswerten sowohl bei der Gleichmaßdehnung Ag als auch bei der Bruchdehnung A80mm abgelesen werden kann. Hieran lässt sich erkennen, dass es insgesamt auf das Zusammenspiel der Legierungsgehalte Si, Fe, Mn, Mg ankommt, wobei die Komponenten Cr und Cu besonders niedrig gehalten werden müssen, vorzugsweise ist der Cu-Gehalt ≤ 0,05 Gew.-%, bevorzugt ≤ 0,01 Gew.-% und der Chromgehalt ≤ 0,01 Gew.-%, bevorzugt ≤ 0,001 Gew.-%. Gekoppelt mit der sehr guten Korrosionsbeständigkeit der Ausführungsbeispiele können für Fahrzeuge Halbzeuge und Bauteile, insbesondere Strukturbauteile wie Türinnenteile bereitgestellt werden, welche nicht nur die Spezifikationen des Anwendungsgebietes hinsichtlich mechanischer und chemischer Eigenschaften gewährleisteen, sondern noch durch wenige Umformoperationen wirtschaftlich hergestellt werden können.
  • Die Aluminiumlegierungsbänder sind daher ideal geeignet, beispielsweise Strukturteile eines Kraftfahrzeugs, wie das in Fig. 3 dargestellte Türinnenteile 30 bereitzustellen bzw. für deren Herstellung verwendet zu werden. Das Türinnenteil ist aus einem Blech aus einer erfindungsgemäßen Aluminiumlegierung mit einer Dicke 1,5 mm gefertigt, welches lediglich durch Umformoperationen, jedoch ohne Fügeoperationen einen Fensterrahmen bereitstellt.

Claims (7)

  1. Aluminiumlegierung zur Herstellung von Halbzeugen oder Bauteilen von Kraftfahrzeugen, welche die folgenden Legierungsbestandteilen in Gew.-% aufweist:
    0,6 % ≤ Si ≤ 0,9 %,
    0,6 % ≤ Fe ≤ 1,0 %,
    Cu ≤ 0,1 %,
    0,6 % ≤ Mn ≤ 0,9 %,
    0,5 % ≤ Mg ≤ 0,8 %,
    Cr ≤ 0,05 %,
    Rest Al und Verunreinigungen, einzeln maximal 0,05 Gew.-%, in Summe maximal 0,15 Gew.-%.
  2. Aluminiumlegierung nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Legierungsbestandteile Si, Fe, Mn und Mg die folgenden Anteile in Gew.-% aufweisen:
    0,7 % ≤ Si ≤ 0,9 %,
    0,7 % ≤ Fe ≤ 1,0 %,
    0,7 % ≤ Mn ≤ 0,9 % und
    0,6 % ≤ Mg ≤ 0,8 %.
  3. Aluminiumlegierung nach Anspruch 2,
    dadurch gekennzeichnet, dass
    die Legierungsbestandteile Si, Fe, Mn und Mg die folgenden Anteile in Gew.-% aufweisen:
    0,7 % ≤ Si ≤ 0,8 %,
    0,7 % ≤ Fe ≤ 0,8 %,
    0,7 % ≤ Mn ≤ 0,8 % und
    0,6 % ≤ Mg ≤ 0,7 %.
  4. Aluminiumlegierung nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass
    die Aluminiumlegierung folgenden Cr-Gehalt in Gew.-% aufweist:
    Cr ≤ 0,01%.
  5. Aluminiumlegierung nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, dass
    die Aluminiumlegierung folgenden Cu-Gehalt in Gew.-% aufweist:
    Cu ≤ 0,05 %.
  6. Strukturteil, insbesondere Türinnenteil (30), eines Kraftfahrzeugs aufweisend mindestens ein umgeformtes Blech aus einer Aluminiumlegierung nach einem der Ansprüche 1 bis 5.
  7. Strukturteil nach Anspruch 6,
    dadurch gekennzeichnet, dass
    das Blech aus einem Band zugeschnitten ist, welches mit einem Verfahren zur Herstellung eines Bandes aus einer Aluminiumlegierung nach einem der Ansprüche 1 bis 5 mit folgenden Verfahrensschritten:
    - Gießen (2) eines Walzbarrens,
    - Homogenisieren (4, 16) bei einer Temperatur zwischen 500 °C und 600 °C für mindestens 0,5 h,
    - Warmwalzen (6) des Walzbarrens bei Temperaturen von 280 °C bis 500 °C auf eine Dicke von 3 mm bis 12 mm,
    - Kaltwalzen (8) mit oder ohne Zwischenglühung mit einem Abwalzgrad von mindestens 50 %, bevorzugt mindestens 70 % auf eine Enddicke von 0,2 mm bis 5 mm und
    - Schlussweichglühung (10) bei 300°C bis 400 °C für mindestens 0,5h in einem Kammerofen hergestellt ist.
EP17151174.4A 2014-03-28 2014-03-28 Hochumformbare, mittelfeste aluminiumlegierung zur herstellung von halbzeugen oder bauteilen von kraftfahrzeugen Active EP3178952B9 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17151174.4A EP3178952B9 (de) 2014-03-28 2014-03-28 Hochumformbare, mittelfeste aluminiumlegierung zur herstellung von halbzeugen oder bauteilen von kraftfahrzeugen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14162348.8A EP2924135B1 (de) 2014-03-28 2014-03-28 Verfahren zur Herstellung eines Bandes aus einer hochumformbaren, mittelfesten Aluminiumlegierung für Halbzeuge oder Bauteile von Kraftfahrzeugen
EP17151174.4A EP3178952B9 (de) 2014-03-28 2014-03-28 Hochumformbare, mittelfeste aluminiumlegierung zur herstellung von halbzeugen oder bauteilen von kraftfahrzeugen

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP14162348.8A Division EP2924135B1 (de) 2014-03-28 2014-03-28 Verfahren zur Herstellung eines Bandes aus einer hochumformbaren, mittelfesten Aluminiumlegierung für Halbzeuge oder Bauteile von Kraftfahrzeugen
EP14162348.8A Division-Into EP2924135B1 (de) 2014-03-28 2014-03-28 Verfahren zur Herstellung eines Bandes aus einer hochumformbaren, mittelfesten Aluminiumlegierung für Halbzeuge oder Bauteile von Kraftfahrzeugen

Publications (3)

Publication Number Publication Date
EP3178952A1 EP3178952A1 (de) 2017-06-14
EP3178952B1 EP3178952B1 (de) 2020-07-29
EP3178952B9 true EP3178952B9 (de) 2021-07-14

Family

ID=50478703

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17151174.4A Active EP3178952B9 (de) 2014-03-28 2014-03-28 Hochumformbare, mittelfeste aluminiumlegierung zur herstellung von halbzeugen oder bauteilen von kraftfahrzeugen
EP14162348.8A Active EP2924135B1 (de) 2014-03-28 2014-03-28 Verfahren zur Herstellung eines Bandes aus einer hochumformbaren, mittelfesten Aluminiumlegierung für Halbzeuge oder Bauteile von Kraftfahrzeugen

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP14162348.8A Active EP2924135B1 (de) 2014-03-28 2014-03-28 Verfahren zur Herstellung eines Bandes aus einer hochumformbaren, mittelfesten Aluminiumlegierung für Halbzeuge oder Bauteile von Kraftfahrzeugen

Country Status (10)

Country Link
US (1) US10047424B2 (de)
EP (2) EP3178952B9 (de)
JP (1) JP6279761B2 (de)
KR (2) KR101808812B1 (de)
CN (1) CN106164311A (de)
CA (1) CA2944061C (de)
ES (1) ES2655434T3 (de)
PT (1) PT2924135T (de)
RU (1) RU2655510C2 (de)
WO (1) WO2015144888A2 (de)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252611A (ja) * 1994-03-17 1995-10-03 Kobe Steel Ltd 成形加工用Al−Mn−Mg系合金板
JP2002275566A (ja) * 2001-03-21 2002-09-25 Kobe Steel Ltd プレス成形性に優れたAl−Mn系合金板
JP4703033B2 (ja) * 2001-05-21 2011-06-15 三菱樹脂株式会社 ダイカスト用アルミニウム合金材
DE60203801T2 (de) * 2001-07-09 2006-05-18 Corus Aluminium Walzprodukte Gmbh Schweißbare hochfeste Al-Mg-Si-Legierung
RU2221891C1 (ru) * 2002-04-23 2004-01-20 Региональный общественный фонд содействия защите интеллектуальной собственности Сплав на основе алюминия, изделие из этого сплава и способ изготовления изделия
US20060032560A1 (en) * 2003-10-29 2006-02-16 Corus Aluminium Walzprodukte Gmbh Method for producing a high damage tolerant aluminium alloy
JP2006152359A (ja) * 2004-11-29 2006-06-15 Furukawa Sky Kk ボトル缶用アルミニウム合金板およびその製造方法
JP4916333B2 (ja) * 2006-03-13 2012-04-11 住友軽金属工業株式会社 強度とろう付け性に優れた熱交換器用アルミニウム合金クラッド材
JP2008231475A (ja) * 2007-03-19 2008-10-02 Furukawa Sky Kk 成形加工用アルミニウム合金板およびその製造方法
JP4312819B2 (ja) * 2008-01-22 2009-08-12 株式会社神戸製鋼所 成形時のリジングマーク性に優れたアルミニウム合金板
EP2527479B1 (de) * 2011-05-27 2014-02-12 Hydro Aluminium Rolled Products GmbH Hochleitfähige Aluminiumlegierung für elektrisch leitfähige Produkte
JP6227222B2 (ja) * 2012-02-16 2017-11-08 株式会社神戸製鋼所 焼付け塗装硬化性に優れたアルミニウム合金板
JP5379883B2 (ja) * 2012-05-11 2013-12-25 株式会社神戸製鋼所 アルミニウム合金板およびその製造方法
EP2770071B9 (de) 2013-02-21 2020-08-12 Hydro Aluminium Rolled Products GmbH Aluminiumlegierung zur Herstellung von Halbzeugen oder Bauteilen für Kraftfahrzeuge, Verfahren zur Herstellung eines Aluminiumlegierungsbands aus dieser Aluminiumlegierung sowie Aluminiumlegierungsband und Verwendungen dafür
WO2014201565A1 (en) 2013-06-19 2014-12-24 Rio Tinto Alcan International Limited Aluminum alloy composition with improved elevated temperature mechanical properties

Also Published As

Publication number Publication date
KR20170121336A (ko) 2017-11-01
WO2015144888A3 (de) 2016-01-07
KR101808812B1 (ko) 2017-12-13
JP6279761B2 (ja) 2018-02-14
KR20160132119A (ko) 2016-11-16
EP2924135A1 (de) 2015-09-30
RU2655510C2 (ru) 2018-05-28
EP3178952A1 (de) 2017-06-14
EP3178952B1 (de) 2020-07-29
CN106164311A (zh) 2016-11-23
CA2944061C (en) 2019-10-22
JP2017514014A (ja) 2017-06-01
ES2655434T3 (es) 2018-02-20
WO2015144888A2 (de) 2015-10-01
US20170009323A1 (en) 2017-01-12
CA2944061A1 (en) 2015-10-01
PT2924135T (pt) 2018-02-09
EP2924135B1 (de) 2017-12-13
RU2016142403A (ru) 2018-04-28
US10047424B2 (en) 2018-08-14

Similar Documents

Publication Publication Date Title
EP2770071B2 (de) Aluminiumlegierung zur Herstellung von Halbzeugen oder Bauteilen für Kraftfahrzeuge, Verfahren zur Herstellung eines Aluminiumlegierungsbands aus dieser Aluminiumlegierung sowie Aluminiumlegierungsband und Verwendungen dafür
EP3314031B1 (de) Hochfestes und gut umformbares almg-band sowie verfahren zu seiner herstellung
DE69912850T2 (de) Herstellungsverfahren eines produktes aus aluminium-magnesium-lithium-legierung
EP2449145B1 (de) AlMgSi-Band für Anwendungen mit hohen Umformungsanforderungen
EP2914391B1 (de) Aluminiumverbundwerkstoff und verfahren zur umformung
EP2570509B1 (de) Herstellverfahren für AlMgSi-Aluminiumband
EP2888382B1 (de) Gegen interkristalline korrosion beständiges aluminiumlegierungsband und verfahren zu seiner herstellung
EP2888383B1 (de) Hochumformbares und ik-beständiges almg-band
EP2570257A1 (de) Aluminiumverbundwerkstoff mit AlMgSi-Kernlegierungsschicht
WO2002083967A1 (de) VERFAHREN ZUR HERSTELLUNG VON AlMn-BÄNDERN ODER -BLECHEN
EP0902842A1 (de) Bauteil
EP2703508B1 (de) Gegen interkristalline Korrosion beständige Aluminiumlegierung
EP0394816A1 (de) Aluminiumwalzhalbzeug und Verfahren zu seiner Herstellung
EP1748088B1 (de) Verfahren zur Herstellung eines Halbzeugs oder Bauteils von Fahrwerk- oder Strukturanwendungen im Kraftfahrzeug
EP3178952B9 (de) Hochumformbare, mittelfeste aluminiumlegierung zur herstellung von halbzeugen oder bauteilen von kraftfahrzeugen
EP1466992A1 (de) Flächiges, gewalztes Halbzeug aus einer Aluminiumlegierung
EP3690076A1 (de) Verfahren zur herstellung eines blechs oder bands aus einer aluminiumlegierung sowie ein dadurch hergestelltes blech, band oder formteil
EP2426228B1 (de) Magnesiumblechhalbzeuge mit verbessertem Kaltumformvermögen
EP3970964A1 (de) Aluminiumverbundwerkstoff für crashanwendungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170112

AC Divisional application: reference to earlier application

Ref document number: 2924135

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180226

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20190703

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190927

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: ENGLER, DR. OLAF

Inventor name: BRINKMAN, DR. HENK-JAN

Inventor name: HENTSCHEL, DR. THOMAS

Inventor name: MILLER-JUPP, DR. SIMON

INTG Intention to grant announced

Effective date: 20200211

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 2924135

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014014544

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1295862

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201130

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201030

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201029

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014014544

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNG B9

26N No opposition filed

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014014544

Country of ref document: DE

Owner name: SPEIRA GMBH, DE

Free format text: FORMER OWNER: HYDRO ALUMINIUM ROLLED PRODUCTS GMBH, 41515 GREVENBROICH, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210328

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210328

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

REG Reference to a national code

Ref country code: AT

Ref legal event code: HC

Ref document number: 1295862

Country of ref document: AT

Kind code of ref document: T

Owner name: SPEIRA GMBH, DE

Effective date: 20220711

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230323

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140328

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240322

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240321

Year of fee payment: 11

Ref country code: GB

Payment date: 20240321

Year of fee payment: 11