WO2015144888A2 - Hochumformbare, mittelfeste aluminiumlegierung zur herstellung von halbzeugen oder bauteilen von kraftfahrzeugen - Google Patents
Hochumformbare, mittelfeste aluminiumlegierung zur herstellung von halbzeugen oder bauteilen von kraftfahrzeugen Download PDFInfo
- Publication number
- WO2015144888A2 WO2015144888A2 PCT/EP2015/056733 EP2015056733W WO2015144888A2 WO 2015144888 A2 WO2015144888 A2 WO 2015144888A2 EP 2015056733 W EP2015056733 W EP 2015056733W WO 2015144888 A2 WO2015144888 A2 WO 2015144888A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aluminum alloy
- components
- rolling
- strip
- weight
- Prior art date
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 71
- 239000011265 semifinished product Substances 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 claims abstract description 21
- 239000000956 alloy Substances 0.000 claims abstract description 20
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 19
- 229910052751 metal Inorganic materials 0.000 claims abstract description 6
- 239000002184 metal Substances 0.000 claims abstract description 6
- 239000012535 impurity Substances 0.000 claims abstract description 3
- 238000000137 annealing Methods 0.000 claims description 28
- 238000005096 rolling process Methods 0.000 claims description 22
- 238000000265 homogenisation Methods 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 15
- 229910052749 magnesium Inorganic materials 0.000 claims description 14
- 229910052742 iron Inorganic materials 0.000 claims description 12
- 229910052748 manganese Inorganic materials 0.000 claims description 12
- 229910052710 silicon Inorganic materials 0.000 claims description 12
- 238000005266 casting Methods 0.000 claims description 8
- 238000005097 cold rolling Methods 0.000 claims description 8
- 238000005098 hot rolling Methods 0.000 claims description 6
- 238000005260 corrosion Methods 0.000 abstract description 26
- 230000007797 corrosion Effects 0.000 abstract description 26
- 229910052804 chromium Inorganic materials 0.000 abstract description 5
- 239000000470 constituent Substances 0.000 abstract description 4
- 229910052802 copper Inorganic materials 0.000 abstract description 4
- 239000011651 chromium Substances 0.000 description 8
- 229910021365 Al-Mg-Si alloy Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000005275 alloying Methods 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/05—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
- C22C21/08—Alloys based on aluminium with magnesium as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/043—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/047—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
Definitions
- the invention relates to an aluminum alloy for the production of semi-finished products or components of motor vehicles, a method for producing a strip from an aluminum alloy according to the invention, a corresponding
- Aluminum alloy strip or sheet and a structural part of a motor vehicle consisting of an aluminum alloy sheet are Aluminum alloy strip or sheet and a structural part of a motor vehicle consisting of an aluminum alloy sheet.
- the mechanical properties are primarily determined by the rigidity, which depends above all on the shape of the inner door parts.
- the tensile strength has a rather minor influence.
- the materials used for a door inner part must not be too soft either.
- good formability is particularly important for the introduction of aluminum alloy materials into the motor vehicle sector, since the components and semi-finished products are particularly complex in their manufacture
- filiform corrosion is meant a type of corrosion that occurs and occurs in coated components
- the aluminum alloy of type AA8006 (AlFel, 5Mn 0.5) has sufficient strength and a very high
- the alloy AA8006 is thus less suitable for coated, in particular painted components such as door inner parts.
- Alloy components in wt .-% comprising:
- the present invention is therefore based on the object, an aluminum alloy for the production of semi-finished products or
- an aluminum alloy for the production of semi-finished products or components of motor vehicles which has the following alloy components in% by weight: 0.6% ⁇ Si ⁇ 0.9%,
- the present aluminum alloy is based on the recognition that Al-Mg-Si alloys of the alloy type AA6XXX in
- the lower limits of the forcibly provided alloying elements of 0.6 wt% for Si, 0.6 wt% for Fe, 0.6 wt% for Mn and 0.5 wt% for Mg ensure that the Aluminum alloy in soft annealed condition can provide sufficient strength.
- the alloying elements Cu are limited to a maximum of 0.1% by weight and Cr to a maximum of 0.05% by weight.
- the combination of the intended alloy components of Si, Fe, Mg and Mn ensures that, on the one hand, the very good forming behavior of the Al-Mg-Si alloys is combined with increased strength, without having too great losses in ductility.
- the investigations showed that the specified aluminum alloy in annealed condition meets the requirements for formability and in particular for corrosion resistance and is thus suitable for the production of semi-finished products or components in motor vehicles.
- the aluminum alloy according to the invention falls into the class of the Al-Mg-Si alloys of the alloy type AA6XXX. This allows an improved
- the alloy constituents Si, Fe, Mn and Mg have the following proportions in% by weight:
- a further improvement of the aluminum alloy according to the invention with respect to a maximum elongation at break is achieved in that the alloy constituents Si, Fe, Mn and Mg have the following proportions in% by weight:
- Forming properties of the aluminum alloy is achieved.
- the aluminum alloy according to the invention has good corrosion properties, according to a further embodiment of the aluminum alloy, the resistance to intergranular corrosion can be further improved in that the Si content of the alloy increases the Mg content by at most 0.2% by weight.
- the elongation at break of the aluminum alloy can be further improved by further reducing the Cr content to a maximum value of 0.01% by weight, preferably to a maximum of 0.001% by weight. It has been shown that chromium has a negative effect on the elongation at break even in very low concentrations.
- a similar effect also has the reduction of the Cu contents to a maximum of 0.05 wt .-%, preferably at most 0.01 wt .-%, at the same time the tendency to filiform corrosion or intergranular corrosion by reducing the Cu contents generally returns.
- the above object is achieved by a method for producing a tape from a
- homogenization at a temperature of 500 ° C. to 600 ° C. for at least 0.5 h, preferably at least 2 h, ensures that a homogeneous microstructure is provided for the further processing of the rolling ingot.
- Hot rolling temperatures allow good recrystallization during hot rolling, so that the structure is as fine as possible after hot rolling.
- this fine-grained structure is merely stretched and recrystallized again in the final soft annealing.
- the cold rolling produces a particularly high number of dislocations in the microstructure, which produces a very fine-grained, thoroughly recrystallised microstructure in the final soft annealing.
- the Abwalzgrad to final thickness before the final annealing must have at least 50%, preferably at least 70% to the desired final thickness.
- a further positive influence on the fine grain of the structure can be achieved that according to a further embodiment of the method according to the invention, the homogenization is carried out in two stages, the ingot is first heated to 550 ° C to 600 ° C for at least 0.5 h and then the Rolling bar at 450 ° C to 550 ° for at least 0.5 h, preferably at least 2 h is maintained. Subsequently, the rolling ingot is hot rolled.
- the corrosion properties can be improved by the
- Roll ingot is milled after casting or after homogenization on the top and bottom to exclude contaminants from the top and bottom of the roll ingot, which can adversely affect corrosion resistance.
- the intermediate annealing time is at least 0.5 h, preferably at least 2 h.
- the above object is achieved by an aluminum alloy strip or sheet made of an aluminum alloy according to the invention, wherein the strip has a thickness of 0.2 mm to 5 mm and in the annealed state, a yield strength R p0 .2 of at least 45 MPa and an equi-elongation A g of at least 23% and an elongation at break Asomm of at least 35%.
- the strip has a thickness of 0.2 mm to 5 mm and in the annealed state, a yield strength R p0 .2 of at least 45 MPa and an equi-elongation A g of at least 23% and an elongation at break Asomm of at least 35%.
- the aluminum alloy strip or sheet can be used for components in the motor vehicle, which in addition to very good forming properties and a very good resistance to intergranular Corrosion or filiform corrosion have. This is especially true for painted or coated components.
- Aluminiumlegierungsbandes for the production of semi-finished products or components of a motor vehicle, in particular structural parts of a motor vehicle, the above Task.
- structural parts can be produced with very large degrees of deformation and assume very complex shapes without being particularly
- the object shown by a structural part of a motor vehicle in particular a door inner part of a motor vehicle having at least one formed sheet of a
- the investigations have shown that the aluminum alloy according to the invention not only provides the required forming properties in the as-annealed state, but at the same time also ensures the necessary corrosion resistance and strength of the structural parts.
- the structural part according to the invention is produced from a strip which has been produced by the method according to the invention. It has been shown that with the invention
- the forming properties and the strength properties of the structural part can be achieved in a process-reliable manner, so that an economic production of structural parts that meet the conditions mentioned, is possible.
- FIG. 2 is a flowchart for a further embodiment of the method according to the invention.
- Fig. 3 is a schematically illustrated embodiment of a structural part of a motor vehicle.
- a first exemplary embodiment in a schematic flow diagram is now shown in FIG. 1.
- the rolling ingot is cast, for example in the DC continuous casting process or in the strip casting process.
- the bar is then heated to a temperature of 500 ° C to 600 ° C and held for at least 0.5 h, preferably at least 2 h at this temperature for homogenization.
- the so homogenized ingot is then hot rolled at a temperature of 280 ° C to 500 ° C, preferably 300 ° C to 400 ° C to a final thickness of 3 to 12 mm.
- step 8 a cold rolling to final thickness, followed by a recrystallizing final soft annealing according to step 10 followed.
- the degree of rolling must be at least 50%, preferably at least 70%, in order to produce a sufficiently fine-grained microstructure in the final soft annealing.
- Chamber furnace at 300 ° C to 400 ° C, preferably at 330 ° C to 370 ° C in step 10.
- alloy components according to the invention of Mg, Si, Fe and Mn is the use of a continuous furnace for the production of the inventive
- an intermediate annealing in a chamber furnace at 300 ° C to 400 ° C, preferably at 330 ° C to 370 ° C according to step 14, wherein both before
- a rolling degree of at least 50%, preferably at least 70% should be ensured to the fine grain of the structure after the recrystallizing final soft annealing to positive influence.
- milling may also be performed according to step 12 of the top and bottom of the rolling ingot to eliminate the influence of contaminants at the edges of the ingots in the
- FIG. 2 now shows a further flow chart which, as an alternative to step 4, shows the step 16 of the homogenization.
- the homogenization has an influence on the fine grain of the desired end structure of the strip or finished component.
- the homogenization is carried out in several stages.
- the homogenization step 16 initially has a first homogenization phase, step 18, in which the milled or unmilled roll ingot is heated to a temperature of 550 ° C. to 600 ° C. for at least 0.5 h, preferably at least 2 h.
- step 18 the so heated ingot is cooled to a temperature of 450 ° C to 550 ° C and held for at least 0.5 h, preferably at least 2 h at this temperature, which is shown in Fig. 2 in step 22.
- the ingot may also be cooled to room temperature in a step 24 and heated in a subsequent step 26 to the temperature for the second homogenization. This is necessary, for example, when the rolling ingot between the
- Homogenization step must be stored.
- this phase can be used at room temperature to mill the slab at the top and bottom, step 28.
- the hot rolling takes place as shown in FIG. 1 with the parameters given there. It has been shown that the multi-stage homogenization, in particular the two-stage homogenization leads to a finer structure in the final product.
- the effect according to the invention of providing a medium-strength and very highly deformable aluminum alloy or an aluminum alloy strip was demonstrated on the basis of 10 exemplary embodiments. Initially, 10 different billets consisting of different alloys were cast in DC continuous casting. The tops and bottoms of the ingots were milled after casting according to step 12.
- the 8 mm thick hot strip was finally cold rolled without intermediate annealing to a final thickness of 1.5 mm, d. H. with a rolling degree of more than 70%.
- Aluminum alloy ribbons 1.5 mm thick were made for 1 h at 350 ° C in a box furnace.
- the various aluminum alloys tested are shown in Table 1.
- Variants 1 to 4 and 9 and 10 are comparative examples which do not correspond to the aluminum alloy according to the invention.
- exemplary embodiments 5 to 8 correspond to the claimed invention
- Elongation at break Asomm and the depression SZ 32 measured in millimeters measured during stretch drawing.
- the values for the yield strength R p0 , 2 and the tensile strength R m were measured in the tensile test perpendicular to the rolling direction of the sheet according to DIN EN ISO 6892-1: 2009.
- the uniform elongation A g and the elongation at break Asomm in percent were measured in each case perpendicular to the rolling direction of the sheet with a flat tensile specimen according to DIN EN ISO 6892-1: 2009, Appendix B, Form 2.
- the forming behavior can also be in a
- the cupping test was carried out with a stamp head diameter of 32 mm and die diameter of 35.4 mm coordinated with the sheet metal blanket with the aid of a Teflon drawing film to reduce friction.
- the overview of the results is shown in Table 2.
- Elongation at break significantly decreases to about 30%. This effect can also be detected if only the Mn content is for example 1.0%, which already presses the breaking strain Asomm below 35%, variant 4.
- the variants 9 and 10 show the effect of reduced contents of Si, Fe, Mn and Mg. Comparative Examples 9 and 10 show a very good elongation at break Asomm with more than 35%, but the yield strength of 41 MPa is below that of the invention
- Stretch pull results SZ 32 and the high elongation values can be read both in the uniform elongation A g and in the elongation at break Asomm. From this it can be seen that overall it depends on the interaction of the
- Alloy contents Si, Fe, Mn, Mg arrives, wherein the components Cr and Cu must be kept particularly low, preferably, the Cu content ⁇ 0.05 wt .-%, preferably ⁇ 0.01 wt .-% and the chromium content ⁇ 0.01 wt .-%, preferably ⁇ 0.001 wt .-%. Coupled with the very good corrosion resistance of the
- Embodiments can be provided for vehicles semi-finished products and components, in particular structural components such as door inner parts, which not only ensures the specifications of the field of application with respect to mechanical and chemical properties, but can still be produced economically by a few forming operations.
- the aluminum alloy strips according to the invention are therefore ideally suited, for example, to provide structural parts of a motor vehicle, such as the door inner parts 30 shown in FIG. 3, or to be used for their manufacture.
- the door inner part is made of a sheet of a invention
- Aluminum alloy with a thickness of 1.5 mm made, which provides only by forming operations, but without joining operations a window frame.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metal Rolling (AREA)
- Continuous Casting (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580017129.6A CN106164311A (zh) | 2014-03-28 | 2015-03-27 | 制造汽车的半成品或构件的高成型性、中强度的铝合金 |
JP2016559550A JP6279761B2 (ja) | 2014-03-28 | 2015-03-27 | 自動車の半製品又は部品の製造のための高成形性中強度アルミニウム合金ストリップ又はシート |
CA2944061A CA2944061C (en) | 2014-03-28 | 2015-03-27 | Highly formable, medium-strength aluminium alloy for the manufacture of semi-finished products or components of motor vehicles |
KR1020177030782A KR20170121336A (ko) | 2014-03-28 | 2015-03-27 | 차량용 반제품 또는 부품을 제조하기 위한 고성형성의 중강도 알루미늄 합금 |
KR1020167030120A KR101808812B1 (ko) | 2014-03-28 | 2015-03-27 | 차량용 반제품 또는 부품을 제조하기 위한 고성형성의 중강도 알루미늄 합금 |
RU2016142403A RU2655510C2 (ru) | 2014-03-28 | 2015-03-27 | Легко формируемый, среднепрочный алюминиевый сплав для изготовления заготовок или деталей автомобилей |
US15/270,601 US10047424B2 (en) | 2014-03-28 | 2016-09-20 | Highly formable, medium-strength aluminium alloy for the manufacture of semi-finished products or components of motor vehicles |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14162348.8 | 2014-03-28 | ||
EP14162348.8A EP2924135B1 (de) | 2014-03-28 | 2014-03-28 | Verfahren zur Herstellung eines Bandes aus einer hochumformbaren, mittelfesten Aluminiumlegierung für Halbzeuge oder Bauteile von Kraftfahrzeugen |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/270,601 Continuation US10047424B2 (en) | 2014-03-28 | 2016-09-20 | Highly formable, medium-strength aluminium alloy for the manufacture of semi-finished products or components of motor vehicles |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2015144888A2 true WO2015144888A2 (de) | 2015-10-01 |
WO2015144888A3 WO2015144888A3 (de) | 2016-01-07 |
Family
ID=50478703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2015/056733 WO2015144888A2 (de) | 2014-03-28 | 2015-03-27 | Hochumformbare, mittelfeste aluminiumlegierung zur herstellung von halbzeugen oder bauteilen von kraftfahrzeugen |
Country Status (10)
Country | Link |
---|---|
US (1) | US10047424B2 (de) |
EP (2) | EP2924135B1 (de) |
JP (1) | JP6279761B2 (de) |
KR (2) | KR20170121336A (de) |
CN (1) | CN106164311A (de) |
CA (1) | CA2944061C (de) |
ES (1) | ES2655434T3 (de) |
PT (1) | PT2924135T (de) |
RU (1) | RU2655510C2 (de) |
WO (1) | WO2015144888A2 (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116145057A (zh) * | 2023-03-20 | 2023-05-23 | 山东南山铝业股份有限公司 | 一种6系铝合金板材均匀化工艺方法及该工艺方法在铝合金板材生产中的应用 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07252611A (ja) * | 1994-03-17 | 1995-10-03 | Kobe Steel Ltd | 成形加工用Al−Mn−Mg系合金板 |
JP2002275566A (ja) * | 2001-03-21 | 2002-09-25 | Kobe Steel Ltd | プレス成形性に優れたAl−Mn系合金板 |
JP4703033B2 (ja) * | 2001-05-21 | 2011-06-15 | 三菱樹脂株式会社 | ダイカスト用アルミニウム合金材 |
WO2003006697A1 (en) * | 2001-07-09 | 2003-01-23 | Corus Aluminium Walzprodukte Gmbh | Weldable high strength al-mg-si alloy |
RU2221891C1 (ru) * | 2002-04-23 | 2004-01-20 | Региональный общественный фонд содействия защите интеллектуальной собственности | Сплав на основе алюминия, изделие из этого сплава и способ изготовления изделия |
US20060032560A1 (en) * | 2003-10-29 | 2006-02-16 | Corus Aluminium Walzprodukte Gmbh | Method for producing a high damage tolerant aluminium alloy |
JP2006152359A (ja) * | 2004-11-29 | 2006-06-15 | Furukawa Sky Kk | ボトル缶用アルミニウム合金板およびその製造方法 |
JP4916333B2 (ja) * | 2006-03-13 | 2012-04-11 | 住友軽金属工業株式会社 | 強度とろう付け性に優れた熱交換器用アルミニウム合金クラッド材 |
JP2008231475A (ja) * | 2007-03-19 | 2008-10-02 | Furukawa Sky Kk | 成形加工用アルミニウム合金板およびその製造方法 |
JP4312819B2 (ja) * | 2008-01-22 | 2009-08-12 | 株式会社神戸製鋼所 | 成形時のリジングマーク性に優れたアルミニウム合金板 |
EP2527479B1 (de) * | 2011-05-27 | 2014-02-12 | Hydro Aluminium Rolled Products GmbH | Hochleitfähige Aluminiumlegierung für elektrisch leitfähige Produkte |
JP6227222B2 (ja) * | 2012-02-16 | 2017-11-08 | 株式会社神戸製鋼所 | 焼付け塗装硬化性に優れたアルミニウム合金板 |
JP5379883B2 (ja) * | 2012-05-11 | 2013-12-25 | 株式会社神戸製鋼所 | アルミニウム合金板およびその製造方法 |
ES2621871T3 (es) | 2013-02-21 | 2017-07-05 | Hydro Aluminium Rolled Products Gmbh | Aleación de aluminio para la fabricación de productos semiacabados o componentes para automóviles, procedimiento para la fabricación de una cinta de aleación de aluminio de esta aleación de aluminio así como cinta de aleación de aluminio y usos de la misma |
RU2673270C2 (ru) | 2013-06-19 | 2018-11-23 | Рио Тинто Алкан Интернэшнл Лимитед | Композиция алюминиевого сплава с улучшенными механическими свойствами при повышенной температуре |
-
2014
- 2014-03-28 ES ES14162348.8T patent/ES2655434T3/es active Active
- 2014-03-28 EP EP14162348.8A patent/EP2924135B1/de active Active
- 2014-03-28 EP EP17151174.4A patent/EP3178952B9/de active Active
- 2014-03-28 PT PT141623488T patent/PT2924135T/pt unknown
-
2015
- 2015-03-27 KR KR1020177030782A patent/KR20170121336A/ko not_active Application Discontinuation
- 2015-03-27 KR KR1020167030120A patent/KR101808812B1/ko active IP Right Grant
- 2015-03-27 CA CA2944061A patent/CA2944061C/en active Active
- 2015-03-27 WO PCT/EP2015/056733 patent/WO2015144888A2/de active Application Filing
- 2015-03-27 JP JP2016559550A patent/JP6279761B2/ja active Active
- 2015-03-27 CN CN201580017129.6A patent/CN106164311A/zh active Pending
- 2015-03-27 RU RU2016142403A patent/RU2655510C2/ru active
-
2016
- 2016-09-20 US US15/270,601 patent/US10047424B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP3178952B1 (de) | 2020-07-29 |
RU2655510C2 (ru) | 2018-05-28 |
KR20170121336A (ko) | 2017-11-01 |
US20170009323A1 (en) | 2017-01-12 |
RU2016142403A (ru) | 2018-04-28 |
PT2924135T (pt) | 2018-02-09 |
EP3178952A1 (de) | 2017-06-14 |
ES2655434T3 (es) | 2018-02-20 |
EP2924135B1 (de) | 2017-12-13 |
EP3178952B9 (de) | 2021-07-14 |
JP6279761B2 (ja) | 2018-02-14 |
CA2944061C (en) | 2019-10-22 |
JP2017514014A (ja) | 2017-06-01 |
KR101808812B1 (ko) | 2017-12-13 |
EP2924135A1 (de) | 2015-09-30 |
KR20160132119A (ko) | 2016-11-16 |
WO2015144888A3 (de) | 2016-01-07 |
CA2944061A1 (en) | 2015-10-01 |
US10047424B2 (en) | 2018-08-14 |
CN106164311A (zh) | 2016-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2770071B9 (de) | Aluminiumlegierung zur Herstellung von Halbzeugen oder Bauteilen für Kraftfahrzeuge, Verfahren zur Herstellung eines Aluminiumlegierungsbands aus dieser Aluminiumlegierung sowie Aluminiumlegierungsband und Verwendungen dafür | |
EP3314031B1 (de) | Hochfestes und gut umformbares almg-band sowie verfahren zu seiner herstellung | |
DE69912850T2 (de) | Herstellungsverfahren eines produktes aus aluminium-magnesium-lithium-legierung | |
EP2270249B1 (de) | AlMgSi-Band für Anwendungen mit hohen Umformungsanforderungen | |
DE112008003052T5 (de) | Produkt aus Al-Mg-Zn-Knetlegierung und Herstellungsverfahren dafür | |
EP2888382B1 (de) | Gegen interkristalline korrosion beständiges aluminiumlegierungsband und verfahren zu seiner herstellung | |
EP2570509B1 (de) | Herstellverfahren für AlMgSi-Aluminiumband | |
EP2914391A1 (de) | Aluminiumverbundwerkstoff und verfahren zur umformung | |
WO2002083967A1 (de) | VERFAHREN ZUR HERSTELLUNG VON AlMn-BÄNDERN ODER -BLECHEN | |
WO2013037918A1 (de) | ALUMINIUMVERBUNDWERKSTOFF MIT AlMgSi-KERNLEGIERUNGSSCHICHT | |
EP2888383B1 (de) | Hochumformbares und ik-beständiges almg-band | |
EP3538682B1 (de) | Blech aus einer magnesiumbasislegierung und verfahren zur herstellung eines bleches und blechbauteils aus dieser | |
EP0394816A1 (de) | Aluminiumwalzhalbzeug und Verfahren zu seiner Herstellung | |
WO2014033048A1 (de) | Gegen interkristalline korrosion beständige aluminiumlegierung | |
EP2924135B1 (de) | Verfahren zur Herstellung eines Bandes aus einer hochumformbaren, mittelfesten Aluminiumlegierung für Halbzeuge oder Bauteile von Kraftfahrzeugen | |
EP1748088A1 (de) | Warm- und kaltumformbare Aluminiumlegierung vom Typ Al-Mg-Mn | |
EP2839047B1 (de) | Calcium als substitut für seltene erdelemente in magnesium-blechlegierungen mit guten umformeigenschaften | |
EP1466992A1 (de) | Flächiges, gewalztes Halbzeug aus einer Aluminiumlegierung | |
EP2426228B1 (de) | Magnesiumblechhalbzeuge mit verbessertem Kaltumformvermögen | |
WO2023169657A1 (de) | Halbzeug aus aluminium-knetlegierung, dessen herstellung und verwendung und daraus hergestelltes produkt |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2944061 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2016559550 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20167030120 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2016142403 Country of ref document: RU Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15713456 Country of ref document: EP Kind code of ref document: A2 |