EP2193160A2 - Procédé de préparation de matériaux composites - Google Patents

Procédé de préparation de matériaux composites

Info

Publication number
EP2193160A2
EP2193160A2 EP08837912A EP08837912A EP2193160A2 EP 2193160 A2 EP2193160 A2 EP 2193160A2 EP 08837912 A EP08837912 A EP 08837912A EP 08837912 A EP08837912 A EP 08837912A EP 2193160 A2 EP2193160 A2 EP 2193160A2
Authority
EP
European Patent Office
Prior art keywords
mixture
powder
thermoplastic
weight
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08837912A
Other languages
German (de)
English (en)
Inventor
Patrick Piccione
Catherine Bluteau
Benoît BRULE
Alexander Korzhenko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP2193160A2 publication Critical patent/EP2193160A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers

Definitions

  • the present invention relates to a method for manufacturing a composite material comprising: preparing a masterbatch based on carbon nanotubes, under specified conditions, and introducing said masterbatch into a thermoplastic polymer composition and or elastomeric.
  • Carbon nanotubes are known and possess particular crystalline structures, tubular, hollow and closed, composed of atoms arranged regularly in pentagons, hexagons and / or heptagons, obtained from carbon.
  • CNTs generally consist of one or more coiled graphite sheets.
  • SWNTs single wall nanotubes
  • Multi Wall Nanotubes or MWNTs Multi Wall Nanotubes
  • TCMs are commercially available or can be prepared by known methods. There are several methods of synthesis of CNTs, including electrical discharge, laser ablation and chemical vapor deposition or CVD (Chemical Vapor Deposition) which ensures the production of large quantities of carbon nanotubes and therefore obtaining them at a cost price compatible with their massive use.
  • This process consists precisely in injecting a source of carbon at relatively high temperature over a catalyst which may itself consist of a metal such as iron, cobalt, nickel or molybdenum, supported on an inorganic solid such as alumina, silica or magnesia.
  • Carbon sources can include methane, ethane, ethylene, acetylene, ethanol, methanol or even a mixture of carbon monoxide and hydrogen (HIPCO process).
  • the application WO 86/03455 A1 of Hyperion Cataiysis International Inc. describes in particular the synthesis of CNTs. More particularly, the process comprises contacting a metal-based particle, such as in particular iron, cobalt or nickel, with a gaseous compound based on carbon, at a temperature of between 850 ° C. and 1200 ° C. C, the dry weight proportion of the carbon-based compound relative to the metal-based particle being at least about 100: i.
  • a metal-based particle such as in particular iron, cobalt or nickel
  • the CNTs have both excellent stiffness (measured by the Young's modulus), comparable to that of steel, while being extremely light.
  • they have excellent electrical and thermal conductivity properties that allow to consider using them as additives to impart these properties to various materials, including macromolecular, such as thermopiastics and elastomers.
  • Thermoplastics are an important class of synthetic materials used more and more in various applications.
  • thermoplastics are an ideal material, particularly for buildings (piping systems, pipes, etc.), packaging, packaging (bottles and flasks), electrical insulation, appliances, clothing, elastomers, their high elasticity makes them indispensable in the manufacture of mechanical parts, such as in the transport of electrical energy or in the field of hygiene.
  • CNTs are difficult to handle and disperse, because of their small size, their powderiness and possibly, when they are obtained by the CVD technique, their entangled structure, all the more important that the we are trying to increase their mass productivity in order to improve production and reduce the residual ash content.
  • the existence of strong Van der Waals interactions between the nanotubes also affects their dispersibility and the stability of the suspensions obtained.
  • CNTs significantly affects the performance of the composites they form with the polymer matrices into which they are introduced.
  • the poor dispersibility of carbon nanotubes is particularly observed in the case of thermoplastic and / or elastomeric polymer matrices, particularly when the polymer is used in the form of granules, as described in particular in document US 2004/026581.
  • JP2003-012939 also discloses a powdery masterbatch based on CNT and polyamide.
  • the subject of the present invention is therefore a process for manufacturing a composite material comprising: A- preparing a masterbatch based on carbon nanotubes (hereafter NTC) according to a process comprising:
  • masterbatches means concentrates of active material that are CNTs, which are intended to be subsequently incorporated into a polymer (compatible or not with the polymer already contained in these masterbatches).
  • a masterbatch in an agglomerated solid physical form has a number of advantages such as, in particular, the absence of fines, a good flexibility in the hoppers, a precise and lossless metering, easy handling, good dispersion, lower volatility and less sensitivity to moisture compared to powders, reduced handling risks, lower mass and volume, no precipitation and settling of solutions or suspensions as well as a clear reduction in transport risks.
  • the carbon nanotubes that can be used according to the invention can be of the single-walled, double-walled or multi-walled type.
  • the double-walled nanotubes can in particular be prepared as described by FLAHAUT et al in Chem. Corn. (2003), 1442.
  • the multi-walled nanotubes may themselves be prepared as described in WO 03/02456.
  • the masterbatch used according to the invention comprises from 2% to 30% by weight, preferably from 5% to 25% by weight and more preferably from 10% to 20% by weight of CNT, relative to the weight of the total pulverulent mixture. .
  • the composite obtained preferably comprises from 0.5% to 20% by weight, preferably from 0.5% to 10% by weight and more preferably from 0.5% to 5% by weight of CNT, relative to the weight of the mixture. total powder.
  • the nanotubes used according to the invention usually have a mean diameter ranging from 0.1 to 200 nm, preferably from 0.1 to 100 nm, more preferably from 0.4 to 50 nm and better still from 1 to 30 nm. and advantageously a length of more than 0.1 microns and advantageously from 0.1 to 20 microns, for example about 6 microns. Their length / diameter ratio is advantageously greater than 10 and most often greater than 100.
  • These nanotubes therefore include nanotubes called "VGCF" nanotubes.
  • the multiwall carbon nanotubes may for example comprise from 5 to 15 sheets and more preferably from 7 to 10 sheets.
  • crude carbon nanotubes is especially commercially available from Arkema under the trade name Graphistrength® ® C100.
  • the nanotubes may be purified and / or treated (in particular oxidized) and / or milled before being used in the process according to the invention. They can also be functionalized by solution chemistry methods such as amination or reaction with coupling agents.
  • the grinding of the nanctubes can be carried out in particular at cold or hot and be carried out according to known techniques used in devices such as ball mills, hammers, grinders, knives, gas jet or any other grinding system. likely to reduce the size of the entangled network of nanotubes. It is preferred that this grinding step is performed according to a gas jet grinding technique and in particular in an air jet mill.
  • the purification of the nanotubes may be carried out by washing with a sulfuric acid solution, or another acid, so as to rid them of any residual mineral and metal impurities from their preparation process.
  • the weight ratio of nanotubes to sulphuric acid can in particular be between 1: 2 and 1: 3.
  • the purification operation may also be carried out at a temperature ranging from 90 to 120 ° C., for example for a period of 5 to 10 hours. This operation may advantageously be followed by rinsing steps with water and drying the purified nanotubes.
  • the oxidation of the nanotubes is advantageously carried out by putting them in contact with: a solution of sodium hypochlorite containing from 0.5 to 15% by weight of KaOCi and preferably from 1 to 10% by weight of NaOCl, by for example in a weight ratio of nanotubes to sodium hypochlorite ranging from 1: 0.1 to 1: 1.
  • the oxidation is advantageously carried out at a temperature below 60 ° C. and preferably at room temperature, for a duration ranging from a few minutes to 24 hours. This oxidation operation may advantageously be followed by steps of fi ltration and / or centrifugation, washing and drying of the oxidized nanotubes.
  • the nanotubes (raw or crushed and / or purified and / or oxidized and / or functionalized by a non-plasticizing molecule) are brought into contact with at least one thermoplastic and / or elastomeric polymeric matrix.
  • thermoplastic polymer matrix is intended to mean a polymer or a mixture of polymers which melts when heated and which can be shaped in the molten state.
  • thermopiastics offering a wide range of interesting properties. They can be made as flexible as rubber, as rigid as metal and concrete, or made as transparent as glass, for use in many pipe products and other components. They do not oxidize and have a high resistance to corrosion.
  • polyamide (PA) such as polyamide 6
  • PA-6 polyamide 11 (PA-II), polyamide 12 (PA-12), polyamide 6.6 (PA-6.6), polyamide 4.6 (PA-4.6), 6.10 polyamide (PA-6.10) and polyamide 6.12 (PA-6.12), some of these polymers being sold in particular by Arkema under the name Rilsan 0 and preferred being those of fluid grade such as Rilsan ® AMNO TLD.
  • PVDF polyvinylidene fluoride
  • ABS acrylonitrile butadiene styrene
  • AMMA acrylonitrile methyl methacrylate
  • CA cellulose acetate
  • E / P ethylene / propylene copolymer
  • EFE ethylene / tetrafluoroethylene copolymer
  • EVAC ethylene vinyl acetate
  • EVOH ethylene vinyl alcohol
  • MABS methyl cellulose
  • MBS methyl-methacrylate-butadiene-styrene
  • PAI polyamide imide
  • PBT polybutylene terephthalate
  • PC polycarbonate
  • PE polyethylene
  • PEN polyethersulfone
  • PET poly (ethylene terephthalate)
  • PETP poly (poly) terephthalate
  • PFA polyimide
  • PK polyketone
  • PMMA polymethyl methacrylate
  • PMMA polyethyl pentene
  • PMP polyoxymethylene or polyacetal
  • PP polypropylene
  • PPE poly (phenylene ether)
  • PPOX poly (propylene oxide)
  • PPS polyphenylene sulfide
  • PS polystyrene
  • PSU polytetrafluoroethylene
  • PTFE polytetrafluoroethylene
  • PVAC polyvinyl acetate
  • PVC polyvinyl chloride
  • PVF polyvinyl fluoride
  • S / B poly (styrene) butadiene)
  • SMAH styrene maleic anhydride
  • VE vinyl ester resin
  • PEI polyetherimide
  • PCTFE polychlorotrifluoroethylene
  • PCTFE polyarylsulfone
  • the term "elastomeric or elastomeric polymer matrix” is intended to mean an elastic polymer, that is to say a polymer that supports very large deformations, much greater than 100% and (almost) completely reversible.
  • An elastomer is made up of long molecular chains that are gathered at rest in "balls". These chains are interconnected by crosslinking points, entanglements or polar bonds with mineral fillers, and form a network.
  • fluoroelastomers such as those sold under the trade names Kalrez u and Viton ° by the company DuPont Performance Eîastomers, natural or synthetic latex, chloroprene-based rubber such as that marketed under the trademark Neoprene D by the company DuPont Chemicals, polyacrylics, polybutadiene, polyether amide block, polyisobutylene, polyisoprene, polyurethane, silicones, natural rubber (styrene butadiene rubber or SBR), eiasuomers marketed under the trademarks Vistamaxx ", Vistaflex Thermoplastic Elastomers, Dytron Santoprene Thermoplastic Elastomers and '5 Thermopiastic Vuicanizates by ExxonMobil Chemical Company, etc.
  • fluoroelastomers such as those sold under the trade names Kalrez u and Viton ° by the company DuPont Performance Eîastomers, natural or synthetic latex, chloroprene
  • polymer according to the invention also covers oligomers, as well as alloys of thermoplastic polymers, of elastomers with one another, or with each other.
  • the masterbatch used according to the invention comprises from 95% to 70% by weight, and preferably from 90% to 80% by weight of polymer matrix, based on the weight of the total powder mixture.
  • the composite obtained according to the invention thus advantageously comprises from 99.5% to 80% by weight, and preferably from 99.5% to 95% by weight of polymer matrix, relative to the weight of the total powder mixture.
  • the average particle size of the polymeric matrix powder is preferably between
  • 0.1 ⁇ m and 1000 ⁇ m preferably between 10 ⁇ m and 800 ⁇ m, and even more preferably between 50 ⁇ m and 300 ⁇ m.
  • the average particle size of the polymer matrix powder is between 100 ⁇ m and 150 ⁇ m.
  • the first step of the process according to the invention consists in mixing the powders of CNT and of polymer matrix, which will then be implemented in the second stage.
  • the NTC and polymer powders may be mixed in a mixer which is either integrated with the processing apparatus or disposed upstream thereof.
  • This powder mixture can be produced in conventional synthesis reactors, paddle mixers, fluidized bed reactors or in Brabender mixers, z-arm mixer or extruder. According to a variant of the invention, it is thus possible to use a mixer with or without arms.
  • the pulverulent mixture of CNTs and at least one polymeric matrix may further comprise one or more other pulverulent fillers.
  • pulverulent fillers There may be mentioned in particular carbon blacks, activated carbons, silicas, metals, ceramic materials, glass fibers, pigments, clays, calcium carbonate, boron and / or nitrogen nanotubes and / or transition metals, metals, ceramic materials.
  • This first step of dry mixing of powders or dry-blend is preferably followed by a heat treatment step where the passage of the polymer in liquid or gaseous form takes place in order to ensure an intimate and homogeneous mixture of the polymer with the CNTs. .
  • This heat treatment consists of a rise in temperature of the powder so that its physicochemical properties are modified. This heat treatment is advantageously carried out in an extruder.
  • the second step of the process according to the invention consists of the implementation of the mixture in order to obtain agglomerated solid physical forms. This step can be carried out by any method known to those skilled in the art.
  • agglomeration fluidized bed which is a conventional method for obtaining granules from powder.
  • the fluidized powder is moistened until liquid bridges form between the particles.
  • Water, solutions, suspensions or melts can be sprayed to achieve the desired product quality. Thanks to this technology, the level of fines is considerably reduced, the fluidity and the dispersion capacity in the water are improved, the granules obtained are very aerated and dissolve very easily.
  • the agglomeration process by its action, solves the stability problems of the powdery mixtures.
  • Another method of implementation is spray granulation which is a simultaneous process.
  • the granules are formed during the evaporation of the fluid. These granules are harder and denser than by agglomeration.
  • a wet phase granulation process can be used which involves introducing the powder into a vertical granulator and moistening it thoroughly with spraying. The mixture is then vigorously stirred by a turbine into a nacheur. In this process where the powder is compressed, the result is granules denser than by agglomeration in a fluidized bed.
  • Another method that can be used is the compression injection process which consists of injecting a slab of molten material which is then compressed to fill a mold. A compressed solid product is then obtained.
  • Yet another useful and preferred method according to the invention is the compounding process which is a continuous process comprising mixing, cooling and granulating steps.
  • the mixture of NTC and polymer arrives at the top of an extruder or in a first segment thereof, in powder form, and is poured into the hopper to feed the screw of the extruder, which is preferably an extruder twin-screw or a co-kneader.
  • the screw of the extruder which is preferably an extruder twin-screw or a co-kneader.
  • the mixture is heated and softened by means of a worm which is in a sleeve (tube) heated to make the material malleable.
  • the screw drives the material to the outlet.
  • the exit head of the extruder gives shape to the outgoing material.
  • the tube or ring comes out continuously, it is cooled to be then cut into pellets.
  • thermoplastic and / or elastomeric powdery polymer, into which the masterbatch must be introduced is fed into a second segment of the extruder or mixer used for the manufacture of this masterbatch.
  • manufacture of the composite can be done continuously in the same apparatus.
  • solid physical form agglomerated in the context of the present invention the final mixture after its implementation according to the invention in hard form, for example substantially cylindrical, ovoid, rectangular or prismatic spherical.
  • granules, pellets and rollers can be cited as agglomerated solid physical forms.
  • the diameter of this agglomerated solid physical form may be between 1 mm and 10 mm, but more preferably between 2 mm and 4 mm.
  • the masterbatch obtained as described above is intended to be introduced into a thermoplastic and / or elastomeric polymer composition to form a composite material. It is generally preferable to use the same family of polymers as that of the thermoplastic and / or elastomeric polymer included in the masterbatch. Examples of usable polymers are those mentioned above. In some cases, it may, on the other hand, be advantageous to use a non-matrix compatible polymer in order to obtain a so-called "double percolation" effect.
  • the polymer is chosen from polyamides, poly (vinylidene fluoride), polycarbonate, polyetheretherketone, poly (phenylene sulphide), polyolefins, and mixtures thereof, and their copolymers.
  • the polymer composition, into which the masterbatch is introduced may further contain various additives and additives such as lubricants, plasticizers, pigments, stabilizers, fillers or reinforcements, anti-static agents, anti-fogging agents, fungicides, flame retardants and solvents.
  • additives and additives such as lubricants, plasticizers, pigments, stabilizers, fillers or reinforcements, anti-static agents, anti-fogging agents, fungicides, flame retardants and solvents.
  • the process according to the invention makes it possible to improve the dispersion of the anotubes in the polymer matrix and / or the mechanical properties (in particular tensile and / or impact strength) and / or electrical conductivity. and / or the thermal conductivity of the polymeric matrix.
  • Another advantage of said method is that it makes conductive composites comprising CNTs at lower rates of CNT compared to the prior art.
  • FIGS. 1 and 3 illustrate a dispersion of comparative composites
  • FIGS. 2 and 4 illustrate a dispersion of composites prepared according to the invention
  • FIG. 5 represents two percussion curves of a composite and composite composite prepared according to the invention.
  • a 15% BUSS 15D co-kneader of powdered NTC (Graphistrength ' 1 ClOO from Arkema) was mixed with 95% of Ramesan' AMNO TLD powder from Arkema (grade fluid polyamide) at a flow rate of 10 kg / h with a sheath temperature profile 250/250/250/220 0 C, a screw profile at 210 ° C, and a screw speed of 250 rpm, to obtain a composite material containing 5% by weight of CNT and 95% by weight of PAl2.
  • Photographs were then taken by optical microscope in transmitted light from 2 ⁇ m thick sections made parallel to the extrusion direction, at the rate of 6 plates per section, at a nominal magnification of 200 ⁇ . The percentage of the surface of these composite materials occupied by CNT aggregates was then evaluated. The average of the values obtained for each of the 6 snapshots was calculated.
  • a 20% BUSS 15D co-kneader of NTC powder (Graphistrength 0 C100 from Arkema) was mixed in 80% of polyamide-12 powder Rilsan c AMNO TLD of Arkema (grade of polyamide). fluid) at a flow rate of 10 kg / h with a sleeve temperature profile 250/250/250/210 0 C, a screw profile at 21O 0 C, and a screw speed of 280 rpm, to obtain a composite material containing 20% by weight of CNT and 80% by weight of PA12.
  • the kneading is carried out by two co-rotating screws (screw speed: 100 zr / min) at a temperature ⁇ e 23O 0 C during a duration of 10 min.
  • screw speed 100 zr / min
  • the injection is carried out at 230 ° C. in a mold preheated to 90 ° C. to obtain a pellet.
  • the resistivity measurement is carried out thanks to the four-wire measurement system for its precision and the stability of the measurement.
  • NTC / PVDF composites were prepared according to the protocol of Example 3 so as to obtain composites based on Kynar J 721 containing from 1% to 10% by weight of NTC (Graphistrength 0 C100 from Arkema).
  • the resistivity of the composites decreases as the level of CNT they contain increases.
  • that of the composites obtained according to the invention is always lower, from a CNT content of about 3.4% up to a CNT level of about 10%, to that of the composites obtained from granulated polymer, which reflects their better electrical conductivity and the better dispersion of CNTs in these composites according to the invention.
  • the use of powdered PVDF (Rynar "721) and not in granules ( ⁇ Kynar 720) leads to a significant improvement on conductivity of the injected pellets has a CNT content of 5%.
  • the resistivity measured on the composite obtained from powder is 454 ⁇ .cm whereas that measured for the composite based on granules is at least 100 times higher.
  • Table 3 compares the two DSM microextrusion mixing systems and Rheocord internal mixer as well as the two powder / granulate processing techniques at CNT levels of 2% and 5%.
  • Composition A is obtained by introducing into a Rhéocord Haake 90 mixer, 98% of PVDF (Kynar ° 720) in the form of granules which are melted and then 2% of NTC in the form of powder (Graphistrength 0 C100 of the Arkema company).
  • Composition B is obtained by manually mixing dry 2% of NTC in powder form (Graphistrength 0 C100 from Arkema) and 98% of PVDF (Kynar 720) in powder form and then using this mixture in a Rhéocord Haake 90 mixer.
  • the mixing conditions for the Rheocord are as follows: mixing temperature: 230 ° C. rotational speed of the Brabender type rotors: 100 rpm mixing time: 10 min
  • compositions A and B are compressed into pellets according to a process comprising the steps of:
  • Pellets having a diameter of about 2 cm and a thickness of about 0.1 cm are obtained.
  • the measurement of the resistivity can be performed.
  • Composition C is obtained by premixing dry 95% of PVDF (Kynar 720) in the form of granules and 5% of NTC in powder form (Graphistrength 0 C100 from Arkema) and then introducing this premix. in a microextruder model Micro 15 compounder 0 from the company DSM. The mixing is done by two co-rotating screws
  • composition D is obtained by dry pre-mixing manually 5% of NTC in the form of a powder (Graphistrength '3 C100 from Arkema) and 95% of PVDF (Kynar 720) in powder form, then introducing this precursor. mixing in a model of microextrudeur Micro 15 compounder 0 of society
  • compositions C and D are thus in the form of pellets by injection. Results:
  • Pellets made by compression (2% CNT) from Kynar® powder have a lower resistivity value than those obtained from Kynar * granules.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

La présente invention a pour objet un procédé de fabrication d'un matériau composite comprenant : A- la préparation d'un mélange-maître à base de nanotubes de carbone suivant un procédé comprenant : le mélange de nanotubes de carbone sous forme de poudre et d'au moins une matrice polymérique thermoplastique et/ou élastomérique sous forme de poudre, la quantité de nanotubes de carbone représentant de 2% à 30% en poids, par rapport au poids du mélange pulvérulent total; et la mise en œuvre dudit mélange sous une forme physique solide agglomérée, et B- l'introduction dudit mélange-maître dans une composition de polymère thermoplastique et/ou élastomérique. Elle se rapporte également à l'utilisation du mélange-maître précité pour la mise en oeuvre de ce procédé.

Description

Procédé de préparation de matériaux composites
La présente invention concerne un procédé de fabrication d'un matériau composite comprenant : la préparation d'un mélange-maître à base de nanotubes de carbone, dans des conditions déterminées, et l'introduction dudit mélange- maître dans une composition de polymère thermoplastique et/ou élastomérique .
Les nanotubes de carbone (ou NTC) sont connus et possèdent des structures cristallines particulières, de forme tubulaire, creuses et closes, composées d'atomes disposés régulièrement en pentagones, hexagones et/ou heptagones, obtenues à partir de carbone. Les NTC sont en général constitués d'un ou plusieurs feuillets de graphite enroulés . On distingue ainsi les nanotubes monoparois (Single Wall Nanotubes ou SWNT) et les nanotubes multiparois (Multi Wall Nanotubes ou MWNT) .
Les MTC sont disponibles dans le commerce ou peuvent être préparés par des méthodes connues. Il existe plusieurs procédés de synthèse de NTC, notamment la décharge électrique, l'ablation laser et le dépôt chimique en phase vapeur ou CVD (Chemical Vapour Déposition) qui permet d'assurer la fabrication en grande quantité de nanotubes de carbone et donc leur obtention à un prix de revient compatible avec leur utilisation massive. Ce procédé consiste précisément à injecter une source de carbone à relativement haute température sur un catalyseur qui peut lui-même être constitué d'un métal tel que le fer, le cobalt, le nickel ou le molybdène, supporté sur un solide inorganique tel que l'alumine, la silice ou la magnésie. Les sources de carbone peuvent comprendre le méthane, l'éthane, l'éthylène, l'acétylène, l'éthanol, le méthanol, voire un mélange de monoxyde de carbone et d'hydrogène (procédé HIPCO) .
Ainsi la demande WO 86/03455 Al d' Hyperion Cataiysis International Inc. décrit notamment la synthèse des NTC. Plus particulièrement, le procédé comprend la mise en contact d'une particule à base de métal tel que notamment le fer, le cobalt ou le nickel, avec un composé gazeux à base de carbone, à une température comprise entre 8500C et 12000C, la proportion en poids sec du composé à base de carbone par rapport à la particule à base de métal étant d'au moins environ 100 :i.
D'un point de vue mécanique, les NTC présentent à la fois une excellente rigidité (mesurée par le module d'Young), comparable à celle de l'acier, tout en étant extrêmement légers. En outre, ils présentent d'excellentes propriétés de conductivité électrique et thermique qui permettent d'envisager de les utiliser comme additifs pour conférer ces propriétés à divers matériaux, notamment macromoiéculaires, tels que les thermopiastiques et les élastomères. Les thermoplastiques constituent une importante classe de matériaux synthétiques utilisés de plus en plus dans diverses applications. De par leur légèreté, leur haute résistance mécanique et leur résistance aux effets de l'environnement, les thermoplastiques constituent un matériau idéal notamment pour le bâtiment (les installations de tuyauteries, les canalisations, etc.), les emballages, le packaging (bouteilles et flacons), les isolations électriques, l'électroménager, l'habillement, élastomères, leur grande élasticité les rend indispensables dans la fabrication des pièces mécaniques, comme dans le transport d'énergie électrique ou dans le domaine de l'hygiène.
II a ainsi été suggéré dans le document US 2002/0185770 de préparer des feuilles ou tiges à base de NTC et de polymère thermoplastique ou thermodurcissable pulvérulent. Il a également été proposé par McNALLY et al., dans Polymer, Elsevier Science Publishers B. V., Vol. 46, n° 19, pp. 8822-8232 (2005) des nanocomposites par extrusion de poudre de polyéthylène moyenne densité avec 0,1-10% de NTC. Le produit extrudé est ensuite moulé par compression pour former des feuilles.
Toutefois, les NTC s'avèrent difficiles à manipuler et à disperser, en raison de leur faible taille, de leur pulvérulence et éventuellement, lorsqu'ils sont obtenus par la technique de CVD, de leur structure enchevêtrée, d'autant plus importante que l'on cherche à augmenter leur productivité massique aux fins d'améliorer la production et de réduire le taux de cendres résiduelles. L'existence de fortes interactions de Van der Waals entre les nanotubes nuit également à leur dispersibilité et à la stabilité des suspensions obtenues.
La mauvaise dispersibiiité des NTC affecte de manière importante les performances des composites qu' ils forment avec les matrices polymères dans lesquelles ils sont introduits. Cn observe en particulier l'apparition de nanofissures, se formant au niveau d'agrégats de nanotubes, qui conduisent à une fragilisation du composite. Par ailleurs, dans la mesure où les NTC sont mal dispersés, il est nécessaire d'augmenter leur taux pour atteindre une conductivité électrique et/ou thermique donnée, ce qui a pour effet d'augmenter la viscosité du composite final pouvant induire un auto- échauffement pouvant conduire à une dégradation du polymère et/ou à une réduction de la productivité
(diminution des vitesses de ligne pour limiter la pression engendrée par la viscosité du produit) .
La mauvaise dispersibilité des nanotubes de carbone est notamment observée dans le cas des matrices de polymères thermoplastiques et/ou élastomériques, en particulier lorsque le polymère est mis en oeuvre sous forme de granulés, comme décrit notamment dans le document US 2004/026581.
Pour remédier à ces inconvénients, il a déjà été proposé différentes solutions dans l'état de la technique. Parmi celles-ci, il a été suggéré de procéder à des mélanges dans un solvant de NTC avec des agents dispersants tels que des tensioactifs dont le dodécylsulfate de sodium (EP-I 495 171 ; VIGOLO B. et al, Science, 290 (2000), 1331 ; WANG J. et al, J. of Chem. Society, 125, (2003), 2408 ; MOORE, V. C. et al, Nanoletters, 3, (2003), 2408). Ces derniers ne permettent cependant pas de disperser de grandes quantités de NTC, des dispersions satisfaisantes ne pouvant être obtenues que pour des concentrations en NTC de moins de 2 ou 3 g/1. En outre, les tensioactifs sont susceptibles de désorber entièrement de la surface des NTC lors de l'étape de dialyse généralement mise en oeuvre pour éliminer l'excès de tensioactif dans la solution, ce qui a pour effet de déstabiliser la suspension obtenue.
Une autre solution, décrite dans la demande WO 2G07/063253, a consisté à réaliser des compositions pulvérulentes à base de nanotubes de carbone et d'un composé A, le composé A pouvant être un monomère, un polymère fondu, une solution de monomère (s) et/ou de polymère (s), un tensioactif, etc. dont la forme physique peut être liquide, solide ou gazeuse. Cependant, le mélange solide final ainsi obtenu est sous forme de poudre qui n'est pas toujours très facile à manipuler et à conserver, et son compoundage reste à réaliser pour obtenir le matériau final.
Dans le même ordre d'idées, le document JP2003- 012939 divulgue également un mélange-maître pulvérulent à base de NTC et de polyamide.
Par ailleurs, l'article de QIAN et al. dans Fangzhi Xuebao, Vol. 26, n° 3, pp. 21-23 (2005) divulgue un mélange-maître préparé par mélange de NTC, dont le taux n'est pas indiqué, et de poudre de polyéthylène, et extrusion du mélange obtenu en copeaux.
II subsiste donc Ie besoin de proposer un procédé simple et peu coûteux, permettant de préparer des composites à base de dispersions homogènes de nanotubes de carbone dans des matériaux polymères thermoplastiques et/ou élastcmériques, ayant de bonnes propriétés mécaniques (par exemple, la résistance au fluage à chaud pour les éiastomères, de tenue aux chocs à froid pour les theriroplastiques) , thermiques et électriques. Il est en particulier souhaitable de pouvoir obtenir ces composites à partir d'un mélange-maître se présentant sous une forme physique plus aisément manipulable que des poudres.
La Demanderesse a découvert que ce besoin pouvait être satisfait par l'utilisation d'un mélange-maître préparé à partir de πanotubes de carbone sous forme de poudre et d'un polymère thermoplastique et/ou élastomérique sous forme de poudre, le mélange-maître se présentant lui-même sous une forme physique solide agglomérée telle qu'un granulé.
La présente invention a ainsi pour objet un procédé de fabrication d'un matériau composite comprenant : A- la préparation d'un mélange-maître à base de nanotubes de carbone (ci-après, NTC) suivant un procédé comprenant :
- le mélange de nanotubes de carbone sous forme de poudre et d'au moins une matrice polymérique thermoplastique et/ou élastomérique sous forme de poudre, la quantité de nanotubes de carbone représentant de 2% à
30% en poids, par rapport au poids du mélange pulvérulent total ; et la mise en œuvre dudit mélange sous une forme physique solide agglomérée, et
B- l'introduction dudit mélange-maître dans une composition de polymère thermoplastique et/ou élastomérique .
Elle a également pour objet l'utilisation du mélange-maître défini précédemment pour la mise en oeuvre du procédé précité, en particulier pour conférer au moins une propriété électrique, mécanique et/ou thermique à la matrice polymérique.
On entend par « mélanges-maîtres », des concentrés en matière active que sont les NTC, qui sont destinés à être par la suite incorporés dans un polymère (compatible ou non avec le polymère déjà contenu dans ces mélanges- maîtres) .
L'utilisation d'un mélange-maître sous une forme physique solide agglomérée présente un certain nombre d'avantages comme, notamment, l'absence de fines, une bonne coulabiîité dans les trémies, un dosage précis et sans perte, une manipulation aisée, une bonne dispersion, une moindre volatilité et une moindre sensibilité à l'humidité par rapport aux poudres, des risques liés à la manutention réduits, une masse et un volume inférieurs aux liquides, l'absence de précipitation et de décantation des solutions ou des suspensions, ainsi qu'une nette diminution des risques dus au transport.
Les nanotubes de carbone utilisables selon l'invention peuvent être du type monoparoi, à double paroi ou à parois multiples. Les nanotubes à double paroi peuvent notamment être préparés comme décrit par FLAHAUT et aï dans Chem. Corn. (2003), 1442. Les nanotubes à parois multiples peuvent de leur côté être préparés comme décrit dans le document WO 03/02456.
Le mélange-maître utilisé selon l'invention comprend de 2% a 30% en poids, de préférence de 5 à 25% en poids et plus préférentieliement de 10% à 20% en poids de NTC, par rapport au poids du mélange pulvérulent total. Le composite obtenu comprend de préférence de 0,5% à 20% en poids, de préférence de 0,5% à 10% en poids et plus préférentiellement de 0,5 à 5% en poids de NTC, par rapport au poids du mélange pulvérulent total .
Les nanotubes mis en œuvre selon l'invention ont habituellement un diamètre moyen allant de 0,1 à 200 nm, de préférence de 0,1 à 100 nm, plus préférentiellement de 0,4 à 50 nm et, mieux, de 1 à 30 nm et avantageusement une longueur de plus de 0,1 μm et avantageusement de 0,1 à 20 μm, par exemple d'environ 6 μm. Leur rapport longueur/diamètre est avantageusement supérieur à 10 et le plus souvent supérieur à 100. Ces nanotubes comprennent donc notamment les nanotubes dits "VGCF"
(fibres de carbone obtenues par dépôt chimique en phase vapeur, ou Vapor Grown Carbon Fibers) . Leur surface spécifique est, par exemple, comprise entre 100 et 300 m2 /g et leur densité apparente peut notamment être comprise entre 0,05 et 0,5 g/cm3 et plus préférentiellement entre 0,1 et 0,2 g/cm3. Les nanotubes de carbone multiparois peuvent par exemple comprendre de 5 à 15 feuillets et plus préférentiellement de 7 à 10 feuillets .
Un exemple de nanotubes de carbone bruts est notamment disponible dans le commerce auprès de la société ARKEMA sous la dénomination commerciale Graphistrength® C100.
Les nanotubes peuvent être purifiés et/ou traités (en particulier oxydés) et/ou broyés, avant leur mise en oeuvre dans le procédé selon l'invention. Ils peuvent également être fonctionnalisés par des méthodes de chimie en solution comme l'amination ou la réaction avec des agents de couplage.
Le broyage des nanctubes peut être notamment effectué à froid ou à chaud et être réalisé selon les techniques connues mises en oeuvre dans des appareils tels que broyeurs à boulets, à marteaux, à meules, à couteaux, jet de gaz ou tout autre système de broyage susceptible de réduire la taille du réseau enchevêtré de nanotubes . On préfère que cette étape de broyage soit pratiquée selon une technique de broyage par jet de gaz et en particulier dans un broyeur à jet d'air.
La purification des nanotubes peut être réalisée par lavage à l'aide d'une solution d'acide sulfurique, ou d'un autre acide, de manière à les débarrasser d'éventuelles impuretés minérales et métalliques résiduelles, provenant de leur procédé de préparation. Le rapport pondérai des nanotubes à l'acide suifurique peut notamment être compris entre 1 :2 et 1 :3. L'opération de purification peut par ailleurs être effectuée à une température allant de 90 à 1200C, par exemple pendant une durée de 5 à 10 heures. Cette opération peut avantageusement être suivie d'étapes de rinçage à l'eau et de séchage des nanotubes purifiés.
L'oxydation des nanotubes est avantageusement réalisée en mettant ceux-ci en contact: avec une solution d' hypochlorite de sodium renfermant de 0,5 à 15% en poids de KaOCi et de préférence de 1 à 10% en poids de NaOCl, par exemple dans un rapport pondéral des nanotubes à 1' hypochlorite de sodium allant de 1:0,1 à 1:1. L'oxydation est avantageusement réalisée à une température inférieure à 600C et de préférence à température ambiante, pendant une durée allant de quelques minutes à 24 heures. Cette opération d'oxydation peut avantageusement être suivie d'étapes de fiitration et/ou centrifugation, lavage et séchage des nanotubes oxydés .
Dans le procédé selon l'invention, les nanotubes (bruts ou broyés et/ou purifiés et/ou oxydés et/ou fonctionnalisés par une molécule non plastifiante) sont mis en contact avec au moins une matrice polymérique thermoplastique et/ou élastomérique .
Par « matrice polymérique thermoplastique » on entend, au sens de la présente invention, un polymère ou un mélange de polymères qui fond lorsqu'on le chauffe et qui peut être mis en forme à l'état fondu.
On trouve aujourd'hui de nombreux types de thermopiastiques offrant une vaste gamme de propriétés intéressantes. On peut les rendre aussi souples que le caoutchouc, aussi rigides que le métal et le béton, ou les fabriquer aussi transparents que le verre, pour un usage dans de nombreux produits de tuyauterie et autres composants. Ils ne s'oxydent pas et ont une haute résistance à la corrosion.
Parmi les principaux polymères thermopiastiques utilisables selon le procédé de l'invention, on peut citer notamirent le polyamide (PA) tel que le polyamide 6
(PA-6) , le polyamide 11 (PA-Il), le polyamide 12 (PA-12), le polyamide 6.6 (PA-6.6), le polyamide 4.6 (PA-4.6), le polyamide 6.10 (PA-6.10) et le polyamide 6.12 (PA-6.12), certains de ces polymères étant notamment commercialisés par la société Arkema sous la dénomination Rilsan0 et les préférés étant ceux de grade fluide tels que le Rilsan® AMNO TLD. On peut également citer le poly (fluorure de vinylidène) (PVDF) tel que le produit commercialisé sous la marque Kynar° par la société Arkema, l' acrylonitrile butadiène styrène (ABS), l' acrylonitrile méthacrylate de méthyle (AMMA), l'acétate de cellulose (CA), le copolymère d' éthylène/propylène (E/P) , le copolymère d' éthylène/tétrafluoroéthylène (ETFE), l' éthylène-vinyl acétate (EVAC), l' éthylène-alcool vinylique (EVOH), le méthyl-méthacrylate-acrylonitrile-butadiène-styrène
(MABS) , la méthyl cellulose (MC) , le méthyl-méthacrylate- butadiène-styrène (MBS), le polyamide imide (PAI), le polybutylène téréphthalate (PBT) , le polycarbonate (PC) , le polyéthylène (PE), le polyéthyiène haute densité
(PEhd) , le polyestercarbonate (PEC) , la polyétheréthereétone (PEEK) , le polyétherester (PEEST) , la polyéthercétone (PEK), le poly (naphtalate d'éthylène)
(PEN), la polyéthersulfone (PESϋ) , le poly (ethylène téréphthaiate) (PET), le (poly) téréphtalate de polyéthylène (PETP) , le polymère perfluoro alcoxyl alcane
(PFA), le polyimide (PI), la polycétone (PK), les polyaerylates et/ou les polyméthacrylates tels que le polyméthacrylate de méthyle (PMMA) , le poiyméthyl pentène
(PMP) , le polyoxyméthylène ou polyacétal (POM) , le polypropylène (PP), le poly (phénylène éther) (PPE), le poly (oxyde de prcpylène) (PPOX), le poly (sulfure de phénylène) (PPS) , le polystyrène (PS) , la polysulfone
(PSU), le polytétraflucréthylène (PTFE), le poiy (acétate de vinyle) (PVAC), le poly (chlorure de vinyie) (PVC), le poly ( fluorure de vinyle) (PVF), le poly (styrène- butadiène) (S/B) , le styrène anhydride maléique (SMAH) , la résine ester vinylique (VE), les poiyphosphazènes, le polyetherimide (PEI), le polychlorotrifluoroéthylène (PCTFE), la polyarylsulfone, etc.
Par « matrice poiymérique élastcméπque ou éiastomère » on entend, au sens de la présente invention, un polymère élastique c'est-à-dire un polymère qui supporte de très grandes déformations, très supérieures à 100% et (presque) totalement réversibles. Un éiastomère est constitué de longues chaînes moléculaires rassemblées, au repos, en « pelotes ». Ces chaînes sont reliées entre elles par des points de réticulation, des enchevêtrements ou encore des liaisons polaires avec des charges minérales, et forment un réseau.
Il est bien entendu que certains des polymères utilisables selon le procédé de l'invention peuvent être simultanément thermoplastiques et élastomériques .
Parmi les éiastomères, on peut citer notamment les fluoroélastomères tels que ceux commercialisés sous les marques Kalrezu et Viton° par la société DuPont Performance Eîastomers, le latex naturel ou synthétique, du caoutchouc à base de chloroprène tel que celui commercialisé sous la marque NeopreneD par la société DuPont Chemicals, les polyacryliques, le polybutadiène, les polyéthers bloc amide, le polyisobutylène, le polyisoprène, le pclyurethane, les siiicones, le caoutchouc naturel (styrène butadiène rubber ou SBR), les éiasuomères commercialisés sous les marques Vistamaxx", Vistaflex' Thermopîastic Eîastomers, Dytron" Thermoplastic Elastomers et Santoprene'5 Thermopiastic Vuicanizates par la société ExxonMobile Chemical, etc.
Le terme polymère selon l'invention couvre également les oligomères, ainsi que les alliages de polymères thermoplastiques entre eux, d' élastomères entre eux, ou des uns avec les autres .
On préfère que le mélange-maître utilisé selon l'invention comprenne de 95% à 70% en poids, et de préférence de 90% à 80% en poids de matrice polymérique, par rapport au poids du mélange pulvérulent total.
Le composite obtenu selon l'invention comprend ainsi avantageusement de 99,5% a 80% en poids, et de préférence de 99,5% à 95% en poids de matrice polymérique, par rapport au poids du mélange pulvérulent total.
La taille moyenne des particules de la poudre de matrice polymérique est, de préférence, comprise entre
0,1 μm et 1000 μm, de préférence entre 10 μm et 800 μm, et encore plus préférentiellement entre 50 μm et 300 μm.
Avantageusement, la taille moyenne des particules de la poudre de matrice polymérique est comprise entre 100 μm et 150 μm.
Pour obtenir cette poudre de polymère, il est possible, par exemple, de broyer à la taille voulue des granulés de polymère disponibles dans le commerce. La première étape du procédé selon l'invention consiste à mélanger les poudres de NTC et de matrice polymérique, qui seront ensuite mises en œuvre dans la seconde étape. Les poudres de NTC et de polymère peuvent être mélangées dans un mélangeur qui est soit intégré à l'appareil de mise en œuvre, soit disposé en amont de celui-ci.
Ce mélange de poudres peut être réalisé dans des réacteurs de synthèse traditionnels, des mélangeurs à pales, des réacteurs à lit fluidisé ou dans des appareils de mélange de type Brabender, mélangeur bras en z ou extrudeuse. Selon une variante de l'invention, on peut ainsi utiliser un mélangeur à paies ou à bras.
Le mélange pulvérulent de NTC et d' au moins une matrice polymérique peut, en outre, comprendre une ou plusieurs autres charges pulvérulentes. On peut citer notamment les noirs de carbone, les charbons actifs, les silices, les métaux, les matériaux céramiques, les fibres de verre, les pigments, les argiles, le carbonate de calcium, des nanotubes de bore et/ou d'azote et/ou de métaux de transition, les métaux, les matériaux céramiques .
Cette première étape de mélange à sec de poudres ou dry-blend est de préférence suivie d'une étape de traitement thermique où a lieu le passage du polymère sous forme liquide ou gazeuse afin d'assurer un mélange intime et homogène du polymère avec les NTC. Ce traitement thermique consiste en une montée en température de la poudre de telle sorte que ses propriétés physicochimiques sont modifiées. Ce traitement thermique est avantageusement réalisé dans une extrudeuse . La seconde étape du procédé selon l'invention consiste en la mise en œuvre du mélange afin d'obtenir des formes physiques solides agglomérées. Cette étape peut être réalisée par tout procédé connu de l'homme du métier .
Notamment, on peut citer l'agglomération en lit fiuidisé qui est un procédé classique pour l'obtention de granulés à partir de poudre. La poudre fluidisée est humidifiée jusqu'à ce que des ponts liquides se forment entre les particules. Eau, solutions, suspensions ou matières fondues peuvent être pulvérisées pour atteindre la qualité de produit souhaitée. Grâce à cette technologie, le taux de fines est considérablement réduit, la fluidité et la capacité de dispersion dans l'eau sont améliorées, les granulés obtenus sont très aérés et se dissolvent très facilement. Le procédé d'agglomération, par son action, résout les problèmes de stabilité des mélanges poudreux.
Un autre procédé de mise en œuvre est la granulation par pulvérisation qui est un procédé simultané. Les granulés se forment lors de l' évaporation du fluide. Ces granulés sont plus durs et plus denses que par agglomération .
On peut en variante utiliser un procédé de granulation en phase humide qui consiste à introduire la poudre dans un granulateur vertical et à l'humidifier abondamment par pulvérisation. Le mélange est: alors vigoureusement brassé par une turbine en un nacheur. Dans ce procédé où la poudre est compressée, il en résulte des granulés plus denses que par agglomération en lit fluidisé .
Un autre procédé utilisable est le procédé d'injection compression qui consiste à injecter une galette de matière à l'état fondu que l'on comprime ensuite pour remplir un moule. On obtient alors un produit solide comprimé.
Encore un autre procédé utilisable et préféré selon 1 ' invention est le procédé de compoundage qui est un procédé continu comprenant des étapes de malaxage, de refroidissement et de granulation. Le mélange de NTC et de polymère arrive en tête d'une extrudeuse ou dans un premier segment de celle-ci, sous forme de poudre, et est versé dans la trémie pour alimenter la vis de l ' extrudeuse, qui est de préférence une extrudeuse bi-vis ou un co-malaxeur. Dans l' extrudeuse, le mélange est chauffé et ramolli, grâce à une vis sans fin qui se trouve dans un fourreau (tube) chauffé pour rendre le matériau malléable. La vis entraîne le matériau vers la sortie. La tête de sortie de l' extrudeuse donne sa forme au matériau sortant. Le tube ou jonc sort en continu, il est refroidi pour être ensuite découpé en granulés.
Dans une forme d'exécution avantageuse de l'invention, le polymère thermoplastique et/ou élastomérique pulvérulent, dans lequel doit être introduit le mélange-maître, est alimenté dans un second segment de l' extrudeuse ou du mélangeur utilisé pour la fabrication de ce mélange-maître. Dans cette forme d'exécution, la fabrication du composite peut se faire en continu dans le même appareillage. On entend par « forme physique solide agglomérée » dans le cadre de la présente invention le mélange final après sa mise en œuvre selon l'invention, sous forme dure, par exemple sensiblement cylindrique, sphérique ovoïde, rectangulaire ou prismatique. On peut citer, par exemple, des granulés, des pastilles et des galets en tant que formes physiques solides agglomérées. Le diamètre de cette forme physique solide agglomérée peut être compris entre 1 mm et 10 mm, mais plus préférentiellement entre 2 mm et 4 mm.
Le mélange-maître obtenu comme décrit précédemment est destiné a être introduit dans une composition de polymère thermoplastique et/ou élastomérique pour former un matériau composite. Il est généralement préférable d'employer la même famille de polymères que celle du polymère thermoplastique et/ou élastomérique compris dans le mélange-maître. Des exemples de polymères utilisables sont donc ceux cités précédemment. Dans certains cas, il peut, en revanche, être intéressant d'utiliser un polymère non compatible avec la matrice afin d'obtenir un effet dit de « double percolation ».
Selon une forme d'exécution particulièrement préférée de l'invention, le polymère est choisi parmi les polyamides, le poîy (fluorure de vinylidène) , le polycarbonate, la polyétheréthercétone, le poîy (sulfure de phénylène) , les polyoîéfines, leurs mélanges, et leurs copoîymères.
La composition de polymère, dans laquelle est introduit le mélange-maître, peut en outre renfermer divers adjuvants et additifs tels que des lubrifiants, des plastifiants, des pigments, des stabilisants, des charges ou renforts, des agents anti-statiques, des agents anti-buée, des fongicides, des agents ignifugeants et des solvants.
Comme indiqué précédemment, le procédé selon l'invention permet d'améliorer la dispersion des r.anotubes dans la matrice polymérique et/ou les propriétés mécaniques (notamment résistance à la traction et/ou à l'impact) et/ou la conductivité électrique et/ou la conductivité thermique de la matrice polymérique.
Un autre avantage dudit procédé est qu' il permet de rendre conducteurs des composites comprenant des NTC à de plus faibles taux de NTC par rapport à l'art antérieur.
Il est ainsi possible de conférer auxdits composites renfermant moins de 5% en poids de nanotubes de carbone une conductivité électrique inférieure à 1 Mohm pour des applications dissipatives et à 10lc ohm pour des applications antistatiques.
L' invention sera maintenant illustrée par les exemples non limitatifs suivants à l'aide des figures jointes dans lesquelles :
- les figures 1 et 3 illustrent une dispersion de composites comparatifs,
- les figures 2 et 4 illustrent une dispersion de composites préparés selon l'invention, et
- la figure 5 représente deux courbes de percoiation d'un composite comparatif et d'an composite préparé selon 1 ' invention . EXEMPLES
Exemple 1 : Préparation d'un composite NTC/polyamide 12 (PM2)
On a mélangé à l'aide d'un co-malaxeur BUSS 15D 5% de NTC en poudre (Graphistrength'1 ClOO de la société Arkema) dans 95% de polyamide-12 en poudre Rilsan' AMNO TLD d' Arkema (grade de polyamide fluide) à un débit de 10 kg/h avec un profil de température de fourreau 250/250/250/2200C, un profil de vis à 210°C, et une vitesse de vis de 250 tr/min, pour obtenir un matériau composite renfermant 5% en poids de NTC et 95% en poids de PAl2.
A titre de comparaison, la même expérience a été réalisée en prenant non plus une poudre de polymère mais des granulés de polymère.
Des clichés ont ensuite été pris au microscope optique en lumière transmise à partir de coupes d'épaisseur 2 μm réalisées parallèlement au sens d'extrusion, à raison de 6 clichés par coupe, au grossissement nominal de 200X. On a alors évalué le pourcentage de la surface de ces matériaux composites occupée par des agrégats de NTC. La moyenne des valeurs obtenues pour chacun des 6 clichés a été calculée.
Les résultats obtenus sont rassemblés dans le Tableau 1 ci- dessous .
Tableau 1
D'après le tableau 1 et les figures 1 et 2, on constate donc que les composites obtenus selon l'invention présentent une meilleure dispersion des NTC dans la matrice polyamide, qui devrait résulter en de meilleures propriétés mécaniques telles que leur résistance à l'impact ou à la fissuration, notamment .
Exemple 2 : Préparation d'un mélange-maître à base de polyamide 12 (PA12)
On a mélangé à l'aide d'un co-malaxeur BUSS 15D 20% de NTC en poudre (Graphistrength0 C100 de la société Arkema) dans 80% de polyamide-12 en poudre Rilsanc AMNO TLD d'Arkema (grade de polyamide fluide) à un débit de 10 kg/h avec un profil de température de fourreau 250/250/250/2100C, un profil de vis à 21O0C, et une vitesse de vis de 280 tr/min, pour obtenir un matériau composite renfermant 20% en poids de NTC et 80% en poids de PA12.
A titre de comparaison, la même expérience a été réalisée en prenant non plus une poudre de polymère mais des granulés de polymère .
Des clichés ont ensuite été pris au microscope oprique en lumière transmise à partir de coupes d'épaisseur 2 μm réalisées parallèlement au sens d'extrusion, à raison de 6 clichés par coupe, au grossissement nominal de 20QX. On a alors évalué le pourcentage de la surface de ces matériaux composites occupée par des agrégats de NTC. La moyenne des valeurs obtenues pour chacun des 6 clichés a été calculée.
Les résultats obtenus sont rassemblés dans le Tableau 2 ci- dessous .
Tableau 2
D'après le tableau 2 et les figures 3 et 4, on constate donc que les composites obtenus selon l'invention présentent une meilleure dispersion des NTC dans la matrice polyamide, qui devrait résulter en de meilleures propriétés mécaniques telles que leur résistance à l' impact ou à la fissuration, notamment .
Exemple 3 : Préparation d'un composite NTC/poly (fluorure) de vinylidène (FVDF)
On a mélangé 5% de NTC en poudre (Graphistrength^1 ClOC de la société Arkema) dans 95% de PVDF en poudre (Kynar" 721 d'ARKEI-IA) puis mis en œuvre ce mélange à l'aide d'un micro- compoundeur DSM.
Le malaxage est effectué par deux vis co-rotatives (vitesse de vis : 100 zr/min) à une température αe 23O0C pendant une durée de 10 min. En fin de malaxage, on procède à l'injection à 23O0C dans un moule préchauffé à 900C pour obtenir une pastille .
Exemple 4 : Mesure de la résistivité de composites obtenus selon l' invention
La mesure de la résistivité est effectuée grâce au système de mesure quatre fils pour sa précision et la stabilité de la mesure.
Des composites NTC/PVDF ont été préparés selon le protocole de l'exemple 3 de manière a obtenir des composites à base de KynarJ 721 renfermant de 1% à 10% en poids de NTC (Graphistrength0 C100 de la société Arkema) .
Un essai comparatif a été réalisé entre ces composites (Kynar° 721) dont le PVDF initial est sous forme de poudre et des composites préparés de façon identique à base de Kynar° 720 dont le PVDF initial est sous forme de granulés. Il n'existe aucune différence de composition entre le Kynarc 721 et le Kynar" 720 si ce n'est la forme physique initiale sous laquelle ils se présentent. En effet, le Kynar° 721 est sous forme de poudre et la taille des particules est généralement inférieure à 30 p tandis que le Kynar° 720 est sous forme de granulés dont: le diamètre est de 0,4-0,5 cm et l'épaisseur de 0,2-0,4 cm.
Les courbes de percolation résultantes sont illustrées à la Figure 5 annexée .
Résultats : Comme illustré sur la Figure 5, la résistivité des composites diminue lorsque le taux de NTC qu'ils renferment augmente. En outre, celle des composites obtenus selon l'invention reste toujours inférieure, à partir d'un taux de NTC de 3,4% environ jusqu'à un taux de NTC d'environ 10%, à celle des composites obtenus à partir de polymère granulé, ce qui traduit leur meilleure conductivité électrique et la meilleure dispersion des NTC dans ces composites selon l' invention .
Plus particulièrement, l'utilisation de PVDF en poudre (Rynar" 721) et non en granulés (KynarΘ 720) entraîne une nette amélioration de conductivité sur des pastilles injectées a un taux de NTC de 5%. En effet, la résistivité mesurée sur le composite obtenu à partir de poudre est de 454 Ω.cm alors que celle mesurée pour le composite à base de granulés est au moins 100 fois plus élevée.
Exemple 5 : Comparaison des procédés de mise en œuvre des composites
Le Tableau 3 ci-dessous compare les deux systèmes de mélange microextrusion DSM et mélangeur interne Rhéocord ainsi que les deux techniques de mise en œuvre poudre/granulés à des taux de NTC de 2% et 5%.
Tableau 3
Préparation des compositions A - D :
La composition A est obtenue en introduisant dans un mélangeur du type Rhéocord Haake 90, 98% de PVDF (Kynar° 720) sous forme de granulés que l'on fait fondre puis 2% de NTC sous forme de poudre (Graphistrength0 C100 de la société Arkema) .
La composition B est obtenue en mélangeant manuellement à sec 2% de NTC sous forme de poudre (Graphistrength0 C100 de la société Arkema) et 98% de PVDF (Kynar° 720) sous forme de poudre puis en mettant en œuvre ce mélange dans un mélangeur du type Rhéocord Haake 90.
Les conditions de mélange pour le Rhéocord sont les suivantes : température de mélange : 2300C vitesse de rotation des rotors du type Brabender: 100 tr/min durée de malaxage : 10 min
Les compositions A et B sont mises sous forme de pastilles par compression selon un procédé comprenant les étapes consistant à :
- découper le mélange NTC et Kynar" et le placer dans un moule, laisser fluer pendant 10min dans une presse à température de 2300C, presser pendant 5 min à chaud, à une pression de 250 bars, maintenir la pression et arrêter le chauffage des plaques pendant un temps de refroidissement de 20 min, et démouler .
Des pastilles ayant un diamètre d'environ 2 cm et une épaisseur d'environ 0,1 cm sont obtenues. La mesure de la résiεtivité peut être effectuée.
La composition C est obtenue en pré-mélangeant manuellement à sec 95% de PVDF (Kynar° 720) sous forme de granulés et 5% de NTC sous forme de poudre (Graphistrength0 C100 de la société Arkema) puis en introduisant ce pré-mélange dans un microextrudeur de modèle Micro 15 compounder0 de la société DSM. Le malaxage est effectué par deux vis co-rotatives
(vitesse de vis : 100 tr/min) à une température de 23O0C pendant une durée de 10 min. En fin de malaxage, on procède à l'injection à 2300C dans un moule préchauffé à 900C pour obtenir une pastille.
La composition D est obtenue en pré-méiangeant manuellement à sec 5% de NTC sous forme de poudre (Graphistrength'3 C100 de la société Arkema) et 95% de PVDF (Kynar° 720) sous forme de poudre puis en introduisant ce pré-mélange dans un microextrudeur de modèle Micro 15 compounder0 de la société
DSM. Le malaxage est effectué par deux vis co-rotatives
(vitesse de vis : 100 tr/min) à une température de 2300C pendant une durée de 10 min. En fin de malaxage, on procède à l'injection à 2300C dans un moule préchauffé à 9O0C pour obtenir une pastille.
Les compositions C et: D sont ainsi mises sous forme de pastilles par injection. Résultats :
Les pastilles fabriquées par compression (taux de NTC de 2%) a partir d'une poudre de Kynar° ont une valeur moindre de résistivité que celles obtenues à partir de granulés de Kynar *.
Ce phénomène est plus marqué pour les pastilles fabriquées par injection à un taux de NTC de 5%, ce qui est probablement du au fait qu'on soit très proche du seuil de percolation.

Claims

REVENDICATIONS
1. Procédé de fabrication d'un matériau ccmpcsite comprenant : A- la préparation d'un mélange-maître à base de nanotubes de carbone suivant un procédé comprenant :
- le mélange de nanotubes de carbone sous forme de poudre et d'au moins une matrice polymérique thermoplastique et/ou élastomérique sous forme de poudre, la quantité de nanotubes de carbone représentant de 2% à 30% en poids, par rapport au poids du mélange pulvérulent total ; et
- la mise en œuvre dudit mélange sous une forme physique solide agglomérée, et B- l'introduction dudit mélange-maître dans une composition de polymère thermoplastique et/ou élastomérique .
2. Procédé selon la revendication 1, caractérisé en ce que dans le procédé de fabrication de mélange-maître, la quantité de nanotubes de carbone est comprise entre 5 et 25% en poids et de préférence entre 10% et 20% en poids, par rapport au poids du mélange pulvérulent total.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la matrice polymérique thermoplastique et/ou le polymère thermopîascique et/ou éîastomérique sont choisis parmi le polyamide, le poly (fluorure de vinylidène) , 1' acrylonitrile butadiène styrène, l' acrylonitriîe méthacrylate de méthyle, l'acétate de cellulose, le copolymère d' éthylène/propylèπe, le copolymère d' éthylène/tétrafluoroéthylène, l' éthyleπe-vinyi acétate, 1' éthylene-alcool vinylique, le méthyi-methacrylate- acrylonitrile-butadiène-styrène, la méthyl cellulose, le méthyl-méthacrylate-butadiène-styrène, le polyamide imide, le polybutylène téréphthalate, le polycarbσnate, le polyéthylène, le polyéthylène haute densité, le poiyestercarbonate, la poiyétheréthercétone, le polyétherester, la polyéthercétone, le poly (naphtalate d'éthylène), la polyéthersulfone, le poiy (éthylène téréphthaiate) , le (poly) téréphtaiate de polyéthylène, le polymère perfluoro alcoxyl alcane, le polyimide, la poiycétone, les polyacrylates et/ou les polyméthacrylates tels que le polyméthacrylate de méthyle, le polyméthyl pentène, le polyoxyméthylène ou polyacétal, le polypropylène, le poly (phénylène ether) , le poly (oxyde de propylène), le poly (sulfure de phénylène), le polystyrène, la polysulfone, le polytétrafluoréthylène, le poly (acétate de vinyle) , le poly (chlorure de vinyle) , le poly ( fluorure de vinyle), le poiy (styrène-butadiène) , le styrène anhydride maléique, la résine ester vinylique, les polyphosphazènes, le polyetherimide, le polychlorotrifluoroéthylène, la poiyarylsulfone, et leurs mélanges .
4. Procédé selon la revendication 1 ou 2, caractérisé en ce que la matrice polymérique élastomérique et/ou le polymère thermoplastique et/ou élastomérique sont choisis parmi les fluoroélastomères, le latex naturel ou synthétique, du caoutchouc à base de chloroprène, les polyaeryliques, le polybutadiène, les polyéthers bloc amide, le polyisobutylène, le polyisoprène, le polyuréthaπe, les silicoπes, le caoutchouc naturel, et leurs mélanges .
5. Procédé selon l'une quelconque des revendications 1 à
4, caractérisé en ce que les nanotubes ont un diamètre allant de 0,1 à 100 nm, de préférence de 0,4 à 50 nm et, mieux, de 1 à 30 nm.
6. Procédé selon l'une quelconque des revendications 1 à
5, caractérisé en ce que la matrice polymérique sous forme de poudre est constituée de particules de taille moyenne entre 0,1 μm et 1000 μm, de préférence entre 10 μm et 800 μm, plus préférentieliement entre 50 μm et 300 μm, et encore plus préférentieliement entre 100 μm et 150 μm.
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que les nanotubes ont une longueur de 0,1 à 20 μm .
8. Procédé selon l'une quelconque des revendications 1 à
7, caractérisé en ce que la forme physique solide agglomérée est choisie parmi un granulé, une pastille, et un galet.
9. Procédé selon l'une quelconque des revendications 1 à
8, caractérisé en ce que la forme physique solide agglomérée a un diamètre compris entre 1 mm et 10 mm, et de préférence compris entre 2 mm et 4 mm.
10. Procédé selon l'une quelconque des revendications 1 à
9, caractérisé en ce que la mise en œuvre du mélange est effectuée par compoundage .
11. Utilisation d'un mélange-maître à base de nanotubes de carbone, susceptible d'être obtenu suivant un procédé comprenant :
- le mélange de nanotubes de carbone sous forme de poudre et d' au moins une matrice polymérique thermoplastique et/ou élastomérique sous forme de poudre, et
- la mise en œuvre dudit mélange sous une forme physique solide agglomérée, pour la mise en oeuvre du procédé selon l'une quelconque des revendications 1 à 10.
12. Utilisation selon la revendication 11, pour conférer au moins une propriété électrique, mécanique et/ou thermique à la matrice polymérique thermoplastique et/ou élastomérique .
EP08837912A 2007-09-24 2008-09-19 Procédé de préparation de matériaux composites Withdrawn EP2193160A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0706664A FR2921391B1 (fr) 2007-09-24 2007-09-24 Procede de preparation de materiaux composites
PCT/FR2008/051690 WO2009047466A2 (fr) 2007-09-24 2008-09-19 Procédé de préparation de matériaux composites

Publications (1)

Publication Number Publication Date
EP2193160A2 true EP2193160A2 (fr) 2010-06-09

Family

ID=39365715

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08837912A Withdrawn EP2193160A2 (fr) 2007-09-24 2008-09-19 Procédé de préparation de matériaux composites

Country Status (6)

Country Link
US (1) US20100201023A1 (fr)
EP (1) EP2193160A2 (fr)
JP (1) JP2010540687A (fr)
CN (1) CN101848959A (fr)
FR (1) FR2921391B1 (fr)
WO (1) WO2009047466A2 (fr)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4570553B2 (ja) * 2005-11-18 2010-10-27 保土谷化学工業株式会社 複合材料
FR2957910B1 (fr) * 2010-03-23 2012-05-11 Arkema France Melange maitre de nanotubes de carbone pour les formulations liquides, notamment dans les batteries li-ion
FR2959231B1 (fr) 2010-04-22 2012-04-20 Arkema France Materiau composite thermoplastique et/ou elastomerique a base de nanotubes de carbone et de graphenes
CN101942134B (zh) * 2010-09-06 2012-04-18 四川大学 一种各向异性导电高分子复合材料的制备方法
FR2967417B1 (fr) * 2010-11-17 2014-04-11 Arkema France Melange maitre de nanotubes de carbone et de durcisseur pour les resines thermodurcissables
WO2012080158A1 (fr) 2010-12-14 2012-06-21 Styron Europe Gmbh Formulations d'élastomère améliorées
CN102532741A (zh) * 2010-12-16 2012-07-04 中国石油化工股份有限公司 一种抗静电聚氯乙烯组合物及制备方法
JP5790235B2 (ja) * 2011-07-21 2015-10-07 東ソー株式会社 マスターバッチ
WO2013107535A1 (fr) * 2012-01-20 2013-07-25 Total Research & Technology Feluy Composition de polymère comprenant des nanotubes de carbone
JP2015061891A (ja) * 2012-01-27 2015-04-02 昭和電工株式会社 導電性樹脂組成物マスターバッチの製造方法およびマスターバッチ
KR101197288B1 (ko) * 2012-02-13 2012-11-05 금호석유화학 주식회사 탄소나노소재 분말의 펠릿과 그 제조 방법
KR101211134B1 (ko) * 2012-02-13 2012-12-11 금호석유화학 주식회사 탄소나노소재/고분자 복합소재의 제조방법
DE102012204181A1 (de) * 2012-03-16 2013-09-19 Evonik Degussa Gmbh Elektrisch leitfähigen Kohlenstoff enthaltende Polyamidzusammensetzung
EP2650325A1 (fr) 2012-04-10 2013-10-16 ContiTech AG Mélange de polymères, mélange de caoutchouc comprenant le mélange de polymères et procédé de préparation du mélange de caoutchouc
US9976687B2 (en) 2012-05-18 2018-05-22 Saprex, Llc Breathable multi-component exhaust insulation system
FR2991332B1 (fr) 2012-06-04 2015-04-24 Arkema France Utilisation de nanocharges carbonees a tres faible taux pour la stabilisation uv de materiaux composites
FR2991330B1 (fr) * 2012-06-04 2015-04-03 Arkema France Materiau composite a tres faible taux de nanocharges carbonees, son procede de preparation et ses utilisations
US9388515B2 (en) 2012-09-28 2016-07-12 Saprex, Llc Heat curable composite textile
SG11201600608VA (en) * 2013-08-30 2016-02-26 Amril Ag Improved natural rubber compositions
CN105038285A (zh) * 2014-04-18 2015-11-11 台湾奈米碳管股份有限公司 含碳的高分子复合颗粒的制造方法
US9745441B2 (en) 2014-05-30 2017-08-29 Graphene Platform Corporation Graphene composition and graphene molded article
JP6503164B2 (ja) * 2014-07-23 2019-04-17 日信工業株式会社 熱可塑性樹脂組成物の製造方法
FR3027604B1 (fr) * 2014-10-27 2016-11-04 Arkema France Preparation d'un melange-maitre a base de soufre et de nanocharges carbonees, le melange-maitre obtenu et ses utilisations
EP3268415B1 (fr) * 2015-03-12 2018-11-07 Total Research & Technology Feluy Procédé pour la préparation d'un article composite ayant des propriétés électriques améliorées
CN106147011A (zh) * 2015-04-17 2016-11-23 普立万聚合体(上海)有限公司 一种含碳纳米管作为黑色颜料的母粒
KR101735180B1 (ko) * 2015-04-21 2017-05-12 주식회사 엘지화학 고직경 저밀도 카본나노튜브 및 그 제조방법
CN104893307A (zh) * 2015-05-26 2015-09-09 西南科技大学 一种导热绝缘橡塑复合材料及其制备方法
CN105001588B (zh) * 2015-07-14 2017-11-07 暨南大学 一种熔融沉积成型用abs复合材料及其制备方法和应用
JP6623055B2 (ja) * 2015-12-15 2019-12-18 旭化成株式会社 ポリアセタールの製造方法
WO2017181197A1 (fr) 2016-04-15 2017-10-19 Saprex, Llc Système d'isolation composite
CN106188924A (zh) * 2016-08-08 2016-12-07 安徽松泰包装材料有限公司 一种耐高温的包装材料及其制备方法
US11946584B2 (en) 2016-11-18 2024-04-02 Nelson Global Products, Inc. Composite insulation system
CN106589882A (zh) * 2016-11-29 2017-04-26 中广核俊尔新材料有限公司 一种聚碳酸酯聚酮合金及其制备方法
DE102017129146B4 (de) * 2016-12-12 2023-11-02 Korea Kumho Petrochemical Co., Ltd. Verfahren zur Herstellung einer Kohlenstoffnanoröhren in hoher Konzentration enthaltenden leitenden Harzzusammensetzung
BR112019024005A8 (pt) * 2017-05-15 2023-03-28 Nat Res Council Canada Material tecido nanocompósito elástico de múltiplas camadas, revestimento, estrutura de transformação, estrutura implementável e estrutura
KR101954647B1 (ko) * 2017-07-28 2019-03-06 엘에프피 주식회사 전기 전도성 기능을 갖는 폴리테트라 플루오로에틸렌-탄소나노튜브 복합소재 제조방법
JP7303183B2 (ja) * 2017-08-16 2023-07-04 コリア クンホ ペトロケミカル カンパニー リミテッド カーボンナノチューブを含むタイヤ用ゴム組成物及びその製造方法
CN108129785A (zh) * 2017-12-13 2018-06-08 全椒祥瑞塑胶有限公司 一种耐冲击汽车仪表盘的制备方法
FR3076827A1 (fr) 2018-01-12 2019-07-19 Arkema France Matiere solide agglomeree de nanotubes de carbone desagreges.
RU2708583C1 (ru) * 2019-04-12 2019-12-09 МСД Текнолоджис С.а.р.л. Способ получения высокопрочного композиционного материала на основе термопластичного полимера, модификатор для приготовления композиционного материала и способ получения модификатора для приготовления композиционного материала (варианты)
TWI758792B (zh) * 2020-03-31 2022-03-21 財團法人紡織產業綜合研究所 纖維母粒及熔紡纖維
US11572639B2 (en) 2020-03-31 2023-02-07 Taiwan Textile Research Institute Fiber masterbatch and melt spun fiber
CN114573894B (zh) * 2020-12-01 2024-03-01 中国石油天然气股份有限公司 碳纳米管母粒及其制备方法与应用
CN113308104A (zh) * 2021-06-01 2021-08-27 江苏天奈科技股份有限公司 一种高导电塑料母粒及其制备方法、导电塑料粒子
KR20240033736A (ko) 2022-09-05 2024-03-13 (주)영진테크 Paek계 전도성 복합체 및 이의 제조방법
CN117283862A (zh) * 2023-11-24 2023-12-26 西南石油大学 一种具有双渗流导电网络的柔性应变传感器的制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591382A (en) * 1993-03-31 1997-01-07 Hyperion Catalysis International Inc. High strength conductive polymers
US5484837A (en) * 1994-10-25 1996-01-16 Far Eastern Textile, Ltd. Black masterbatch
JP3346970B2 (ja) * 1994-11-22 2002-11-18 日本ゼオン株式会社 ゴムロール、ゴム組成物、及び画像形成装置
US6689835B2 (en) * 2001-04-27 2004-02-10 General Electric Company Conductive plastic compositions and method of manufacture thereof
US20020185770A1 (en) * 2001-06-06 2002-12-12 Mckague Elbert Lee Method for aligning carbon nanotubes for composites
JP2003012939A (ja) * 2001-07-03 2003-01-15 Toray Ind Inc カーボン含有樹脂組成物、成形材料および成形体
US20040262581A1 (en) * 2003-06-27 2004-12-30 Rodrigues David E. Electrically conductive compositions and method of manufacture thereof
JP4403265B2 (ja) * 2003-09-05 2010-01-27 国立大学法人信州大学 粉体の混合方法
WO2005099406A2 (fr) * 2004-04-07 2005-10-27 Revcor, Inc. Nanocomposites polymeres pour dispositifs de deplacement d'air
FR2893947A1 (fr) * 2005-11-30 2007-06-01 Arkema Sa Composition pulverulente de nanotubes de carbone, ses procedes d'obtention et ses utilisations, notamment dans des materiaux polymeres.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009047466A2 *

Also Published As

Publication number Publication date
JP2010540687A (ja) 2010-12-24
FR2921391B1 (fr) 2010-08-13
WO2009047466A3 (fr) 2009-08-06
WO2009047466A2 (fr) 2009-04-16
CN101848959A (zh) 2010-09-29
FR2921391A1 (fr) 2009-03-27
US20100201023A1 (en) 2010-08-12

Similar Documents

Publication Publication Date Title
EP2193160A2 (fr) Procédé de préparation de matériaux composites
EP2561011B1 (fr) Materiau composite thermoplastique et/ou elastomerique a base de nanotubes de carbone et de graphenes
EP2855564B1 (fr) Matériau composite a très faible taux de nanocharges carbonées, son procédé de préparation et ses utilisations
FR2916364A1 (fr) Procede de preparation de pre-composites a base de nanotubes notamment de carbone
WO2010046606A1 (fr) Procédé de préparation d'un matériau composite thermoplastique à base de nanotubes, notamment de carbone
EP2855569B1 (fr) Utilisation de nanocharges carbonees a tres faible taux pour la stabilisation uv de materiaux composites
Prashantha et al. Multi-walled carbon nanotube filled polypropylene nanocomposites based on masterbatch route: Improvement of dispersion and mechanical properties through PP-g-MA addition
FR2943349A1 (fr) Procede de preparation d'un materiau composite elastomerique a haute teneur en nanotubes
WO2012131265A1 (fr) Matériau composite renfermant des nanotubes de carbone et des particules de structure coeur-écorce
EP2856497A1 (fr) Substrats revêtus de graphène et composites résultants
WO2013182793A1 (fr) Utilisation de nanocharges carbonées a très faible taux pour le renfort mécanique de matériaux composites charges a l'aide d'une charge conventionnelle
WO2010109119A1 (fr) Procede de preparation d'un materiau composite thermodurcissable a haute teneur en nanotubes
FR3079521A1 (fr) Composition thermoplastique a base de polyolefines pour la realisation d'objets de proprietes antistatiques permanentes.
WO2014060684A1 (fr) Procédé de préparation d'un matériau composite thermoplastique a base de graphène
EP3737640A1 (fr) Matiere solide agglomeree de nanotubes de carbone desagreges

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100318

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KORZHENKO, ALEXANDER

Inventor name: BRULE, BENOIT

Inventor name: BLUTEAU, CATHERINE

Inventor name: PICCIONE, PATRICK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KORZHENKO, ALEXANDER

Inventor name: BRULE, BENOIT

Inventor name: BLUTEAU, CATHERINE

Inventor name: PICCIONE, PATRICK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KORZHENKO, ALEXANDER

Inventor name: BRULE, BENOIT

Inventor name: BLUTEAU, CATHERINE

Inventor name: PICCIONE, PATRICK

17Q First examination report despatched

Effective date: 20110207

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130802