KR101954647B1 - 전기 전도성 기능을 갖는 폴리테트라 플루오로에틸렌-탄소나노튜브 복합소재 제조방법 - Google Patents
전기 전도성 기능을 갖는 폴리테트라 플루오로에틸렌-탄소나노튜브 복합소재 제조방법 Download PDFInfo
- Publication number
- KR101954647B1 KR101954647B1 KR1020170096265A KR20170096265A KR101954647B1 KR 101954647 B1 KR101954647 B1 KR 101954647B1 KR 1020170096265 A KR1020170096265 A KR 1020170096265A KR 20170096265 A KR20170096265 A KR 20170096265A KR 101954647 B1 KR101954647 B1 KR 101954647B1
- Authority
- KR
- South Korea
- Prior art keywords
- stirring
- ptfe
- carbon nanotube
- composite material
- polytetrafluoroethylene
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/12—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08L27/18—Homopolymers or copolymers or tetrafluoroethene
-
- B01F15/00363—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F29/00—Mixers with rotating receptacles
- B01F29/80—Mixers with rotating receptacles rotating about a substantially vertical axis
- B01F29/82—Mixers with rotating receptacles rotating about a substantially vertical axis the receptacle comprising a rotary part, e.g. the bottom, and a stationary part, e.g. the wall, with optional use of a stirrer; the receptacle comprising parts moving in opposite directions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F29/00—Mixers with rotating receptacles
- B01F29/80—Mixers with rotating receptacles rotating about a substantially vertical axis
- B01F29/84—Mixers with rotating receptacles rotating about a substantially vertical axis with propellers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/20—Measuring; Control or regulation
- B01F35/22—Control or regulation
- B01F35/221—Control or regulation of operational parameters, e.g. level of material in the mixer, temperature or pressure
- B01F35/2214—Speed during the operation
-
- B01F9/106—
-
- B01F9/14—
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
- C08K3/041—Carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/001—Conductive additives
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
본 발명은 폴리 테트라 플루오로 에틸렌-탄소나노튜브 복합소재의 제조방법에 관한 것으로서, PTFE와, CNT와 유기용매를 투입해 1차교반후 커플링제커플링제여 중간 결과물을 생성하고, 중간 결과물에서 유기용매를 원심분리하여 제거후 건조시키고, 분쇄하여 제품화시킨 전기 저항이 1.0E+00Ω.㎝ ~ 1.0E-02Ω.㎝의 체적 저항률(Volume Resistivity)인 전기 전도성 기능을 갖는 폴리 테트라 플루오로 에틸렌-탄소나노튜브 복합소재를 제공할 수 있으며, 이는 PTFE의 특성을 그대로 유지시키면서도 낮은 전기저항으로 금속을 대체할 수 있는 고분자 수지 소재로서 제공될 수 있다.
Description
본 발명은 화학적 저항이 우수한 폴리테트라 플루오로에틸렌(PTFE:Polytetrafluoroethylene) 수지에 탄소계열 소재를 병합하여 금속을 대체할 수 있는 전기 전도성 기능을 갖는 폴리테트라 플루오로에틸렌-탄소나노튜브 복합소재 제조방법에 관한 것이다.
산업현장에서 유해 화합물을 다루는 산업군이 아주 많다. 유해 화합물이란, 염산, 질산, 황산 등 강산, 강알카리, 독성을 가진 물질을 말하며, 이는 반도체 유해 화합물을 만드는 케미컬 제조 공장 PCB, 도금 공장 등이 있다.
그런데 최근 들어 급속히 유해 화합물 유출 사고가 증가하여 환경오염, 이로 인한 화재 등으로 인한 2차 사고, 사고로 인한 재산적 손실이 증가하고 있다. 이 사고를 분석하여 보면 작업자의 부주의가 가장 크고 다음이 시설 관리의 미흡이다. 이러한 시설관리의 핵심으로 유체 누수를 감지할 수 있는 내화학성이 뛰어난 고감도 센서가 필요하다.
예를 들어, 반도체 산업에서 산성용액으로 세척하는 공정에서의 용액 유출 사고를 감지하는 장치 즉 고감도 센서(sensor)가 필요하며 빠른 신호의 전달을 위하여 우수한 전기 전도성이 필요하다. 우수한 전기 전도체인 금속은 산성 물질에 화학적 저항이 매우 취약하여 사용이 불가하다.
이와 같이 센서의 소재로 부식의 문제 때문에 금속을 사용하지 못하고, 또한 반도체 등의 고청정 관리 구역에서는 소재에서 파티클(Particle)이 발생되지 않아야 되기 때문에 이를 만족시키는 센서의 소재는 전무한 실정이다.
따라서 이를 해결 할 수 있는 방법은 이에 적합한 센서의 신소재가 필요하고, 신소재는 파티클(Particle)이 발생되지 않아야 하며, 부식이 되지 않는 내화학성을 가져야 되고, 고온에서 견디고 특히 고효율 센서의 기능을 하는 금속을 대체 할 수 있는 신소재가 필요하다.
종래에도 금속을 대체할 수 있는 소재로서, 고분자 수지에 전기 도전성을 위한 도전 충진제를 혼합한 복합소재들이 다양하게 개발되어 각종 분야에 이용되고 있다. 고분자 수지의 제조시 도전성 충진제로서, 공지의 카본블랙(carbon black), 그라파이트(graphite), 은(silver), 구리(copper), 니켈(nikel), 알루미늄(aluminum) 등과 같은 미세한 금속성 분말을 균일하게 분산시키는 방법이 있다.
그러나 이러한 도전성 충진제들이 상기 고분자에 도전성을 부여하기 위하여는, 상기 충진제들이 고분자 수지 내부에서 입자끼리 연속성을 가지는 경로(pathway)의 형성이 필요하다. 즉, 금속 입자나 카본블랙 입자가 물질 속에서 아주 가까이 접촉되어 있어서 상기 전도성 입자들이 서로 전자를 연결(jumping)시켜줄 수 있어야 한다
예를 들어, 카본블랙을 우레탄 수지에 배합하여 전기 전도성을 부여하고자 하는 경우, 수지의 중량에 대하여 대체로 15~30 중량% 정도의 카본 블랙이 사용되지만, 보다 좋은 전도성을 얻기 위하여는 40 중량% 이상 사용될 것이 요구된다.
그러나 이러한 다량의 카본블랙의 투입은 그 입자가 균일하게 분산되는 것을 어렵게 하고, 수지의 용융 점도탄성(melt viscoelasticity)을 감소시키며, 상기 충진제 입자들이 서로 응집하여 점도가 극도로 상승하는 원인이 된다. 그 결과, 고분자 수지 자체 특성이 현저하게 저하되고, 마모에 의한 오염 및 전기 전도성 단락 등의 에 의한 문제가 발생 된다. 한편, 금속분말을 사용하는 경우, 이러한 금속분말은 카본블랙 보다 비표면적이 작아 2~3배 이상의 양만큼 배합하여야 전도성이 일어나는데, 이 경우 분산성이 나빠지고, 비중이 무거워지는 문제점이 있다.
고분자 수지 또는 탄성체에 도전성을 부여하기 위한 방법을 개시하고 있는 구체적인 예로서는, 일본특개평 9-000816호, 일본특개평 2000-077891호, 미국특허 6,768,524호, 미국특허 6,784,363호 및 미국특허 4,548,862호 등이 있다.
또한, 고분자 수지와 탄소나노튜브를 이용한 전도성 복합소재로는 한국공개특허공보 제10-2012-0077647호 "고분자/탄소나노튜브 복합소재의 제조방법"과, 한국공개특허공보 제10-2011-0078154호 "유동층 다중벽 탄소나노튜브를 적용한 탄소나노튜브-고분자 나노 복합소재 및 그 제조방법"등이 있다.
그런데 상기한 선행 문헌의 기술들은 상기와 같이 유해 화학물질의 누출을 감지하기 위한 센서 소재와 같이 아주 높은 내화학성을 요구하면서도 금속을 충분히 대신할 만큼의 전기 전도도가 요구되며, 다양한 특성을 요구하는 화학공정에서의 용액누출 고감도 감지센서의 소재로는 적합하다고 할 수 없었다.
따라서, 화학물질에 강한 내화학성과 낮은 전기저항, 클린(Clean) 공정 등의 오염방지가 요구되는 특정한 장소 및 환경에서는 사용할 수 있는 새로운 소재의 개발이 요구된다.
본 발명의 목적은, 상기의 문제점을 해결하기 위하여 화학물질에 강한 내화학성과 낮은 전기저항, 클린(Clean) 공정 등의 오염방지가 요구되는 특정한 장소 및 환경에서 사용할 수 있는 전기 전도성을 갖는 폴리테트라 플루오로 에틸렌-탄소나노튜브 복합소재 제조방법을 제공하기 위한 것이다.
또한, 본 발명의 목적은, 전기 저항이 1.00E+00Ω.㎝ ~ 1.00E-02Ω.㎝ 체적저항률이 되는 전기 전도성을 갖는 폴리테트라 플루오로 에틸렌-탄소나노튜브 복합소재 제조방법을 제공하기 위한 것이다.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기한 본 발명의 목적은,
화학적 저항이 우수한 고분자 소재에서 화학적 저항이 가장 우수하다고 알려진 PTFE(Polytetrafluoroethylene)수지를 선정하고,
고분자물질에 전기 전도성을 위하여 충진시키는 충진제 중에서 전기 전도도가 가장 뛰어나다고 알려진 최첨단 나노 소재인 다중벽 탄소나노튜브(MWCNT)를 선정하여,
내화학성을 물성을 갖고 있는 PTFE에 전기 전도성 충진제로서 MWCNT를 합성한 복합소재의 제조방법을 제공함으로써 달성될 수 있다.
본 발명의 목적을 달성하기 위한 전기 전도성을 갖는 폴리테트라 플루오로 에틸렌-다중벽 탄소나노튜브 복합소재의 제조방법은,
PFTE와 MWCNT를 준비하여 나노입자 특성인 반데르바알스력(Van der Waals force's)에 의한 뭉침 현상을 제거하여 분산된 MWCNT로 준비하고, 교반 챔버의 온도를 미리 설정한 범위 내의 온도로 조절하는 준비단계와;
교반 챔버에 PTFE 파우더와, 분산된 다중벽 탄소나노튜브 및 유기 용매를 미리 설정된 총량 대비 각 원료별 비율로 투입하는 원료투입단계와;
교반 챔버 내의 압력을 미리 설정한 범위 내의 압력으로 조절하면서 투입된 총 원료량에 비례하는 교반 시간동안 교반하는 1차 교반단계와;
1차 교반 후에 커플링제인 C60H123O15P3Ti를 총 원료량에 비례하여 미리 정해둔 범위의 량을 투입하는 커플링제 투입단계와,
커플링제를 투입한 후, 미리 정해둔 시간동안 교반하는 2차 교반단계와;
2차 교반후, 액상의 유기용매를 제거하는 유기용매 제거단계와;
액상의 유기용매를 제거한 조성물을 저온 건조시켜 PTFE에 다중벽 탄소나노튜브가 합성된 복합소재를 제조하는 저온 건조단계를 포함하는 것을 특징으로 한다.
또한, 본 발명은,
상기 합성된 복합소재를 분쇄 가공하여 파우더(Powder), 시트(Sheet), 필름(Film) 또는 바(Bar) 중 어느 하나의 제품으로 제품화하는 제품화 단계를 더 포함하는 것을 특징으로 한다.
또한, 본 발명에 의한 상기 1차 및 2차 교반단계는,
교반 챔버 내에 삽입된 혼합 스크류를 회전시키는 혼합 스크류 회전단계와,
교반 챔버를 상기 혼합 스크류와 반대방향으로 회전시키는 교반 챔버 회전단계를 동시에 진행하는 것을 특징으로 한다.
또한, 본 발명은,
상기 혼합 스크류는 5,000 ~ 1,5000 RPM의 회전속도로 고속 회전시키고, 상기 교반 챔버는 1 ~ 200 RPM으로 저속 회전시키는 것을 특징으로 한다.
또한, 본 발명은
상기 교반 챔버 회전단계는, 간헐적 회전방식으로 온/오프를 반복하여 제어하는 것을 특징으로 한다.
또한, 본 발명에 의해 투입되는 원료는,
투입되는 원료의 100 중량% 대비,
PTFE 파우더 10 ~ 30 중량%, MWCNT 1 ~ 10중량%, 유기용매 59.9 ~ 88.1중량%, 커플링제인 C60H123O15P3Ti 0.1 ~ 0.9중량%를 투입하는 것을 특징으로 한다.
또한, 상기 1차교반단계는,
교반되는 원료의 점도(Viscosity)가 3,000CPS ~ 5,000 CPS가 되는 교반시간을 실험적으로 구하여 1차 교반시간을 정하는 것을 특징으로 한다.
또한, 상기 교반 챔버의 온도는 30 ~ 60도의 온도범위로 유지하고, 압력은 10~20N/㎠으로 유지하는 것을 특징으로 한다.
또한, 상기 유기용매 제거단계는,
원심분리기를 이용하여 액상의 유기용매를 분리하여 제거하는 것을 특징으로 한다.
상기와 같은 제조방법을 구현하기 위한 교반장치는, 가열 및 압력 조절이 가능한 교반챔버를 사용하고, 교반챔버는 내부의 회전 스크류와, 교반챔버 자체를 회전시킬 수 있는 2중 회전 구조로 이루어지며, 회전 스크류와 교반챔버는 서로 반대방향으로 회전시켜 챔버 내부에 투입된 원료들을 혼합하는 회전 속도를 배가 시킨다. 이처럼 적정한 열과 압력을 가압한 상태에서 고속으로 교반시키고 적정 점도에서 커플링 에이젼트를 투입해 교반시킴으로써, PTFE 분자구조에서 하나의 F대신에 CNT가 교환되어 결합하는 구조로 그라프트 결합이 이루어질 수 있도록 한 것이다.
따라서, 금속을 대체할수 있는 낮은 전기저항을 갖는 전도성 PTFE-CNT 수지를 제조할 수 있고, PTFE의 특성을 그대로 유지하면서 초전도성 복합소재로서 제조될수 있어서 반도체 공정, 화학물 제조공정, PCB 제조공정 및 도금 공정과 같은 곳에서 강알칼리 독성을 가지는 유해화합물의 누수를 감지하기 위한 센서의 소재로서 본 발명의 전기 전도성 기능을 갖는 폴리테트라 플루오로에틸렌-탄소나노튜브 복합소재를 이용할 수 있다.
본 발명은 고분자 소재 중에서 화학적 저항이 가장 우수하다고 알려진 PTFE(Polytetrafluoroethylene) 수지를 선정하였고, 도전 충진제로서 CNT를 첨가하여 합성한 전기 전도성 기능이 있는 PTFE+CNT 복합소재를 제공하는 효과가 있다.
이에따라 PTFE 자체의 특성을 그대로 유지하면서 초전도성 기능을 갖는 복합소재를 제공할 수 있어서, 화학물질에 강한 내화학성과 낮은 전기저항, Clean 공정 등의 오염방지가 요구되는 특정한 장소 및 환경에서는 사용이 가능한 전도성 고분자 복합소재를 제공할 수 있는 효과가 있다.
또한, 본 발명은 현재까지 낮은 전기적 저항대인(1.0E+00Ω.㎝ ~ 1.0E-02Ω.㎝의 Volume Resistivity) 불가능하였으나, 본 발명의 조성물은(1.0E+00Ω.㎝ ~ 1.0E-02Ω.㎝의 체적 저항율(Volume Resistivity)) 전기적 저항을 실현한 효과가 있다.
본 발명에 의한 초전도성 PTFE+CNT 나노복합소재를 이용한 전기, 전자, 통신, 자동차, 의료, 항공 등등의 여러 분야에서 적용이 가능하게 되어 높은 품질의 제품 생산이 가능하게 되는 효과가 기대된다.
도 1은 고분자 수지에 전기 전도성을 부여한 조성물의 전기 저항에 대한 분류 비교도.
도 2는 본 발명의 실시 예를 설명하기 위한 제조공정도.
도 3은 본 발명에 의한 탄소나노투브 투입량에 따른 전기 저항 변화 그래프.
도 4는 본 발명에 의한 표면의 광택 및 오염도 측정 비교 사진도면.
도 5는 본 발명에 의한 PTFE+MWCNT 복합재료의 전기 체적 저항 측정 설명도.
도 2는 본 발명의 실시 예를 설명하기 위한 제조공정도.
도 3은 본 발명에 의한 탄소나노투브 투입량에 따른 전기 저항 변화 그래프.
도 4는 본 발명에 의한 표면의 광택 및 오염도 측정 비교 사진도면.
도 5는 본 발명에 의한 PTFE+MWCNT 복합재료의 전기 체적 저항 측정 설명도.
이하, 본 발명의 실시 예를 기초로 첨부된 도면을 참조하여 PTFE+CNT의 복합소재 제조방법과 전기 저항치가 금속을 대체할 수 있는 저항치로서 초전도성 고분자 수지임을 설명한다. 여기에 기재되지 않은 응용 및 변형 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
본 발명은, 폴리테트라 플루오로 에틸렌(PTFE)에 전기 전도성 부여를 위한 탄소나노튜브를 결합한 전기 전도성 기능을 갖는 폴리테트라 플루오로에틸렌-탄소나노튜브 복합소재를 제공한다.
상기 폴리테트라 플루오로에틸렌(PTFE)은, 내화학성, 비점착성, 방오성, 내열성, 마찰특성이 우수한 소재이고, 탄소나노튜브는, PTFE에서 부족한 전기 전도성을 부여하기 것으로서 복합소재 전체가 전기 전도성을 가지도록 한다.
따라서, 본 발명은 폴리테트라 플루오로에틸렌(polytetrafluoroethylene)의 기본 성질을 유지하면서 금속과 같은 우수한 전기 전도도를 갖는 복합소재를 제공할 수 있다.
본 발명은, 고분자 소재중에서도 화학적 안정성이 뛰어난 폴리테트라 플루오로에틸렌 PTFE(Polytetra fluoroethylene)[CF2CF2]를 기반으로 연구개발 되었다.
폴리테트라 플루오로에틸렌(PTFE ; polytetrafluoroethylene)은 내약품성, 전기적 특성(Electrical characteristic ; 절연특성), 비점착성, 방오성, 내열성, 마찰특성 등의 여러 가지 특성이 뛰어나다. PTFE 소재는 일반적으로 마찰감소가 필요한 회전체의 씰링(sealing), 가스켓(gasket), 및 오링(O-ring), 화학물질의 이송파이프(pipe), 내열성 오염방지 필름(film) 등의 여러 가지 산업 분야에서 넓게 사용되고 있다.
PTFE(Polytetra fluoroethylene)는 외부의 다른 물질을 받아들이지 않기 때문에 내화학성 및 방오성이 현존하는 고분자 물질 중에서 가장 우수하다. 그러나 그런 뛰어난 특성으로 인하여 PTFE(Polytetra fluoroethylene) 고분자 수지에 특수한 기능으로 전기 전도성을 부여하기란 매우 어렵다.
한편, 금속을 대체하려면 전기 저항이 최소(<1.0E+00Ω.㎝ Volume Resistivity) 낮은 저항을 보여야 한다.
도 1은 고분자 수지에 전기 전도성을 부여한 조성물의 전기 저항에 대한 분류 비교도이다.
일반적인 고분자 수지는 절연체로서 체적 저항률(Volume Resistivity; 이하, '전기 저항'이라 혼용함)( <1.00E+13Ω.㎝ ~ 1.00E+14Ω.㎝ ↑)이고, 고분자 수지에 도전성 충진제를 투입하여 전기 저항(1.00E+07Ω.㎝ ~ 1.00E+12Ω.㎝ )의 대전체(Antisatic), 전기 저항 (l.00E+04Ω.㎝ ~ 1.00E+06Ω.㎝)의 산일체(Dissipative), 전기 저항(1.00E+01Ω.㎝ ~ 1.00E+3Ω.㎝ )의 전도체(Conductive)의 용도로 분류되고 있으며, 고분자 수지에 도전성 충진제를 투입한 기존 조성물들이 이에 해당된다. 일반적인 PTFE수지의 전기 저항은 (1.0E+15Ω.㎝ ↑)특성을 보인다.
금속을 대체할 전기 저항은 1.00E+00Ω.㎝ 이하를 요구하고 있는데, 현재까지 낮은 전기적 저항대인 (1.0E+00Ω.㎝ ~ 1.0E-02Ω.㎝의 Volume Resistivity) 불가능 하였으나, 본원 발명에 의한 PTFE+MWCNT 복합소재('특허 조성물')는 ( 1.00E-01Ω.㎝ ~ 1.00E-02Ω.㎝ Volume Resistivity)의 전기 저항을 실현하였다.
상기 저항의 표식에서 (1.0E+00Ω.㎝ ~ 1.0E-02 ohm): 1.0은 정수이며, +는 가 아님을 나타내며 00 ~ 은 10의0승 이고 -02 10의 마이너스 2승을 의미한다.
일반적인 고분자 수지에 전기 전도성을 부여하기 위한 방법을 응용하여 PTFE(Polytetra fluoroethylene)고분자 물질에 전기 전도성 기능을 부여하기 위해서는, 탄소계열의 카본블랙, 카본나노튜브, 그래핀, 흑연 등을 하나 또는 하나 이상을 첨가하여야 하는데 합성이 매우 어려운 게 현실이며, 국내의 소재 생산업체는 전무하다.
경쟁 현황을 보면 세계적으로 아직 PTFE와 CNT를 합성한 복합 소재가 없어서 직접적으로 비교를 할 수 없으나, 현재 가장 이 분야에서 앞서가는 회사는 프랑스의 세인트 고바인 사로 볼 수 있다. 세인트 고바인 사는 전도성 물질로 카본 블랙(Carbon Black)을 사용하고 있어서 파티클(Particle) 때문에 고청정 지역에서 사용하는데 문제가 있다. 고바인사의 전도성 PTFE 제품의 Spec은 전기저항에서 3승 옴으로 금속 대체재로 사용할 수 있는 -2승 옴과는 많은 차이를 보이고 있다. 또한, 다른 회사로는 다이네온 사가 있는데 물질의 형태가 카본블랙(Carbon Black)을 사용한 잉크(INK) 형태이기 때문에 내구성과 적용에 제한이 있다.
또한, 그래핀, 카본블랙, 흑연, 카본 파이버 등은, 전기 전도도 면에서 탄소나노튜브에 비해 떨어지고, 전도성 입자가 서로 전자를 연결(jumping)시키기 위해서는 많은 량이 투입되어야 하므로, PTFE의 기본 특성이 떨어지고, 마모나 오염 등의 문제점이 발생하며, 전기 전도성 영역에서는 탄소나노튜브와 하나 이상의 물질을 혼합 사용이 좋은 효과가 있으나 혼합 사용시 단락에 의한 오염이 발생되는 결과가 발생한다.
또한, 상기한 고바인사의 PTFE 제품은 (<1.0E+03Ω.㎝ Volume Resistivity) 이상으로서 금속을 대체할 정도의 전기전도도를 가지지 못하여 민감도를 요구하는 센서분야의 소재와 같은 곳에는 사용하기 어렵고, 사용분야에 제한이 많다.
따라서, 본 발명은, 마모 등에 의한 오염 문제를 해결하는 방법으로 도전성 충진제로서 탄소나노튜브를 단독으로 투입하는 것을 선정하여 해결하고, 전기 전도성 문제는, 탄소나노튜브와 PTFE를 그라프트(Graft)방식을 활용하여 매트릭스(Matrix) 상에 PTFE와의 결합화하여 탄소나노튜브의 전기 전도성을 극대화시킴과 동시에 단락에 의한 오염 문제를 해결하였다. 여기서 탄소나노튜브는, 단일벽 탄소나노튜브를 사용할 수도 있고, 다중벽 탄소나노튜브를 사용할 수도 있으나, 가성비 측면에서 다중벽 탄소나노튜브를 사용하였다.
본 발명은, PTFE와, MWCNT 및 유기용매를 교반 챔버에 넣고 교반하다가 커플링제인 C60H123O15P3Ti를 투입해 교반한 후, 원심분리기를 이용해 유기용매를 제거하여 조성물을 제조하였다. 특수 열가압 교반장치를 이용하여 금속을 대체할 수 있는 저항(<1.0E+00Ω.㎝ ~ 1.0E-2Ω.㎝ Volume Resistivity)인 전기 전도도를 갖도록 고분자 물질 PTFE(Polytetra fluoroethylene)에 다중벽탄소나노튜브를 합성하여 전기 전도성이 금속을 대체하기에 충분하면서도 PTFE의 내화학성, 내마모성, 고내열성, 고광택 등의 특성을 그대로 유지시키는 전기 전도성 기능을 갖는 PTFE+MWCNT 복합소재를 제공할 수 있게 된 것이다.
[실시예 1]
도 2는 본 발명의 실시 예를 설명하기 위한 제조공정도이다.
PTFE+MWCNT 복합소재 조성물 제조 순서는 100 Weight% 기준에서
1. 교반 챔버 온도를 30도 ~ 60도 자동 냉각, 가열하는 준비단계(S10).
2. 교반 챔버에 PTFE 파우더(10um~250um) 수지를 10중량%~30중량% 투입하고, 교반 챔버에 MWCNT탄소나노튜브 1중량% ~ 10중량% 투입하며, 유기 용매 VOC(Volatile Organic Compounds)를 59.9중량% ~ 88.1중량% 투입하는 원료 투입단계(S20).
3. 교반기 압력(10~20N/㎠)을 조절하면서 교반기 혼합 스크류를 RPM 5,000~15,000의 변환 구동하고, 교반 챔버를 반대방향으로 RPM 10 - 200의 변환 구동하여 교반하는 1차교반단계(S30).
4. 교반 챔버 내부의 점도(Viscosity)가 3,000 CPS ~ 5,000 CPS가 되면 커플링제(Coupling Agent)인 C60H123O15P3Ti를 0.1중량% ~ 0.9중량% 투입하는 커플링제 투입단계(S40).
5. 커플링제를 투입 이후 30分 ~ 60分 반응 교반시켜 정지하는 2차 교반단계(S50).
6. 교반 챔버에서 원심분리기로 이송하여 액상의 유기 용매 제거하는 유기용매제거단계(S60).
7. 액상 유기용매가 제거된 복합소재 조성물의 잔존 가스를(<50PPM)관리하는 저온건조 단계(S70).
8. 상기 저온건조단계(S70)에서 완성된 복합소재를 제품화하기 위하여 적정 사이즈로 분쇄한 후 파우더로 제품화하거나 파우더를 이용하여 시트, 바 등으로 제품화 할 수 있다.
본 발명에 의한 제조 방법은,
준비단계(S10)는, PTFE파우더와, MWCNT 파우더와, 유기용매 및 커플링제를 원료로서 준비한다. 여기서 MWCNT는, 단일벽 탄소나노튜브를 사용할 수도 있고, 바람직하게는 다중벽 탄소나노튜브를 사용한다. 또한, 탄소나노튜브는 자체적인 뭉침 현상이 있는 소재로서 분산처리를 거친 MWCNT를 사용한다. 즉, 반데르 바알스 힘(van der Waals force)을 약화시켜 주변 온도에 의한 뭉침 현상을 제거한 분산 처리된 MWCNT를 준비한다. 그리고 교반챔버를 적당한 온도가 되도록 조절하는데 본 발명의 실험에서는 30 - 60℃로 조절하는 것을 예로 하였고, 초기에 30℃정도로 온도를 조절한다.
원료투입단계(S20)는, PTFE파우더와, MWCNT 파우더와, 유기용매를 투입한다. 유기용매는, 솔벤트가 포함되는 것으로서, PTFE는, 10 - 50nm 크기를 투입하게 되고, 솔벤트를 포함하는 유기용매를 투입하여 교반시킴으로써, 0.5㎛ 이하 크기로 만들면서 PTFE의 반데르바알스 힘을 약화시켜 재응집을 방지한다. CNT는 분산처리된 다중벽 탄소나노튜브(MWCNT) 5 ~ 15nm 크기를 투입한다.
1차 교반단계(S30)는, 교반챔버 내에 삽입 설치되는 회전스크류와, 교반챔버 자체를 회전시켜 교반시킨다. 이때 교반 챔버 내부 온도와 압력을 적절히 조절해야 한다. 온도는 준비단계에서 설정된 약 10℃이상에서 교반을 시작하며, 압력은, 약 1기압 즉, 10N/㎠의 압력으로 교반을 시작한다. 즉, 초기시작단계에서는 압력과 온도를 별도 조절하지 않고 통상의 실온 및 대기압하에서 교반을 시작할 수 있다. 다만, 교반 중에는 온도상승과 압력이 상승 되므로 실험적으로 구해진 온도와 압력 범위를 유지하도록 조절해야 한다. 바람직하게는 교반 시작시 온도를 10 ~ 30℃로 상승시키되, 교반중 100℃를 넘지 않도록 조절하고, 시작단계에서 10N/㎠ 압력으로 교반을 시작하고, 교반시 압력을 조절하여 교반 종료단계에서 20N/㎠를 추종하도록 압력을 조절하여 교반한다.
교반방법은, 교반챔버 내부의 회전스크류는 5,000 ~ 15,000RPM의 범위에서 속도를 가변시키면서 회전시키고, 교반챔버는 10 ~ 200 RPM 범위에서 속도를 가변시키면서 회전시킨다. 이때 교반기 내부의 회전스크류와, 교반챔버는 서로 반대방향으로 회전시켜 이중 역회전이 가해지도록 함으로써, 내부 교반되는 물질들이 받는 회전 압력이 더 배가되어 좀 더 교반이 잘되게 한다. 고속회전 교반으로 인해 내부 압력과 온도가 상승 되는데, 압력은 10N/㎠ ~ 20N/㎠정도로 제한하고, 온도는 100℃를 넘지 않도록 한다. 온도 및 압력은 교반챔버에 온도조절수단과 압력조절수단을 설치해 조절함과 아울러 교반되는 회전속도를 제어하여 연동시킬 수도 있다.
커플링제 투입단계(S40)는, 교반 물질의 점도가 미리 설정된 점도일때 커플링제인 C60H123O15P3Ti를 정해진 레시피에 따른 용량을 투입한다. 교반 챔버 내부에서 교반되는 물질의 점도를 측정하기 어렵다. 따라서 원료 투입 총량에 대응하여 교반되는 원료의 점도(Viscosity)가 3,000CPS ~ 5,000 CPS가 되는 1차 교반시간을 실험적으로 구하여 1차 교반시간을 결정한다. 따라서 투입 원료 총량에 대응되는 1차 교반시간이 경과되면 교반되는 내부 물질의 점도는 3,000CPS ~ 5,000 CPS의 범위에 있을 것으로 예측되며, 이에 따라 1차교반 시간이 경과되면 커플링제를 투입한다.
커플링제는, PTFE와 하나 이상의 물질과 계면간의 친화력 및 성반응을 높일 수 있도록 C60H123O15P3Ti를 사용하되, 중량 100% 중량당비에서 0.3중량%~0.6중량% 첨가한다.
이때, 상기 C60H123O15P3Ti는 Titanium(4+) dioctyl phosphate 2,2-bis[(allyloxy)methyl]-1-butanolate (1:3:1)로 명명되며, 평균분자량(Average mass):1225.398 Da인 커플링제로서, 구조식은 아래와 같다.
이때, 상기 C60H123O15P3Ti는 Titanium(4+) dioctyl phosphate 2,2-bis[(allyloxy)methyl]-1-butanolate (1:3:1)로 명명되며, 평균분자량(Average mass):1225.398 Da인 커플링제로서, 구조식은 아래와 같다.
2차 교반단계(S50)는, 커플링제를 투입하여 반응교반을 시키는 단계로서, 온도와 압력 및 시간을 실험적으로 구하여 정해둔 레시피에 따라 2차 교반단계를 실행한다. 2차 교반을 하게 되면, 고체가 가스 및 액체를 흡수하여 80wt%의 페이스트 상태 중간 결과물이 형성된다.
유기용매 제거단계(S60)는, 상기 교반단계에 의해 생성된 페이스트 상태의 중간 결과물을 원심분리기로 옮겨 액체와 가스를 분리 제거한다.
저온 건조단계(S70)는, 중간 결과물에서 액체 상태의 유기용매를 제거하고 난 페이스트상태의 중간 결과물을 제습과 함께 저온 건조시킨다. 저온 건조에 의해 굳어진(bake) 상태로 만들면 원하는 조성물을 얻을 수 있다.
이후, 이렇게 얻어진 조성물을 사용 용도에 맞게 제품화 한다. 베이크 상태로 덩어리진 조성물을 분쇄하여 분말화 한 파우더나, 분쇄하여 분말을 시트로 압착시킨 시트 또는 로드로 압출하거나 기타 원하는 형태로 제품화한다.
본 발명은, 상기와 같은 제조방법에 의해 제조된 전기 전도성 기능을 갖는 PTFE + CNT 복합소재를 제공한다.
PTFE + CNT 교반 시 최적 비율, 최적 압력, 최적 온도 조건은,
PTFE와 하나 이상의 물질과 계면간의 친화력 및 반응성을 높이기 위하여 커플링제인 C60H123O15P3Ti를 중량100% 중량당비에서 0.3중량%~0.6중량%를 첨가하였으며, 챔버온도는 2차 교반단계에서 60~70℃를 유지하고, 압력은 10~20N/㎠, 혼합 스크류 회전속도는 5,000~10,000 RPM, 시간은 30~60분 조건에서 그라프트(Graft) 방식으로 중합물을 제작하였으며, 일반 PTFE와의 기계적 물성, 전기적 물성을 상대비교하였다[표 1]. 이때 기계적인 물성, 전기적 물성 그리고 외관에서 가장 좋은 결과를 얻을 수 있었다.
아울러, PTFE 분자간의 결합에 열을 가하여 분자간의 사이를 벌림으로써 포텐셜(potential)을 상승시키는데, 적정온도는 PTFE의 융해점의 온도(약 325℃)가 가장 이상적이나 아쉽게도 PTFE는 열에 의한 경화가 발생되어 탄소나노튜브와의 그라프팅(GRAFTING )접합 공정이 불가하다.
삭제
삭제
삭제
삭제
삭제
삭제
삭제
따라서, 높은 열은 최종 제품 성형 작업에서 이루어져야 되며, 본 발명에 따른 제품은 최소한의 열을 사용하여 분자간의 거리를 넓히기 위해서 압력 챔버(chamber)를 이용하였으며, 압력은 시작 10 N/㎠에서 종료단계에 20N/㎠을 유지한다. 상기의 실험을 통해 기존 제품보다 우수한 물성의 조성물 제조가 확인되었다.
또한, 본 발명에서 사용된 탄소나노튜브는 뭉침(Bundle)을 개선한 분산 처리된(Dispersed) MWCNT를 사용하였으며, 종횡비(Aspect ratio)는 지름(Diameter) 5nm이하, 길이(Length) 50nm 이하의 종횡비가 적용되었다. 상기의 종횡비가 본 연구에서는 조성물의 표면 광택성이 가장 우수하였다.
도 3은 본 발명에 의한 탄소나노투브 투입량에 따른 전기 저항 변화 그래프이다.
낮은 저항값을 얻기 위하여 조성물 weight 100% 중량당비에서 탄소나노튜브의 중량%는 전기적 저항 체적 저항률(Volume Resistivity) 1.0E+00Ω.㎝은 3~4중량% 이며, 전기적 저항 체적 저항률(Volume Resistivity) 1.0E-02Ω.㎝은 4~6%의 중량이 바람직하며, 더욱 더 낮은 저항값을 얻기 위하여 7~10중량%를 첨가하였으나 전기적 저항 체적 저항률(Volume Resistivity) 1.0E-02Ω.㎝은 변하지 않았다. 실험의 목표치는 CNT의 투입량을 증가시키는 것과 비례하여 저항치가 감소될 것을 기대하였으나, 실질적으로 저항의 변화가 없는 수렴구간이 있음을 알 수 있다.
즉, 도 3에 도시된 바와 같이, PTFE에 CNT가 첨가되지 않을시 전기 저항은 1.0E+14Ω.㎝으로 절연체이고, CNT 5wt% 시, 전기저항 1.0E-01Ω.㎝을 보이고, CNT 6wt% 시 전기저항 1.0E-02Ω.㎝를 얻을 수 있었고, CNT 7wt% 시 전기저항 1.0E-02Ω.㎝로서 투입량이 증가되어도 전기 저항치는 변화되지 않는 것을 알 수 있었다.
본 실험에서 탄소나노튜브는 조성물 weight 100% 중량당비 6중량%~7중량% 함량이 1.0E-02Ω.㎝의 최대 영역이며, 그 첨가량이 늘어나도 전기적 저항이 변하지 않는 수렴 구간이 확인되었다.
PTFE와 하나 이상의 물질과 계면간의 친화력 및 성반응을 높이기 위하여 커플링제인 C60H123O15P3Ti를 Weight 100% 중량당비에서 0.3중량%~0.6중량% 첨가하였으며, 챔버 온도 60℃~70℃를 유지하며 압력 10~20N/㎠, 혼합스크류 5,000~10,000 RPM, 시간 30분~60분 그라프트(Graft) 중합물을 제작하여 기존 외국사의 전도성 PTFE(polytetrafluoroethylene)와의 기계적 물성, 물리적 물성을 상대비교 하였다.
인장강도 kgf/㎠ ASTM D638 |
굴곡탄성 kgf/㎠ ASTM D790 |
충격강도 kqf/㎠ ASTM D256 |
비중 ASTM D792 |
외관 |
저 항 Ω.㎝ ASTM D257 |
|
기존제품 |
250 ~ 350 |
4,650 |
10 ~ 12 |
2.0 ~ 2.2 |
우수 |
1.0E+02 ~ 03 |
본발명제품 |
400 ~ 500 |
5,800 |
11 ~ 13 |
2.0 ~ 2.2 |
매우우수 |
1.0E-01 ~ -02 |
여기서, 기존제품은 프랑스 세인트 고바인사의 전도성 PTFE 제품이고, 이 기존 제품과 본 발명에 의해 제조된 본 발명 제품을 비교하였다. 기존의 카본 블랙을 첨가한 제품에 비해 본원발명에 의한 제품은 거의 대부분 측정 분야에서 향상되었고, 특히 금속 대체가 가능한 낮은 전기 저항을 가진 것을 알 수 있다.
본 발명은 조성물을 0.3mm의 두께로 시트를 제작하여 통상의 실험방법으로 시편을 제작하여 인장강도, 굴곡탄성, 충격강도 및 비중을 실험하여 측정비교하고, 외관은 시각적으로 판단하였으며, 저항은 시편을 제작해 측정장치를 통해 측정한 결과이다. 실험하여 기존제품과 본원발명제품을 비교해본 결과 인장강도, 굴곡탄성, 충격강도는 기존제품보다 우수하고, 비중은 같으며, 외관은 매우 우수하고, 특히나 저항은 기존제품과 비교할 수 없는 정도의 큰 특성차이를 나타내고 있으며, 금속을 대체하기 위한 목적의 저항치를 충분히 구현한 것임을 알 수 있었다.
도 4는 본 발명에 의한 표면의 광택 및 오염도 측정 비교 사진도면이고, 도 5는 본 발명에 의한 PTFE+MWCNT 복합재료의 전기 체적 저항 측정 설명도이다.
본 연구의 조성물제조 공정도와 기존의 제품과 연구개발 제품을 0.3mm의 필름을 만들어 표면의 상태와 오염도를 측정하여 검증 기록하였다.
도 4의 사진 도면에서 좌측 첫번째 사진 (가)의 1.일반 전도성 PTFE는, 기존 외국사의 카본블랙을 첨가한 전도성 PTFE를 샘플로 하였고, 이는 마모로 인한 슬러지 발생과, 전기 전도도의 단락이 발생 되었다. 가운데 사진 (나)의 2. CNT 5%+PTFE는, PTFE에 5중량%의 CNT를 첨가하여 합성한 복합재료에 대한 것으로서, 표면 상태에 흰색의 얼룩 반점 및 핀홀이 나타나는 등 표면 상태가 불량하였다. 우측 사진 (다)의 3.CNT5%+PTFE+C.A는, PTFE에 5중량%의 탄소나노튜브와 커플링제인 C60H123O15P3Ti를 투입하여 합성한 결과를 보인 것으로서, 표면 조도, 분산 오염 상태에서 우수한 결과를 보였다. 즉, PTFE에 CNT를 5중량%를 투입 합성할 때 C60H123O15P3Ti를 첨가하여 교반 합성한 결과가 가장 좋은 결과물을 얻을 수 있었다.
▶기존전도성 PTFE |
▶탄소나노튜브 5% ▶PTFE |
▶탄소나노튜브 5% ▶PTFE ▶Coupling Agent |
▶탄소나노튜브 8% ▶PTFE ▶Coupling Agent |
|
조성물 외관 조도 |
○ |
X |
◎ |
△ |
조성물 내부 단면 |
○ |
X |
◎ |
△ |
조성물 조도 및 오염성 |
X |
△ |
◎ |
△ |
여기서, 기존 전도성 PFTE는 고바인사의 카본블록을 첨가한 전도성 PTFE를 샘플로 하였다. 외관조도는 각 샘플 시트의 외관을 시각적으로 살펴보았으며, 내부 단면을 절단된 단면을 확인하였고, 조도 및 오염도는 조도는 조명 반사도를 살펴본 것이고, 오염도는 표면을 문질렀을 때 오염물질이 묻어나는지를 검사하였다. 또한, 표에는 표시되지 않았으나 단락 오염도 즉, 전기 전도도가 균일한지의 여부는 도 5의 (다와 같이 측정접점을 이용하여 시트의 전 면적의 각 위치에서 전기전도도를 측정하여 실험하였다.
본 발명에 의한 PTFE+CNT 복합 재료의 전기 체적 저항 측정은 도 5의 (가)와 같이 0.3mm 두께의 시트를 제작하고, 폭 1인치 즉, 15㎝ X 10㎝ X 0.3mm로 시편을 준비하고, 표면의 이물질 등을 제거한다. 이후 (나)의 두번째 사진과 같은 저저항계측기(HIOKI M-3548)을 사용하고, ASTM D257 측정방법에 준하여 1인치/sq 구간내의 체적 저항을 측정하였다, 측정대의 저항은 1.0E+14Ω.㎝ 이상의 조건을 유지하였다. 본 발명에 의해 제조된 시편, 즉, PTFE에 5중량%의 CNT와 커플링 에이젼트를 투입해 교반하여 제조된 복합 소재의 시편을 위의 측정방법으로 측정한 결과, 1.0E-02Ω.㎝의 결과를 얻었다.
이상에서 상세히 설명한 바와 같이 본 발명은 고분자 소재 중에서 화학적 저항이 가장 우수하다고 알려진 PTFE(Polytetrafluoroethylene) 수지를 선정하였다. 일반적인 PTFE수지의 전기적 저항은 Volume Resistivity (1.0E+15Ω.㎝ ↑)특성을 보인다. 현재까지 낮은 전기 저항대인 1.0E+00Ω.㎝ ~ 1.0E-02Ω.㎝의 Volume Resistivity 불가능하였으나, 본 발명의 조성물은(1.0E+00Ω.㎝ ~ 1.0E-02Ω.㎝의 체적 저항율(Volume Resistivity))을 실현하였다.
PTFE(Polytetrafluoroethylene)는 이미 화학 산업 분야에서 널리 사용되고 있었지만 기존의 전도성 PTFE(Polytetrafluoroethylene)소재의 전기적 저항은(1.0E+01Ω.㎝ ~ 1.0E+03Ω.㎝ Volume Resistivity) 이며, 탄소 소재인 카본블랙과 금속을 병합하여 개발되어 마모 및 오염의 문제점이 있다.
따라서 화학물질에 강한 내화학성과 낮은 전기저항, Clean 공정 등의 오염방지가 요구되는 특정한 장소 및 환경에서는 사용이 극히 제한적이다.
본 발명은 상기의 문제점을 해결하고 PTFE(Polytetrafluoroethylene)의 자체 물성을 보존하며 기존의 제품보다 월등한 전기적 저항(1.0E+00Ω.㎝ ~ 1.0E-02Ω.㎝ Volume Resistivity)을 실현 하였으며 단락에 의한 오염에서도 매우 뛰어난 효과가 검증되었다.
이 결과는 단순하게 전도성 물질의 함량만을 높인다고 하여서 저항과 오염이 문제가 해결되는 것은 아니다. 본 연구개발 조성물은 이러한 문제점을 보완하기 위하여 다양한 실험을 통하여 도 3, 도 4 및 [표 1], [표 2]와 같은 결과를 도출하였다.
기존의 전도성 PTFE(Polytetrafluoroethylene) 제품보다 10배에서~100,000배 정도 우수한 전기저항 성능과 카본에 의한 오염이 없는 제품 개발을 성공하였으며, 이것은 국가 경제발전과 수입에 의존해온 전도성 PTFE 제품의 고단가, 납기, A/S 문제를 해결하게 되었으며 반도체, 화학, 의료, 전자기파(EMC)설계 등등 여러 산업 영역에서 폭넓게 사용할 수 있다.
본 발명의 설명에서와 같이 초전도성 PTFE+CNT 나노복합수지는 기존의 제품보다 매우 우수함을 알 수 있었으며 이를 이용한 전기, 전자, 통신, 자동차, 의료, 항공 등등의 여러 분야에서 적용이 가능하게 되어 높은 품질의 제품 생산이 가능함을 입증 하였다.
S10 : 준비단계 S20 : 원료투입단계
S30 : 1차교반단계 S40 : 커플링제 투입단계
S50 : 2차교반단계 S60 : 유기용매 제거단계
S70 : 건조단계
S30 : 1차교반단계 S40 : 커플링제 투입단계
S50 : 2차교반단계 S60 : 유기용매 제거단계
S70 : 건조단계
Claims (9)
- 교반 챔버에 PTFE 파우더와, 탄소나노튜브 및 유기 용매를 미리 설정된 총량 대비 각 원료별 비율로 투입하는 원료투입단계와;
교반 챔버의 온도와 압력을 미리 설정한 범위 내로 조절하면서 투입된 총 원료량에 비례하는 교반시간동안 교반하는 1차 교반단계와;
1차 교반 후에 커플링제인 C60H123O15P3Ti를 총 원료량에 비례하여 미리 정해둔 범위의 량을 투입하는 커플링제 투입단계와,
커플링제인 C60H123O15P3Ti를 투입한 후, 미리 정해둔 시간동안 교반하는 2차 교반단계와;
2차 교반후, 액상의 유기용매를 제거하는 유기용매 제거단계와;
액상의 유기용매를 제거한 조성물을 저온 건조시켜 PTFE에 다중벽 탄소나노튜브가 합성된 복합소재를 제조하는 저온 건조단계;
를 수행하여 제조된 것을 특징으로 하는 전기 전도성을 갖는 폴리테트라 플루오로 에틸렌-탄소나노튜브 복합소재의 제조방법.
- 제 1 항에 있어서,
상기 건조단계에서 제조된 결과물을 분쇄 가공하여 파우더(Powder), 시트(Sheet), 필름(Film) 또는 바(Bar) 중 어느 하나의 제품으로 제품화하는 것을 특징으로 하는 전기 전도성을 갖는 폴리테트라 플루오로 에틸렌-탄소나노튜브 복합소재의 제조방법.
- 제 1 항에 있어서,
상기 원료투입 단계에서 투입하는 탄소나노튜브는,
분산처리된 다중벽 탄소나노튜브인 것을 특징으로 하는 전기 전도성을 갖는 폴리테트라 플루오로 에틸렌-탄소나노튜브 복합소재의 제조방법.
- 제 1 항에 있어서,
상기 1차 및 2차 교반단계는,
교반 챔버 내에 삽입된 혼합 스크류를 회전시키는 혼합 스크류 회전단계와,
교반 챔버를 상기 혼합 스크류와 반대방향으로 회전시키는 교반 챔버 회전단계를 동시에 진행하는 것을 특징으로 하는 전기 전도성을 갖는 폴리테트라 플루오로 에틸렌-탄소나노튜브 복합소재의 제조방법.
- 제 4 항에 있어서,
상기 1차 및 2차 교반단계는,
상기 혼합 스크류는 5,000 ~ 1,5000 RPM의 회전속도로 고속 회전시키고, 상기 교반 챔버는 1 ~ 200 RPM으로 저속 회전시키는 것을 특징으로 하는 전기 전도성을 갖는 폴리테트라 플루오로 에틸렌-탄소나노튜브 복합소재의 제조방법.
- 제 4 항에 있어서,
상기 1차 및 2차 교반단계는,
혼합 스크류의 회전 및 교반 챔버의 회전 속도를 가변시키면서 교반시키는 것을 특징으로 하는 전기 전도성을 갖는 폴리테트라 플루오로 에틸렌-탄소나노튜브 복합소재의 제조방법.
- 제 4 항에 있어서,
상기 교반 챔버 회전단계는, 간헐적 회전방식으로 온/오프를 반복하여 제어하는 것을 특징으로 하는 전기 전도성을 갖는 폴리테트라 플루오로 에틸렌-탄소나노튜브 복합소재의 제조방법.
- 제 1 항에 있어서,
상기 1차교반단계는,
교반되는 원료의 점도(Viscosity)가 3,000CPS ~ 5,000 CPS가 되는 교반시간을 실험적으로 구하여 1차 교반시간을 정하는 것을 특징으로 하는 전기 전도성을 갖는 폴리테트라 플루오로 에틸렌-탄소나노튜브 복합소재의 제조방법.
- 제 1 항에 있어서,
상기 투입되는 원료는,
투입되는 원료의 100 중량% 대비,
PTFE 파우더 10 ~ 30 중량%, MWCNT 1 ~ 10중량%, 유기용매 59.9 ~ 88.1중량%, 커플링제인 C60H123O15P3Ti 0.1 ~ 0.9중량%를 투입하여 제조된 것을 특징으로 하는 전기 전도성을 갖는 폴리테트라 플루오로 에틸렌-탄소나노튜브 복합소재의 제조방법.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170096265A KR101954647B1 (ko) | 2017-07-28 | 2017-07-28 | 전기 전도성 기능을 갖는 폴리테트라 플루오로에틸렌-탄소나노튜브 복합소재 제조방법 |
PCT/KR2018/008457 WO2019022528A1 (ko) | 2017-07-28 | 2018-07-26 | 전기 전도성 기능을 갖는 폴리테트라 플루오르에틸렌-탄소나노튜브 복합소재 및 그의 제조방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170096265A KR101954647B1 (ko) | 2017-07-28 | 2017-07-28 | 전기 전도성 기능을 갖는 폴리테트라 플루오로에틸렌-탄소나노튜브 복합소재 제조방법 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190022038A Division KR20190025860A (ko) | 2019-02-25 | 2019-02-25 | 전기 전도성 기능을 갖는 폴리테트라 플루오로에틸렌-탄소나노튜브 복합소재 제조방법 |
KR1020190022048A Division KR20190025861A (ko) | 2019-02-25 | 2019-02-25 | 전기 전도성 기능을 갖는 폴리테트라 플루오로에틸렌-탄소나노튜브 복합소재 제조방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190012768A KR20190012768A (ko) | 2019-02-11 |
KR101954647B1 true KR101954647B1 (ko) | 2019-03-06 |
Family
ID=65369915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170096265A KR101954647B1 (ko) | 2017-07-28 | 2017-07-28 | 전기 전도성 기능을 갖는 폴리테트라 플루오로에틸렌-탄소나노튜브 복합소재 제조방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101954647B1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20240057841A (ko) | 2022-10-25 | 2024-05-03 | 현대자동차주식회사 | 전도성 복합소재 및 이의 제조방법과 이를 포함하는 리튬 이차전지 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3858219A1 (en) * | 2020-01-31 | 2021-08-04 | Medit Corp. | Method for removing external light interference |
CN112645309B (zh) * | 2021-01-14 | 2023-02-24 | 齐鲁工业大学 | 一种氟化竹节状碳纳米管及其制备方法和应用 |
CN112812477B (zh) * | 2021-02-07 | 2023-05-05 | 成都希瑞方晓科技有限公司 | 一种填充改性聚四氟乙烯及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008156646A (ja) | 2006-12-22 | 2008-07-10 | Xerox Corp | 塗料組成物及び融着部材 |
JP2010540687A (ja) | 2007-09-24 | 2010-12-24 | アルケマ フランス | 複合材料の製造方法 |
CN105949688A (zh) | 2016-06-22 | 2016-09-21 | 芜湖市长江起重设备制造有限公司 | 一种碳纳米管/聚四氟乙烯复合材料及其制备方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101576658B1 (ko) | 2009-12-30 | 2015-12-14 | 주식회사 효성 | 유동층 다중벽 탄소나노튜브를 적용한 탄소나노튜브-고분자 나노 복합체 및 그 제조방법 |
KR20120077647A (ko) | 2010-12-30 | 2012-07-10 | 주식회사 효성 | 고분자/탄소나노튜브 복합체 및 이의 제조방법 |
KR20150024104A (ko) * | 2013-08-26 | 2015-03-06 | 주식회사 일웅플라텍 | 탄소나노튜브를 함유하는 폴리테트라플루오르에틸렌 나노복합수지 |
-
2017
- 2017-07-28 KR KR1020170096265A patent/KR101954647B1/ko active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008156646A (ja) | 2006-12-22 | 2008-07-10 | Xerox Corp | 塗料組成物及び融着部材 |
JP2010540687A (ja) | 2007-09-24 | 2010-12-24 | アルケマ フランス | 複合材料の製造方法 |
CN105949688A (zh) | 2016-06-22 | 2016-09-21 | 芜湖市长江起重设备制造有限公司 | 一种碳纳米管/聚四氟乙烯复合材料及其制备方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20240057841A (ko) | 2022-10-25 | 2024-05-03 | 현대자동차주식회사 | 전도성 복합소재 및 이의 제조방법과 이를 포함하는 리튬 이차전지 |
Also Published As
Publication number | Publication date |
---|---|
KR20190012768A (ko) | 2019-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101954647B1 (ko) | 전기 전도성 기능을 갖는 폴리테트라 플루오로에틸렌-탄소나노튜브 복합소재 제조방법 | |
Lozano et al. | A study on nanofiber‐reinforced thermoplastic composites (II): Investigation of the mixing rheology and conduction properties | |
JP5268050B2 (ja) | カーボンナノチューブ含有樹脂組成物、硬化物、成形体及びカーボンナノチューブ含有樹脂組成物の製造方法 | |
KR101963603B1 (ko) | 고분자 복합소재를 제조하기 위한 교반장치 | |
CN104098834A (zh) | 一种导电聚合物复合材料及其制备方法 | |
KR20060061306A (ko) | 전기 전도성 조성물 및 그의 제조 방법 | |
Wen et al. | Fabrication of high performance printed flexible conductors by doping of polyaniline nanomaterials into silver paste | |
CN104098813A (zh) | 一种导电塑料及其制备方法 | |
Pedroni et al. | Conductivity and mechanical properties of composites based on MWCNTs and styrene‐butadiene‐styrene block™ copolymers | |
KR20190014006A (ko) | 전도성 ptfe-mwcnt복합소재 제조방법 | |
KR20210029333A (ko) | 전기전도성을 갖는 ptfe-cnt 복합소재 | |
KR20190032336A (ko) | 고분자 복합소재를 제조하기 위한 교반장치 | |
Prashantha et al. | Electrical and dielectric properties of multi-walled carbon nanotube filled polypropylene nanocomposites | |
Shrivastava et al. | Ultralow electrical percolation threshold in poly (styrene-co-acrylonitrile)/carbon nanotube nanocomposites | |
JP2006083249A (ja) | ナノカーボン配合ゴム組成物分散溶液の製造方法 | |
Galindo et al. | Microwave heating of polymers: Influence of carbon nanotubes dispersion on the microwave susceptor effectiveness | |
Bühler et al. | Highly conductive polypropylene‐based composites for bipolar plates for polymer electrolyte membrane fuel cells | |
Sain et al. | Electrical properties of single-walled/multi-walled carbon-nanotubes filled polycarbonate nanocomposites | |
Badrul et al. | Current advancement in electrically conductive polymer composites for electronic interconnect applications: A short review | |
Chen et al. | The effects of octadecylamine functionalized multi-wall carbon nanotubes on the conductive and mechanical properties of ultra-high molecular weight polyethylene | |
WO2019022528A1 (ko) | 전기 전도성 기능을 갖는 폴리테트라 플루오르에틸렌-탄소나노튜브 복합소재 및 그의 제조방법 | |
KR20190012773A (ko) | 고분자 복합소재를 제조하기 위한 교반장치 | |
Joshi et al. | Electrically conductive silicone/organic polymer composites | |
KR20190025860A (ko) | 전기 전도성 기능을 갖는 폴리테트라 플루오로에틸렌-탄소나노튜브 복합소재 제조방법 | |
KR20190025861A (ko) | 전기 전도성 기능을 갖는 폴리테트라 플루오로에틸렌-탄소나노튜브 복합소재 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |