EP2188074A1 - Procédé de fonctionnement pour une batterie de laminoirs avec détection de courbure - Google Patents

Procédé de fonctionnement pour une batterie de laminoirs avec détection de courbure

Info

Publication number
EP2188074A1
EP2188074A1 EP08803135A EP08803135A EP2188074A1 EP 2188074 A1 EP2188074 A1 EP 2188074A1 EP 08803135 A EP08803135 A EP 08803135A EP 08803135 A EP08803135 A EP 08803135A EP 2188074 A1 EP2188074 A1 EP 2188074A1
Authority
EP
European Patent Office
Prior art keywords
rolling
stand
head
rolling stand
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08803135A
Other languages
German (de)
English (en)
Other versions
EP2188074B1 (fr
Inventor
Bernhard Weisshaar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to PL08803135T priority Critical patent/PL2188074T3/pl
Publication of EP2188074A1 publication Critical patent/EP2188074A1/fr
Application granted granted Critical
Publication of EP2188074B1 publication Critical patent/EP2188074B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/68Camber or steering control for strip, sheets or plates, e.g. preventing meandering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2263/00Shape of product
    • B21B2263/02Profile, e.g. of plate, hot strip, sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2273/00Path parameters
    • B21B2273/04Lateral deviation, meandering, camber of product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2273/00Path parameters
    • B21B2273/12End of product
    • B21B2273/14Front end or leading end
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates

Definitions

  • the present invention relates to an operating method for a rolling train having a plurality of rolling stands consecutively traversed by a belt, the belt being threaded into each of the rolling stands having a known respective head offset and a known respective upstream side head pitch, always relative to a rolling center line that a tape head of the tape from the respective roll stand with the respective head offset, a respective outlet-side head pitch and a respective auslaufsei- th head curvature expires.
  • the present invention further relates to a computer program which has machine code which is directly executable by a control device of a multi-stand rolling train and whose execution by the control device causes the control device to operate the rolling train according to such an operating method.
  • the present invention furthermore relates to a data carrier having a computer program of the type described above which is stored on the data carrier.
  • the present invention relates to a control device of a multi-stand rolling train, wherein the control device is configured such that it operates the rolling mill according to an operating method described above.
  • the present invention relates to a rolling train, wherein the rolling train comprises a plurality of rolling mills consecutively passed through a belt, the rolling train having a control device of the type described above, so that the rolling train is operated in operation according to an operating method of the type described above.
  • tension differences can occur between the strip edges of the strip.
  • One of the main causes of the tension differences is a wedge in the band profile.
  • a wedge in the band profile can have different causes.
  • the strip may already have a splined profile before being rolled.
  • the wedge may be caused by rolling in the nip.
  • the band may have a wedged temperature distribution, the band may enter the nip off-center, or the nip itself may be wedge-shaped. Also combinations of these (and other) causes are possible.
  • ski jacks which is equipped on both lateral arms with force transducers.
  • conventional ski jacks have only a one-sided force measurement and therefore provide only a sum force, but not a differential force between the two band edges.
  • the tensile stress distribution in the band is therefore unknown. Therefore, it can not be predicted in which direction the belt will deflect when the belt foot of the belt runs out of one of the rolling stands.
  • an adjustment of the pivoting value or other actuators of the roll stand immediately downstream of the respective roll stand is not possible fast enough, in particular on the rear stands of a multi-stand rolling mill, in order to prevent the strip foot striking against a side guide of the rolling train.
  • the object of the present invention is to provide ways by which a wedge in the band can be seen and / or avoided and / or tension differences between the band edges recognizable and / or avoidable, without this need a loop lifter with force sensing on both sides.
  • the respective outlet-side head pitch is determined on the basis of the respective inlet-side head pitch and a respective stitch decrease taking place in the respective rolling stand,
  • a respective intermediate alignment head offset of the tape head is detected by means of a respective position detection device arranged between the respective rolling stand and the rolling stand immediately downstream of the respective rolling stand and that the respective measurement data is recorded with the respective detected interference fit - the setup head offset and the respective other data with the respective Weil corresponding head offset and the respective outlet side head slope correspond.
  • the position detection device can hereby be designed as desired, provided that it has the desired functionality.
  • the respective position detection device can be designed as a line scanner (infrared scanner, diode array scanner, etc.) or as an imaging camera. Other designs are possible.
  • the position detection devices are identical to one another. However, this is not mandatory. It is also possible for the position detection device to be designed individually from intermediate frame region to intermediate frame region.
  • the control command is in this case determined such that the head offset, the outgoing head slope and / or the outlet side head curvature are reduced, so that the belt - centered on the rolling center line.
  • the respective control command can be determined in particular such that the respective control intervention counteracts a deflection of a belt foot of the belt when the belt foot leaves the respective rolling stand.
  • the respective rolling stand and / or the rolling stand immediately downstream of the respective rolling stand can be activated at a time in accordance with the determined respective control intervention to which the strip entering the respective rolling stand is subjected. In this case it is in principle equivalent, if the respective Roll stand or the rolling stand immediately downstream of the respective rolling stand is driven in accordance with the determined respective control intervention.
  • the respective rolling stand and / or the rolling stand immediately downstream of the respective rolling stand can be activated at a point in time corresponding to the determined respective control intervention, to which the strip entering the respective rolling stand is draft-free.
  • the roll stand immediately downstream of the respective rolling stand is controlled in this case.
  • the head offset and the inlet-side head pitch of the incoming into the first rolling mill band must be known.
  • it is possible to set the head offset and / or the inlet-side head slope to defined values by means of suitable guide devices, for example, head offset and inlet head tilt 0.
  • a combination of the two measures is possible in principle. For example, one of the two variables head offset and inlet head slope can be adjusted by a corresponding guide means to a defined value, the other value can be determined by a position detection of the tape.
  • the curvature of the strip between two immediately successive rolling stands is known by the procedure according to the invention. It is therefore possible, on the basis of the head offset and the outlet-side head pitch of the tape head of a specific roll stand and the respective outgoing side head curvature in conjunction with the known distance to the immediately downstream roll stand, to determine with which head offset and with which inlet side head rest. the strip enters the immediately downstream roll stand.
  • This procedure has the advantage that it can be executed very quickly.
  • the outlet-side head curvature can be determined almost simultaneously with the run-in of the tape head into the respective rolling stand.
  • the respective control intervention is determined immediately after determining the respective outlet side head curvature and the respective rolling mill immediately after determining the respective
  • Control intervention is driven in accordance with the determined respective control intervention.
  • the mathematical-physical model is adapted from the corrected respective outlet-side head curvature on the basis of a deviation of the respective outflow-side head curvature determined by means of the mathematical-physical model.
  • the mathematical-physical model is thus trained, so that the outgoing-side head curvature of future rolled bands, which has been determined on the basis of the mathematical-physical model, has to be corrected less and less, so that the model is adapted to reality more and more.
  • the respective outlet-side head curvature can be constant.
  • the respective outlet-side head curvature can vary with the distance from the respective rolling stand, for example be a linear function of the distance or be sectionally constant.
  • the computer program has machine code which is directly executable by a control device of a multi-stand rolling train and whose execution by the control device causes the control device to operate the rolling train according to an operating method of the inventive type.
  • the data carrier is embodied according to the invention in that such a computer program is stored on it.
  • the object is further device by a control device of a multi-stand rolling train with the
  • control device is designed in such a way that it supports the rolling train according to an embodiment of the invention
  • the rolling train has a plurality of rolling mills, which are passed through in succession from a belt, and a control device of the type described last, so that the rolling train is operated in operation according to an operating method according to the invention.
  • the control device is preferably designed as a software programmable control device, which executes a computer program of the type described above during operation.
  • FIG 9 schematically shows a possible embodiment of
  • FIG. 11 shows a modification of FIG. 9 and FIG.
  • a rolling train has a plurality of rolling stands 1.
  • the rolling train is thus designed as a multi-stand rolling train.
  • the rolling stands 1 are run through during operation of the rolling train of a band 2 successively.
  • the rolling train furthermore has a control device 3, which controls the rolling stands 1 and other components of the rolling train during operation of the rolling train.
  • the control device 3 is designed such that in operation it operates the rolling train in accordance with an operating method which will be explained in more detail below.
  • the control device 3 can be configured as a hardwired control device, as a programmable wired control device or as a software programmable control device. As a rule, the control device 3 is used as a soft- formed wareprogrammierbare control device which executes a computer program 4 during operation.
  • the computer program 4 has in this case machine code 5, which is directly executable by the control device 3. The execution of the machine code 5 by the control device 3 causes the control device 3 to operate the rolling train according to the operating method according to the invention.
  • the programming of the control device 3 with the computer program 4 can take place in any desired manner.
  • the computer program 4 can already be deposited in the control device 3 within the framework of the production of the control device 3.
  • the computer-computer connection can be, for example, a connection to a LAN or to the Internet.
  • the computer-computer connection is not shown in Figures 1 and 2.
  • the data carrier 6 is shown as a CD-ROM in FIG. However, it could alternatively be designed in other ways, for example as a USB memory stick or as a memory card.
  • the control device 3 first selects, in a step S1, the rolling stand 1 into which the strip 2 is threaded first. Then, in a step S2, the control device 3 controls the rolling train such that the belt 2 - relative to a rolling center line 7 (see FIGS. 2 and 4) - is threaded into the selected rolling stand 1 with a known head offset V and a known inlet-side head pitch SE , Due to the Einfädeins in the selected mill stand 1 runs (purely factually) a tape head 8 of the belt 2 from the selected rolling mill 1 with the head offset V, an outlet side head slope SA and an outlet side head curvature K off.
  • the head offset V and the entry-side head pitch SE are known for the rolling mill 1 passed through first can be of different nature.
  • corresponding guide devices not shown in FIGS. 1 and 2
  • head offset V O
  • inlet-side head slope SE 0
  • detection devices it is possible to provide detection devices by means of which the head offset V and / or the inlet-side head slope SE in front of the first rolling stand 1 are detected and transmitted to the control device 3.
  • control device 3 determines on the basis of the inlet-side head pitch SE and a taking place in the selected roll stand 1 stitch decrease the outlet side
  • the exit-side stitch reduction SA may be according to the relationship
  • vE and vA with respect to the selected rolling stand 1, are the infeed and outfeed speeds of the strip 2.
  • the velocities vE and vA are linked to the reduction in the number of passes via the equation of continuity.
  • control device 3 determines the outlet-side head curvature K of the belt 2 in a step S4. The determination takes place on the basis of measurement data and further data. Both the measured data and the other data are related to the currently selected rolling stand 1. Possible types of detection will be discussed later possible embodiments of the present invention will be explained in more detail.
  • Step S5 the head offset V, the outfeed-side head pitch SA and the outlet-side head curvature K of the tape head 8 are stored in the selected rolling stand 1, assigned to this rolling stand 1.
  • Step S5 is important in the context of a possible embodiment of the present invention.
  • step S6 it is shown that it is alternatively possible, the control intervention S, although not immediately, but before the
  • step S6 Threading the belt 2 in the rolling stand 1 immediately downstream of the selected rolling stand 1 to determine.
  • step S6 is only optional and therefore only shown in dashed lines in FIG.
  • the control engagement S is determined using the outlet-side head curvature K, optionally with the additional use of the outlet-side head pitch SA and / or the head offset V.
  • the control intervention S is determined for the selected rolling stand 1 and / or for the rolling stand 1 immediately downstream of the selected rolling stand 1.
  • two mutually different control interventions S can be determined, wherein each one of the two control interventions S for the selected rolling stand 1 and for the selected rolling stand 1 immediately nachgeord- Neten roll stand 1 is determined.
  • step S6 the rolling stand 1, for which the control intervention S determined in step S6 is determined, is actuated in a step S7 in accordance with the determined control intervention S.
  • the step S7 since it is a consequence of the step S6, is also only optional and therefore only shown in dashed lines in FIG.
  • the determined control intervention S is intended for the selected rolling stand 1, it is preferred that the control intervention S is determined immediately after determining the exit-side head curvature K and the selected rolling stand 1 is actuated immediately after the determination of the control intervention S in accordance with the determined control intervention S.
  • control intervention S is output to the rolling stand 1 immediately downstream of the selected rolling stand 1 in step S7, it is sufficient that the control engagement S is determined at any time when the strip 2 has not yet entered the rolling stand immediately downstream of the selected rolling stand 1 1 is threaded. For in this case it is sufficient that the rolling stand 1 immediately following the selected roll stand 1 is activated at the latest when threading the strip 2 into the rolling stand 1 immediately downstream of the selected rolling stand 1 in accordance with the determined control command S.
  • a step S8 the control device 3 checks whether the currently selected rolling stand 1 is the last rolling stand 1 of the rolling train 1. If this is not the case, the control device 3 selects the next roll stand 1 in a step S9 and determines the head offset V and the inlet-side head pitch SE for this rolling stand 1. Because it applies (for small outlet-side head curvatures K, which is the case in practice) the relationship
  • V "( ⁇ ) - - ⁇ 2 + SA-X + V (2)
  • step S9 After the execution of step S9, the control device 3 returns to step S2.
  • step S8 If it has been decided in step S8 that the last rolling mill 1 has already been selected, the control device proceeds to a step S10.
  • step S10 the strip 2 is subjected to tensile stress, at least as far as it is between the rolling stands 1. Then, in a step Sil, rolling is continued.
  • the belt 2 - always viewed relative to the rolling center line 7 - runs into each of the rolling stands 1 with a respective belt offset V and a respective inlet-side belt pitch SE '. Furthermore, the belt 2 runs out of each of the rolling stands 1 with the respective belt displacement V, a respective outgoing side belt pitch SA 'and a respective outlet-side belt curvature K'.
  • the outlet side values SA ', K' for the first rolling stand 1 can be determined.
  • the input-side values V, SE ' can be determined analogously to equations 2 and 3 above for the immediately following values. ordered rolling stand 1 can be determined.
  • step S12 it makes sense to determine the respective outlet-side curvatures K, K 'in the most reliable manner possible.
  • a loop lifter 9-one location detection device 10 is arranged in each case.
  • VZ -L 2 + SA-L + V (4)
  • L is in this case the distance between the respective position detection device 10 to immediately upstream rolling stand 1.
  • step S13 alternatively or additionally to the determination according to step S6, the determination of a respective control intervention occurs with respect to each of the rolling stands 1.
  • step S14 the control of the respective rolling stand 1 and / or of the respective rolling stand 1 takes place immediately downstream roll stand 1.
  • the determination of the respective control intervention S is carried out in the context of step S13 using also the respective band offset V, the respective outlet side band pitch SA 'and the respective intermediate frame band offset VZ'.
  • the respective control intervention S is in the context of step S13 thus using both the respective outlet side head curvature K, the respective outlet side head pitch SA and the respective head offset V and using the respective band offset V, the respective outlet side band pitch SA 'and the respective Intermediate frame offset VZ 'determined.
  • Equivalent to the use of the respective intermediate frame belt offset VZ 'in this case is a use of the respective outlet-side belt curvature K', because these two variables are readily interconvertible.
  • step S13 it is possible to determine an original band line on the basis of the respective head sizes V, SA, K, to determine an instantaneous band line on the basis of the respective band sizes V, SA ', K' and the difference of these two lines as a state of stress to interpret in Volume 2.
  • This knowledge can be used in the context of step S13 to determine the respective control intervention S such that the respective control intervention S counteracts a deflection of a belt foot 11 of the belt 2 when the belt foot 11 leaves the respective rolling stand 1. For example, it is possible, as shown in FIG.
  • the respective control intervention S must, of course, have previously been determined by the control device 3.
  • the respective control intervention S is determined immediately before.
  • position detection devices 10 per rolling line section.
  • the arrangement of the position detecting means 10 is optimal in this case, when the position detecting means 10 are evenly spaced from each other.
  • a position detection device 10 may be arranged in the middle between each two immediately adjacent rolling stands 1, another position detection device 10 immediately before the rolling stand 1 immediately downstream of the respective rolling stand 1. In practice, however, for superordinate reasons it may be necessary to deviate from this arrangement, which is optimal in terms of measuring accuracy.
  • the Bernoulli-Euler theory of the bending beam which is known per se, is applicable in order to use the local curvatures K and K 'to a tensile stress difference ⁇ from band edge 12 to band edge 12 to close. Because it applies to the tension difference ⁇
  • b is the bandwidth
  • h the band thickness.
  • M corresponds to the local bending moment.
  • the local bending moment M in turn is with the curvatures K and K 'through the relationship
  • E is in this case the modulus of elasticity of the strip 2, optionally at the instantaneous strip temperature, I is the axial moment of area of the strip cross section in strip thickness direction. tung.
  • the axial momentum I is here by the relationship
  • FIG. 9 shows a possibility of determining the outflow side curvatures K, K 'without requiring a position detection device 10 according to FIG.
  • a mathematical-physical model 13 is implemented within the control device 3.
  • the respective head offset V and the respective outlet-side head pitch SA are fed to the mathematical-physical model 13 in a step S21 for each rolling stand 1.
  • actual quantities of the strip 2 entering the respective rolling stand 1 and the strip 2 leaving the respective rolling stand 1 are fed to the mathematical-physical model 13.
  • variable and parameters of the respective rolling stand 1 are fed to the mathematical-physical model 13 in step S21.
  • the respective outflow-side head curvature K, K ' is then determined in a step S22.
  • the mathematical-physical model 13 is based on the one hand on the approach that the outlet-side head curvature K of the band 2 behind each of the rolling stands 1 of the relationship
  • ⁇ vA is the speed difference with which the strip edges 12 run out of the respective roll stand 1.
  • vE is the speed at which the middle of the Bandes 2 enters the respectively considered rolling stand 1
  • ⁇ vE the speed difference with which the band edges 12 run into the respectively considered rolling stand 1.
  • hA and hE are here, based on the respective roll stand 1, the outlet and the inlet side strip thickness.
  • equation 9 follows the linearized equation for the lateral velocity differences around the band center over the bandwidth b
  • the inlet-side sizes (ie the sizes with the final letter “E” are hereby invariably known, for the first run through stand 1 a priori, for the other rolling stands 1 by appropriate calculation using the mathematical-physical model 13.
  • the (average ) outlet-side band thickness hA is - due to the known
  • FW + AFW FW + AhE + AhA + A ⁇ E + A ⁇ A + dhE dhA d ⁇ E d ⁇ A dFW A fr _ dFW dkF ⁇ rr dFW A dFW A AkF + AT + Au + Ay dkF dkF dT d ⁇ dy to
  • Equations 11 to 13 FW is the rolling force, s is the nip, cG is the framework rigidity, kF is the yield strength, T is the temperature of the belt 2, ⁇ is the coefficient of friction in the nip, and y is the eccentricity (corresponds to the head offset V) with which Volume 2 passes through each considered rolling stand 1.
  • the band 2 has a section-wise constant head curvature K.
  • the length of the individual sections, within which the belt 2 has a constant head curvature K are generally considerably smaller than the distance G of the rolling stands 1 from one another.
  • the determination of the head offset V "as a function of the position of the strip 2 in the rolling train is therefore no longer as easy as described above, but it is still possible because the individual sections are contiguous.
  • FIGS. 9 and 10 It is possible to carry out the procedure of FIGS. 9 and 10 in isolation, that is to say to provide position detection devices 10 between the rolling stands 1.
  • the procedure of FIGS. 9 and 10 according to FIG. 11 is preferably carried out in conjunction with the position detection devices 10.
  • FIG. 12 it is possible according to FIG. 12, in addition to the steps S ⁇ b> 21 and S ⁇ b> 22 of FIG. 10
  • step S27 the outflow-side head curvature K determined on the basis of the mathematical-physical model 13 is to be corrected on the basis of the respectively detected interframe head offset VZ, the respective head offset V and the respective head-end slope SA.
  • step S27 the respective outflow-side head curvature K is recalculated in accordance with the last-mentioned variables (head offset V, head-end slope SA and inter-frame head offset VZ on the outlet side).
  • the newly calculated outlet-side head curvature K then replaces the outlet-side head curvature K determined previously on the basis of the mathematical-physical model 13.
  • a step S28 can continue to be present.
  • step S28 the mathematical-physical model 13 is adapted from the corrected respective outlet-side head curvature K on the basis of a deviation of the respective outlet-side head curvature K determined by means of the mathematical-physical model 13.
  • the mathematical-physical model 13 is thus adapted to the actual conditions, so that a better determination of the outlet-side head curvature K by the mathematical-physical model 13 is carried out for bands 2 rolled at a later time.
  • is a suitably determined weighting factor lying between zero and one.
  • the weighting factor ⁇ can be constant in time or variable in time. If it is variable in time, it preferably decreases over time.
  • the present invention has many advantages. In particular, it works reliably and can be implemented easily and can even be retrofitted to existing rolling mills.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

L'invention concerne une batterie de laminoirs dont les cages de laminoir (1) sont traversées l'une après l'autre par une bande (2). La bande (2) - toujours vue par rapport à une ligne centrale de laminage (7) - est ici enfilée dans chacune des cages de laminoir (1) avec un décalage de tête (V) correspondant connu et un gradient de tête côté entrée (SE) correspondant connu, de sorte qu'une tête de bande (8) de la bande (2) sort de la cage de laminoir (1) respective avec le décalage de tête (V) correspondant, un gradient de tête côté sortie (SA) correspondant et une courbure de tête (K) côté sortie correspondante. Le gradient de tête côté sortie (SA) correspondant est déterminé au moyen du gradient de tête côté entrée (SE) correspondant et d'une réduction d'épaisseur à chaque fois effectuée dans la cage de laminoir (1) correspondante. La courbure de tête (K) côté sortie correspondante de la bande (2) est déterminée au moyen des données de mesure respectives et de données supplémentaires correspondantes. Une intervention de contrôle (S) correspondante pour la cage de laminoir (1) respective et/ou pour la cage de laminoir (1) qui suit immédiatement la cage de laminoir (1) respective est déterminée en utilisant la courbure de tête (K) côté sortie correspondante et la cage de laminoir (1) correspondante est commandée conformément à l'intervention de contrôle (S) correspondante déterminée.
EP08803135A 2007-09-13 2008-08-21 Procédé de fonctionnement pour une batterie de laminoirs avec détection de courbure Active EP2188074B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL08803135T PL2188074T3 (pl) 2007-09-13 2008-08-21 Sposób eksploatacji walcowni z wykrywaniem krzywizny

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102007043793 2007-09-13
DE102008007247A DE102008007247A1 (de) 2007-09-13 2008-02-01 Betriebsverfahren für eine Walzstraße mit Krümmungserkennung
PCT/EP2008/060967 WO2009037064A1 (fr) 2007-09-13 2008-08-21 Procédé de fonctionnement pour une batterie de laminoirs avec détection de courbure

Publications (2)

Publication Number Publication Date
EP2188074A1 true EP2188074A1 (fr) 2010-05-26
EP2188074B1 EP2188074B1 (fr) 2012-11-21

Family

ID=40348701

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08803135A Active EP2188074B1 (fr) 2007-09-13 2008-08-21 Procédé de fonctionnement pour une batterie de laminoirs avec détection de courbure

Country Status (8)

Country Link
US (1) US8752409B2 (fr)
EP (1) EP2188074B1 (fr)
CN (1) CN101801553B (fr)
BR (1) BRPI0816981B1 (fr)
DE (1) DE102008007247A1 (fr)
PL (1) PL2188074T3 (fr)
RU (1) RU2481166C2 (fr)
WO (1) WO2009037064A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008007247A1 (de) 2007-09-13 2009-03-19 Siemens Aktiengesellschaft Betriebsverfahren für eine Walzstraße mit Krümmungserkennung
CN102641903B (zh) * 2011-02-16 2014-10-01 宝山钢铁股份有限公司 炉卷轧机轧件头尾跑偏控制方法
EP2527052A1 (fr) 2011-05-24 2012-11-28 Siemens Aktiengesellschaft Procédé de fonctionnement pour une voie de laminage
US12083569B2 (en) 2019-06-20 2024-09-10 Jfe Steel Corporation Meandering control method for hot-rolled steel strip, meandering control device, and hot rolling equipment
KR102615075B1 (ko) * 2019-07-22 2023-12-15 제이에프이 스틸 가부시키가이샤 열간 압연 강대의 사행 제어 방법, 사행 제어 장치 및 열간 압연 설비

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3184938A (en) * 1965-05-25 Methods and apparatus for automatical- ly threading strip rolling mills
US2292535A (en) * 1938-08-19 1942-08-11 Acme Steel Co Strip rolling apparatus
DE2115344C3 (de) * 1971-03-30 1978-04-27 Schloemann-Siemag Ag, 4000 Duesseldorf Regelanordnung für ein Walzgerüst zum Walzen von Walzband
US4149395A (en) * 1977-12-23 1979-04-17 General Electric Company Method and apparatus for correcting camber in rolled metal workpiece
JPS55103212A (en) * 1979-01-31 1980-08-07 Nippon Kokan Kk <Nkk> Rolling method
JPS5739018A (en) * 1980-08-22 1982-03-04 Nippon Steel Corp Rolling method for controlling plane camber of rolled material in rolling mill line including vertical rolling stand
JPS5913506A (ja) * 1982-07-14 1984-01-24 Kawasaki Steel Corp 厚板圧延におけるキヤンバ制御方法
JPS59189011A (ja) * 1983-04-12 1984-10-26 Ishikawajima Harima Heavy Ind Co Ltd 圧延材の蛇行及び横曲り制御方法及びその装置
JPH0616892B2 (ja) * 1984-05-10 1994-03-09 三菱電機株式会社 圧延材のキヤンバ−制御による蛇行制御方法
JPS61242712A (ja) * 1985-04-19 1986-10-29 Mitsubishi Electric Corp 圧延材の板幅制御装置
SU1340851A1 (ru) * 1986-04-03 1987-09-30 Всесоюзный научно-исследовательский и проектно-конструкторский институт металлургического машиностроения им.А.И.Целикова Способ устранени серповидности полосы
JPS63123511A (ja) * 1986-11-12 1988-05-27 Hitachi Ltd 蛇行制御装置
JPS63171213A (ja) 1987-01-08 1988-07-15 Mitsubishi Heavy Ind Ltd 圧延材の蛇行量検出方法
FR2615765B1 (fr) * 1987-05-29 1992-09-04 Usinor Aciers Procede et dispositif de determination du sabre d'une tole
US4794773A (en) * 1987-07-29 1989-01-03 Monarch Machine Tool Company Method of measuring camber
JPS6448615A (en) * 1987-08-20 1989-02-23 Nippon Steel Corp Camber control method for cold rolling
JPH0773733B2 (ja) * 1987-08-25 1995-08-09 新日本製鐵株式会社 圧延中における金属板のキャンバ−形状・蛇行量の測定方法
JPH0220608A (ja) 1988-07-05 1990-01-24 Sumitomo Metal Ind Ltd 圧延材の蛇行制御方法
JPH04266414A (ja) * 1991-02-19 1992-09-22 Kobe Steel Ltd 板圧延時の蛇行制御装置
DE4416364B4 (de) * 1993-05-17 2004-10-28 Siemens Ag Verfahren und Regeleinrichtung zur Regelung eines Prozesses
WO1995007776A1 (fr) * 1993-09-14 1995-03-23 Nippon Steel Corporation Procede de controle du mouvement de serpentement et ligne de production appliquant ce procede dans une installation de laminage tandem
WO1996028770A1 (fr) * 1995-03-16 1996-09-19 Siemens Aktiengesellschaft Procede et dispositif de commande d'un processus
IT1280176B1 (it) * 1995-05-25 1998-01-05 Danieli Off Mecc Blocco di curvatura-bilanciamento per gabbia di laminazione a quarto per nastri o lamiere
US6035259A (en) * 1997-06-18 2000-03-07 Eastman Kodak Company Web material camber measurement apparatus and method
DE10106527A1 (de) * 2001-02-13 2002-08-29 Sms Demag Ag Verfahren zum Betreiben einer Walzstraße sowie Steuerungssystem für eine Walzstraße
DE10116273A1 (de) * 2001-03-31 2002-10-10 Sms Demag Ag Verfahren zum Betreiben einer Walzstraße sowie eine entsprechend ausgebildete Walzstraße
ES2326372T3 (es) * 2003-03-20 2009-10-08 Nippon Steel Corporation Metodo y aparato para laminar una placa de material metalico.
DE102004043790A1 (de) * 2004-09-08 2006-03-09 Betriebsforschungsinstitut VDEh - Institut für angewandte Forschung GmbH Verfahren und Vorrichtung zum Walzen eines Metallbands
DE102005028711A1 (de) * 2005-06-20 2006-12-28 Siemens Ag Verfahren zur Regelung und/oder Steuerung eines verstellbaren Rollensegmentes in einer Stranggießanlage
US7823428B1 (en) * 2006-10-23 2010-11-02 Wright State University Analytical method for use in optimizing dimensional quality in hot and cold rolling mills
DE102006059709A1 (de) * 2006-12-18 2008-06-19 Siemens Ag Walzverfahren für ein Band
DE102008007247A1 (de) 2007-09-13 2009-03-19 Siemens Aktiengesellschaft Betriebsverfahren für eine Walzstraße mit Krümmungserkennung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009037064A1 *

Also Published As

Publication number Publication date
RU2010114570A (ru) 2011-10-20
WO2009037064A1 (fr) 2009-03-26
BRPI0816981A2 (pt) 2015-03-24
DE102008007247A1 (de) 2009-03-19
EP2188074B1 (fr) 2012-11-21
US8752409B2 (en) 2014-06-17
PL2188074T3 (pl) 2013-04-30
CN101801553A (zh) 2010-08-11
BRPI0816981B1 (pt) 2019-10-22
CN101801553B (zh) 2012-09-05
US20100242566A1 (en) 2010-09-30
RU2481166C2 (ru) 2013-05-10

Similar Documents

Publication Publication Date Title
EP3411162B1 (fr) Reglage de position de bande
EP2259882B1 (fr) Procédé d&#39;exploitation pour un train de laminage multi-cages avec détermination d&#39;épaisseur de bande à l&#39;aide d&#39;une équation de continuité
DE102007049062B3 (de) Betriebsverfahren zum Einbringen eines Walzguts in ein Walzgerüst eines Walzwerks, Steuereinrichtung und Walzwerk zum Walzen eines bandförmigen Walzgutes
EP1732716B1 (fr) Procede pour produire un metal
WO2009095323A1 (fr) Procédé de régulation pour un train de laminoir à froid avec régulation intégrale du débit massique
EP2910316A1 (fr) Précommande simple du pas de filetage d&#39;un ébaucheur
EP2188074B1 (fr) Procédé de fonctionnement pour une batterie de laminoirs avec détection de courbure
EP3544751B1 (fr) Réglage de position de bande consistant à positionner des guides latéraux sur la bande métallique, avec limitation de force
EP2790846B1 (fr) Procédé de traitement de produits laminés dans un laminoir
DE102006008574A1 (de) Verfahren zur Unterdrückung des Einflusses von Walzenexzentrizitäten
EP0972581B1 (fr) Procédé de laminage pour produits en forme de barres, notamment d&#39;acier en barres ou de fils
DE102014215397B4 (de) Bandlageregelung mit optimierter Reglerauslegung
EP3194087B1 (fr) Réglage de largeur d&#39;une ligne de fabrication
EP2195126B1 (fr) Dispositif de laminage et procédé permettant de le faire fonctionner
EP2268427B1 (fr) Procédé d&#39;exploitation pour un train de laminoir à froid avec dynamique améliorée
DE3240602A1 (de) Verfahren zum regeln der zugspannungsverteilung beim kaltwalzen von baendern
WO2016020310A1 (fr) Régulateur de traction différentielle à configuration optimisée
EP3231522B1 (fr) Controle robuste de tension de bande
WO2021160404A1 (fr) Détermination d&#39;une sensibilité d&#39;une variable cible d&#39;un matériau de laminage à partir d&#39;une variable de fonctionnement d&#39;un laminoir à chaud
EP1059126A2 (fr) Procédé pour régler la tension entre les cages de laminoir de trains de laminoirs pour acier en barres, fils ou profilés
DE3245031C2 (fr)
EP1669141B1 (fr) Procédé pour le réglage de la section des fils sortant d&#39;un train de laminage de fil et train de laminage de fil
DE102004022334A1 (de) Verfahren zum Walzen eines Walzgutes mit Übergangsbereich
DE10159608B9 (de) Walzverfahren und Walzstraße für ein Band mit einer Schweißnaht
WO2008055886A1 (fr) Procédé de réglage pour une cage de laminage, un ensemble de laminage et un train de laminage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100212

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 584771

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008008714

Country of ref document: DE

Effective date: 20130117

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20121121

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130304

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130221

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130222

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130221

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130822

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20130709

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130814

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008008714

Country of ref document: DE

Effective date: 20130822

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130827

Year of fee payment: 6

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20130831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130821

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20140724

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 584771

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140821

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140821

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130821

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080821

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008008714

Country of ref document: DE

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE

Effective date: 20151105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121121

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150821

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008008714

Country of ref document: DE

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE

Free format text: FORMER OWNER: PRIMETALS TECHNOLOGIES GERMANY GMBH, 91052 ERLANGEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230818

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230821

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240821

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240828

Year of fee payment: 17