EP1732716B1 - Procede pour produire un metal - Google Patents

Procede pour produire un metal Download PDF

Info

Publication number
EP1732716B1
EP1732716B1 EP04725880A EP04725880A EP1732716B1 EP 1732716 B1 EP1732716 B1 EP 1732716B1 EP 04725880 A EP04725880 A EP 04725880A EP 04725880 A EP04725880 A EP 04725880A EP 1732716 B1 EP1732716 B1 EP 1732716B1
Authority
EP
European Patent Office
Prior art keywords
cooling line
metal
temperature
cooling
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP04725880A
Other languages
German (de)
English (en)
Other versions
EP1732716A1 (fr
Inventor
Klaus Weinzierl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34957437&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1732716(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT04725880T priority Critical patent/ATE373527T1/de
Publication of EP1732716A1 publication Critical patent/EP1732716A1/fr
Application granted granted Critical
Publication of EP1732716B1 publication Critical patent/EP1732716B1/fr
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • B21B37/76Cooling control on the run-out table
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling

Definitions

  • the invention relates to a method for producing a metal having a plurality of phase components, wherein the thermoformed metal is cooled in a cooling section, wherein in a first step with the aid of primary data for the metal by means of a cooling section model, the temperature and at least a phase portion of the metal at least one point the cooling section is calculated. Furthermore, the invention relates to a computing device for the corresponding control and modeling of a cooling section and a corresponding system for producing a metal with a plurality of phase components.
  • From the DE 101 29 565 A1 is a cooling method for a hot-rolled rolling, in particular a metal strip known.
  • an initial temperature is detected in front of the cooling section for a Walzgutstelle, using a cooling line model and predetermined desired properties of the rolling a coolant flow rate determined, applied to the Walzgutstelle according to the determined temporal coolant flow rate a coolant, based on thedeoxynmodells and the temporal coolant flow rate expected temperature curve of the rolling stock at the Walzgutstelle determined over the Walzgutquerites and dissolved to determine the temperature profile in the rolling stock in the cooling section model, a heat equation, which sets the enthalpy, the thermal conductivity, the degree of phase change, the density and the temperature of the rolling relationship.
  • expected temperature curves of the metal strip are compared with target temperature profiles. Based on this comparison, a new coolant flow rate is calculated.
  • Hot-formed metals produced and cooled in accordance with known processes often do not or do not meet with sufficient reliability the properties or material properties required for their subsequent use.
  • This object is achieved by a method of the type mentioned, in which in a second step at least one temperature measurement is detected in the production of the metal and with the aid of the at least one temperature measurement by means of the cooling line model at least one point of the cooling section at least one expected phase proportion of the metal is calculated, wherein the calculated in the second step expected phase component is compared with the phase component calculated in the first step and this comparison is used to adjust at least one manipulated variable of the cooling section.
  • the phase proportions at the end of the cooling section over the metal can be kept substantially constant.
  • the at least one manipulated variable of the cooling section deviations between different bands with the same primary data are largely eliminated.
  • the at least one phase component is calculated in such a way that the fluctuations of the system do not enter into the calculation, ie a reference conversion factor is determined.
  • this reference conversion level is regulated, the actual fluctuations in the system being largely compensated for by adapting local control variables of the cooling section.
  • the at least one point at which at least one phase portion of the metal in the first or in the second step of the method is calculated, located at the end of the cooling section.
  • the expected phase component calculated in the second step is advantageously compared with a predefined phase component in the second step. In this case, it is no longer necessary to compare the expected phase component calculated in the second step with the phase component calculated in the first step. In this way, direct specifications, for example of an operator, are taken into account when setting the phase component.
  • the second step is done online, i. executed in real time during the production of the metal iteratively.
  • the accuracy of the method is further improved.
  • At least one manipulated variable of the cooling section is adapted in accordance with the comparison by a cooling line controller. Due to the comparison of the phase components, the cooling-gap controller adapts directly to the control variables of the cooling section according to the calculations from the first or second step. This ensures high control accuracy.
  • a cascaded control structure wherein the cooling distance controller from a higher-level phase controller setpoints are specified.
  • the phase component adjusts at least one setpoint for the cooling line controller and the cooling line controller adjusts at least one manipulated variable of the cooling section, taking into account given preset values.
  • a temperature model is used in at least one of the two steps, which calculates the temperature profile of the metal in the cooling section.
  • the temperature of the metal so a particularly high control accuracy is achieved.
  • the temperature model is adapted with the aid of the at least one measured value. In this way, fluctuations in the production of the metal can be compensated even more effectively.
  • a conversion model is preferably used which calculates the profile of the at least one phase component in the cooling section.
  • a multi-phase steel is produced.
  • multiphase steels such as Dual-phase steel or triple steel
  • the constant maintenance of the phase components and thus the degree of conversion in the cooling section is particularly critical and important.
  • These steels have particularly good material properties, for example for the automotive industry.
  • the metal in the cooling section is cooled in at least two cooling sections.
  • desired phase fractions in particular in multiphase steels, can be adjusted in a targeted manner.
  • a hold time is adjusted.
  • a holding temperature is adjusted.
  • cooling in several cooling sections are sizes such as holding time and holding temperature particularly critical for the phase components in metal.
  • At least one manipulated variable for coolant actuators is adjusted.
  • Coolant actuators are local actuators of the cooling section and therefore, for example, have no effect on a precast line upstream of the cooling section. The finishing train is thus not affected by the adaptation of the manipulated variables for the coolant actuators in an undesirable manner.
  • At least one manipulated variable for the speed of the metal in the cooling section is advantageously adapted.
  • the speed of the metal in the cooling section can largely be influenced independently of the speed at which the metal of the cooling section passes through upstream system parts.
  • At least one manipulated variable is adjusted for a lying time of the metal in the production of heavy plate.
  • the lay time of the metal is another local manipulated variable for adjusting the phase components of the metal.
  • the problem underlying the invention is also solved by a computing device according to claim 16 or 17.
  • the invention is also achieved by a system for producing a metal with a cooling section and with such a computing device, wherein the computing device for controlling and for modeling the cooling section is coupled via correspondingly configured interfaces with signal transmitters and actuators of the cooling section.
  • the invention results in particularly uniform material properties in the metal.
  • FIG. 1 shows a cooling section 5 and a computing device 3 for controlling and modeling the cooling section 5.
  • a thermoformed metal 1 runs out of a rolling stand 4 at a speed v in the strip running direction x.
  • the rolling stand 4 is, for example, the last rolling stand of a so-called finishing train.
  • the cooling section 5 may also be preceded by another deformation or processing device for the metal 1.
  • the cooling section 5 and any one or more of its upstream devices for deformation or processing of the metal 1 and any downstream of the cooling section 5 facilities form a plant for producing a metal 1.
  • the cooling section 5 is a reel device 12 downstream, with the help of which the cooled metal 1 is wound into a coil.
  • the cooling section 5 can also other devices not shown in the drawing Processing and / or storage of the metal 1 to be arranged downstream.
  • the metal 1 is in the present case steel in the solid state. But it could also have an at least partially liquid state of aggregation. According to Figure 1, the metal 1 is formed as a metal strip or slab. However, other forms of metal 1, e.g. rod-shaped profiles such as wires, tubes or U-profiles conceivable.
  • the cooling section 5 has one or more actuators 2.
  • the actuator 2 is - usually by cooling, in some cases, but also by heating - directly or indirectly, the temperature T of the metal 1 influenced.
  • An actuator 2 may, for example, have one or more valves for applying a cooling medium to the metal 1.
  • the cooling medium for example, water or a mixture of water with other substances can be used.
  • the cooling section 5 is controlled by the computing device 3.
  • the actuator 2 is driven by the computing device 3 according to a manipulated variable S.
  • a first measuring element 6 is arranged for temperature detection.
  • Another measuring element 6 'for temperature detection is arranged at the end of the cooling section 5 or in the example shown in front of the reeling device 12.
  • the computing device 3 outputs manipulated variables S to the actuators 2 of the cooling section.
  • the computing device 3 is supplied with measured values such as, for example, the temperature T from the cooling section 5 and / or devices upstream or downstream of the cooling section.
  • the computing device 3 can also be supplied with the actual speed v of the metal 1.
  • the actual velocity v of the metal can be determined by measuring and / or with the help of at least one Be determined model.
  • the computing device 3 can also be supplied, for example, with the rotational speeds of the rolls of a roll stand 4 as measured values and / or calculated or modeled values.
  • the computing device 3 are also fed so-called primary data P.
  • Primary data P are generally used for the precalculation or presetting of a plant and depend on the metal 1 to be produced. Different metal bands or slabs are usually characterized by different primary data. Primary data may also relate at least partially to the required properties of the produced metal 1.
  • FIG. 2 shows the profile of the temperature T of the metal 1 in the cooling section 5 plotted over the time t.
  • the time t refers to the time during which a band point of the strip 1 in the form of metal 1 passes through the cooling section 5.
  • the temperature T over the strip running direction x, ie the position in the cooling section.
  • the temperature T is used in its capacity as a quantity describing the energy content of the metal 1. It would therefore be possible, for example, alternatively to consider the course of the enthalpy over time t or over the strip running direction x.
  • the phase fractions P i of a metal 1 are particularly critical but also critical in the production, in particular in multiphase steels such as dual phases and tripod steels.
  • a common cooling method is a split into three cooling sections cooling.
  • the metal 1 is cooled in the cooling section 5 in several temporal cooling phases, cooling phases or time cooling sections I, II, III.
  • the temporal cooling sections I, II, III may, but need not, coincide with spatial or component-related cooling sections.
  • the metal 1 is preferably cooled at a high cooling rate up to a holding temperature T H.
  • the holding temperature T H is usually specified or dependent on the primary data P.
  • a second cooling section II air cooling takes place with a predetermined holding time t H.
  • the temperature T of the metal 1 or the steel decreases only slightly.
  • the metal 1 is quenched to the temperature T or below the temperature T which is to be reached at the end of the cooling section or immediately before winding by means of the reeling device 12.
  • the metal 1 is quenched below the martensite start temperature.
  • a residual austenite content of typically 20% is usually aimed at before the quenching begins.
  • a retained metastable retained austenite content remains in the material at room temperature, which converts to martensite upon deformation.
  • the constant maintenance of the phase components P i and thus the degree of conversion in the cooling section 5 is extremely critical. If undesired surface temperature impairments, for example so-called skid marks on the metal 1, in this case a steel slab, are caused, for example, in a hot rolling line upstream of the cooling section 5, these undesired skid marks lead to soft spots in the metal strip. At such soft points, the degree of conversion in the metal 1 has already progressed too far prior to quenching to form enough martensite or bainite. Other variations of the process parameters in the cooling section 5 upstream devices may cause further deviations from the desired structure and the desired phase components P i in the metal 1.
  • FIGS. 3 and 4 show control systems according to the invention for the cooling section 5. Both figures show a computing device 3 coupled to the cooling section 5 for controlling and modeling the cooling section 5. Interfaces are provided to supply the computer 3 with signals for modeling and the cooling section 5 Supply control or control signals. Computing device 3 and cooling section 5 form part of a plant for producing a metal. 1
  • the computing device 3 has a cooling line model 7 and a cooling line controller 8.
  • a metal 1 for example a steel strip made of steel, which enters the cooling section 5
  • the temperature T and at least one phase portion P i at the end of the cooling section 5 are supported by the cooling section model 7 in a first step based on the primary data P for the metal strip , or calculated before the reeling device 12.
  • measuring elements which may be arranged for example in a precast line upstream of the cooling section 5 (not shown in detail in the drawing) and / or with the aid of a measuring element 6 at the entrance of the cooling section 5, measured values are measured in a second step detected and supplied to the computing device 3. The acquisition of measured values takes place while the metal 1 passes through the system for producing a metal 1.
  • the cooling section model 7 determines at least at the end of the cooling section 5 at least one expected phase component P i of the metal 1.
  • the expected phase component P i calculated in the second step is calculated using the phase component calculated in the first step on the basis of the primary data P. P i compared. This comparison is used to adapt at least one manipulated variable S of the cooling section 5.
  • the cooling-gap controller 8 adjusts at least one manipulated variable S of the cooling section 5.
  • a relatively simple way of implementing such a cooling line controller is such that manipulated variables S of actuators 2 are adjusted as possible at the end of the first cooling section I.
  • the computing device 3 has a cooling-gap model 7, a cooling-gap controller 8 and a phase-share regulator 11.
  • the phase controller 11 is superimposed on the cooling line controller 8.
  • the phase-share controller 11 gives the cooling-path controller 8 at least one desired value, for example T H or t H , based on the comparison of the phase component P i calculated in the first step and the expected phase component P i calculated in the second step.
  • the phase-share regulator 11 preferably gives the cooling-gap controller 8 a holding time t H and / or a holding temperature T H.
  • the cooling path controller 8 adapts the manipulated variables S of the cooling section 5, taking into account the setpoint specifications of the phase component controller 11.
  • Both control systems ie both the control system according to FIG. 3 and the control system according to FIG. 4, preferably operate such that the second step is performed iteratively online, ie in real time during the manufacture of the metal 1.
  • phase component P i is calculated in the same way, ie with the aid of the same calculation methods or models.
  • the calculation in the two steps differs with respect to the data underlying the calculation, in particular with regard to the input data for the calculation.
  • phase portion P i may also be compared in the second step with the calculated in the second step the anticipated phase fraction P i a, for example, by an operator in a first step a predetermined phase portion P i.
  • the anticipated phase fraction P i a for example, by an operator in a first step a predetermined phase portion P i.
  • At least one phase portion P i of the metal 1 can be calculated at at least one other point of the cooling section 5. If, for example, it is not expedient to measure at the end of the cooling section 5, at least one phase component P i of the metal 1 can be calculated at a different location of the cooling section 5 both in the first and in the second step of the method, eg at a point at which it is assumed that the essential part of the phase transformation within the cooling section 5 has already been completed.
  • the computing device 3 or the cooling line model 7 preferably have a temperature model 9, which calculates the temperature profile of the metal 1 in the cooling section 5 over time t or over the strip running direction x.
  • the temperature model 9 is adapted with the aid of at least one measured value.
  • the at least one measured value is preferably a measured value for the temperature T of the metal 1, which is detected by means of a measuring element 6, 6 'at the entrance or at the end of the cooling section 5.
  • the measured value detection can also take place at a different location of the cooling section 5.
  • a conversion model 10 is present, which calculates the course of the at least one phase portion P i of the metal 1 in the cooling section 5 over the time t and / or the strip running direction x.
  • the cooling section model 7 and / or the temperature model 9 can also use or calculate the enthalpy or another variable describing the amount of energy content.
  • a conversion model 10 is not shown in detail in FIG. 4 for the sake of clarity, it is also expedient in the exemplary embodiment according to FIG.
  • a conversion model 10 must provide at least the phase portion P i of the metal 1 at at least one point of the cooling section 5, preferably at the end of the cooling section 5.
  • manipulated variables S for the actuators 2 of the cooling section 5 is e.g. the position of valves for coolant or the coolant flow in the cooling section 5 regulated.
  • Such local manipulated variables S i. Manipulated variables which have no effects on the cooling section 5 upstream plant parts, however, can be in the production of heavy plate, but also the speed v of the metal 1 in the cooling section and a lying time of the metal 1.
  • a conversion model 10 is used for the cooling section 5, with the aid of which, in addition to the temperature T of the steel, the phase components P i along the steel strip are calculated in real time.
  • a control system is implemented which keeps the phase proportions P i of the steel strip wound on a reel device 12 constant holds.
  • the degree of conversion is determined from data given from the primary data P of the steel strip, and in the case of polyphase steels, for example, the ferrite content.
  • a second step when one enters the cooling section 5, one or more parameters of the cooling strategy, ie manipulated variables S, are adjusted online in the sense of a regulation such that the ferrite content of the cooled steel is kept constant at the reel device 12.
  • the holding temperature T H can be modified for this purpose. The increase of the holding temperature T H reduces the ferrite content, the lowering of the holding temperature T H increases it.
  • Deviations from the target structure are already discovered online according to the method according to the invention and are not discovered only after measurements of the microstructural components in the laboratory (sections) or in tensile tests.
  • the constancy of the microstructural fractions along the strip of quality assurance in the steelworks was usually assessed only on the basis of temperature records for intermediate temperature and coiler temperature.
  • the method according to the invention makes it possible to keep the phase components P i at the reeling device 12 substantially constant along the metal strip, even under fluctuating production conditions and fluctuating speed v of the metal strip. Deviations between different metal strips with the same primary data P are eliminated as far as possible, because the fluctuations in the system are not taken into account in the initial determination of the reference conversion degree and the fluctuations of the system are largely compensated by the later regulation to the reference conversion level.
  • the first determination of the reference conversion degree or at least one phase component P i depends only on the primary data P.
  • the subsequent determinations of the degree of conversion or of a phase component P i take into account the fluctuations in the production.
  • steel or metal 1 of constant Quality and the requirements of the material properties of the metal 1 and the steel are much more reliable than previously met.

Claims (19)

  1. Procédé de production d'un métal (1) ayant plusieurs proportions de phase, dans lequel on refroidit dans un parcours (5) de refroidissement le métal (1) formé à chaud, dans lequel, dans un premier stade et en s'aidant de données (P) primaires pour le métal (1), on calcule au moyen d'un modèle (7) de parcours de refroidissement la température (T) et au moins une proportion (Pi) de phase du métal (1) en au moins un point du parcours (7) de refroidissement,
    caractérisé en ce que, dans un deuxième stade
    - on relève au moins une valeur de mesure de la température lors de la production du métal (1),
    - en s'aidant de la au moins une valeur de mesure de la température on calcule, au moyen du modèle (7) de parcours de refroidissement, sur le au moins un point du parcours (5) de refroidissement, au moins une proportion (Pi) de phase du métal (1) à laquelle on s'attend,
    - on compare la proportion (Pi) de phase à laquelle on s'attend à la proportion (Pi) de phase calculée dans le premier stade et
    - on utilise cette comparaison pour modifier au moins une grandeur (S) de réglage du parcours (5) de refroidissement.
  2. Procédé suivant la revendication 1,
    caractérisé en ce que le au moins un point où l'on calcule dans le premier et dans le deuxième stade au moins une proportion (Pi) de phase du métal (1) se trouve à la fin du parcours (5) de refroidissement.
  3. Procédé suivant la revendication 1 ou 2,
    caractérisé en ce que l'on compare dans le deuxième stade la proportion (Pi) de phase à laquelle on s'attend à une proportion (Pi) de phase donnée à l'avance.
  4. Procédé suivant l'une des revendications 1 à 3,
    caractérisé en ce que l'on effectue itérativement en ligne le deuxième stade.
  5. Procédé suivant l'une des revendications 1 à 4,
    caractérisé en ce que dans le deuxième stade un régulateur (8) de parcours de refroidissement modifie au moins une grandeur (S) de réglage du parcours (5) de refroidissement en fonction de la comparaison.
  6. Procédé suivant l'une des revendications 1 à 4,
    caractérisé en ce que, dans le deuxième stade
    - un régulateur (11) de proportion de phase modifie au moins une valeur de consigne du régulateur (8) de parcours de refroidissement en fonction de la comparaison et
    - le régulateur (8) de parcours de refroidissement modifie, en tenant compte des valeurs de consigne qui lui ont été données à l'avance, au moins une grandeur (S) de réglage du parcours (5) de refroidissement.
  7. Procédé suivant l'une des revendications 1 à 6,
    caractérisé en ce que l'on utilise dans au moins l'un des deux stades un modèle (9) de température? qui calcule la courbe de température du métal (1) dans le parcours (5) de refroidissement.
  8. Procédé suivant la revendication 7,
    caractérisé en ce que l'on modifie le modèle (9) de température en s'aidant de la au moins une valeur de mesure.
  9. Procédé suivant l'une des revendications 1 à 8,
    caractérisé en ce que l'on utilise un modèle (10) de transformation, qui calcule la courbe de la au moins une proportion (Pi) de phase dans le parcours (5) de refroidissement.
  10. Procédé suivant l'une des revendications 1 à 9,
    caractérisé en ce que l'on refroidit un acier à plusieurs phases.
  11. Procédé suivant l'une des revendications 1 à 10,
    caractérisé en ce que l'on reproduit le métal dans le parcours (5) de refroidissement dans au moins deux tronçons (I, II, III) de refroidissement.
  12. Procédé suivant la revendication 11,
    caractérisé en ce que l'on modifie un temps (th) de maintien.
  13. Procédé suivant l'une des revendications 11 ou 12,
    caractérisé en ce que l'on modifie une température (TH) de maintien.
  14. Procédé suivant l'une des revendications précédentes,
    caractérisé en ce que l'on modifie au moins une grandeur (S) de réglage d'éléments de réglage du fluide de refroidissement.
  15. Procédé suivant l'une des revendications précédentes,
    caractérisé en ce que, lors de la production de tôle forte, on modifie au moins une grandeur (S) de réglage de la vitesse (v) du métal (1) dans le parcours (5) de refroidissement.
  16. Procédé suivant l'une des revendications précédentes,
    caractérisé en ce que, lors de la production de tôle forte, on modifie au moins une grandeur (S) de réglage d'une durée de séjour du métal (1).
  17. Dispositif (3) de calcul pour commander et modéliser un parcours (5) de refroidissement qui est programmé pour l'exécution d'un procédé suivant l'une des revendications précédentes, comprenant au moins un modèle (7) de parcours de refroidissement et au moins un régulateur (8) de parcours de refroidissement, le modèle (7) de parcours de refroidissement ayant au moins un modèle (9) de température.
  18. Dispositif (3) de calcul pour commander et modéliser un parcours (5) de refroidissement qui est programmé pour la mise en oeuvre d'un procédé suivant l'une des revendications 6 à 16, comprenant au moins un modèle (7) de parcours de refroidissement et au moins un régulateur (8) de parcours de refroidissement, le modèle (7) de parcours de refroidissement ayant au moins un modèle de température (9), un régulateur (11) de proportion de phase étant prévu pour modifier les valeurs de consigne du régulateur (8) de parcours de refroidissement.
  19. Installation de production d'un métal (1) ayant plusieurs proportions de phase, comprenant un parcours (5) de refroidissement et un dispositif (3) de calcul suivant la revendication 17 ou 18, le dispositif (3) de calcul étant, pour régler et pour modéliser le parcours (5) de refroidissement, couplé à des générateurs (6, 6') de signaux et à des régulateurs (2) du parcours (5) de refroidissement par des interfaces conformés de manière adéquate.
EP04725880A 2004-04-06 2004-04-06 Procede pour produire un metal Revoked EP1732716B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT04725880T ATE373527T1 (de) 2004-04-06 2004-04-06 Verfahren zum herstellen eines metalls

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE2004/000724 WO2005099923A1 (fr) 2004-04-06 2004-04-06 Procede pour produire un metal

Publications (2)

Publication Number Publication Date
EP1732716A1 EP1732716A1 (fr) 2006-12-20
EP1732716B1 true EP1732716B1 (fr) 2007-09-19

Family

ID=34957437

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04725880A Revoked EP1732716B1 (fr) 2004-04-06 2004-04-06 Procede pour produire un metal

Country Status (7)

Country Link
US (1) US7853348B2 (fr)
EP (1) EP1732716B1 (fr)
JP (1) JP2007531629A (fr)
CN (1) CN101056721B (fr)
DE (2) DE112004002902A5 (fr)
ES (1) ES2291867T3 (fr)
WO (1) WO2005099923A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008011303A1 (de) 2008-02-27 2009-09-10 Siemens Aktiengesellschaft Betriebsverfahren für eine Kühlstrecke zum Kühlen eines Walzguts mit von der Temperatur losgelöster Kühlung auf einen Endenthalpiewert
EP2468905A1 (fr) 2010-12-22 2012-06-27 Siemens VAI Metals Technologies GmbH Tunnel de refroidissement doté d'un système de stockage à bande verticale intégré
EP3099430B1 (fr) 2014-01-28 2017-11-01 Primetals Technologies Germany GmbH Section de refroidissement avec refroidissement double à une valeur de consigne respective

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100507770C (zh) * 2006-05-30 2009-07-01 宝山钢铁股份有限公司 热轧加热炉板坯剩余在炉时间确定方法
DE102007007560A1 (de) * 2007-02-15 2008-08-21 Siemens Ag Verfahren zur Unterstützung einer wenigstens teilweise manuellen Steuerung einer Metallbearbeitungsstraße
DE102008010062A1 (de) * 2007-06-22 2008-12-24 Sms Demag Ag Verfahren zum Warmwalzen und zur Wärmebehandlung eines Bandes aus Stahl
CN101844157B (zh) * 2010-04-28 2013-09-18 刘森 基于轧线控制一体化的热轧冷却水控制方法及系统
EP2540404A1 (fr) 2011-06-27 2013-01-02 Siemens Aktiengesellschaft Procédé de commande pour un laminoir à bandes à chaud
CN102284521B (zh) * 2011-08-24 2013-05-15 中冶赛迪工程技术股份有限公司 出水口曲线排布的钢板均匀冷却装置
CN102749863B (zh) * 2012-07-09 2014-10-29 首钢总公司 钢卷数据的同步方法
AT514380B1 (de) 2013-05-03 2015-04-15 Siemens Vai Metals Tech Gmbh Bestimmung des ferritischen Phasenanteils nach dem Erwärmen oder Abkühlen eines Stahlbands
AT513750B1 (de) * 2013-05-03 2014-07-15 Siemens Vai Metals Tech Gmbh Bestimmung der ferritischen Phasenanteile beim Abkühlen eines Stahlbands
DE102014224461A1 (de) 2014-01-22 2015-07-23 Sms Siemag Ag Verfahren zur optimierten Herstellung von metallischen Stahl- und Eisenlegierungen in Warmwalz- und Grobblechwerken mittels eines Gefügesimulators, -monitors und/oder -modells
DE102014222827A1 (de) * 2014-11-07 2016-05-12 Sms Group Gmbh Verfahren zum Steuern und/oder Regeln einer metallurgischen Anlage
BR112019011181B1 (pt) * 2016-12-20 2022-11-01 Arcelormittal Método para ajuste dinâmico para a fabricação de chapa de aço
DE102018205685A1 (de) * 2018-04-13 2019-10-17 Sms Group Gmbh Kühleinrichtung und Verfahren zu deren Betrieb
DE102018122047A1 (de) 2018-09-10 2020-03-12 voestalpine Automotive Components Dettingen GmbH & Co. KG Verfahren und vorrichtung zum verbinden von blechteilen zu blechpaketen
KR102639249B1 (ko) 2019-03-05 2024-02-22 삼성전자주식회사 블루투스 네트워크에서 채널 정보를 공유하기 위한 방법 및 이를 위한 전자 장치
DE102019209163A1 (de) * 2019-05-07 2020-11-12 Sms Group Gmbh Verfahren zur Wärmebehandlung eines metallischen Produkts
EP4101553B1 (fr) * 2021-06-07 2024-01-31 Primetals Technologies Austria GmbH Refroidissement d'un produit laminé en amont d'un train finisseur d'un laminoir à chaud

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2004006A (en) 1934-06-20 1935-06-04 Harry J Mckeon Fastening device
DE19639062A1 (de) * 1996-09-16 1998-03-26 Mannesmann Ag Modellgestütztes Verfahren zur kontrollierten Kühlung von Warmband oder Grobblech in einem rechnergeführten Walz- und Kühlprozeß
DE19963186B4 (de) * 1999-12-27 2005-04-14 Siemens Ag Verfahren zur Steuerung und/oder Regelung der Kühlstrecke einer Warmbandstrasse zum Walzen von Metallband und zugehörige Vorrichtung
DE10129565C5 (de) * 2001-06-20 2007-12-27 Siemens Ag Kühlverfahren für ein warmgewalztes Walzgut und hiermit korrespondierendes Kühlstreckenmodell
DE10156008A1 (de) * 2001-11-15 2003-06-05 Siemens Ag Steuerverfahren für eine einer Kühlstrecke vorgeordnete Fertigstraße zum Walzen von Metall-Warmband
CA2422394A1 (fr) * 2002-03-12 2003-09-12 Bombardier Inc. Dispositif de reglage de masque respiratoire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008011303A1 (de) 2008-02-27 2009-09-10 Siemens Aktiengesellschaft Betriebsverfahren für eine Kühlstrecke zum Kühlen eines Walzguts mit von der Temperatur losgelöster Kühlung auf einen Endenthalpiewert
DE102008011303B4 (de) * 2008-02-27 2013-06-06 Siemens Aktiengesellschaft Betriebsverfahren für eine Kühlstrecke zum Kühlen eines Walzguts mit von der Temperatur losgelöster Kühlung auf einen Endenthalpiewert
EP2468905A1 (fr) 2010-12-22 2012-06-27 Siemens VAI Metals Technologies GmbH Tunnel de refroidissement doté d'un système de stockage à bande verticale intégré
EP3099430B1 (fr) 2014-01-28 2017-11-01 Primetals Technologies Germany GmbH Section de refroidissement avec refroidissement double à une valeur de consigne respective

Also Published As

Publication number Publication date
WO2005099923A1 (fr) 2005-10-27
JP2007531629A (ja) 2007-11-08
ES2291867T3 (es) 2008-03-01
US7853348B2 (en) 2010-12-14
US20070198122A1 (en) 2007-08-23
EP1732716A1 (fr) 2006-12-20
CN101056721B (zh) 2010-09-01
DE502004005051D1 (de) 2007-10-31
DE112004002902A5 (de) 2007-05-24
CN101056721A (zh) 2007-10-17

Similar Documents

Publication Publication Date Title
EP1732716B1 (fr) Procede pour produire un metal
DE19963186B4 (de) Verfahren zur Steuerung und/oder Regelung der Kühlstrecke einer Warmbandstrasse zum Walzen von Metallband und zugehörige Vorrichtung
DE3036997C2 (fr)
DE10156008A1 (de) Steuerverfahren für eine einer Kühlstrecke vorgeordnete Fertigstraße zum Walzen von Metall-Warmband
EP1624982B1 (fr) Procede de regulation de la temperature d'une bande metallique, en particulier dans un train finisseur pour le laminage a chaud de bandes metalliques
EP0121148B1 (fr) Procédé pour la fabrication de feuillard à chaud avec section et planéité de bande de haute qualité
EP2603337B1 (fr) Procédé de production de laminés à l'aide d'une installation combinée de laminage direct, dispositif de commande et/ou de régulation pour une installation combinée de laminage direct, et installation combinée de laminage direct
EP2712332B1 (fr) Procédé de commande pour un train à feuillards à chaud
EP2817425B1 (fr) Commande de refroidissement
EP2195127A1 (fr) Procédé d'exploitation permettant d'introduire un produit à laminer dans une cage d'un laminoir, dispositif de commande, support de données et laminoir conçu pour laminer un produit à laminer en forme de bande
DE60016999T2 (de) Verfahren und Vorrichtung zum Regeln der Bandform beim Bandwalzen
DE102008007057A1 (de) Regelverfahren für eine Kaltwalzstraße mit vollständiger Massenflussregelung
WO2015124363A1 (fr) Précommande simple d'un réglage par serrage de cale d'une cage dégrossisseuse
EP2790846B1 (fr) Procédé de traitement de produits laminés dans un laminoir
WO2001061073A2 (fr) Procede et dispositif pour le decapage d'un feuillard metallique lamine, notamment d'un feuillard d'acier
EP2662158A1 (fr) Procédé de traitement de produits à laminer et laminoir
DE69913538T2 (de) Verfahren und Vorrichtung zur Planheitsregelung
EP3194087B1 (fr) Réglage de largeur d'une ligne de fabrication
EP4061552B1 (fr) Procédé, dipositif de contrôle et laminoir pour le réglage d'une température de sortie d'une bande métallique quittant un train de laminage
DE3401894A1 (de) Verfahren zum herstellen von walzband mit hoher bandprofil- und bandplanheitsguete
EP3494239B1 (fr) Procédé de fonctionnement d'un four de recuit pour recuire une bande métallique
DE102009043401A1 (de) Verfahren zur modellbasierten Ermittlung von Stellglied-Sollwerten für die symmetrischen und asymmetrischen Stellglieder der Walzgerüste einer Warmbreitbandstraße
DE10159608B4 (de) Walzverfahren für ein Band mit einer Schweißnaht
EP3009205B1 (fr) Prise en compte d'une vitesse de référence pour la détermination d'une vitesse de guidage
DE102011079354A1 (de) Schmelztauchbeschichtungsanlage mit Abschliffkompensation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060920

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502004005051

Country of ref document: DE

Date of ref document: 20071031

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

ET Fr: translation filed
REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2291867

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071220

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080219

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SMS DEMAG AG

Effective date: 20080619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

NLR1 Nl: opposition has been filed with the epo

Opponent name: SMS DEMAG AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080406

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20120510

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120504

Year of fee payment: 9

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: SMS SIEMAG AKTIENGESELLSCHAFT

Effective date: 20080619

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120309

Year of fee payment: 9

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20130430

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130407

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140414

Year of fee payment: 11

Ref country code: SE

Payment date: 20140407

Year of fee payment: 11

Ref country code: DE

Payment date: 20140620

Year of fee payment: 11

Ref country code: FI

Payment date: 20140411

Year of fee payment: 11

Ref country code: NL

Payment date: 20140404

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 502004005051

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 502004005051

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 373527

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140406

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140406

27W Patent revoked

Effective date: 20141212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R107

Ref document number: 502004005051

Country of ref document: DE

Effective date: 20150507

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 373527

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141212

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150428

Year of fee payment: 12