EP4101553B1 - Refroidissement d'un produit laminé en amont d'un train finisseur d'un laminoir à chaud - Google Patents

Refroidissement d'un produit laminé en amont d'un train finisseur d'un laminoir à chaud Download PDF

Info

Publication number
EP4101553B1
EP4101553B1 EP21178033.3A EP21178033A EP4101553B1 EP 4101553 B1 EP4101553 B1 EP 4101553B1 EP 21178033 A EP21178033 A EP 21178033A EP 4101553 B1 EP4101553 B1 EP 4101553B1
Authority
EP
European Patent Office
Prior art keywords
cooling
rolled product
section
cooling device
cooling section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21178033.3A
Other languages
German (de)
English (en)
Other versions
EP4101553A1 (fr
EP4101553C0 (fr
Inventor
Erich Opitz
Lukas PICHLER
Alois Seilinger
Klaus Weinzierl
Axel RIMNAC
Albrecht Sieber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primetals Technologies Austria GmbH
Primetals Technologies Germany GmbH
Original Assignee
Primetals Technologies Austria GmbH
Primetals Technologies Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primetals Technologies Austria GmbH, Primetals Technologies Germany GmbH filed Critical Primetals Technologies Austria GmbH
Priority to EP21178033.3A priority Critical patent/EP4101553B1/fr
Priority to CN202280041056.4A priority patent/CN117460587A/zh
Priority to PCT/EP2022/063733 priority patent/WO2022258350A1/fr
Publication of EP4101553A1 publication Critical patent/EP4101553A1/fr
Application granted granted Critical
Publication of EP4101553C0 publication Critical patent/EP4101553C0/fr
Publication of EP4101553B1 publication Critical patent/EP4101553B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • B21B37/76Cooling control on the run-out table
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2201/00Special rolling modes
    • B21B2201/06Thermomechanical rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0233Spray nozzles, Nozzle headers; Spray systems

Definitions

  • the invention relates to a method for cooling a rolling stock in a cooling section arranged in front of a finishing train of a hot rolling mill, through which the rolling stock is transported along a cooling section path once at a predetermined transport speed or several times in alternating directions, each with a predetermined transport speed.
  • the specified transport speed can vary over time. But it can also be constant over time.
  • the cooling section has a cooling device with an effective area or several cooling devices arranged one behind the other along the cooling section path, each with an effective area, the effective areas of adjacent cooling devices directly adjoining one another and with each cooling device in the effective area of which a coolant flow of a coolant can be output onto a rolling stock surface of the rolling stock, which can be set between the value zero and a maximum value specific to the cooling device
  • the invention relates to a cooling section for cooling a rolling stock in front of a finishing train of a hot rolling plant, the cooling system having a cooling device or several cooling devices arranged one behind the other along a cooling section path through the cooling section, with which a coolant flow of coolant can be output, which is between can be set to the value zero and a maximum value specific to the cooling device and comprises a plurality of transport rollers which are set up to transport the rolling stock along the cooling section path through the cooling section.
  • a metallic rolling stock for example a steel strip
  • a hot rolling mill often has a so-called Preparing mill and a so-called finishing mill.
  • the rolling stock is rolled into a so-called roughing strip with a roughing strip thickness.
  • the pre-strip is fed to the finishing train via a so-called intermediate roller table, in which the thickness of the rolling stock is further reduced from the pre-strip thickness to a final thickness.
  • the rolling stock is fed to the roughing train, for example, at a temperature in the range of 1100°C to 1200°C.
  • the rolling stock is heated to this temperature with a heating furnace before the roughing train, or the already heated rolling stock is delivered directly to the roughing train.
  • the rolling stock is not formed, that is, its thickness is not reduced by rolling, but the rolling stock is merely cooled, that is, the temperature of the pre-strip is reduced, for example to a temperature in the range between 700 ° C and 900 ° C.
  • the cooling of the rolling stock in the intermediate roller table serves to limit the inlet temperature of the rolling stock when it enters the finishing train.
  • the inlet temperature is limited for metallurgical reasons, for example in order to suppress recrystallization in the rolling stock during the transport of the rolling stock through the finishing train, in particular in the production of so-called thermomechanically rolled products such as tubular steel or microalloyed steel, and/or in order to achieve a high surface quality , for example in the production of automobile outer skin or can sheet metal.
  • EP 2 873 469 A1 discloses an operating method for cooling a flat rolling stock in a cooling section with cooling devices arranged along the cooling section, from which a coolant can be dispensed onto the rolling stock when the rolling stock is transported through the cooling section. Cooling capacities are determined for the cooling devices by means of a simulation of the transport of rolling stock points through the cooling section and the cooling devices are controlled according to these cooling capacities when the rolling stock is transported through the cooling section.
  • the invention is based on the object of specifying a method and a cooling section for cooling a rolling stock in front of a finishing train of a hot rolling mill, with which the rolling stock is cooled without the surface temperature of a rolling stock surface of the rolling stock falling below a predetermined minimum value.
  • the object is achieved according to the invention by a method with the features of claim 1 and a cooling section with the features of claim 13.
  • a minimum value for a surface temperature of the surface of the rolling stock is taken during the transport of the rolling stock through the cooling section.
  • each cooling device is assigned a setting value for the coolant flow for each cooling section pass through the cooling section and by means of each cooling device a coolant flow is output to the rolling stock surface for each cooling section pass, which is set to the setting value assigned to the respective cooling device for the cooling section pass.
  • the enthalpy distribution calculated for the first effective range passed through and/or the calculated temperature distribution upon exiting the first effective range passed through is also used for each two effective areas passed through by the rolling stock section immediately one after the other during the cooling section pass Entry into the other effective area assigned.
  • An original initial enthalpy distribution and/or original initial temperature distribution is assumed for the first cooling device through which the rolling stock section passes through the cooling section.
  • each cooling section pass of the rolling stock is first simulated at least once for a rolling stock section of the rolling stock, with setting values for the coolant flows of all cooling devices being determined during the simulation. These setting values are then used to control the cooling devices when the rolling stock actually passes through the cooling section.
  • the setting value for a cooling device is determined during a simulation of a cooling section run in such a way that the coolant flow determined by the setting value is quasi-maximal under the additional conditions, that the setting value does not exceed a specified value and a surface temperature of the rolling stock surface determined during the simulation when exiting the effective range the cooling device does not fall below a minimum value.
  • the default value for the coolant flow of a cooling device is either determined during the simulation or, for example, received from a higher-level controller.
  • the quasi-maximal coolant flow here is understood to mean a coolant flow that is maximum under the stated additional conditions or that approximates the maximum coolant flow within the scope of a control engineering design. This takes into account that an exact maximization of the coolant flow is not necessary in practice, since a simulation is based on a mathematical model that only models the cooling section and therefore does not represent it exactly, so that there are small deviations of the simulation from the real cooling process in the cooling section anyway must be accepted. In addition, an exact maximization of the coolant flow can require an unreasonably high computational effort and stand in the way of carrying out the simulation as quickly as possible.
  • the quasi-maximization of the coolant flows advantageously enables optimized cooling of the rolling stock during transport through the cooling section.
  • the default values for the setting values of the coolant flows can be used
  • Target temperature at the end of the cooling section of the rolling stock can be specified, which is adapted to a desired inlet temperature of the rolling stock when entering the finishing train.
  • the additional condition that the surface temperatures of the rolling stock surface determined during the simulation do not fall below the minimum value for the surface temperature when exiting the effective ranges of the cooling devices advantageously prevents the above-mentioned undercooling of the rolling stock surface, which reduces product quality, during the transport of the rolling stock through the cooling section.
  • the minimum value is accordingly specified in such a way that such undercooling of the rolling stock surface is avoided.
  • w i V is the default value for the coolant flow to be output by the cooling device
  • T i in (0) is a surface temperature of the rolling stock surface derived from the initial enthalpy distribution and/or initial temperature distribution when it enters the effective range of the cooling device
  • T min is the minimum value for the surface temperature the rolling stock surface
  • ⁇ T i res is a predeterminable reserve temperature difference.
  • f i ( T ) is a function that is zero for T ⁇ T min , one for T ⁇ T min + ⁇ T i res and increases strictly monotonically in the interval [ T min , T min + ⁇ T i res ].
  • the additional condition that the setting value does not exceed the default value is realized by the function fi ( T ) not exceeding the value one.
  • the additional condition that the surface temperature of the The rolling stock surface does not fall below the minimum value when it leaves the effective range of the cooling device, can be achieved by a suitable choice of the reserve temperature difference ⁇ T i res .
  • the quasi-maximization of the coolant flow is achieved by the monotonic increase of the function f i (T) from zero to one.
  • the setting value for at least one cooling device is determined for each simulated cooling section pass by first determining the surface temperature of the rolling stock surface as it exits the effective range of the cooling device for the default value for the coolant flow of the cooling device is calculated.
  • the setting value is set equal to the default value if the surface temperature calculated for the default value does not fall below the minimum value. Otherwise, the calculation of the surface temperature at the exit from the effective range for at least one coolant flow that is smaller than the default value is iterated to determine a setting value of the coolant flow for which the calculated surface temperature at the exit from the effective range matches the minimum value with sufficient accuracy .
  • a sufficiently precise match is understood to mean, for example, a match up to an absolute or relative deviation, the amount of which does not exceed a predetermined tolerance value.
  • the aforementioned embodiment of the method according to the invention also realizes the above-mentioned additional conditions.
  • This embodiment realizes an exact maximization of the coolant flow if the surface temperature actually corresponds to the minimum value after its iterated calculation. However, slightly exceeding the minimum value is acceptable for the reasons mentioned above and represents a quasi-maximization of the coolant flow.
  • the maximum value of the coolant flow specific for the respective cooling device is accepted as a default value for the coolant flow for each simulated cooling section run.
  • the aforementioned embodiment of the method according to the invention enables, in particular, the fastest possible cooling of the rolling stock when passing through a cooling section by setting each default value to the maximum value of the coolant flow specific to the respective cooling device.
  • a total amount of coolant is determined for a simulation of a cooling section passage of a rolling stock section, which is to be output at most in total to the surface part of the rolling stock surface belonging to the rolling stock section during the cooling section passage, and the default values for the coolant flows of the simulated cooling section run-through are determined depending on the total amount of coolant and the transport speed specified for the cooling section run-through.
  • coolant quantity always means the integral over a coolant flow during the running time of the rolling stock section under consideration through the effective range of one or more cooling devices. It can also happen that a coolant flow acting on a section of rolling stock does not always have the same effect.
  • the amount of coolant means an integral weighted according to the cooling effect of the coolant flow.
  • the physical unit of the coolant flow is, for example, m 2 /s corresponding to a specific coolant flow in m 3 /s per m of width of the cooling device.
  • the physical unit of the amount of coolant is then m 2 corresponding to an amount of coolant in m 3 per m width of the cooling device.
  • a cooling effect of the entire cooling section run and thus a target temperature of the rolling stock after the cooling section run can be specified by the total amount of coolant.
  • the default values for the coolant flows of the simulated cooling section run are then determined depending on the total amount of coolant, so that the total amount of coolant is distributed to the cooling devices using the default values.
  • a target average temperature of the rolling stock is taken after a cooling section pass.
  • an average temperature of the rolling stock section is calculated at the end of the cooling section run and, if the calculated average temperature does not correspond sufficiently precisely to the target average temperature, for a subsequent simulation of a cooling section run of a rolling stock section, the total amount of coolant is changed by the calculated average temperature of the target average temperature to align.
  • a sufficiently precise agreement between the calculated average temperature and the target average temperature is understood to mean, for example, an agreement up to an absolute or relative deviation, the amount of which does not exceed a predetermined tolerance value.
  • a target average temperature of the rolling stock is specified as the target temperature of the rolling stock after passing through the cooling section and the total amount of coolant is adjusted to the target average temperature.
  • each A residual amount of coolant is assigned to the cooling device.
  • the total amount of coolant is assigned to the first cooling device of the cooling section passage as the remaining amount of coolant.
  • Each additional cooling device is assigned as the residual coolant amount the residual coolant amount of the previous cooling device of the cooling section passage minus the amount of coolant that would be output by the previous cooling device in accordance with the setting value of the coolant flow determined for it on the surface part of the rolled material surface belonging to the rolling stock section.
  • min(1, W R / W i max ) denotes the minimum of the two values 1 and W R / W i max .
  • the default values for the coolant flows of the cooling device are determined during the simulation of a cooling section run by assigning a residual coolant quantity to each cooling device and determining the default value for the cooling device depending on the residual coolant quantity.
  • a setting value is determined for a cooling device that is smaller than a default value accepted for the cooling device, and if there is at least one subsequent cooling device that is reached later during the cooling section passage and for which a received default value is smaller than the maximum value of the coolant flow of this cooling device, the default value for at least one such subsequent cooling device is increased by to adapt the total amount of coolant to be dispensed during the cooling section pass to the surface part of the rolling stock surface belonging to the rolling stock section to the total amount of coolant determined for the cooling section pass.
  • This embodiment of the method according to the invention is based on default values received at the beginning of a simulation.
  • the default values are adjusted during the simulation if necessary if the setting value determined for a cooling device during the simulation falls below the associated default value.
  • default values for subsequent cooling devices are increased, as far as possible, in order to adapt the cooling effect of the cooling section passage to the cooling effect corresponding to the total amount of coolant.
  • a one-dimensional heat conduction equation is solved, which determines the enthalpy distribution and/or temperature distribution in the rolling stock section along a Rolling stock thickness direction describes.
  • boundary conditions are taken into account that parameterize cooling of the rolled stock section by thermal radiation, coolant dispensed onto the surface of the rolled stock, heat dissipated into the ambient air and heat dissipated to transport rollers transporting the rolled stock.
  • the rolling stock thickness direction is a direction from a top surface to a bottom surface of the rolling stock or vice versa from the bottom surface to the top surface of the rolling stock.
  • the aforementioned embodiment of the method according to the invention takes into account that a heat flow in the longitudinal or transverse direction within the rolling stock compared to one Heat flow in the rolling stock thickness direction of the rolling stock is negligible. Therefore, to calculate the enthalpy distribution and/or temperature distribution in the rolling stock section with sufficient accuracy, a one-dimensional heat conduction equation can be used, which describes the enthalpy distribution and/or temperature distribution in the rolling stock section along the rolling stock thickness direction. This significantly reduces the computational effort and time compared to using a two- or three-dimensional heat conduction equation.
  • the boundary conditions mentioned take into account the essential influences on the development of the enthalpy distribution and temperature distribution in the rolling stock.
  • the surface temperature of a surface part of the rolling stock surface belonging to the rolling stock section is measured at at least one measuring point, which is passed by a rolling stock section before a cooling section pass, and the original initial enthalpy distribution and / or original initial temperature distribution for a simulation of a cooling section pass of the rolling stock section are determined depending on the at least one measured surface temperature.
  • the method according to the invention can also be carried out for a top surface of the rolling stock or a bottom surface of the rolling stock or separately for the top surface of the rolling stock and the bottom surface of the rolling stock of the rolling stock.
  • a cooling section according to the invention comprises, in addition to the features of a cooling section mentioned at the outset, a control unit which is set up to operate the cooling section according to the method according to the invention according to one of the preceding claims.
  • the cooling devices in the rear part of the cooling section can be designed to be simpler and more cost-effective than the cooling devices in the front part of the cooling section, since in the rear part of the cooling section the surface temperature of the rolling stock surface has generally already reached the minimum value and therefore only requires a small cooling capacity there becomes.
  • FIG 1 schematically shows a hot rolling mill 1.
  • the hot rolling mill 1 comprises a heating furnace 3, a roughing train 5, an intermediate roller table 7, a finishing train 9, an outlet cooling area 11 and a coiling area 13.
  • the hot rolling mill 1 causes a rolling stock 15 to be rolled in the direction of the heating furnace 3 transported to the reel area 13.
  • the heating furnace 3 is arranged in front of the roughing train 5 and is set up to heat the rolling stock 15 to a certain temperature, for example in the range from 1100 ° C to 1200 ° C.
  • the roughing train 5 has at least one roughing mill stand 17.
  • the rolling stock 15 is rolled into a roughing strip with a roughing strip thickness which is, for example, in the range between 30 mm and 170 mm.
  • the rolling stock 15 is transported from the roughing train 5 to the finishing train 9 at a predetermined transport speed by the intermediate roller table 7.
  • the intermediate roller table 7 has an exemplary embodiment Cooling section 19 according to the invention.
  • the cooling section 19 comprises a plurality of cooling devices 21, 22, 23 arranged one behind the other along a cooling section path through the cooling section 19, a plurality of transport rollers 25 which are set up to transport the rolling stock 15 along the cooling section path through the cooling section, and a control unit 27 which is set up to operate the cooling section 19 according to an exemplary embodiment of the method according to the invention for cooling the rolling stock 15. Examples of embodiments of the method according to the invention are described below using the Figures 2 to 6 described.
  • a cooling section 19 with three cooling devices 21, 22, 23 is shown as an example. However, the cooling section 19 can also have a different number of cooling devices 21, 22, 23.
  • a coolant flow of a coolant 35 can be output in an effective area 31, 32, 33 of the cooling device 21, 22, 23 onto a rolling stock surface 29 of the rolling stock 15, which is between the value zero and one for the cooling device 21, 22, 23 specific maximum value can be set.
  • the coolant 35 is, for example, water.
  • the rolling stock surface 29 is a top surface of the rolling stock 15.
  • the rolling stock surface 29 can be a bottom surface of the rolling stock 15, with the cooling devices 21, 22, 23 then being arranged below the rolling stock 15.
  • the cooling section 19 can have cooling devices 21, 22, 23 for both the top and bottom surfaces of the rolling stock 15. In the latter case, the method according to the invention is carried out separately for the top and bottom surfaces of the rolling stock 15.
  • Each cooling device 21, 22, 23 is designed, for example, as a cooling beam which extends along a width of the rolling stock 15 and has a plurality of nozzles with which coolant 35 can be dispensed onto the rolling stock surface 29 is.
  • the effective areas 31, 32, 33 are assigned to the cooling devices 21, 22, 23 in such a way that the effective areas 31, 32, 33 of adjacent cooling devices 21, 22, 23 directly adjoin one another.
  • the cooling devices 21, 22, 23 are arranged along the cooling section path in accordance with their maximum values of the coolant flows that can be output, so that the maximum values decrease monotonically towards the finishing train 9.
  • a measuring device 37 is also arranged at a measuring point 39 in front of the cooling section 19, which is set up to record a surface temperature of the rolling stock surface 29.
  • the measuring device 37 has a pyrometer for this purpose.
  • the finishing train 9 includes several finishing train rolling stands 41 and finishing train cooling devices 43, which are each arranged between two finishing train rolling stands 41 and with which finishing train coolant 45 can be dispensed onto the rolling stock surface 29.
  • the thickness of the rolling stock 15 is reduced to a final thickness using the finishing train rolling stands 41.
  • outlet cooling devices 47, 49 are arranged, with which outlet coolant 51 can be dispensed onto the rolling stock surface 29.
  • the rolling stock 15 is cooled behind the finishing train 9.
  • At least one rolled stock reel 53 is arranged in the reel area 13 and is set up to wind up the rolled stock 15.
  • FIG 2 shows a flow chart of the method according to the invention with method steps 100, 200, 300 for cooling the rolling stock 15 in the cooling section 19.
  • the control unit 27 receives a minimum value T min for a surface temperature of the rolling stock surface 29 during the transport of the rolling stock 15 through the cooling section 19.
  • the minimum value T min is specified, for example, by a higher-level controller (not shown) or by an operator of the hot rolling mill 1.
  • the minimum value T min is a surface temperature of the rolling stock surface 29, which should not be fallen below during the transport of the rolling stock 15 through the cooling section 19.
  • each cooling device 21, 22, 23 is assigned a setting value for the coolant flow to be output from the cooling device 21, 22, 23 to the rolling stock surface 29.
  • Exemplary embodiments of the second method step 200 are described below based on Figures 3 to 6 described in more detail.
  • each cooling device 21, 22, 23 is used to output a coolant flow onto the rolling stock surface 29 during the cooling section run, which flow is set to the setting value assigned to the respective cooling device 21, 22, 23 for the cooling section run in the second method step 200.
  • the method steps 200 and 300 can also be carried out several times, so that the setting values of the cooling devices 21, 22, 23 are changed if necessary during the transport of the rolling stock 15 through the cooling section 19. This is in Figure 2 indicated by the arrow symbols shown in dashed lines.
  • the rolling stock 15 is divided into several rolling stock sections, which pass through the effective areas 31, 32, 33 of the cooling devices 21, 22, 23 one after the other, and the method steps 200 and 300 are successively carried out for every section of rolled stock.
  • a setting value for the coolant flow to be output from the cooling device 21, 22, 23 to the part of the rolling stock surface 29 belonging to the rolling stock section is determined for the cooling section passage of a rolling stock section through the cooling section 19 of each cooling device 21, 22, 23 assigned.
  • a coolant flow is output to the part of the rolling stock surface 29 belonging to the rolling stock section during the cooling section passage, which is applied to that of the respective cooling device 21, 22, 23 for the cooling section passage of the rolling stock section in the second method step 200 assigned setting value is set.
  • a delay time period is preferably taken into account for each cooling device 21, 22, 23, which elapses between the change in the setting value of the cooling device 21, 22, 23 and the change in the coolant flow actually output by the cooling device 21, 22, 23 to the changed setting value the setting value of the cooling device 21, 22, 23 is changed at a time which is the delay time before the time at which the rolled stock section enters the effective range 31, 32, 33 of the cooling device 21, 22, 23.
  • FIG 3 shows a first exemplary embodiment of the second method step 200 with sub-steps 201 to 216 for determining the setting values of the cooling devices 21, 22, 23 for a cooling section passage of the rolling stock 15 through the cooling section 19.
  • the cooling section passage is at least once for a rolling stock section of the rolling stock 15 with the transport speed specified for it is simulated.
  • a running index i 1, ..., n numbers the effective areas 31, 32, 33 of the cooling devices 21, 22, 23 in the order in which they are removed from a rolling stock section the cooling section pass through, where n denotes the number of cooling devices 21, 22, 23 (as already explained above, are in Figure 1 three cooling devices 21, 22, 23 are shown only as examples; the method is described below for a general number of cooling devices 21, 22, 23).
  • a target average temperature is determined T S of the rolled stock section after passing through the cooling section, that is, after passing through all effective areas 31, 32, 33.
  • a second sub-step 202 is carried out.
  • a total amount of coolant W is received from coolant 35, which is to be dispensed at most in total during the cooling section passage onto the surface part of the rolled material surface 29 belonging to the rolled material section.
  • a third sub-step 203 is carried out.
  • the total coolant amount W is assigned to a residual coolant amount W R as an initial value and the running index i is assigned the value 1 as an initial value.
  • an initial temperature distribution T i in ( x ) is received or adopted in the rolling stock section along a rolling stock thickness direction upon entry into the effective region 31, 32, 33 with the respective current value of the running index i .
  • the rolling stock thickness direction is perpendicular to a transport direction of transporting the rolling stock 15 through the cooling section 19 from the top surface to the bottom surface of the rolling stock 15.
  • an original initial temperature distribution is taken as the initial temperature distribution T 1 in ( x ), which is derived, for example, from a surface temperature of the rolling stock surface 29, which was detected by the measuring device 37, and/or from a heating temperature of the heating furnace 3.
  • the initial temperature distribution T 1 in ( x ) is modeled as a parabolic temperature distribution in the rolling stock thickness direction between an assumed core temperature in the middle between a top and a bottom surface of the rolling stock 15 and the surface temperature detected by the measuring device 37, the core temperature being, for example, from the heating temperature of the heating furnace 3 is derived.
  • an initial enthalpy distribution h i in ( x ) can be accepted or adopted in the sub-step 204 in an analogous manner for the current running index value i .
  • a fifth sub-step 205 is carried out.
  • a default value w i V for the coolant flow of the cooling device 21, 22, 23 is determined with the current value of the running index i .
  • a maximum amount of coolant W i max is determined, which can be adjusted to the cooling device 21, 22, 23
  • the surface part of the rolling stock surface 29 belonging to the rolling stock section can be output during the cooling section pass.
  • the maximum coolant quantity W i max depends in particular on the maximum value w i m ⁇ x of the coolant flow that can be dispensed and on the predetermined transport speed, which is specific for the cooling device 21, 22, 23.
  • the default value w i V corresponds to the maximum value w i m ⁇ x of the outputable coolant flow specific to the cooling device 21, 22, 23 if the current value of the residual coolant quantity W R is greater than the maximum coolant quantity W i m ⁇ x or equal to the maximum coolant quantity W i is max . Otherwise, the default value w i V is the quotient of the current value of the residual coolant quantity W R and an effective throughput time W i max / w i max of the rolled stock section through the effective range 31, 32, 33 with the current value of the running index i .
  • the setting value w i of the coolant flow for the cooling device 21, 22, 23 is assigned the default value w i V determined for this coolant flow in the previous execution of the fifth sub-step 205 with the current value of the running index i as the initial value.
  • a seventh sub-step 207 is carried out.
  • a temperature distribution T i out ( x ) in the rolling stock section along the rolling stock thickness direction as it exits the effective region 31, 32, 33 is calculated with the current value of the running index i .
  • the temperature distribution T i out ( x ) is calculated using a physical model that shows the temporal development of the temperature distribution in the rolled stock section described by a one-dimensional heat conduction equation.
  • the heat conduction equation is solved for the boundary conditions mentioned below with the associated initial temperature distribution T i in ( x ) as the temperature distribution upon entry into the respective effective range 31, 32, 33.
  • an enthalpy distribution h i out ( x ) can be calculated analogously in the rolling stock section as it exits the effective area 31, 32, 33 with the current value of the running index i , if in the previous execution of the fourth sub-step 204 an associated initial enthalpy distribution h i in ( x ) was received or adopted upon entry into this effective range 31, 32, 33.
  • v is the average transport speed during the passage through the effective area, henceforth simply referred to as transport speed
  • ⁇ o is a radiation coefficient of thermal radiation from the top surface
  • ⁇ u is a radiation coefficient of thermal radiation from the bottom surface, which is smaller due to the reflection of thermal radiation on the transport rollers 25 as ⁇ is o
  • f L ( T o , T e , v ) and f L ( T u , T e , v ) are functions that determine the cooling effect of the ambient air depending on the surface temperature T o of the rolling stock 15 on the top surface and on the surface temperature T u of the rolling stock 15 on the underside surface, the ambient temperature T e and the transport speed v .
  • f R ( T u , T e , v ) is a function that describes the cooling effect of the transport rollers 25 as a function of the surface temperature T u , the ambient temperature T e and the transport speed v.
  • f w ( T o , v , T w , w oi ) is a function that represents the cooling effect of a top-side cooling device 21, 22, 23, that is to say a cooling device 21, 22, 23 cooling the top surface of the rolling stock 15, with the running index value i as a function of the surface temperature T o , the transport speed v, the coolant temperature T w and the coolant flow of the cooling device 21, 22, 23 given by the setting value w oi .
  • f w ( T u , v , T w , w ui ) is accordingly a function that determines the cooling effect of a cooling device 21, 22, 23 on the bottom with the running index value i as a function of the surface temperature T u , the transport speed v, the coolant temperature T w and the coolant flow of the cooling device 21, 22, 23 given by the setting value w ui .
  • f w (T 0 , v , T w , w oi ) 0 applies.
  • f w ( T u , v , T w , w ui ) 0 at points on the cooling section path where no coolant flow is output from a cooling device 21, 22, 23 on the bottom to the rolling stock 15.
  • top-side and bottom-side cooling devices 21, 22, 23 it is carried out separately for the top-side cooling devices 21, 22, 23 and the bottom-side cooling devices 21, 22, 23.
  • the phase components are always non-negative and their sum is one.
  • T k T k ( h k ) is a strictly monotonically increasing one Function of the enthalpy density component h k .
  • the function T ( h,p 1 , ... , p m ) can be calculated.
  • the thermal conductivity ⁇ can be expressed as a function of the enthalpy density h and the phase proportions p 1 , ... , p m .
  • the size ⁇ denotes the density of the rolling stock 15, which is assumed to be the same for all phase components.
  • Equation (3) or equations (5) and (6) are calculated with the boundary conditions according to equations (4a) and (4b) for an initial temperature distribution T i in ( x ) or an initial enthalpy distribution h i in ( x ) and initial phase proportions p 1 i , ... , p mi solved to obtain a temperature distribution T i out ( x ) or an enthalpy distribution h i out ( x ) and phase components p 1 i out , ... , p mi out in the rolling stock section when leaving the effective area 31, 32, 33 with the current value of the running index i .
  • equation (6) the functions f L , f w , f R are each set as the product of a heat flow constant Q ⁇ i and dimensionless correction functions f i , where the index i stands for the respective type of cooling (through air, coolant or transport rollers), see also, for example, equations (7) to (9) the aforementioned publication for cooling by air, the equations (11) to (14) for (various types of) cooling by coolant and equation (10) for cooling by transport rollers.
  • an eighth sub-step 208 is carried out.
  • the ninth sub-step 209 is therefore always carried out when the calculated surface temperature of the rolling stock surface 29 when exiting the effective area 31, 32, 33 with the current value of the running index i falls below the minimum value T min , that is, when the current setting value w i is too high for this value of the running index i .
  • this setting value w i is therefore assigned a new (smaller) value, for example using a Newton method in such a way that the surface temperature calculated for the new setting value w i is approximated to the minimum value T min .
  • the seventh sub-step 207 and the eighth sub-step 208 are then carried out again, i.e.
  • the surface temperature at the exit from the effective range 31, 32, 33 with the current value of the running index i is calculated for the new setting value w i . This is repeated until the calculated surface temperature agrees with the minimum value T min or slightly exceeds it, for example by a maximum of 10 ° C, preferably by a maximum of 5 ° C.
  • the tenth sub-step 210 is then carried out.
  • the value of the residual coolant quantity W R is changed by subtracting from the previous value the coolant quantity W i corresponding to the setting value w i, which is supplied by the cooling device 21, 22, 23 with the current value of the running index i to the surface part of the rolling stock surface 29 belonging to the rolling stock section would be output.
  • the eleventh sub-step 211 it is checked whether the current value of the running index i has reached the final value n , that is, whether the simulated cooling section run has ended. If this is not the case, a twelfth sub-step 212 is carried out. Otherwise, a thirteenth sub-step 213 is carried out.
  • the value of the running index i is incremented.
  • the fourth sub-step 204 is then carried out for the new value of the running index i .
  • an average temperature of the rolled stock section is determined after the simulated passage through the cooling section, that is, after the simulated passage through all effective areas 31, 32, 33. calculated.
  • a fourteenth sub-step 214 is carried out.
  • the fourteenth sub-step 214 it is checked whether the average temperature calculated in the previous execution of the thirteenth sub-step 213 T n out with sufficient accuracy with the target average temperature T S of the rolled stock section after the cooling section passes.
  • a sufficiently precise match is understood to mean, for example, a match up to an absolute or relative deviation, the amount of which does not exceed a predetermined tolerance value.
  • a fifteenth sub-step 215 is carried out after the fourteenth sub-step 214. Otherwise, after the fourteenth sub-step 214, a sixteenth sub-step 216 is carried out.
  • the fifteenth sub-step 215 is therefore carried out when the calculated average temperature T n out is not sufficiently accurate to the target average temperature after the simulated cooling section run T S matches. If the calculated average temperature T n out the target average temperature T S exceeds, this indicates that the total amount of coolant W used as the basis for the simulated cooling section run was too small. If the calculated average temperature T n out the target average temperature T If the value falls below S , this indicates that the total amount of coolant W used as the basis for the simulated cooling section run was too large. Therefore, in the fifteenth sub-step 215, the value of the total amount of coolant W is changed, for example by an amount that is dependent on the deviation of the calculated average temperature T n out of the target average temperature T S depends. This allows the calculated average temperature T n out after the next simulated cooling section run of the target average temperature T S can be approximated. The adjustment of the total amount of coolant W can be improved in later simulated cooling section runs, for example using a Newton method.
  • the third sub-step 203 is carried out with the new value of the total amount of coolant W , that is to say a further simulation of the cooling section run of the rolling stock section is started with the changed value of the total amount of coolant W.
  • the maximum value W max is a maximum amount of coolant that can be transferred from all cooling devices 21, 22, 23 together during the cooling section passage (at the transport speed specified for it) of the rolling stock section Part of the rolling stock surface 29 belonging to the rolling stock section can be output.
  • the sixteenth sub-step 216 is carried out after the fourteenth sub-step 214 of this simulated cooling section run.
  • the second method step 200 is ended and the setting value w i of the coolant flow last determined in method step 200 is saved for each cooling device 21, 22, 23.
  • the coolant flow of the respective cooling device 21, 22, 23 is set to this setting value w i in the third method step 300.
  • FIG 4 shows a second exemplary embodiment of method step 200.
  • This exemplary embodiment differs from that based on Figure 3 described first exemplary embodiment only in a modification of the sub-step 206 and the omission of the sub-steps 208 and 209. Therefore, only the changes compared to the one based on Figure 3 described first embodiment described and commented.
  • w i V is the default value that was determined in the previous execution of sub-step 205 for the coolant flow of the cooling device 21, 22, 23 with the current value of the running index i .
  • T i in (0) is a value of the surface temperature of the surface of the rolling stock 29 when it enters the effective area 31, 32, 33 of this cooling device 21, 22, 23, which is derived from the temperature distribution T i in ( x ) taken in the previous execution of sub-step 204. is derived.
  • f i (T ) is a function that is zero for T ⁇ T min , one for T ⁇ T min + ⁇ T i res and increases strictly monotonically in the interval [ T min , T min + ⁇ T i res ].
  • ⁇ T i res is a reserve temperature difference that is specified in such a way that the surface temperature of the rolling stock surface 29 when leaving the effective range 31, 32, 33 of the cooling device 21, 22, 23 with the running index value i does not fall below the minimum value T min even if the surface temperature of the rolling stock surface 29 when entering this effective range 31, 32, 33 is greater than T min + ⁇ T i res is and the coolant flow output from the cooling device 21, 22, 23 with the running index value i onto the rolling stock surface 29 is maximum, that is to say it assumes the maximum value w i m ⁇ x specific for the cooling device 21, 22, 23.
  • ⁇ T i res is determined, for example, in a separate simulation of a cooling section pass of the rolling stock 15 or based on a mathematical model of the cooling section 19 as a function of a heating temperature of the heating furnace 3 and the transport speed of the rolling stock 15.
  • the reserve temperature difference ⁇ T i res can depend on the value of the running index i , that is to say that different reserve temperature differences can be specified for cooling devices 21, 22, 23 that are different from one another.
  • the second exemplary embodiment of method step 200 shown is simpler than that in Figure 3 shown first embodiment, because the sub-steps 208 and 209 and thus the potential iteration of the sub-steps 207 to 209 are omitted.
  • the second exemplary embodiment of method step 200 generally requires less computing effort than the first exemplary embodiment and therefore generally also requires a shorter computing time or a lower computing capacity.
  • the first exemplary embodiment of the method step 200 generally enables the rolling stock 15 to cool more quickly than the second exemplary embodiment, since the iteration of the sub-steps 207 to 209 enables a more precise adjustment of the setting values for the coolant flows of the cooling devices 21, 22, 23 to the minimum value T min .
  • one embodiment of the method according to the invention provides for the method steps 200 and 300 to be carried out successively for rolled stock sections of the rolled stock 15, which pass through the effective areas 31, 32, 33 of the cooling devices 21, 22, 23 one after the other.
  • the method step 200 is carried out, for example, for each rolled stock section according to one of the Figures 3 or 4 described exemplary embodiments carried out.
  • FIG 5 shows such a modification of the in Figure 3 shown embodiment.
  • a second running index j is used, which numbers the rolled stock sections.
  • an initial total amount of coolant W is received from coolant 35.
  • the value 1 is assigned to the second running index j as an initial value.
  • the sub-steps 203 to 214 are for the current value of the second running index j, that is, for the associated rolled stock section, like the sub-steps 203 to 214 of in Figure 3 shown embodiment executed.
  • the sub-step 203 is carried out for the new value of the second running index j , that is to say a simulation of the cooling section passage of the subsequent rolling stock section is started with a possibly changed total coolant quantity W.
  • a cooling section run is simulated exactly once for each rolling stock section and a total amount of coolant W , possibly adjusted in sub-step 215, is transferred to the simulation of the cooling section run of the subsequent rolling stock section.
  • the second method step 200 carried out for a rolled stock section is linked to the second method step 200 carried out for the subsequent rolled stock section.
  • the setting value w i of the coolant flow determined in this execution of the method step 200 for the respective value of the second running index j is stored for each cooling device 21, 22, 23.
  • the setting values w i stored for a value of the second running index j are not overwritten by the setting values w i determined for another value of the second running index j .
  • the repeated execution of the second method step 200 is ended when the second running index j reaches a final value. For example, after each execution of the second method step 200, it is checked whether the second Run index j has reached the final value, and substep 217 is only executed if this is not the case. Otherwise, the repeated execution of the second method step 200 is terminated. This is in Figure 5 not shown for clarity.
  • the third method step 300 can also be carried out separately for each rolled stock section and can be carried out independently of the other rolled stock sections.
  • the third method step 300 can already be carried out for a value k of the second running index, in which the coolant flow w i determined for this value k is created by means of the cooling devices 21, 22, 23 during the cooling section passage of the rolling stock section with the value k of the second running index the rolled stock section is output while the second method step 200 is carried out for values j of the second running index with j > k .
  • each cooling device 21, 22, 23 determines for each cooling device 21, 22, 23 in method step 300, depending on the transport speed or the transport speed progression over time, when the rolled stock section with the value k will be in the effective range 31, 32, 33 of the cooling device 21, 22, 23 . Taking into account the associated delay time, the cooling device 21, 22, 23 is then set such that it outputs the coolant flow w i determined for this value k exactly when the rolled stock section with the value k is in the effective range 31, 32, 33 of the cooling device 21, 22, 23 is located.
  • FIG 6 shows one to Figure 5 analogous modification of the in Figure 4 shown embodiment of the second method step 200.
  • the exemplary embodiments of the method according to the invention described above can also be carried out if the rolling stock is transported through the cooling section 19 several times.
  • the finishing train 9 can have a reversing stand through which the rolling stock 15 is guided several times in an alternating direction. Then the rolling stock 15 can also be transported several times in an alternating direction through the cooling section 19.
  • method steps 200 and 300 are carried out for each cooling section run.
  • a second measuring point is provided behind the cooling section 19, that is between the intermediate roller table 7 and the finishing train 9, at which a surface temperature of a surface part of the rolling stock surface 29 belonging to a rolling stock section is recorded before the rolling stock section is removed from the second measuring point Cooling section 19 passes through.
  • an original initial enthalpy distribution and/or original initial temperature distribution is determined as a function of the surface temperature of the surface part of the rolling stock surface 29 belonging to the rolling stock section, which is detected at the second measuring point.
  • the intermediate roller table 7 can have several cooling sections 19, or a cooling section 19 can have several partial cooling sections, for which the method according to the invention is carried out separately (each partial cooling section is then understood as a cooling section in the sense of the invention).
  • a cooling section is then understood as a cooling section in the sense of the invention.
  • the method according to the invention can be used separately for a first partial cooling section or cooling section, which is arranged between the first measuring point 39 and the intermediate measuring point is, and for a second partial cooling section or cooling section, which is arranged between the intermediate measuring point and the finishing train 9.
  • An original initial temperature distribution and/or an original initial enthalpy distribution for the second partial cooling section or cooling section is then determined as a function of the surface temperature of the rolling stock 15 detected at the intermediate measuring point.
  • the procedure can be carried out accordingly if several intermediate measuring points are arranged in the intermediate roller table 7, at each of which a surface temperature of the rolling stock 15 is recorded.
  • FIG 7 shows examples of temperature curves of temperatures T K , T S and resulting when using the method according to the invention T in a rolling stock section before and during a cooling section pass through a cooling section 19 as a function of the time t.
  • T K denotes a core temperature in the rolling stock section in the middle between a top and a bottom surface of the rolling stock 15.
  • T S denotes a surface temperature on the rolling stock surface 29 of the rolling stock 15.
  • T denotes an average temperature of the rolled stock section, which is defined analogously to equation (8).
  • the rolled stock section enters the cooling section 19 approximately 3 s after a time zero point. Due to the cooling effect of cooling devices 21, 22, 23 at the beginning of the cooling section 19, the surface temperature T S drops quickly from approximately 1070 ° C when the rolled stock section enters the cooling section 19 to the minimum value T min , which in this case is approximately 800 ° C and of the surface temperature T S is reached about 5.5 s after the time zero point. In the further course of the cooling section passage of the rolling stock section, its surface temperature T S is kept relatively constant at the minimum value T min according to the invention by cooling devices 21, 22, 23 of the cooling section 19 until the rolling stock section emerges from the cooling section 19 approximately 7.7 s after the time zero point.
  • the surface temperature T S then rises again due to the lack of cooling as heat comes from inside the Rolling stock section is guided to the rolling stock surface 29.
  • the core temperature T K of the rolled stock section remains relatively constant at approximately 1100°C during the cooling section passage.
  • the average temperature T of the rolled stock section falls from approximately 1090°C to approximately 1020°C during the cooling section passage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Control Of Metal Rolling (AREA)
  • Metal Rolling (AREA)

Claims (14)

  1. Procédé pour le refroidissement d'un produit laminé (15) dans une ligne de refroidissement (19) disposée en amont d'un train finisseur (9) d'un laminoir à chaud (1), à travers laquelle le produit laminé (15) est transporté le long d'un trajet de ligne de refroidissement une fois avec une vitesse de transport prédéfinie ou plusieurs fois en sens alterné avec respectivement une vitesse de transport prédéfinie, et laquelle ligne de refroidissement comprend un dispositif de refroidissement (21, 22, 23) avec une zone d'action (31, 32, 33) ou plusieurs dispositifs de refroidissement (21, 22, 23) disposés les uns derrière les autres le long du trajet de ligne de refroidissement avec respectivement une zone d'action (31, 32, 33), dans lequel les zones d'action (31, 32, 33) sont immédiatement contiguës à des dispositifs de refroidissement (21, 22, 23) voisins les uns des autres et un flux de réfrigérant d'un réfrigérant (35) peut être délivré par chaque dispositif de refroidissement (21, 22, 23) dans sa zone d'action (31, 32, 33) sur une surface (29) de produit laminé du produit laminé (15), lequel flux de réfrigérant est réglable entre la valeur zéro et une valeur maximale spécifique au dispositif de refroidissement (21, 22, 23),
    caractérisé en ce que
    - une valeur minimale pour une température de surface (TS) de la surface (29) de produit laminé est reçue pendant le transport du produit laminé (15) à travers la ligne de refroidissement (19),
    - pour le respect de la valeur minimale, une valeur de réglage pour le flux de réfrigérant est associée à chaque dispositif de refroidissement (21, 22, 23) pour chaque traversée de ligne de refroidissement à travers la ligne de refroidissement (19) et
    - un flux de réfrigérant est délivré sur la surface (29) de produit laminé au moyen de chaque dispositif de refroidissement (21, 22, 23) lors de chaque traversée de ligne de refroidissement, lequel flux de réfrigérant est réglé à la valeur de réglage associée au dispositif de refroidissement (21, 22, 23) respectif pour la traversée de ligne de refroidissement,
    - dans lequel, pour la détermination des valeurs de réglage pour une traversée de ligne de refroidissement au moins une fois pour une section de produit laminé du produit laminé (15), la traversée de ligne de refroidissement à travers la ligne de refroidissement (19) est simulée avec la vitesse de transport prédéfinie, dans lequel, lors de chaque traversée de ligne de refroidissement simulée successive pour chaque dispositif de refroidissement (21, 22, 23),
    -- une valeur de consigne pour un flux de réfrigérant devant être délivré par le dispositif de refroidissement (21, 22, 23) est reçue ou déterminée au plus tard immédiatement avant l'entrée de la section de produit laminé dans la zone d'action (31, 32, 33) du dispositif de refroidissement (21, 22, 23),
    -- sur la base d'une distribution d'enthalpie de départ et/ou d'une distribution de température de départ dans la section de produit laminé lors de l'entrée dans la zone d'action (31, 32, 33) du dispositif de refroidissement (21, 22, 23), une distribution d'enthalpie et/ou une distribution de température dans la section de produit laminé lors de la sortie de la zone d'action (31, 32, 33) du dispositif de refroidissement (21, 22, 23) est calculée à l'aide d'un modèle physique,
    -- la valeur de réglage est déterminée de telle sorte qu'elle quasi-maximise dans les conditions secondaires le flux de réfrigérant devant être délivré par le dispositif de refroidissement (21, 22, 23) sur la surface (29) de produit laminé, que la valeur de réglage ne dépasse pas la valeur de consigne et qu'une température de surface de la surface (29) de produit laminé lors de la sortie de la zone d'action (31, 32, 33) du dispositif de refroidissement (21, 22, 23), déduite de la distribution d'enthalpie de départ et/ou de la distribution de température de départ ou déduite de la distribution d'enthalpie calculée et/ou de la distribution de température calculée de la section de produit laminé ne passe pas au-dessous de la valeur minimale,
    -- dans lequel, pour respectivement deux zones d'action (31, 32, 33) traversées immédiatement l'une après l'autre lors de la traversée de ligne de refroidissement par la section de produit laminé, la distribution d'enthalpie calculée et/ou la distribution de température calculée pour la zone d'action (31, 32, 33) traversée en premier lors de la sortie de la zone d'action (31, 32, 33) traversée en premier est associée à l'autre zone d'action (31, 32, 33) en tant que distribution d'enthalpie de départ et/ou distribution de température de départ lors de l'entrée dans l'autre zone d'action (31, 32, 33), et
    -- dans lequel, pour le premier dispositif de refroidissement (21, 22, 23) qui est traversé par la section de produit laminé lors de la traversée de ligne de refroidissement, une distribution d'enthalpie de départ originale et/ou une distribution de température de départ originale est reçue.
  2. Procédé selon la revendication 1, dans lequel la valeur de réglage est associée à au moins un dispositif de refroidissement (21, 22, 23) lors de chaque traversée de ligne de refroidissement simulée d'une section de produit laminé selon wi = fi (Ti in (0)) wi v , dans lequel wi v est la valeur de consigne pour le flux de réfrigérant devant être délivré par le dispositif de refroidissement (21, 22, 23), Ti in (0) est une température de surface de la surface (29) de produit laminé, déduite de la distribution d'enthalpie de départ et/ou de la distribution de température de départ lors de l'entrée dans la zone d'action (31, 32, 33) du dispositif de refroidissement (21, 22, 23), Tmin est la valeur minimale pour la température de surface (TS) de la surface (29) de produit laminé, ΔTi res est une différence de température de réserve prédéfinissable et fi (T) est une fonction qui est égale à zéro pour TTmin , qui est égale à un pour TTmin + ΔTi res et qui augmente de manière rigoureusement monotone dans l'intervalle [Tmin , Tmin + ΔTi res ].
  3. Procédé selon la revendication 1, dans lequel la valeur de réglage pour au moins un dispositif de refroidissement (21, 22, 23) est déterminée lors de chaque traversée de ligne de refroidissement simulée par le fait que la température de surface de la surface (29) de produit laminé lors de la sortie de la zone d'action (31, 32, 33) du dispositif de refroidissement (21, 22, 23) est calculée tout d'abord pour la valeur de consigne pour le flux de réfrigérant du dispositif de refroidissement (21, 22, 23) et la valeur de réglage est assimilée à la valeur de consigne dans le cas où la température de surface calculée pour la valeur de consigne ne passe pas au-dessous de la valeur minimale, et dans le cas contraire le calcul de la température de surface lors de la sortie de la zone d'action (31, 32, 33) est itéré pour au moins un flux de réfrigérant qui est inférieur à la valeur de consigne, afin de déterminer une valeur de réglage du flux de réfrigérant pour laquelle la température de surface calculée lors de la sortie de la zone d'action (31, 32, 33) correspond avec une précision suffisante à la valeur minimale.
  4. Procédé selon l'une des revendications précédentes, dans lequel pour chaque dispositif de refroidissement (21, 22, 23), la valeur maximale du flux de réfrigérant spécifique au dispositif de refroidissement (21, 22, 23) respectif est reçue en tant que valeur de consigne pour le flux de réfrigérant lors de chaque traversée de ligne de refroidissement simulée.
  5. Procédé selon l'une des revendications 1 à 3, dans lequel pour une simulation d'une traversée de ligne de refroidissement d'une section de produit laminé, est déterminée une quantité totale de réfrigérant du réfrigérant (35) qui doit être délivrée lors de la traversée de ligne de refroidissement au plus au total sur la partie de surface de la surface (29) de produit laminé appartenant à la section de produit laminé, et les valeurs de consigne pour les flux de réfrigérant de la traversée de ligne de refroidissement simulée sont déterminées en fonction de la quantité totale de réfrigérant et de la vitesse de transport prédéfinie pour la traversée de ligne de refroidissement.
  6. Procédé selon la revendication 5, dans lequel une température moyenne théorique du produit laminé (15) est reçue après une traversée de ligne de refroidissement, lors de chaque simulation d'une traversée de ligne de refroidissement d'une section de produit laminé, une température moyenne de la section de produit laminé à la fin de la traversée de ligne de refroidissement est calculée et, lorsque la température moyenne calculée ne correspond pas de manière suffisamment précise à la température moyenne théorique, la quantité totale de réfrigérant est modifiée pour une simulation suivante d'une traversée de ligne de refroidissement d'une section de produit laminé, afin d'harmoniser la température moyenne calculée avec la température moyenne théorique.
  7. Procédé selon la revendication 5 ou 6, dans lequel, lors d'une simulation d'une traversée de ligne de refroidissement d'une section de produit laminé, à chaque dispositif de refroidissement (21, 22, 23) est associée une quantité résiduelle de réfrigérant, dans lequel au premier dispositif de refroidissement (21, 22, 23) de la traversée de ligne de refroidissement est associée la quantité totale de réfrigérant en tant que quantité résiduelle de réfrigérant et à chaque autre dispositif de refroidissement (21, 22, 23) est associée en tant que quantité résiduelle de réfrigérant la quantité résiduelle de réfrigérant du dispositif de refroidissement (21, 22, 23) précédent de la traversée de ligne de refroidissement, déduction faite de la quantité de réfrigérant qui serait délivrée sur la partie de surface de la surface (29) de produit laminé appartenant à la section de produit laminé par le dispositif de refroidissement (21, 22, 23) précédent selon la valeur de réglage du flux de réfrigérant établie pour ce dispositif de refroidissement, et la valeur de consigne du flux de réfrigérant d'un dispositif de refroidissement (21, 22, 23) est déterminée selon wi v = wi max min (1, WR /Wi max ), dans lequel wi max est la valeur maximale du flux de réfrigérant du dispositif de refroidissement (21, 22, 23), WR est la quantité résiduelle de réfrigérant associée au dispositif de refroidissement (21, 22, 23) et Wi max est une quantité de réfrigérant maximale qui peut être délivrée lors de la traversée de ligne de refroidissement sur la partie de surface de la surface (29) de produit laminé appartenant à la section de produit laminé par le dispositif de refroidissement (21, 22, 23).
  8. Procédé selon la revendication 5 ou 6, dans lequel, lorsqu'est déterminée, lors de la simulation de la traversée de ligne de refroidissement de la section de produit laminé pour un dispositif de refroidissement (21, 22, 23), une valeur de réglage qui est inférieure à une valeur de consigne reçue pour le dispositif de refroidissement (21, 22, 23), et lorsqu'il y a au moins un dispositif de refroidissement (21, 22, 23) suivant qui est atteint plus tard lors de la traversée de ligne de refroidissement et pour lequel une valeur de consigne reçue est inférieure à la valeur maximale du flux de réfrigérant de ce dispositif de refroidissement (21, 22, 23), la valeur de consigne est relevée pour au moins un tel dispositif de refroidissement (21, 22, 23) suivant, afin d'adapter la quantité de réfrigérant devant être délivrée au total lors de la traversée de ligne de refroidissement sur la partie de surface de la surface (29) de produit laminé appartenant à la section de produit laminé à la quantité totale de réfrigérant déterminée pour la traversée de ligne de refroidissement.
  9. Procédé selon l'une des revendications précédentes, dans lequel pour le calcul de la distribution d'enthalpie et/ou la distribution de température dans la section de produit laminé lors de la sortie de la zone d'action (31, 32, 33) d'un dispositif de refroidissement (21, 22, 23) lors d'une simulation d'une traversée de ligne de refroidissement de la section de produit laminé, une équation de conduction thermique unidimensionnelle qui décrit la distribution d'enthalpie et/ou la distribution de température dans la section de produit laminé le long d'un sens de l'épaisseur de produit laminé est résolue.
  10. Procédé selon la revendication 9, dans lequel pour la résolution de l'équation de conduction thermique, sont prises en compte des conditions aux limites qui paramètrent un refroidissement de la section de produit laminé par rayonnement thermique, du réfrigérant délivré sur la surface (29) de produit laminé, de la chaleur dissipée par la section de produit laminé vers l'air ambiant et de la chaleur dissipée par la section de produit laminé vers les rouleaux de transport transportant le produit laminé (15).
  11. Procédé selon l'une des revendications précédentes, dans lequel en au moins un point de mesure (39) au niveau duquel passe une section de produit laminé avant une traversée de ligne de refroidissement, la température de surface (TS) d'une partie de surface de la surface (29) de produit laminé appartenant à la section de produit laminé est mesurée et la distribution d'enthalpie de départ originale et/ou la distribution de température de départ originale sont déterminées pour une simulation d'une traversée de ligne de refroidissement de la section de produit laminé en fonction de l'au moins une température de surface (TS) mesurée.
  12. Procédé selon l'une des revendications précédentes, lequel est mis en œuvre pour une surface supérieure (29) de produit laminé ou une surface inférieure (29) de produit laminé ou séparément pour la surface supérieure (29) de produit laminé et la surface inférieure (29) de produit laminé du produit laminé (15).
  13. Ligne de refroidissement (19) pour le refroidissement d'un produit laminé (15) en amont d'un train finisseur (9) d'un laminoir à chaud (1), la ligne de refroidissement (19) comprenant
    - un dispositif de refroidissement (21, 22, 23) ou plusieurs dispositifs de refroidissement (21, 22, 23) disposés les uns derrière les autres le long d'un trajet de ligne de refroidissement à travers la ligne de refroidissement (19), par lesquels respectivement un flux de réfrigérant d'un réfrigérant (35) peut être délivré sur une surface (29) de produit laminé du produit laminé (15), lequel flux de réfrigérant est réglable entre la valeur zéro et une valeur maximale spécifique au dispositif de refroidissement (21, 22, 23),
    - plusieurs rouleaux de transport (25), lesquels sont conçus pour transporter le produit laminé (15) le long du trajet de ligne de refroidissement à travers la ligne de refroidissement (19),
    caractérisée en ce que la ligne de refroidissement (19)
    - comprend une unité de commande (27), laquelle est conçue pour faire fonctionner la ligne de refroidissement (19) selon le procédé selon l'une des revendications précédentes.
  14. Ligne de refroidissement (19) selon la revendication 13 avec plusieurs dispositifs de refroidissement (21, 22, 23), lesquels sont disposés le long du trajet de ligne de refroidissement en correspondance avec leurs valeurs maximales des flux de réfrigérant pouvant être délivrés de telle sorte que les valeurs maximales diminuent de manière monotone jusqu'au train finisseur (9).
EP21178033.3A 2021-06-07 2021-06-07 Refroidissement d'un produit laminé en amont d'un train finisseur d'un laminoir à chaud Active EP4101553B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21178033.3A EP4101553B1 (fr) 2021-06-07 2021-06-07 Refroidissement d'un produit laminé en amont d'un train finisseur d'un laminoir à chaud
CN202280041056.4A CN117460587A (zh) 2021-06-07 2022-05-20 在热轧装备的精轧机列之前对轧件的冷却
PCT/EP2022/063733 WO2022258350A1 (fr) 2021-06-07 2022-05-20 Refroidissement d'un produit laminé en amont d'un train finisseur d'un laminoir à chaud

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP21178033.3A EP4101553B1 (fr) 2021-06-07 2021-06-07 Refroidissement d'un produit laminé en amont d'un train finisseur d'un laminoir à chaud

Publications (3)

Publication Number Publication Date
EP4101553A1 EP4101553A1 (fr) 2022-12-14
EP4101553C0 EP4101553C0 (fr) 2024-01-31
EP4101553B1 true EP4101553B1 (fr) 2024-01-31

Family

ID=76305820

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21178033.3A Active EP4101553B1 (fr) 2021-06-07 2021-06-07 Refroidissement d'un produit laminé en amont d'un train finisseur d'un laminoir à chaud

Country Status (3)

Country Link
EP (1) EP4101553B1 (fr)
CN (1) CN117460587A (fr)
WO (1) WO2022258350A1 (fr)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2291867T3 (es) * 2004-04-06 2008-03-01 Siemens Aktiengesellschaft Procedimiento para la fabricacion de un metal.
EP2873469A1 (fr) 2013-11-18 2015-05-20 Siemens Aktiengesellschaft Procédé de fonctionnement pour une voie de refroidissement
DE102019216261A1 (de) * 2019-07-02 2021-01-07 Sms Group Gmbh Verfahren zur Steuerung einer Kühleinrichtung in einer Walzstraße

Also Published As

Publication number Publication date
EP4101553A1 (fr) 2022-12-14
CN117460587A (zh) 2024-01-26
EP4101553C0 (fr) 2024-01-31
WO2022258350A1 (fr) 2022-12-15

Similar Documents

Publication Publication Date Title
DE19963186B4 (de) Verfahren zur Steuerung und/oder Regelung der Kühlstrecke einer Warmbandstrasse zum Walzen von Metallband und zugehörige Vorrichtung
EP2076824B1 (fr) Procédé de commande et/ou régulation d'un processus industriel
EP3430175B1 (fr) Procédé de laminage et/ou de traitement thermique d'une bande métallique
DE10156008A1 (de) Steuerverfahren für eine einer Kühlstrecke vorgeordnete Fertigstraße zum Walzen von Metall-Warmband
EP2094410A1 (fr) Procede de suivi de l'etat physique d'une tole a chaud ou d'un feuillard a chaud dans le cadre de la commande d'un train de lamingae grossier de tole uitlise pour le traitement d'une tole a chaud ou d'un feuillard a chaud
DE4040360A1 (de) Regelung eines mehrgeruestigen warm- und/oder kaltband-walzwerks
EP1596999B2 (fr) Procede de regulation de la temperature d'une bande metallique, en particulier dans un parcours de refroidissement
EP4101553B1 (fr) Refroidissement d'un produit laminé en amont d'un train finisseur d'un laminoir à chaud
EP3642372B1 (fr) Procédé permettant de faire fonctionner un four de recuit
EP4061552B1 (fr) Procédé, dipositif de contrôle et laminoir pour le réglage d'une température de sortie d'une bande métallique quittant un train de laminage
EP3494239B1 (fr) Procédé de fonctionnement d'un four de recuit pour recuire une bande métallique
DE3943093A1 (de) Verfahren zur steuerung der ebenflaechigkeit eines in einem walzwerk hergestellten bandes und vorrichtung zu seiner durchfuehrung
EP3787811B1 (fr) Procédé pour faire fonctionner une zone de refroidissement et installation pour la fabrication de produits laminés
DE60113132T2 (de) Blechbreitenregelung beim warmbandwalzen
DE102019217839A1 (de) Verfahren zum Betreiben einer Anlage der Hüttenindustrie
EP4122615B1 (fr) Procédé et dispositif de fabrication d'une bande métallique
DE102019203088A1 (de) Verfahren zur Herstellung eines metallischen Bandes oder Blechs
DE102022207656A1 (de) Verfahren zur Regelung einer Walzstraße sowie Walzstraße
WO2022106707A1 (fr) Procédé de correction des propriétés d'une bande laminée à chaud ayant une composition chimique spécifique dans un laminoir à chaud
DE10321792A1 (de) Verfahren zur Regelung der Temperatur eines Metallbandes, insbesondere in einer Kühlstrecke
DE102021207943A1 (de) Verfahren zum Herstellen eines metallischen Bandes
WO2023006430A1 (fr) Procédé de détermination des propriétés mécaniques d'un matériau laminé à l'aide d'un modèle hybride

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230614

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231004

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021002542

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20240131

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240206