EP2155922A1 - Procédé de production de couches d'oxyde de titane - Google Patents

Procédé de production de couches d'oxyde de titane

Info

Publication number
EP2155922A1
EP2155922A1 EP08758909A EP08758909A EP2155922A1 EP 2155922 A1 EP2155922 A1 EP 2155922A1 EP 08758909 A EP08758909 A EP 08758909A EP 08758909 A EP08758909 A EP 08758909A EP 2155922 A1 EP2155922 A1 EP 2155922A1
Authority
EP
European Patent Office
Prior art keywords
titanium oxide
substrate
less
glass
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08758909A
Other languages
German (de)
English (en)
Inventor
Thomas Neubert
Frank Neumann
Michael Vergöhl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP2155922A1 publication Critical patent/EP2155922A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation

Definitions

  • the present invention relates to a process for producing titanium oxide layers and to titanium oxide layers produced by such a process.
  • the titanium oxide coatings produced according to the invention are transparent and have a very high photocatalytic activity.
  • Photocatalysis is a chemical reaction triggered by light on special (photocatalytic) surfaces.
  • the rate of such a chemical reaction depends very much on the nature of the material of the surface (for example on the chemical composition, the roughness and the crystalline structures) and on the wavelength and the intensity of the incident light.
  • the most important photocatalytic material is titanium dioxide which is in the anatase crystal phase (other known photocatalytic materials are zinc oxide, tin oxide, tungsten oxide, K 4 NbO 7 and SrTiO 3 ).
  • UV light or short-wave visible light is usually used.
  • Photocatalysis makes it possible to decompose or oxidize almost all organic materials. Bonded with the photocatalytic effect is often a strong hydrophilization of the surface (especially when using titanium dioxide). The contact angle for water drops to below 10 °, which can be exploited for anti-fog coatings, for example.
  • self-cleaning glasses for example architectural or building glazings or vehicle glazings
  • self-cleaning and hydrophilic optical components such as spectacles, mirrors, lenses, optical grids, antibacterial surfaces, anti-fog coatings (such as, for example, in spectacles or motor vehicles Mirrors) for the photocatalytic purification of air (for example, for the reduction of nitrogen oxides or smoke) and / or water (here, for example, the degradation of toxic, chemical, organic impurities in sewage treatment plants), superhydrophilic surfaces or the decomposition of water for hydrogen production.
  • superhydrophilicity here means that the water contact angle is less than 10 °.
  • the object of the present invention is to provide a process for the preparation of titanium oxide coatings which have a very high photocatalytic activity and which can be carried out using commercial, known vacuum coating systems. It is also an object of the invention to provide corresponding titanium oxide coatings.
  • the present invention will be described with reference to an embodiment.
  • the method according to the invention is designed such that it can be carried out in a vacuum coating system known to the person skilled in the art (in particular, for example, a device for electron beam vapor deposition).
  • a vacuum coating system known to the person skilled in the art (in particular, for example, a device for electron beam vapor deposition).
  • the corresponding, underlying device is thus not described in detail in the present invention, only the process parameters for carrying out the method according to the invention in such a device are shown.
  • the process according to the invention which is described in more detail below and the titanium oxide layers obtained therefrom have the following advantages over the titanium oxide coatings known from the prior art:
  • the measured activities of the coatings according to the invention are up to a factor of 100 higher than the activities of comparable (ie same thickness and same composition exhibiting) titanium oxide layers of the prior art, which by means of the previously known Way controlled vapor deposition process can be generated.
  • PVD vacuum deposition devices
  • the titanium oxide layers produced according to the invention have high transparency in the visible and in the near infrared spectral range and are thus also suitable for optical applications (for example optical filters, lenses, mirrors, viewing windows, instrument covers).
  • the layers according to the invention have a high hardness and thus offer a high mechanical abrasion and scratch resistance.
  • TiO x titanium oxide
  • x ⁇ 2 from a TiO x -containing source which preferably comprises Ti 3 O 5
  • a layer thickness of a few nanometers to about 1000 nm preferably from about 5 to 500 nm and particularly preferably from 100 nm to 150 nm.
  • Deposition takes place here on temperature-resistant or temperature-stable substrates (for example glass, ceramics, metal or composites thereof) by means of the above-described physical vapor deposition processes, in particular here in addition to electron beam evaporation by means of sputtering deposition, by means of other vapor deposition techniques or by means of hollow cathode processes.
  • temperature-resistant or temperature-stable substrates for example glass, ceramics, metal or composites thereof
  • Diffusion barrier or barrier layer in particular SiO 2 , Al 2 O 3 , SiN x or AlN can be deposited. Particular preference is given to depositing silicon dioxide SiO 2 .
  • a barrier layer having a mean refractive index which is between that of the TiO 2 and that of the substrate an improvement in color neutrality can also be achieved. This is possible, for example, by means of an Al 2 O 3 intermediate layer (layer between substrate and applied titanium oxide coating) or else by intermediate layers consisting of mixtures which have a refractive index of between 1.7 and 2.0.
  • the deposition of the titanium oxide layer takes place at a low coating rate of preferably ⁇ 10 nm / sec (particularly preferably ⁇ 2 nm / sec or even ⁇ 0.5 nm / s).
  • the power control for the evaporation source can be controlled via in situ measurements of the coating rate by means of a quartz oscillator.
  • the coating rate control can be carried out with a deposition controller by means of
  • the substrate is preferably maintained at a low temperature, ie at a temperature of ⁇ about 400 0 C and preferably of ⁇ about 100 0 C, so that amorphous TiO x layers are produced.
  • an oxygen-containing low-pressure atmosphere preferably at pressures of ⁇ 10 "3 mbar, particularly preferably at a value of between 10" 4 mbar and 5 x 10 "4 mbar coated.
  • the layer system preferably consists of a layer stack comprising at least one high-index (for example TiO 2 -containing) and at least one low-index layer component (which comprises, for example, SiO 2 ).
  • the exact required layer thicknesses of the individual layers can be determined in each case by simulation calculations, depending on the intended use.
  • the number of individual layers used in the layer system has an influence on the quality of the antireflection system (the more individual layers applied to each other, the better the quality the antireflective system). In practice, four single layers are already sufficient for simple antireflection coating systems.
  • alternately high refractive and low refractive layers are arranged on top of each other (ie, one high refractive layer is followed by one low refractive, then another high refractive index, etc.).
  • an approximately 10 nm thick titanium oxide layer is advantageously deposited as the uppermost (ie substrate-distant) layer.
  • co-evaporated organic material is preferably organic
  • Color pigments e.g., phthalocyanines, azo dyes, and / or perylenes.
  • an inorganic material can also be co-evaporated in order to increase the activability in the case of long-wave excitation; this may be, for example, V, W, Co, Bi, Nb, Mn.
  • Such co-evaporation from a second (or third) source can thus be carried out in particular in order to produce a high activatability with long-wave excitation in a titanium oxide layer deposited according to the invention.
  • a heat treatment of the coated component on an oxygen-containing at least one atmosphere is advantageously carried out at an almost constant temperature, and at temperatures between 300 and 800 0 C, preferably between 500 and 700 0 C, particularly preferably at 600 0C and at atmospheric pressure.
  • the preferred oxygen content of the oxygen-containing atmosphere is between 10 and 30% by volume, more preferably 27% by volume. It can also be heat treated in air. The heat treatment takes place here over at least 1/2 h, advantageously over about 1 h.
  • FIG. 1 shows this in the case of an X-ray diffraction according to the Bragg equation
  • is the wavelength of the x-radiation radiated onto the titanium oxide layer produced according to the invention
  • d is the spacing of the lattice planes of the crystallites
  • is the angle at which the radiation occurs at the network level
  • n is an integer.
  • FIG. 1 shows the angle 20 on the abscissa and the reflected x-ray intensity on the ordinate.
  • the individual curves shown show the corresponding diffraction intensity as a function of a one-hour heat treatment at different temperatures (the main maxima here correspond to the 101 and 112 nets).
  • the X-ray diffractograms shown were determined for heat-treated TiO 2 layers on glass.
  • FIG. 2 shows, for the above-described example according to FIG. 1, the crystallite size D (in nm), which increases with increasing temperature of the heat treatment.
  • FIG. 3 shows, for the example according to FIGS. 1 and 2, the measured photocatalytic activity after the heat treatment likewise as a function of the treatment temperature (heat treatment for one hour, data on the abscissa in 0 C).
  • the measured photocatalytic activity increases with increasing crystallite size or with increasing temperature (hereby increases the crystallite size, see Figure 2) initially steep, but then falls again for temperatures above 700 0 C strongly from.
  • the treatment temperature of the heat treatment which is about 600 ° C. in the example described here.
  • the source material Ti 3 O 5 was evaporated by means of electron beam evaporation (substrate material: quartz glass). The deposition rate was 0.2 nm / sec at a distance of source and substrate of 55 cm and an oxygen partial pressure of 2 * 10 "4 mbar.
  • the deposited film thickness was 300 nm.
  • Density of the layers are those at the optimum temperature. temperature (here about 600 0 C) heat-treated layers porous and thus have a large surface, which is available for photocatalytic reactions. This, together with crystallinity, explains the good photocatalytic activity of the layers.
  • photocatalytic degradation measurements for example, photocatalytic degradation of stearic acid
  • FIG. 4 which shows various transparent photocatalytic TiO 2 2 compares coatings with respect to their photocatalytic activity, sample 4 (abscissa: sample number) corresponds to the coating according to the invention).
  • glasses or temperature-stable ceramics can be provided with a coating, in particular also an anti-reflection coating.
  • the glasses may in particular be spectacle lenses, window glass, glass of household objects (for example for instrument covers in herds or the like) or glass of lighting objects, in particular lamps or lights act.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Physical Vapour Deposition (AREA)
  • Catalysts (AREA)
  • Surface Treatment Of Glass (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

L'invention concerne un procédé de dépôt sous vide d'une couche d'oxyde de titane de la phase gazeuse sur un substrat, le dépôt étant réalisé à partir d'une source contenant de l'oxyde de titane à une vitesse inférieure à 25 nm/s dans une atmosphère contenant de l'oxygène et à une température de substrat inférieure à 500 °C et, après le dépôt, le substrat recouvert étant soumis à un traitement thermique d'au moins 30 min dans une atmosphère contenant de l'oxygène et à des températures allant de 200 °C à 1000 °C.
EP08758909A 2007-06-01 2008-05-30 Procédé de production de couches d'oxyde de titane Withdrawn EP2155922A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007025577A DE102007025577B4 (de) 2007-06-01 2007-06-01 Verfahren zur Herstellung von Titanoxidschichten mit hoher photokatalytischer Aktivität
PCT/EP2008/004339 WO2008145397A1 (fr) 2007-06-01 2008-05-30 Procédé de production de couches d'oxyde de titane

Publications (1)

Publication Number Publication Date
EP2155922A1 true EP2155922A1 (fr) 2010-02-24

Family

ID=39673653

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08758909A Withdrawn EP2155922A1 (fr) 2007-06-01 2008-05-30 Procédé de production de couches d'oxyde de titane

Country Status (5)

Country Link
US (1) US20100240531A1 (fr)
EP (1) EP2155922A1 (fr)
JP (1) JP2010529290A (fr)
DE (1) DE102007025577B4 (fr)
WO (1) WO2008145397A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI120832B (fi) * 2007-12-03 2010-03-31 Beneq Oy Menetelmä ohuen lasin lujuuden kasvattamiseksi
JP5648777B2 (ja) * 2008-12-08 2015-01-07 一般財団法人電力中央研究所 真空部品
KR20120029872A (ko) * 2010-09-17 2012-03-27 (주)엘지하우시스 표면 모폴로지 처리를 통한 코팅막의 친수성 개선 방법 및 이를 이용하여 제조한 초친수 유리 코팅층
JP5960385B2 (ja) * 2010-09-27 2016-08-02 ショット アクチエンゲゼルシャフトSchott AG 赤外線放射を反射する層を有する透明ガラス又はガラスセラミック製窓ガラス
DE102011112912A1 (de) 2011-09-08 2013-03-14 Thermo Electron Led Gmbh Laborabzug und insbesondere Sicherheitswerkbank mit photokatalytischer Beschichtung
JP6358914B2 (ja) * 2014-10-02 2018-07-18 吉田 國雄 薄膜の形成方法、多孔性薄膜及び光学素子
JP6513486B2 (ja) * 2015-05-27 2019-05-15 ジオマテック株式会社 防曇性反射防止膜、防曇性反射防止膜付きカバー基体及び防曇性反射防止膜の製造方法
US10666841B2 (en) 2015-11-11 2020-05-26 Boston Scientific Scimed, Inc. Visualization device and related systems and methods
JP7117081B2 (ja) * 2017-05-12 2022-08-12 Hoya株式会社 防塵レンズ及びその製造方法
DE202020107565U1 (de) 2020-12-28 2022-03-29 Mursall Active Coating Gmbh Masterbatch, Kunststoffelement, Glaselement und Glasschmelze mit photokatalytisch aktiven Partikeln
CN112811937B (zh) * 2020-12-30 2022-07-08 哈尔滨工业大学 一种氮化硅陶瓷基材表面高反射防激光膜层的制备方法
DE102021121459A1 (de) 2021-08-18 2023-02-23 Mursall Active Coating Gmbh Oberflächenvergütetes Glaselement und Verfahren zur Herstellung eines oberflächenvergüteten Glaselements

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123766A (ja) * 1982-12-16 1984-07-17 Fujitsu Ltd 金属膜形成方法
JPS62214336A (ja) * 1986-03-15 1987-09-21 Matsushita Electric Works Ltd エタノ−ルガスセンサの製法
EP1020304B1 (fr) * 1999-01-18 2006-04-05 Fuji Photo Film Co., Ltd. Procédé d'impression lithographique et imprimante l'utilisant
JP2001025666A (ja) * 1999-07-14 2001-01-30 Nippon Sheet Glass Co Ltd 積層体およびその製造方法
JP2001240960A (ja) * 1999-12-21 2001-09-04 Nippon Sheet Glass Co Ltd 光触媒膜が被覆された物品、その物品の製造方法及びその膜を被覆するために用いるスパッタリングターゲット
US6777091B2 (en) * 2000-03-22 2004-08-17 Nippon Sheet Glass Co., Ltd. Substrate with photocatalytic film and method for producing the same
JP2003063892A (ja) * 2001-08-29 2003-03-05 Japan Atom Energy Res Inst サファイア上に二酸化チタン粒子を周期配列させる方法
EP1449583A4 (fr) * 2001-11-29 2010-06-09 Shibaura Mechatronics Corp Procede et appareil de fabrication d'un element photocatalyseur
JP4417341B2 (ja) * 2005-07-27 2010-02-17 株式会社大阪チタニウムテクノロジーズ スパッタリングターゲット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008145397A1 *

Also Published As

Publication number Publication date
JP2010529290A (ja) 2010-08-26
DE102007025577B4 (de) 2011-08-25
DE102007025577A1 (de) 2008-12-04
US20100240531A1 (en) 2010-09-23
WO2008145397A1 (fr) 2008-12-04

Similar Documents

Publication Publication Date Title
DE102007025577B4 (de) Verfahren zur Herstellung von Titanoxidschichten mit hoher photokatalytischer Aktivität
DE60133012T2 (de) Verfahren zum erhalten von photoaktiven beschichtungen und/oder anataskristallphasen der titanoxide und daraus erzeugte artikel
EP0300579B1 (fr) Filtre optique d'interférence
DE60121007T3 (de) Substrat mit einer photokatalytischen beschichtung
DE69421746T2 (de) Filter mit Dünnfilm-Beschichtigung und Herstellungsverfahren
DE102014104798B4 (de) Harte anti-Reflex-Beschichtungen sowie deren Herstellung und Verwendung
DE102014104799B4 (de) Substrat mit einer Beschichtung zur Erhöhung der Kratzfestigkeit, Verfahren zu dessen Herstellung und dessen Verwendung
DE102008054139B4 (de) Glas- oder Glaskeramik-Substrat mit Kratzschutzbeschichtung, dessen Verwendung und Verfahren zu dessen Herstellung
DE102007009786B4 (de) Beschichtetes vorgespanntes Glas, Verfahren zu dessen Herstellung und dessen Verwendung
DE69125644T2 (de) Interferenz-Filter
DE69816273T2 (de) Anorganisches polymermaterial auf der basis von tantaloxyd , insbesondere mit erhöhtem brechungsindex , mechanisch verschleissfest , sein verfahren zur herstellung
DE102005020168A1 (de) Entspiegelungsschicht und Verfahren zu deren Aufbringung
EP0561289B1 (fr) Matériau pour la deposition par vapeur pour la fabrication des couches optiques à haute index de refraction
DE112009003493T5 (de) Grundierungsschichten, die eine verbesserte Deckschichtfunktionalität verleihen
DE102009035797A1 (de) Verfahren zur Herstellung von Beschichtungen mit Antireflexionseigenschaften
EP1291331A2 (fr) Revêtement avec hydrophilité photoinduite
EP0574785A1 (fr) Procédé de fabrication de matériau à vaporiser pour la production de films optique à indice de réfraction moyen
EP1219724B1 (fr) Matériau pour la deposition par vapeur des couches optiques à haute index de refraction
EP1597212A1 (fr) Matiere de vaporisation pour produire des couches optiques a haute refraction
EP1458654B1 (fr) Procede de production de zones localement fonctionnelles et articles produits a partir de celui-ci
EP0735386A2 (fr) Couches optiques avec indice de réfraction intermédiaire
EP1595002B1 (fr) Matiere de vaporisation pour produire des couches optiques a haute refraction
DE102005035673A1 (de) Photokatalytisches Schichtsystem mit hohem Schalthub
DE102005056110A1 (de) Temperaturstabiles Schichtsystem
DE102018123842A1 (de) Erzeugnis umfassend Substrat sowie Antireflexbeschichtung, Verfahren zur Herstellung eines solchen Erzeugnisses, seine Verwendung sowie Vorrichtung umfassend ein solches Erzeugnis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091218

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130731

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131211