CN112811937B - 一种氮化硅陶瓷基材表面高反射防激光膜层的制备方法 - Google Patents

一种氮化硅陶瓷基材表面高反射防激光膜层的制备方法 Download PDF

Info

Publication number
CN112811937B
CN112811937B CN202011628204.1A CN202011628204A CN112811937B CN 112811937 B CN112811937 B CN 112811937B CN 202011628204 A CN202011628204 A CN 202011628204A CN 112811937 B CN112811937 B CN 112811937B
Authority
CN
China
Prior art keywords
silicon nitride
nitride ceramic
slurry
film layer
ceramic substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011628204.1A
Other languages
English (en)
Other versions
CN112811937A (zh
Inventor
朱嘉琦
汪新智
程珙
宋志超
刘颖
白一杰
杨磊
胡梦玥
任建华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Beijing Institute of Remote Sensing Equipment
Original Assignee
Harbin Institute of Technology
Beijing Institute of Remote Sensing Equipment
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology, Beijing Institute of Remote Sensing Equipment filed Critical Harbin Institute of Technology
Priority to CN202011628204.1A priority Critical patent/CN112811937B/zh
Publication of CN112811937A publication Critical patent/CN112811937A/zh
Application granted granted Critical
Publication of CN112811937B publication Critical patent/CN112811937B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5041Titanium oxide or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

一种氮化硅陶瓷基材表面高反射防激光膜层的制备方法,它涉及一种高反射防激光膜层的制备方法。本发明要解决现有氮化硅材料对于激光吸收率较高,会产生大量的热量,造成结构破坏的问题。制备方法:一、氮化硅陶瓷表面预处理;二、氧化钛纳米浆料的配制;三、氧化钛涂层的制作。本发明用于氮化硅陶瓷基材表面高反射防激光膜层的制备。

Description

一种氮化硅陶瓷基材表面高反射防激光膜层的制备方法
技术领域
本发明涉及一种高反射防激光膜层的制备方法。
背景技术
随着航空航天技术的发展,要求透波材料在更宽的频带具有良好稳定的透波性能,更好的抗热冲击性能和更优秀的耐候性能,国内外对高温透波材料进行了深入的研究。其中氮化硅陶瓷料具有共价键力强,热膨胀系数低(2.35×10-6/K),抗氧化温度高等优势成为研究热点。近年来,随着大功率激光器的研制成功,激光武器发展迅速。激光武器会对材料造成热破坏、力学破坏和辐射破坏。普通的氮化硅材料对于激光吸收率较高,会产生大量的热量,造成结构破坏。
发明内容
本发明要解决现有氮化硅材料对于激光吸收率较高,会产生大量的热量,造成结构破坏的问题,而提供一种氮化硅陶瓷基材表面高反射防激光膜层的制备方法。
一种氮化硅陶瓷基材表面高反射防激光膜层的制备方法,它是按以下步骤完成的:
一、氮化硅陶瓷表面预处理:
将氮化硅陶瓷清洗并干燥,得到预处理后的氮化硅陶瓷;
二、氧化钛纳米浆料的配制:
将纳米二氧化钛、丙烯酸树脂及丙酮混合,在转速为500r/min~1000r/min的条件下,磁力搅拌1h~2h,得到浆料,在功率为500W~1000W的条件下,将浆料通过水浴超声振荡1h~2h,然后将振荡后的浆料置于细胞破碎仪中,在探头功率为1000W~1200W的条件下,探头超声振荡3min~5min,得到氧化钛纳米浆料;
所述的纳米二氧化钛与丙烯酸树脂的质量比为1:(100~200);所述的纳米二氧化钛与丙酮的质量比为1:(500~1000);
三、氧化钛涂层的制作:
①、在压强为8bar~10bar的条件下,通过高压冷喷涂方法,将氧化钛纳米浆料喷涂于预处理后的氮化硅陶瓷表面,喷涂时间为10s~30s,涂层厚度为1μm~2μm,喷涂结束后,置于常温真空箱中干燥8h~10h;
②、重复步骤三①4次~8次,得到表面设有高反射防激光膜层的氮化硅陶瓷基材。
本发明的有益效果是:
氮化硅陶瓷在微观上具有多孔结构,表面粗糙度较大,正常工艺工程难以实现在其表面均匀镀膜,并且膜层容易脱落。本发明通过添加丙烯酸树脂强化了二氧化钛纳米浆料的结合性能,一方面丙烯酸树脂具有保光保色性,耐水耐化学性等稳定的物理化学特性,并且具有良好的粘附性,另一方面纳米二氧化钛在可见光范围内具有较强的反射性,保证了本发明中使用的氧化钛纳米浆料能够实现激光反射的功能。此外,本发明通过表面预处理,清除了氮化硅陶瓷表面杂质及非亲基团,进一步通过高压冷喷涂的方法,保证了二氧化钛在喷涂过程的分散性,强化了二氧化钛纳米颗粒与基底结合,实现了二氧化钛纳米颗粒在氮化硅基底的均匀沉积,提高了表面平整度,增强了结构对可见光的反射率。
本发明在氮化硅陶瓷表面获得了厚度均匀,性能稳定的氧化钛涂层,陶瓷表面对入射光(532nm波长)的反射率由<10%提升至>70%。
本发明用于一种氮化硅陶瓷基材表面高反射防激光膜层的制备方法。
附图说明
图1为未进行任何处理的氮化硅陶瓷实物图;
图2为实施例一制备的表面设有高反射防激光膜层的氮化硅陶瓷基材实物图;
图3为未进行任何处理的氮化硅陶瓷的反射率图;
图4为实施例一制备的表面设有高反射防激光膜层的氮化硅陶瓷基材的反射率图。
具体实施方式
具体实施方式一:本实施方式一种氮化硅陶瓷基材表面高反射防激光膜层的制备方法,它是按以下步骤完成的:
一、氮化硅陶瓷表面预处理:
将氮化硅陶瓷清洗并干燥,得到预处理后的氮化硅陶瓷;
二、氧化钛纳米浆料的配制:
将纳米二氧化钛、丙烯酸树脂及丙酮混合,在转速为500r/min~1000r/min的条件下,磁力搅拌1h~2h,得到浆料,在功率为500W~1000W的条件下,将浆料通过水浴超声振荡1h~2h,然后将振荡后的浆料置于细胞破碎仪中,在探头功率为1000W~1200W的条件下,探头超声振荡3min~5min,得到氧化钛纳米浆料;
所述的纳米二氧化钛与丙烯酸树脂的质量比为1:(100~200);所述的纳米二氧化钛与丙酮的质量比为1:(500~1000);
三、氧化钛涂层的制作:
①、在压强为8bar~10bar的条件下,通过高压冷喷涂方法,将氧化钛纳米浆料喷涂于预处理后的氮化硅陶瓷表面,喷涂时间为10s~30s,涂层厚度为1μm~2μm,喷涂结束后,置于常温真空箱中干燥8h~10h;
②、重复步骤三①4次~8次,得到表面设有高反射防激光膜层的氮化硅陶瓷基材。
本实施方式的有益效果是:
氮化硅陶瓷在微观上具有多孔结构,表面粗糙度较大,正常工艺工程难以实现在其表面均匀镀膜,并且膜层容易脱落。本实施方式通过添加丙烯酸树脂强化了二氧化钛纳米浆料的结合性能,一方面丙烯酸树脂具有保光保色性,耐水耐化学性等稳定的物理化学特性,并且具有良好的粘附性,另一方面纳米二氧化钛在可见光范围内具有较强的反射性,保证了本发明中使用的氧化钛纳米浆料能够实现激光反射的功能。此外,本实施方式通过表面预处理,清除了氮化硅陶瓷表面杂质及非亲基团,进一步通过高压冷喷涂的方法,保证了二氧化钛在喷涂过程的分散性,强化了二氧化钛纳米颗粒与基底结合,实现了二氧化钛纳米颗粒在氮化硅基底的均匀沉积,提高了表面平整度,增强了结构对可见光的反射率。
本实施方式在氮化硅陶瓷表面获得了厚度均匀,性能稳定的氧化钛涂层,陶瓷表面对入射光(532nm波长)的反射率由<10%提升至>70%
具体实施方式二:本实施方式与具体实施方式一不同的是:步骤一中所述的清洗是在超声功率为500W~1000W的条件下,置于丙酮中超声清洗1h~2h,然后在超声功率为500W~1000W的条件下,置于酒精中超声清洗1h~2h,最后在超声功率为500W~1000W的条件下,置于去离子水中超声清洗1h~2h。其它与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二之一不同的是:步骤一中所述的干燥是在温度为60℃~100℃的条件下,真空干燥箱中真空干燥2h。其它与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:步骤二中所述的纳米二氧化钛粒径为50nm~100nm。其它与具体实施方式一至三相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:步骤二中将纳米二氧化钛、丙烯酸树脂及丙酮混合,在转速为800r/min~1000r/min的条件下,磁力搅拌2h,得到浆料,在功率为800W~1000W的条件下,将浆料通过水浴超声振荡2h,然后将振荡后的浆料置于细胞破碎仪中,在探头功率为1200W的条件下,探头超声振荡4min~5min,得到氧化钛纳米浆料。其它与具体实施方式一至四相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是:步骤二中将纳米二氧化钛、丙烯酸树脂及丙酮混合,在转速为800r/min的条件下,磁力搅拌2h,得到浆料,在功率为800W的条件下,将浆料通过水浴超声振荡2h,然后将振荡后的浆料置于细胞破碎仪中,在探头功率为1200W的条件下,探头超声振荡5min,得到氧化钛纳米浆料。其它与具体实施方式一至五相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是:步骤二中所述的纳米二氧化钛与丙烯酸树脂的质量比为1:(100~150)。其它与具体实施方式一至六相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是:步骤二中所述的纳米二氧化钛与丙酮的质量比为1:(500~800)。其它与具体实施方式一至七相同。
具体实施方式九:本实施方式与具体实施方式一至八之一不同的是:步骤三①中在压强为10bar的条件下,通过高压冷喷涂方法,将氧化钛纳米浆料喷涂于预处理后的氮化硅陶瓷表面,喷涂时间为20s~30s,涂层厚度为2μm,喷涂结束后,置于常温真空箱中干燥8h~10h。其它与具体实施方式一至八相同。
具体实施方式十:本实施方式与具体实施方式一至九不同的是:步骤三②中重复步骤三①5次~8次。其它与具体实施方式一至九相同。
采用以下实施例验证本发明的有益效果:
实施例一:
一、氮化硅陶瓷表面预处理:
将氮化硅陶瓷清洗并干燥,得到预处理后的氮化硅陶瓷;
二、氧化钛纳米浆料的配制:
将纳米二氧化钛、丙烯酸树脂及丙酮混合,在转速为800r/min的条件下,磁力搅拌2h,得到浆料,在功率为800W的条件下,将浆料通过水浴超声振荡2h,然后将振荡后的浆料置于细胞破碎仪中,在探头功率为1200W的条件下,探头超声振荡5min,得到氧化钛纳米浆料;
所述的纳米二氧化钛与丙烯酸树脂的质量比为1:100;所述的纳米二氧化钛与丙酮的质量比为1:500;
三、氧化钛涂层的制作:
①、在压强为10bar的条件下,通过高压冷喷涂方法,将氧化钛纳米浆料喷涂于预处理后的氮化硅陶瓷表面,喷涂时间为30s,涂层厚度为2μm,喷涂结束后,置于常温真空箱中干燥10h;
②、重复步骤三①5次,得到表面设有高反射防激光膜层的氮化硅陶瓷基材。
步骤一中所述的清洗为在超声功率为800W的条件下,置于丙酮中超声清洗1h,然后在超声功率为800W的条件下,置于酒精中超声清洗1h,最后在超声功率为800W的条件下,置于去离子水中超声清洗1h。
步骤一中所述的干燥为在温度为80℃的条件下,真空干燥箱中真空干燥2h。
步骤二中所述的纳米二氧化钛粒径为50nm。
图1为未进行任何处理的氮化硅陶瓷实物图;图2为实施例一制备的表面设有高反射防激光膜层的氮化硅陶瓷基材实物图;由图可知,样品表面为白色,这主要是膜层材料中二氧化钛纳米颗粒起作用,在样品表面形成了致密的颗粒沉积层,由于颗粒尺寸较小,高压喷涂能搞保证其均匀分散,让氮化硅陶瓷表面更为平整,增强其光谱反射性,利用二氧化钛在可见光区域的强反射能力对陶瓷的反射能力进行改性,并最终实现氮化硅陶瓷的光谱反射率调节。
分别对未进行任何处理的氮化硅陶瓷和表面设有高反射防激光膜层的氮化硅陶瓷基材进行吸光度表征。采用紫外-可见-近红外分光光度计(美国PerkinElmer公司,Lambda750)对样品在400nm~800nm波段范围内的反射率进行了测量。
图3为未进行任何处理的氮化硅陶瓷的反射率图;图4为实施例一制备的表面设有高反射防激光膜层的氮化硅陶瓷基材的反射率图;
由图可知,未进行任何处理的氮化硅陶瓷反射率较低,在400nm~800nm区间的平均反射率低于10%。在532nm波长处,未进行任何处理的氮化硅陶瓷的反射率为5.48%。此波段样品的透过率几乎为0,因此,样品在此波段的平均吸收率>90%。如此高的吸收率将不利于激光防护。镀膜后样品的反射率明显提高,在400nm~800nm区间的平均反射率远高于50%。在532nm波长处,反射率可达到76.92%,高于70%。高反射率将有利于其增强激光反射,提高其抗激光能力。

Claims (10)

1.一种氮化硅陶瓷基材表面高反射防激光膜层的制备方法,其特征在于它是按以下步骤完成的:
一、氮化硅陶瓷表面预处理:
将氮化硅陶瓷清洗并干燥,得到预处理后的氮化硅陶瓷;
二、氧化钛纳米浆料的配制:
将纳米二氧化钛、丙烯酸树脂及丙酮混合,在转速为500r/min~1000r/min的条件下,磁力搅拌1h~2h,得到浆料,在功率为500W~1000W的条件下,将浆料通过水浴超声振荡1h~2h,然后将振荡后的浆料置于细胞破碎仪中,在探头功率为1000W~1200W的条件下,探头超声振荡3min~5min,得到氧化钛纳米浆料;
所述的纳米二氧化钛与丙烯酸树脂的质量比为1:(100~200);所述的纳米二氧化钛与丙酮的质量比为1:(500~1000);
三、氧化钛涂层的制作:
①、在压强为8bar~10bar的条件下,通过高压冷喷涂方法,将氧化钛纳米浆料喷涂于预处理后的氮化硅陶瓷表面,喷涂时间为10s~30s,涂层厚度为1μm~2μm,喷涂结束后,置于常温真空箱中干燥8h~10h;
②、重复步骤三①4次~8次,得到表面设有高反射防激光膜层的氮化硅陶瓷基材。
2.根据权利要求1所述的一种氮化硅陶瓷基材表面高反射防激光膜层的制备方法,其特征在于步骤一中所述的清洗是在超声功率为500W~1000W的条件下,置于丙酮中超声清洗1h~2h,然后在超声功率为500W~1000W的条件下,置于酒精中超声清洗1h~2h,最后在超声功率为500W~1000W的条件下,置于去离子水中超声清洗1h~2h。
3.根据权利要求1所述的一种氮化硅陶瓷基材表面高反射防激光膜层的制备方法,其特征在于步骤一中所述的干燥是在温度为60℃~100℃的条件下,真空干燥箱中真空干燥2h。
4.根据权利要求1所述的一种氮化硅陶瓷基材表面高反射防激光膜层的制备方法,其特征在于步骤二中所述的纳米二氧化钛粒径为50nm~100nm。
5.根据权利要求1所述的一种氮化硅陶瓷基材表面高反射防激光膜层的制备方法,其特征在于步骤二中将纳米二氧化钛、丙烯酸树脂及丙酮混合,在转速为800r/min~1000r/min的条件下,磁力搅拌2h,得到浆料,在功率为800W~1000W的条件下,将浆料通过水浴超声振荡2h,然后将振荡后的浆料置于细胞破碎仪中,在探头功率为1200W的条件下,探头超声振荡4min~5min,得到氧化钛纳米浆料。
6.根据权利要求1所述的一种氮化硅陶瓷基材表面高反射防激光膜层的制备方法,其特征在于步骤二中将纳米二氧化钛、丙烯酸树脂及丙酮混合,在转速为800r/min的条件下,磁力搅拌2h,得到浆料,在功率为800W的条件下,将浆料通过水浴超声振荡2h,然后将振荡后的浆料置于细胞破碎仪中,在探头功率为1200W的条件下,探头超声振荡5min,得到氧化钛纳米浆料。
7.根据权利要求1所述的一种氮化硅陶瓷基材表面高反射防激光膜层的制备方法,其特征在于步骤二中所述的纳米二氧化钛与丙烯酸树脂的质量比为1:(100~150)。
8.根据权利要求1所述的一种氮化硅陶瓷基材表面高反射防激光膜层的制备方法,其特征在于步骤二中所述的纳米二氧化钛与丙酮的质量比为1:(500~800)。
9.根据权利要求1所述的一种氮化硅陶瓷基材表面高反射防激光膜层的制备方法,其特征在于步骤三①中在压强为10bar的条件下,通过高压冷喷涂方法,将氧化钛纳米浆料喷涂于预处理后的氮化硅陶瓷表面,喷涂时间为20s~30s,涂层厚度为2μm,喷涂结束后,置于常温真空箱中干燥8h~10h。
10.根据权利要求1所述的一种氮化硅陶瓷基材表面高反射防激光膜层的制备方法,其特征在于步骤三②中重复步骤三①5次~8次。
CN202011628204.1A 2020-12-30 2020-12-30 一种氮化硅陶瓷基材表面高反射防激光膜层的制备方法 Active CN112811937B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011628204.1A CN112811937B (zh) 2020-12-30 2020-12-30 一种氮化硅陶瓷基材表面高反射防激光膜层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011628204.1A CN112811937B (zh) 2020-12-30 2020-12-30 一种氮化硅陶瓷基材表面高反射防激光膜层的制备方法

Publications (2)

Publication Number Publication Date
CN112811937A CN112811937A (zh) 2021-05-18
CN112811937B true CN112811937B (zh) 2022-07-08

Family

ID=75855059

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011628204.1A Active CN112811937B (zh) 2020-12-30 2020-12-30 一种氮化硅陶瓷基材表面高反射防激光膜层的制备方法

Country Status (1)

Country Link
CN (1) CN112811937B (zh)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0186910A1 (en) * 1984-12-27 1986-07-09 Kureha Chemical Industry Co., Ltd. Process for preparation of ceramic film
JPH02289478A (ja) * 1989-04-06 1990-11-29 Ciba Geigy Ag セラミツク、上薬、ガラスセラミツク、ガラス等をレーザーでマークづけする方法
CN1441263A (zh) * 2003-04-08 2003-09-10 中国科学院西安光学精密机械研究所 高反射率高抗损伤阈值超宽带飞秒激光反射器
JP2006080450A (ja) * 2004-09-13 2006-03-23 Sharp Corp 太陽電池の製造方法
CN1793061A (zh) * 2005-12-05 2006-06-28 上海工程技术大学 激光熔覆陶瓷涂层中孔隙的纳米修补方法
DE102005039707A1 (de) * 2005-08-23 2007-03-01 Saint-Gobain Glass Deutschland Gmbh Thermisch hoch belastbares Low-E-Schichtsystem für transparente Substrate, insbesondere für Glasscheiben
DE102007025577A1 (de) * 2007-06-01 2008-12-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von Titanoxidschichten mit hoher photokatalytischer Aktivität und dergestalt hergestellte Titanoxidschichten
CN101646626A (zh) * 2007-02-27 2010-02-10 巴斯夫欧洲公司 一种形成(金红石型)二氧化钛涂覆的片状颜料的方法
CN101820016A (zh) * 2010-04-16 2010-09-01 厦门大学 一种二氧化钛紫外光电探测器的制备方法
CN102030544A (zh) * 2010-10-09 2011-04-27 北京航空航天大学 一种形成具有耐高温隔辐射传热与透微波兼容的无机涂层的制备方法
CN102282219A (zh) * 2009-08-19 2011-12-14 埃卡特有限公司 具有非银色干涉色和窄尺寸分布的高光泽多层效应颜料和其生产方法
CN103647207A (zh) * 2013-12-11 2014-03-19 电子科技大学 用于激光器谐振腔腔镜的反射膜及其制备方法
WO2015198762A1 (ja) * 2014-06-27 2015-12-30 コニカミノルタ株式会社 光学反射フィルム、光学反射フィルムの製造方法、およびそれを用いる光学反射体
WO2016091107A1 (zh) * 2014-12-11 2016-06-16 深圳市光峰光电技术有限公司 漫反射材料、漫反射层、波长转换装置以及光源系统
EP3395785A1 (en) * 2017-04-28 2018-10-31 Rolls-Royce Corporation Seal coating for ceramic matrix composite
CN113031309A (zh) * 2021-03-31 2021-06-25 江苏万新光学有限公司 一种减反射防近红外激光的树脂镜片

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0186910A1 (en) * 1984-12-27 1986-07-09 Kureha Chemical Industry Co., Ltd. Process for preparation of ceramic film
JPH02289478A (ja) * 1989-04-06 1990-11-29 Ciba Geigy Ag セラミツク、上薬、ガラスセラミツク、ガラス等をレーザーでマークづけする方法
CN1441263A (zh) * 2003-04-08 2003-09-10 中国科学院西安光学精密机械研究所 高反射率高抗损伤阈值超宽带飞秒激光反射器
JP2006080450A (ja) * 2004-09-13 2006-03-23 Sharp Corp 太陽電池の製造方法
DE102005039707A1 (de) * 2005-08-23 2007-03-01 Saint-Gobain Glass Deutschland Gmbh Thermisch hoch belastbares Low-E-Schichtsystem für transparente Substrate, insbesondere für Glasscheiben
CN1793061A (zh) * 2005-12-05 2006-06-28 上海工程技术大学 激光熔覆陶瓷涂层中孔隙的纳米修补方法
CN101646626A (zh) * 2007-02-27 2010-02-10 巴斯夫欧洲公司 一种形成(金红石型)二氧化钛涂覆的片状颜料的方法
DE102007025577A1 (de) * 2007-06-01 2008-12-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von Titanoxidschichten mit hoher photokatalytischer Aktivität und dergestalt hergestellte Titanoxidschichten
CN102282219A (zh) * 2009-08-19 2011-12-14 埃卡特有限公司 具有非银色干涉色和窄尺寸分布的高光泽多层效应颜料和其生产方法
CN101820016A (zh) * 2010-04-16 2010-09-01 厦门大学 一种二氧化钛紫外光电探测器的制备方法
CN102030544A (zh) * 2010-10-09 2011-04-27 北京航空航天大学 一种形成具有耐高温隔辐射传热与透微波兼容的无机涂层的制备方法
CN103647207A (zh) * 2013-12-11 2014-03-19 电子科技大学 用于激光器谐振腔腔镜的反射膜及其制备方法
WO2015198762A1 (ja) * 2014-06-27 2015-12-30 コニカミノルタ株式会社 光学反射フィルム、光学反射フィルムの製造方法、およびそれを用いる光学反射体
WO2016091107A1 (zh) * 2014-12-11 2016-06-16 深圳市光峰光电技术有限公司 漫反射材料、漫反射层、波长转换装置以及光源系统
EP3395785A1 (en) * 2017-04-28 2018-10-31 Rolls-Royce Corporation Seal coating for ceramic matrix composite
CN113031309A (zh) * 2021-03-31 2021-06-25 江苏万新光学有限公司 一种减反射防近红外激光的树脂镜片

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
comparison of aging effects in hafnia and titania thin films on the laser damage resistance of high reflectionn coating for 1054nm;field;《proceedings of spie》;20171113;第1-11页 *
基于氮化硅基材的微结构高反射镀膜实验和模拟研究;胡梦玥;《节能技术》;20210731;第317-320页 *
激光熔覆碳化钛增强钛基复合涂层研究进展;张志强等;《表面技术》;20200723(第10期);全文 *
激光高反射膜的研究;蒋向东;《应用光学》;20030131;第25-27页 *

Also Published As

Publication number Publication date
CN112811937A (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
Hao et al. Research on cracking of SiO2 nanofilms prepared by the sol-gel method
CN103755352B (zh) 一种多孔BN/Si3N4复合陶瓷封孔层的制备方法
CN112811937B (zh) 一种氮化硅陶瓷基材表面高反射防激光膜层的制备方法
CN113372903A (zh) 一种核壳结构的钙钛矿纳米复合材料的制备方法
CN114715897A (zh) 一种尺寸可调的SiC@C介孔空心球及其制备方法和应用
Ma et al. Rapidly fabricating a large area nanotip microstructure for high-sensitivity SERS applications
CN109665720B (zh) 一种超低折射率SiO2减反射膜的制备方法
CN104650633A (zh) 一种多孔硅涂料的制备方法
CN112176719B (zh) C/SiC壳核结构复合纤维制备方法及复合纤维
CN113118633B (zh) 纳秒激光辐照制备钛合金表面周期性微结构的方法
Que et al. Preparation and characterizations of SiO2/TiO2/γ-glycidoxypropyltrimethoxysilane composite materials for optical waveguides
Que et al. Effects of titanium content on properties of sol-gel silica-titania films via organically modified silane precursors
Que et al. Preparation and characterizations of TiO2/organically modified silane composite materials produced by the sol-gel method
CN112563874A (zh) 一种室温光激发氧化锌声子振动太赫兹激光器
CN109971420A (zh) 一维二氧化锆/碳纳米管纳米复合材料的制备方法及应用
CN112959005B (zh) 一种在铜表面制造长期高效减反微纳结构的方法及应用
Liu et al. Effects of the potassium titanate functional filler types on the thermal protection performance of heat resistant ablative coated fabrics
Xu et al. Improving the solar cell module performance by a uniform porous antireflection layer on low iron solar glass
CN107138372B (zh) 一种通过表面结晶改善二氧化硅光学特性的方法
Fakhri Effect of substrate temperature on optical and structural properties of indium oxide thin films prepared by reactive PLD method
Liu et al. Preparation and characteristics of porous silica films by a modified base-catalyzed sol-gel process containing PVA: II. Film preparation
CN116351685B (zh) 一种铝合金轮毂表面涂层的制备工艺
CN113604089B (zh) 一种宽波段光学吸收剂及涂层制备方法
CN115626776B (zh) 一种应用于激光辅助连接碳化硅陶瓷材料的玻璃粉体及其制备方法与应用
CN115466918B (zh) 晶须/纤维表面织构化纳米凸点结构改性方法及其强韧化应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant