CN112563874A - 一种室温光激发氧化锌声子振动太赫兹激光器 - Google Patents

一种室温光激发氧化锌声子振动太赫兹激光器 Download PDF

Info

Publication number
CN112563874A
CN112563874A CN202011357450.8A CN202011357450A CN112563874A CN 112563874 A CN112563874 A CN 112563874A CN 202011357450 A CN202011357450 A CN 202011357450A CN 112563874 A CN112563874 A CN 112563874A
Authority
CN
China
Prior art keywords
zno
terahertz
microsphere
laser
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011357450.8A
Other languages
English (en)
Other versions
CN112563874B (zh
Inventor
吴兴龙
杨润
汪毅贤
沈剑沧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202011357450.8A priority Critical patent/CN112563874B/zh
Publication of CN112563874A publication Critical patent/CN112563874A/zh
Priority to US17/335,624 priority patent/US11133641B1/en
Application granted granted Critical
Publication of CN112563874B publication Critical patent/CN112563874B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S4/00Devices using stimulated emission of electromagnetic radiation in wave ranges other than those covered by groups H01S1/00, H01S3/00 or H01S5/00, e.g. phonon masers, X-ray lasers or gamma-ray lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08072Thermal lensing or thermally induced birefringence; Compensation thereof
    • H01S3/08077Pump induced waveguiding, i.e. the pump induces refractive index change in the laser medium to guide the amplified light, e.g. gain- or loss- guiding or thermally induced refractive index change
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/09403Cross-pumping, e.g. Förster process involving intermediate medium for excitation transfer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0943Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a gas laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/1086Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering using scattering effects, e.g. Raman or Brillouin effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/169Nanoparticles, e.g. doped nanoparticles acting as a gain material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2302/00Amplification / lasing wavelength
    • H01S2302/02THz - lasers, i.e. lasers with emission in the wavelength range of typically 0.1 mm to 1 mm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0078Frequency filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094038End pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1628Solid materials characterised by a semiconducting matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2214Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on oxides or nitrides

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了一种基于声子振动激发的太赫兹激光器,包括谐振腔,所述谐振腔由Ag/柔性支撑层/ZnO‑M薄膜制成的中空波导管及其设置在波导管两端的光学透镜构成,其中,M代表纳米金属颗粒。本发明以氧化锌介晶微米球为源,激光激发诱导氧化锌微球上的纳米片的对称伸缩振动,并通过纳米片之间的弹性与电耦合传播,以声子振动的方式辐射频率为0.36 THz的太赫兹波,同时,本发明将氧化锌介晶微米球与纳米金属颗粒均匀混合,以利用纳米金属颗粒表面增强拉曼效应,在颗粒表面附近几纳米处产生强的局域电场,通过纳米金属颗粒与ZnO介晶微米球的充分接触,极大地改变ZnO介晶微米球悬臂纳米片的极化率,进而增强其太赫兹辐射功率。

Description

一种室温光激发氧化锌声子振动太赫兹激光器
技术领域
本发明属于太赫兹激光器领域,涉及一种声子振动的方式辐射太赫兹波实现室温下长波长太赫兹信号输出的太赫兹激光器。
背景技术
电磁波谱的太赫兹(THz)区域频率范围为0.1 ~ 10 THz,介于红外波段与微波波段之间。人们对红外波与微波的相关技术发展较为成熟,但介于它们之间的 THz 波却与这些技术不相容,人们称其为 THz 间隙(THz Gap)(B. Ferguson et al., Nat. Mater. 2002, 1, 26–33)。然而THz 波穿透性强、能量低、生物损害小,在半导体、医疗、制造、国防工业等很多领域都可以大展身手。因此在最近几十年,THz 波是发展最快的光谱区之一,人们不断地引进THz 技术中新的工作机制和新材料。
制备高性能的THz源是发展THz 技术的重要手段之一。目前已研制出多种不同种类的 THz 辐射源,按照泵浦源大致分为两类:第一,光泵浦,利用脉冲激光或激光器由非线性光学效应来产生 THz 辐射。如光学整流、差频产生或光学参量振荡。目前受到关注的非线性介质有GaAs、GaSe、GaP、ZnTe、CdTe和 LiNbO3等。这种方法实验条件较为简单,容易操作,但转换效率较低,有待进一步寻找更有效的材料。第二,电泵浦,通过注入电子来产生THz辐射。目前使用最广泛的是太赫兹量子级联激光器(THz-QCL),THz 波通过量子阱子带间的电子弛豫而发射。该方法获得的THz信号功率较强,转换效率高,但实验条件苛刻,需要在低温下工作,同时辐射频率较高(高于1 THz)。除了以上两种主要的 THz 源,还有许多THz辐射器件,如共振隧穿二极管、THz 等离子体光电混合器和布洛赫振荡器、CO2激光器泵浦气体分子产生THz辐射等等。随着材料与技术的日新月异,更多的 THz 源将被发展与应用。
目前已有的THz 源各有优缺点。如何制备出同时满足室温下工作、高频长波长辐射,并具有尽可能高的功率和转换效率等优点的THz源,仍是一个挑战。而本发明所提供的THz激光器正具有长波长、高功率、小体积并能在室温条件下工作的特点。微小型THz激光器件将在众多领域得到应用,比如6G通信、航空航天、安全检测、医疗等,特别是在微机电系统(MEMS)里是一个不可或缺的核心器件。
发明内容
本发明提供了一种声子振动的方式辐射太赫兹波实现室温下长波长太赫兹信号输出的太赫兹激光器。
实现本发明目的技术解决方案是:一种基于声子振动激发的太赫兹激光器,包括谐振腔,所述谐振腔由Ag/柔性支撑层/ZnO-M薄膜制成的中空波导管及其设置在波导管两端的光学透镜构成,其中,M代表纳米金属颗粒。
较佳的,波导管输入端的光学透镜为聚甲基丙烯酸甲酯(PMMA)薄片,输出端的光学透镜为THz带通滤波片。
较佳的,Ag/柔性支撑层/ZnO-M薄膜,由内至外,包括依次连接的ZnO介晶微米球-纳米金属颗粒薄膜(简称ZnO-M薄膜)、柔性支撑层和纳米Ag反射增强薄膜。
具体的,ZnO-M薄膜通过粘结剂将ZnO介晶微米球与纳米金属颗粒紧密接触混合后固定在柔性支撑层上。
具体的,ZnO介晶微米球与纳米金属颗粒的直径比为
Figure 153683DEST_PATH_IMAGE001
具体的,ZnO介晶微米球的平均尺寸为1~5 μm,其表面是由大量密集排列的纳米片组成的,这些纳米片呈放射状分布。
具体的,ZnO-M薄膜通过将氧化锌介晶微米球与纳米金属颗粒紧密接触混合后,再与粘结剂充分混合溶于有机溶剂中,超声震荡所得的悬浊液,以旋涂法固定在柔性支撑层上得到。
更具体的,粘结剂采用PMMA,PMMA为网状结构,将ZnO介晶微米球与纳米金属颗粒固定在柔性支撑层上。
较佳的,纳米金属颗粒为具有优良的表面增强拉曼散射效应的金属颗粒,优选Au、Ag、Cu等,更优选纳米Ag颗粒,其中,纳米Ag颗粒的尺寸为5 ~ 15 nm。
较佳的,柔性支撑层为具有优良的柔韧性、稳定性与介电性能,对太赫兹信号的损耗较小的薄膜,优选聚酰亚胺(PI)薄膜,PI薄膜可以通过旋涂法得到。
较佳的,纳米Ag反射增强薄膜为具有良好的柔韧性以及对电磁波优良的反射性的相对光滑的薄膜,可以通过磁控溅射法得到,薄膜厚度大于106 nm,优选为191 nm。
较佳的,谐振腔的腔长设为
Figure 680610DEST_PATH_IMAGE002
Figure 834249DEST_PATH_IMAGE003
Figure 104824DEST_PATH_IMAGE004
为正整数,
Figure 827186DEST_PATH_IMAGE004
优选为30 ~ 80。
较佳的,该太赫兹激光器采用波长为514.5 nm的氩离子激光器为激发源,该绿光激光经波导管输入端的光学透镜入射至波导管内。
具体的,激光经波导管输入端的光学透镜入射至波导管内,其中,激光入射方向与波导管壁夹角为30度。
本发明还提供了一种基于声子振动激发的太赫兹激光器的谐振腔,所述谐振腔由Ag/柔性支撑层/ZnO-M薄膜制成的中空波导管及其设置在波导管两端的光学透镜构成,其中,M代表纳米金属颗粒。
本发明还提供了一种基于声子振动激发的太赫兹激光器的中空波导管,所述中空波导管由Ag/柔性支撑层/ZnO-M薄膜制成中空结构。
与现有技术相比,本发明的主要特点和优势如下:
1. 以氧化锌介晶微米球为源,激光激发诱导氧化锌微球上的纳米片的对称伸缩振动,该振动通过纳米片之间的弹性与电耦合传播,以声子振动的方式向外辐射频率为0.36 THz的太赫兹波。
2. 本发明为了提高器件的能量转换效率,将氧化锌介晶微米球与纳米金属颗粒均匀混合,以利用纳米金属颗粒表面增强拉曼散射效应(SERS),在颗粒表面附近几纳米处产生强的局域电场,通过纳米金属颗粒与ZnO介晶微米球的充分接触,极大地改变ZnO介晶微米球悬臂纳米片的极化率,进而增强其太赫兹辐射功率。
3. 本发明同时实现了室温工作、长波长辐射与较高的功率和转换效率。
4. 本发明实验条件简单易行,采用的材料成本较低且无毒,易于大规模推广。
附图说明
图1为本发明中氧化锌介晶微米球的扫描电子显微镜图。
图2为本发明中氧化锌介晶微米球的低频拉曼谱图。
图3为本发明中波导管与谐振腔的设计过程,其中,(a)为中空波导管的截面示意图,(b)为谐振腔的设计图,(c)为太赫兹激光器的工作示意图。
图4为本发明中Ag/PI/PMMA/ZnO-M薄膜的制备过程,其中,(a)为旋涂在硅片上的PI薄膜,(b)为从硅片上剥离的PI/PMMA/ZnO-M薄膜,(c)为镀银裁剪后的Ag/PI/PMMA/ZnO-M薄膜,(d)为PMMA/ZnO-M薄膜层的扫描电子显微镜图。
图5为本发明中太赫兹信号的输出功率随输入功率与角度的变化关系。
具体实施方式
发明人首先在辐射机理上进行了探索,以ZnO介晶微米球为源,激光激发诱导氧化 锌纳米片的对称伸缩振动,该振动通过纳米片之间的弹性与电耦合传播,以声子振动的方 式向外辐射频率为0.36 THz的太赫兹波。同时实现了室温工作与长波长辐射。原则上,所使 用的激光器的波长范围可以覆盖可见光全波段至紫外波段。由于室温下ZnO的能隙约为 3.37 eV,选择激光波长(~368 nm)在该能隙附近时,将会和ZnO微米球产生共振拉曼散射, 从而可产生4个数量级以上的拉曼强度增强,由此能辐射出更强的太赫兹信号。因此,从激 发ZnO小球辐射太赫兹信号的角度而言,所用激光器从红光到紫光,激发效果递增,其中紫 光激光激发效果最好。但是,由于紫光光激发会在支撑层产生一定程度的背景噪声,因此综 合考虑多方因素,本发明在实施过程中采用波长为514.5 nm(绿光)的氩离子激光器为激发 源。除了利用ZnO介晶微米球在激光直接照射下激发出的太赫兹辐射,本发明为了提高器件 的能量转换效率,还将ZnO介晶微米球与纳米金属颗粒均匀混合,以利用纳米金属颗粒表面 增强拉曼效应(SERS),在颗粒表面附近几纳米处产生强的局域电场,通过纳米金属颗粒与 ZnO介晶微米球的充分接触,极大地改变ZnO介晶微米球悬臂纳米片的极化率,进而增强其 太赫兹辐射功率。此外,控制ZnO介晶微米球与纳米金属颗粒的直径比约为
Figure 197119DEST_PATH_IMAGE001
。 ZnO介晶微米球与纳米金属颗粒之间相对大的尺寸差异意味着平均每颗ZnO介晶微米球表 面可以接触更多的纳米金属颗粒,以此增大与纳米金属颗粒接触的总表面积,进而强化利 用纳米金属颗粒表面增强拉曼效应增强太赫兹辐射的效果。另外,将ZnO介晶微米球和纳米 金属颗粒以粘结剂复合于中空波导管内,并在外层设置了纳米Ag反射增强薄膜。其中,纳米 Ag反射增强薄膜可以使激光在腔内反射,在反复使其与ZnO介晶微米球直接作用并激发出 太赫兹辐射的同时,反复利用纳米金属颗粒的表面增强拉曼效应以成倍地增强ZnO介晶微 米球的太赫兹辐射,以此高效地利用激光的能量,不断地达到增强效果。同时,纳米Ag反射 增强薄膜也可以减少从ZnO介晶微米球激发出的太赫兹波在波导管中的损耗,使反射的太 赫兹波可以得到有效利用。并于前后放置光学透镜,通过尺寸设计形成谐振腔,将激光斜入 射至波导管内,这种设计既可以使激光在谐振腔内反复激发,提高效率,又可使太赫兹信号 谐振增强。
本发明所述的一种基于声子振动激发的太赫兹激光器的设计方法,包括如下步骤:
(1)采用旋涂法在硅片基底上制备柔性支撑层;
(2)将ZnO介晶微米球与纳米金属颗粒粉末充分混合后,再将混合的粉末与粘结剂混溶于有机溶剂中,超声震荡得到悬浊液,并将其旋涂于柔性支撑层上,60 ℃恒温干燥,即可得到均匀分布的ZnO-M薄膜;
(3)将上述混合薄膜从基底上剥离,得到柔性支撑层/ZnO-M薄膜。随后,将柔性支撑层/ZnO-M薄膜中的柔性支撑层一面朝上放置,用磁控溅射法在该面镀纳米Ag薄膜(即纳米Ag反射增强薄膜),得到Ag/柔性支撑层/ZnO-M薄膜,将Ag/柔性支撑层/ZnO-M薄膜以ZnO-M薄膜为内层卷成中空波导管,并在波导管两端放置光学透镜,得到一定尺寸的谐振腔,将激光以一定角度斜入射至波导管内,用高莱盒探测器探测谐振增强的太赫兹信号。
在激光入射的一面即波导管输入端使用PMMA薄片作为透镜。其可透射92%以上的可见光,并且可以反射波导管内部产生的大部分太赫兹信号。太赫兹信号输出的一面即波导管输出端使用太赫兹带通滤波片,可反射大部分的入射激光,透射太赫兹信号。这种设计既可以使激光在谐振腔内反复激发ZnO微米球,提高太赫兹激发效率,又可使太赫兹信号谐振增强。
在尺寸设计上,谐振腔的波导管内径要大于太赫兹信号的波长0.833 mm(0.36THz)。太赫兹波从腔内的某一点出发,经腔内往返一周再回到原来的位置,与初始波同相(相位差2π的整数倍),这样即可谐振增强。
设谐振腔腔长为L,太赫兹波长为λ= 0.833 mm,n是正整数,则相长干涉条件是:
Figure 306895DEST_PATH_IMAGE005
代入数据可得:
L = 0.416n mm
假设n取50,则腔长L为20.8 mm。用波长为514.5 nm的氩离子激光器作为激发源,经PMMA薄片入射至波导管内,可在波导管输出端探测到太赫兹信号随入射功率线性增长。改变激光的入射角度,也可改变转换效率。入射方向与波导管壁夹角为30o时,大约0.124%的入射功率转换为太赫兹辐射,而入射方向与波导壁平行时,转换效率则降低为0.083%。
使用上述设计方法制备的太赫兹激光器,其核心在于首次提出声子振动方式的太赫兹源及其谐振腔,可实现室温下长波长太赫兹辐射。ZnO介晶微米球作为太赫兹源,其制备方法简单,工作条件容易实现,以激光斜入射即可探测到频率为0.36 THz的太赫兹信号。为进一步得到高功率太赫兹信号的辐射,本发明对波导管与谐振腔进行了进一步优化设计。用旋涂法制备的柔性支撑层(PI薄膜)具有优良的柔韧性,稳定性与介电性能,对太赫兹信号的损耗较小,可用于制备波导管。为了将ZnO介晶微米球-纳米金属颗粒更好的复合到柔性支撑层的表面,选取PMMA粉末为粘合剂,与ZnO介晶微米球与纳米金属颗粒粉末(纳米Ag)一起溶于三氯甲烷,超声震荡制备悬浊液。用旋涂法将悬浊液均匀涂在柔性支撑层上,并且60 ℃恒温干燥,即可得到均匀分布的ZnO-M薄膜(ZnO-Ag薄膜)。其中PMMA无色透明,对可见光的透光率高达92%,对太赫兹信号的反射率较高。将柔性支撑层/ZnO-M薄膜用HF酸处理,即可从硅片上剥离。将有ZnO-M的一面朝下,放置在磁控溅射基底上,并在柔性支撑层一面用磁控溅射镀191 nm厚的银膜作为纳米Ag反射增强薄膜,得到Ag/柔性支撑层/ZnO-M薄膜。由于纳米Ag反射增强薄膜十分光滑,对太赫兹波具有非常好的反射性,从而进一步提高太赫兹信号的反射率。同时,由于纳米Ag反射增强薄膜对可见光波段的电磁波也具有良好的反射性,可以将其限制在谐振腔内,反复激发ZnO小球的太赫兹辐射,充分利用入射光能,提高能量转换率。
图3(a)显示了中空波导管的截面,其中ZnO-M薄膜层被设置在内侧(如图所示,由于ZnO介晶微米球与纳米金属颗粒充分混合,所以每颗ZnO介晶微米球周围都有一定数量的纳米金属颗粒包围),PI薄膜层在中间,纳米Ag反射增强薄膜层在最外侧,图3(b)显示了谐振腔的结构,于中空波导管输入端和输出端依次放置了PMMA薄片与THz带通滤波片构成谐振腔的结构。用波长为514.5nm的氩离子激光器(绿光)为激发源,该绿色激光经PMMA薄片入射至波导管内,在波导管输出端附近用高莱盒探测器探测太赫兹信号。其工作原理如图3(c)所示,绿光从PMMA薄片的一端入射,太赫兹信号从另一端输出。
实施例:
第一步,制备自组装氧化锌介晶微米球:将0.002 mol (0.59 g)六水硝酸锌Zn(NO3)·6H2O以及5 ml 聚苯乙烯磺酸钠(PSS, 平均分子量MW≈ 100 000 g mol-1,固体含量:20%)互溶于30 ml的去离子水中并搅拌5分钟。之后将0.002 mol (0.28 g) 的次六甲基四氨 (HMT)加入溶液中继续搅拌10分钟。将以上配制好的溶液倒入35 ml聚四氟乙烯内胆的水热釜中,旋紧釜盖并放入电阻式烘箱中,在95 ℃的温度下反应3-10小时。反应完成后取出水热釜并在室温下自然冷却。将反应液中的上层澄清溶液去除,之后将沉淀物倒入离心管中并且加入去离子水以及乙醇溶液反复的洗涤、离心。将洗涤好的沉淀物放入烘箱中在60 ℃的条件下烘干。
用扫描电子显微镜表征发现,在95 ℃下控制不同的反应时间,可获得1~5 μm直径大小的ZnO微米级小球。实施例中, ZnO介晶微米球的扫描电镜图片(SEM)如图1所示,通过控制反应时间为4小时获得平均直径为1.5μm的ZnO介晶微米小球,其表面是由大量密集排列的纳米片组成的,这些纳米片呈放射状分布。
用拉曼表征氧化锌介晶微米球(514.5 nm激发),如图2所示,可在0.36 THz处观察到较强的低频拉曼峰,在2.91 THz处观察到较弱的低频拉曼峰。
第二步,制备Ag/PI/PMMA/ZnO-M波导管:用金刚石刀切割出3 cm *3 cm的硅片,分 别用丙酮、酒精、去离子水超声清洗,时间为3分钟左右。选择合适大小的吸盘,把硅片放置 在匀胶机吸盘上。设置低转速为500 转/分钟,时间为10秒,高转速为1000转/分钟,时间为 30 s,将适量的PI溶液滴在硅片的中间位置,并启动旋涂。完成后将其放置在100 ℃的加热 台上烘干5分钟,得到PI薄膜。得到的样品如图4(a)所示。将0.025 g第一步制备的ZnO介晶 微米球(平均直径约为1.5μm)与0.086 g纳米Ag颗粒粉末(平均直径约为5 nm)充分混合,得 到混合粉末,即控制ZnO介晶微米球与纳米Ag颗粒的直径比约为
Figure 961255DEST_PATH_IMAGE006
。取PMMA粉末0.1 g溶 于1 ml三氯甲烷中,并加入ZnO介晶微米球与纳米Ag颗粒的混合粉末,超声震荡制备悬浊 液,旋涂于PI薄膜上,设置转速20转/分钟,时间为15秒,之后60 ℃恒温干燥12 h,PMMA为网 状结构,将ZnO微球与纳米Ag颗粒固定在PI薄膜上。最终得到的PI/PMMA/ZnO-Ag薄膜用HF溶 液浸泡,即可从硅片上剥离,如图4(b) 所示。其中ZnO-Ag薄膜层的形貌如图4(d),PMMA形成 网络状,ZnO微球和纳米Ag颗粒在其表面均匀分布。将PI/PMMA/ZnO-Ag薄膜清洗烘干后,固 定在磁控溅射设备的样品架上,先将反应室抽至本底真空
Figure 472876DEST_PATH_IMAGE007
Pa,然后充入高纯氩气 (99.99%)为反应气体,采用高纯Ag靶材(99.99%),设置样品架转速为20转/分钟,以频射溅 射法在无氧化锌面的PI薄膜一面制备纳米Ag反射增强薄膜。如图4(c)所示,纳米Ag镀膜分 布均匀。将Ag/PI/PMMA/ZnO-Ag薄膜裁剪成3 cm *2.08 cm,ZnO面向内卷成长为2.08 cm(即 n = 50时的腔长)的中空柱形波导管,并在波导管输入端和输出端依次放置PMMA薄片和太 赫兹带通滤波片形成谐振腔。
绿光可以在谐振腔内反复激发,同时太赫兹信号也谐振增强。绿光激光的输入功率从3 mW增加至100 mW,且改变其入射角度,在距离太赫兹信号输出端1 cm处,放置高莱盒探测太赫兹波功率。最终结果如图5所示,绿光激光的输入功率从3 mW增加至100 mW,太赫兹输出功率随绿光激光的输入功率线性增加。其中图5中的方块代表绿光入射方向与波导管壁夹角为30o,太赫兹输出功率从7.8 μW增加至116.5 μW,大约0.124%的入射功率转换为太赫兹辐射;图5中的圆圈代表绿光入射方向与波导管壁夹角为0度,太赫兹输出功率从3.1μW增加至74.9 μW,大约0.083%的入射功率转换为太赫兹辐射。这样结构的THz激光器是首次设计,达到了可观的功率转换效率。
综上所示,本发明设计的室温光激发氧化锌声子振动太赫兹激光器,同时实现了室温工作、长波长辐射与较高的功率和转换效率。并且实验条件简单易行,采用的材料成本较低且无毒,易于大规模推广。

Claims (10)

1.一种基于声子振动激发的太赫兹激光器,包括谐振腔,其特征在于,所述谐振腔由Ag/柔性支撑层/ZnO-M薄膜制成的中空波导管及其设置在波导管两端的光学透镜构成,其中,M代表纳米金属颗粒。
2.如权利要求1所述的太赫兹激光器,其特征在于,Ag/柔性支撑层/ZnO-M薄膜,由内至外,包括依次连接的ZnO介晶微米球-纳米金属颗粒薄膜、柔性支撑层和纳米Ag反射增强薄膜。
3.如权利要求2所述的太赫兹激光器,其特征在于,ZnO介晶微米球-纳米金属颗粒薄膜通过粘结剂将ZnO介晶微米球与纳米金属颗粒紧密接触混合后固定在柔性支撑层上。
4.如权利要求2所述的太赫兹激光器,其特征在于,ZnO介晶微米球-纳米金属颗粒薄膜通过将ZnO介晶微米球与纳米金属颗粒紧密接触混合后,再与粘结剂充分混合溶于有机溶剂中,超声震荡所得的悬浊液,以旋涂法固定在柔性支撑层上得到。
5.如权利要求4所述的太赫兹激光器,其特征在于,粘结剂采用PMMA,PMMA为网状结构,将ZnO介晶微米球与纳米金属颗粒固定在柔性支撑层上。
6. 如权利要求3-5任一项所述的太赫兹激光器,其特征在于,ZnO介晶微米球与纳米金属颗粒的直径比为
Figure DEST_PATH_IMAGE002
7. 如权利要求3-5任一项所述的太赫兹激光器,其特征在于,ZnO介晶微米球的平均尺寸为1~5 μm,由大量悬臂组成,而每一悬臂是由大量密集排列的纳米片组成的,这些纳米悬臂呈放射状分布。
8.如权利要求1所述的太赫兹激光器,其特征在于,波导管输入端的光学透镜为聚甲基丙烯酸甲酯薄片,输出端的光学透镜为THz带通滤波片。
9. 如权利要求1所述的太赫兹激光器,其特征在于,谐振腔的腔长设为
Figure DEST_PATH_IMAGE004
Figure DEST_PATH_IMAGE006
Figure DEST_PATH_IMAGE008
为正整数,
Figure 723950DEST_PATH_IMAGE008
优选为30 ~ 80。
10. 如权利要求1所述的太赫兹激光器,其特征在于,该太赫兹激光器采用波长为514.5 nm的氩离子激光器为激发源,该绿光激光经波导管输入端的光学透镜入射至波导管内。
CN202011357450.8A 2020-11-27 2020-11-27 一种室温光激发氧化锌声子振动太赫兹激光器 Active CN112563874B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011357450.8A CN112563874B (zh) 2020-11-27 2020-11-27 一种室温光激发氧化锌声子振动太赫兹激光器
US17/335,624 US11133641B1 (en) 2020-11-27 2021-06-01 Terahertz laser device based on zinc oxide phonon vibration optically excited at room temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011357450.8A CN112563874B (zh) 2020-11-27 2020-11-27 一种室温光激发氧化锌声子振动太赫兹激光器

Publications (2)

Publication Number Publication Date
CN112563874A true CN112563874A (zh) 2021-03-26
CN112563874B CN112563874B (zh) 2021-07-30

Family

ID=75046308

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011357450.8A Active CN112563874B (zh) 2020-11-27 2020-11-27 一种室温光激发氧化锌声子振动太赫兹激光器

Country Status (2)

Country Link
US (1) US11133641B1 (zh)
CN (1) CN112563874B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114199376A (zh) * 2021-11-23 2022-03-18 首都师范大学 利用金属纳米颗粒溶液相干探测宽带强太赫兹波的系统和方法
WO2023236578A1 (zh) * 2022-06-10 2023-12-14 广东工业大学 一种基于多光电导耦合波导输出的高速光电探测器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4354932B2 (ja) * 2005-06-07 2009-10-28 独立行政法人科学技術振興機構 テラヘルツ光源
JP2013171954A (ja) * 2012-02-20 2013-09-02 Canon Inc テラヘルツ波発生素子、それを用いた応用装置、及び装置製造方法
CN103296575A (zh) * 2012-02-28 2013-09-11 王广武 纳米增益介质夹层玻璃
CN104377534A (zh) * 2014-11-20 2015-02-25 天津大学 一种高效率产生太赫兹波的波导型非线性晶体及制作方法
CN105552716A (zh) * 2016-03-04 2016-05-04 电子科技大学 一种基于表面等离子体增强的纳米激光器
CN106324748A (zh) * 2016-10-31 2017-01-11 清华大学 太赫兹波导器件
CN107287568A (zh) * 2017-06-02 2017-10-24 昆明理工大学 一种增强太赫兹波的ZnO纳米阵列的制备方法
CN108736296A (zh) * 2017-04-20 2018-11-02 清华大学 一种太赫兹波发射装置
US20190259903A1 (en) * 2017-11-02 2019-08-22 Lawrence Livermore National Security, Llc Three-dimensional co-axial linear photonic switch
CN110391580A (zh) * 2018-04-17 2019-10-29 中国科学院大连化学物理研究所 一种铯太赫兹准直光源装置及系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8634444B2 (en) * 2008-10-16 2014-01-21 The Boeing Company Self-contained random scattering laser devices
US20140132861A1 (en) * 2010-05-31 2014-05-15 Wintek Corporation Touch panel and touch-sensitive display device
US9382429B2 (en) * 2010-08-17 2016-07-05 Nanjing Taiwei Technology Co., Ltd. Preparation method of carbon modified filler
TWI500050B (zh) * 2011-02-25 2015-09-11 Univ Nat Taiwan 導電薄膜的製法
TW201237525A (en) * 2011-03-04 2012-09-16 J Touch Corp Grating structure of 2D/3D switching display device
US9453774B2 (en) * 2013-12-17 2016-09-27 The Board Of Trustees Of The Leland Stanford Junior University Surface area-based pressure sensing
KR102382664B1 (ko) * 2016-06-03 2022-04-07 제네랄 하스피탈 코포레이션 마이크로 레이저 입자용 시스템 및 방법
CN106633977A (zh) * 2016-11-23 2017-05-10 浙江农林大学 一种纳米物质/生物质纤维复合材料的制备方法及纳米物质/生物质纤维复合材料
CN109994620A (zh) * 2017-12-29 2019-07-09 Tcl集团股份有限公司 电子传输薄膜及其制备方法和应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4354932B2 (ja) * 2005-06-07 2009-10-28 独立行政法人科学技術振興機構 テラヘルツ光源
JP2013171954A (ja) * 2012-02-20 2013-09-02 Canon Inc テラヘルツ波発生素子、それを用いた応用装置、及び装置製造方法
CN103296575A (zh) * 2012-02-28 2013-09-11 王广武 纳米增益介质夹层玻璃
CN104377534A (zh) * 2014-11-20 2015-02-25 天津大学 一种高效率产生太赫兹波的波导型非线性晶体及制作方法
CN105552716A (zh) * 2016-03-04 2016-05-04 电子科技大学 一种基于表面等离子体增强的纳米激光器
CN106324748A (zh) * 2016-10-31 2017-01-11 清华大学 太赫兹波导器件
CN108736296A (zh) * 2017-04-20 2018-11-02 清华大学 一种太赫兹波发射装置
CN107287568A (zh) * 2017-06-02 2017-10-24 昆明理工大学 一种增强太赫兹波的ZnO纳米阵列的制备方法
US20190259903A1 (en) * 2017-11-02 2019-08-22 Lawrence Livermore National Security, Llc Three-dimensional co-axial linear photonic switch
CN110391580A (zh) * 2018-04-17 2019-10-29 中国科学院大连化学物理研究所 一种铯太赫兹准直光源装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吴兴龙: "纳米结构的表面声学声子振动", 《第二十届全国光散射学术会议》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114199376A (zh) * 2021-11-23 2022-03-18 首都师范大学 利用金属纳米颗粒溶液相干探测宽带强太赫兹波的系统和方法
CN114199376B (zh) * 2021-11-23 2024-02-06 首都师范大学 利用金属纳米颗粒溶液相干探测宽带强太赫兹波的系统和方法
WO2023236578A1 (zh) * 2022-06-10 2023-12-14 广东工业大学 一种基于多光电导耦合波导输出的高速光电探测器

Also Published As

Publication number Publication date
US11133641B1 (en) 2021-09-28
CN112563874B (zh) 2021-07-30

Similar Documents

Publication Publication Date Title
CN112563874B (zh) 一种室温光激发氧化锌声子振动太赫兹激光器
Lepeshov et al. Hybrid nanophotonics
Liu et al. Fabrication of Si/Au core/shell nanoplasmonic structures with ultrasensitive surface-enhanced Raman scattering for monolayer molecule detection
CN106847797B (zh) 一种贵金属纳米颗粒-量子点阵列发光器件制备方法
CN106905974A (zh) 一种用核壳结构纳米粒子增强量子点发光的方法
CN104201443A (zh) 一种双频率太赫兹带通滤波器
CN111697415B (zh) 一种基于Weyl半金属-纳米介孔复合结构的太赫兹增强方法
CN112692277B (zh) 一种基于银纳米颗粒-j聚体染料等离子体微腔的制备方法
Liu et al. Silicon multi-resonant metasurface for full-spectrum perfect solar energy absorption
Gao et al. Up-conversion luminescence enhanced by the plasmonic lattice resonating at the transparent window of water
Kim et al. Strongly resonant metasurfaces supported by reflective substrates for highly efficient second-and high-harmonic generations with ultralow pump intensity
Li et al. Broadband and tunable terahertz absorption via photogenerated carriers in undoped silicon
Miao et al. Employing rhodium tripod stars for ultraviolet plasmon enhanced Fabry–Perot mode lasing
Wang et al. Recent progress on optical frequency conversion in nonlinear metasurfaces and nanophotonics
CN111244755A (zh) 一种介质光学微腔嵌埋黑磷的红外激光器及其制备方法
CN104701589A (zh) 氮离子太赫兹特征谱线探测的滤波器谐振单元及制造方法
CN104003627B (zh) 石墨烯光子晶体复合薄膜的制备方法
CN113078479A (zh) 一种基于复合硅半球/石墨烯宽带太赫兹超材料吸收器
Li et al. Comparison study of gold nanorod and nanoparticle monolayer enhanced optical terahertz modulators
Zhu et al. Polarization-dependent enhanced photoluminescence and polarization-independent emission rate of quantum dots on gold elliptical nanodisc arrays
CN107356584A (zh) 一种氧化锌‑银复合微腔结构表面增强拉曼基底制备方法
Nabiullina et al. Optical properties and photoinduced aggregation of cyanine dyes on silver island films
Qiu et al. Manipulating the fluorescence of exciton–plasmon hybrids in the strong coupling regime with dual resonance enhancements
Wang et al. Induced circular dichroism of achiral dielectric elliptical hole arrays with a monolayer borophene film
Fang et al. Plasmonic Au@ Ag-upconversion nanoparticle hybrids for NIR photodetection via an alternating self-assembly method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant