WO2016091107A1 - 漫反射材料、漫反射层、波长转换装置以及光源系统 - Google Patents

漫反射材料、漫反射层、波长转换装置以及光源系统 Download PDF

Info

Publication number
WO2016091107A1
WO2016091107A1 PCT/CN2015/096219 CN2015096219W WO2016091107A1 WO 2016091107 A1 WO2016091107 A1 WO 2016091107A1 CN 2015096219 W CN2015096219 W CN 2015096219W WO 2016091107 A1 WO2016091107 A1 WO 2016091107A1
Authority
WO
WIPO (PCT)
Prior art keywords
scattering particles
diffuse reflection
diffuse
reflection layer
conversion device
Prior art date
Application number
PCT/CN2015/096219
Other languages
English (en)
French (fr)
Inventor
田梓峰
徐虎
李乾
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Priority to KR1020177010549A priority Critical patent/KR101926475B1/ko
Priority to US15/534,940 priority patent/US10386548B2/en
Priority to EP15866417.7A priority patent/EP3244238B1/en
Priority to JP2017508614A priority patent/JP6553168B2/ja
Publication of WO2016091107A1 publication Critical patent/WO2016091107A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/20Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing titanium compounds; containing zirconium compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5022Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with vitreous materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/86Glazes; Cold glazes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/12Combinations of only three kinds of elements
    • F21V13/14Combinations of only three kinds of elements the elements being filters or photoluminescent elements, reflectors and refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • F21V7/30Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings the coatings comprising photoluminescent substances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2209/00Compositions specially applicable for the manufacture of vitreous glazes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/04Particles; Flakes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides

Definitions

  • the present invention relates to the field of optical energy, and in particular to a diffuse reflective material, a diffuse reflection layer, a wavelength conversion device, and a light source system.
  • the blue laser excitation high-speed rotating color wheel can effectively solve the thermal quenching problem of the phosphor, which makes the high-efficiency and low-cost laser display become a reality, and gradually develops into one of the mainstream technologies of the laser light source.
  • the light source includes an excitation light source and a wavelength conversion device, wherein the wavelength conversion device includes a reflective substrate and a phosphor sheet coated on the reflective substrate, and a motor for driving the rotation of the reflective substrate such that excitation from the excitation source A spot of light formed on the phosphor sheet acts on the phosphor sheet in a circular path
  • the reflective substrate is made of mirror aluminum.
  • the highly reflective layer in this mirror aluminum is made of high purity aluminum or high purity silver.
  • the metal reflective layer of aluminum can avoid the problem that the reflectivity of the reflective layer decreases at high temperatures to a certain extent.
  • the reflection mechanism of this diffuse reflection layer is the multiple scattering of specific light waves by scattering particles -
  • the reflection is generated, and the diffuse reflection layer has to achieve a high diffuse reflectance, and the film layer must reach a high thickness, generally requiring 200 ⁇ m.
  • the thickness above, which is relative to the dielectric protective layer of the mirror silver surface by a few hundred nanometers thick, such a film thickness increases the conduction path of the heat generated by the phosphor layer, thereby having a higher thermal resistance, the pair of wavelengths
  • the luminescent thermal stability of the conversion device is disadvantageous. How to balance the light efficiency and thermal stability of the wavelength conversion device has become a new topic for researchers.
  • the present invention is directed to a diffuse reflection material, a diffuse reflection layer wavelength conversion device, and a light source system to improve the reflectivity of the diffuse reflection material and to improve the thermal stability of the wavelength conversion device.
  • a A diffusely reflective material comprising white scattering particles and a binder, wherein the white scattering particles have a whiteness greater than 85 and the white scattering particles comprise highly reflective scattering particles having a whiteness greater than 90 and a refractive index greater than or equal to 2.0.
  • the high refractive scattering particles and the high thermal conduction scattering particles, the high thermal conduction scattering particles are boron nitride and/or aluminum nitride, and the particles of the high thermal conduction scattering particles are rod-shaped or flat.
  • the flat shape includes a sheet shape, a plate shape or a strip shape; preferably a sheet shape.
  • the white scattering particles include, by weight: 0.08 to 0.15 parts of whiteness greater than 90 Highly reflective scattering particles, 0.5 to 0.7 parts of high refractive scattering particles, and 0.3 to 0.5 parts of highly thermally conductive scattering particles.
  • the weight ratio of the white scattering particles to the binder is from 0.88 to 1.15:1.
  • the highly reflective scattering particles and the high refractive scattering particles having a whiteness greater than 90 are spherical; preferably, the whiteness is greater than 90
  • the high-reflection scattering particles and the high-refractive scattering particles have a radius of 0.2 to 0.5 ⁇ m.
  • the highly reflective scattering particles are one or more of alumina, magnesia and barium sulfate; the high refractive scattering particles are one or more of titanium dioxide, zirconium oxide and zinc oxide; when the high thermal scattering particles are flat When the high thermal conductivity scattering particles are in the flat direction, the length is 0.7 to 7 ⁇ m, the length in the thickness direction is 0.02 to 0.25 ⁇ m; when the high thermal conductivity scattering particles are rod-shaped, the length of the high thermal conductivity scattering particles in the length direction is 0.7 to 7 ⁇ m.
  • the diameter in the circumferential direction is 0.02 to 0.25 ⁇ m.
  • a diffuse reflection layer which is prepared using any of the above-described diffuse reflection materials.
  • a method for preparing a diffuse reflection layer comprising the steps of: mixing any of the above-mentioned diffuse reflection materials with an organic carrier to form a mixed material; coating the mixed material on a surface of the substrate, and sintering to form a diffuse reflection layer.
  • the step of coating the mixed material on the surface of the substrate is carried out by knife coating, spin coating or screen printing.
  • Coating the mixed material on the surface of the substrate, and sintering to form the diffuse reflective layer comprises: coating the mixed material on the surface of the substrate, sintering to form the first sub-diffuse reflective layer; coating the mixed material on the first sub-diffuse On the surface of the reflective layer, the second sub-diffuse reflective layer is sintered; the steps of coating and sintering are repeated to form a multi-layered diffuse reflective layer, thereby forming a diffuse reflective layer.
  • a A wavelength conversion device comprising a high thermal conductivity substrate, a phosphor layer disposed on the high thermal conductivity substrate, and a diffuse reflection layer between the high thermal conductivity substrate and the phosphor layer, the diffuse reflection layer being any of the above diffuse reflection layers.
  • the thickness of the diffuse reflection layer is 30 to 100 ⁇ m, and the reflectance of the diffuse reflection layer is higher than 90%.
  • a light source system including
  • the wavelength conversion device is a wavelength conversion device described above.
  • a diffuse reflection material, a diffuse reflection layer, a wavelength conversion device, and a light source system are applied to the technical solution of the present invention. Passing whiteness greater than 90 High-reflection scattering particles, high-refractive scattering particles and high-heat-conducting scattering particles are used as raw materials. Through the synergy between the three, the high-refractive scattering particles are mainly used to reduce the thickness of the reflective layer, and the high-heat-conducting scattering particles are used to enhance the diffuse reflection.
  • the layer conducts heat, which in turn helps to maintain the diffuse reflectance of the diffuse reflection layer while reducing the thickness of the diffuse reflection layer, thereby achieving both the light effect and thermal stability of the wavelength conversion device, and improving the wavelength conversion device in the high power laser. Luminescence stability under excitation.
  • FIG. 1 is a block diagram showing the structure of a wavelength conversion device according to an exemplary embodiment of the present invention.
  • the term 'whiteness' means the degree of whiteness of the surface, expressed as a percentage of the white content, usually in the form of magnesium oxide.
  • the standard whiteness is 100, and it is set to 100% of the standard reflectance.
  • the blue light whiteness of the sample is expressed as the percentage of reflectance of the surface of the blue-orange magnesia standard plate.
  • Three values are measured by three kinds of color filters of red, green and blue or three kinds of light sources, and the average value is three-color whiteness, which is mainly measured by a photoelectric whiteness meter.
  • the term 'refractive index' It refers to the ratio of the speed of light in a vacuum to the speed of light in the material, as measured by the minimum deflection angle method.
  • the term 'reflectance' refers to the ability of the object light to reflect the incident light, which is called the reflection force of the mineral, which is obtained by measuring the diffuse reflection light power of the test sample by using the barium sulfate diffuse reflection white plate as a standard. .
  • the 'flat shape' in the present invention includes common shapes such as a sheet shape, a strip shape, or a plate shape.
  • the diffuse reflective material comprises white scattering particles and a binder, wherein the white scattering particles have a whiteness greater than 85, and the white scattering particles include high-reflecting scattering particles having a whiteness greater than 90, high-refractive scattering particles having a refractive index of 2.0 or higher, and high thermal-conductive scattering particles, and the high thermal-conductive scattering particles are boron nitride and / Or aluminum nitride particles, the particles of the high thermal conductive scattering particles are rod-shaped or flat.
  • the visible light photons pass through the white scattering particles, part of the light is directly reflected back to the interface by the reflective particles having the reflective function, and the other part of the light is in the refractive particles having the refractive function, and Under the action of the heat conductive particles with thermal conductivity, the forward scattering and refraction are continued. After a period of optical path, it is finally refracted several times. - Reflected back to the interface.
  • the length of the optical path is related to the refractive index. Generally, the higher the refractive index with respect to the medium, the shorter the optical path; the shorter the optical path, the lower the probability of absorption, and the higher the reflectivity, thus achieving the same reflectivity.
  • the thinner the diffuse reflection layer of the refractive index containing the higher refractive index the thinner the diffuse reflection layer is, which is advantageous for reducing the thermal resistance and improving the stability of the wavelength conversion device under high power laser excitation.
  • a refractive index at High refractive scattering particles above 2.0 it is preferred to use a refractive index at High refractive scattering particles above 2.0.
  • the above high refractive scattering particles include, but are not limited to, one or more of titanium dioxide, zirconium oxide and zinc oxide.
  • the long-wavelength red photon in the visible light region has a strong forward scattering ability, and therefore, in the same case, its refraction in the diffuse reflection layer -
  • the optical path of the reflected light path is longer than that of the green light and the blue light. Therefore, the addition of the reflective particles with a relatively high refractive index is beneficial to weakening the problem that the white scattering particles have a lower reflectance to the red light photon, thereby improving the diffuse reflection layer.
  • the reflectivity of the area In the present invention, it is preferred to use whiteness greater than 90 highly reflective scattering particles.
  • the above whiteness is greater than 90
  • the highly reflective scattering particles include, but are not limited to, one or more of alumina, magnesia and barium sulfate, and the diffuse emissive layer prepared from the above particles has a high reflectance of more than 90%.
  • the heat conductive particles having a heat conducting function mainly serve to enhance the heat conduction of the diffuse reflection layer.
  • High thermal conductivity scattering particles are preferably employed in the present invention.
  • the above high thermal conductive scattering particles are boron nitride and / Or aluminum nitride particles.
  • the contact area between the scattering particles is further improved, and a heat conduction network is formed to facilitate the improvement of the thermal conductivity of the diffuse reflection layer, thereby facilitating the improvement of the above-described diffuse emission.
  • the luminescence thermal stability of the layer wavelength conversion device at high power laser excitation is improved.
  • the whiteness of the high-reflection scattering particles, the high-refractive scattering particles, and the high thermal-conductive scattering particles having a whiteness of more than 90 is 85.
  • the whiteness is white and the whiteness is greater than 90
  • the high-reflection scattering particles, the high-refractive scattering particles and the high-heat-conducting scattering particles work synergistically, and the high-refractive scattering particles with high refractive function mainly act as thinning and reflecting layers; the high-heat-conducting scattering particles with high thermal conductivity function mainly Enhance the heat conduction of the diffuse reflection layer.
  • the particle shape of the high thermal conductive scattering particles to a rod shape or a flat shape to form a heat conduction network to improve the thermal conductivity of the diffuse reflection layer, it is advantageous to improve the luminescence thermal stability of the wavelength conversion device for high power laser excitation.
  • the diffuse reflectance of the diffuse reflection layer is maintained, thereby taking into consideration the light effect and thermal stability of the wavelength conversion device, and improving the luminescence stability of the wavelength conversion device under high power laser excitation.
  • the scattering particles include 0.08 to 0.15 parts of high-reflecting scattering particles having a whiteness of more than 90, 0.5 to 0.7 parts by weight. Parts of high refractive scattering particles and 0.3 to 0.5 parts of highly thermally conductive scattering particles.
  • the weight ratio of the white scattering particles to the binder is 0.88 to 1.15:1. .
  • Mixing the above scattering particles according to the above ratio can better coordinate the reflection, refraction, and heat conduction functions of the white scattering particles, thereby better balancing the light efficiency and thermal stability of the wavelength conversion device. Improves the luminescence stability of the wavelength conversion device under high power laser excitation.
  • the binder which can be used in the present invention is an inorganic binder, which preferably includes, but is not limited to, glass powder, water glass or glass glaze; more preferably borosilicate glass.
  • the use of the above materials as a binder has the advantage of good heat resistance; when borosilicate glass is selected as the binder, it has high structural strength and relatively good thermal conductivity.
  • the binder is a borosilicate glass having a B 2 O 3 mass percentage of 10 to 20% and a silica of 70 to 90%, and has the above content range. Borosilicate glass has better thermal shock resistance.
  • the high heat conductive scattering particles are flat or rod-shaped, flat or rod-shaped heat conductive particles because the length in the flat direction is much larger than the length in the thickness direction or in the longitudinal direction.
  • the length is much larger than the length of the circumferential diameter, so that the contact area between the heat conducting particles is large, which is beneficial to increase the contact area between the scattering particles and better form a heat conduction network.
  • the length of the high thermal conductive scattering particles in the flat direction is 0.7 to 7 ⁇ m
  • the length in the thickness direction is 0.02 to 0.25 ⁇ m
  • the length of the high thermal conductivity scattering particles in the length direction is 0.7 to 7 ⁇ m.
  • the diameter in the circumferential direction is 0.02 to 0.25 ⁇ m.
  • the length of the above-mentioned highly thermally conductive scattering particles used in the above-described direction is not limited to the above range, but when the length of the above-mentioned high thermally conductive particles in the above-mentioned respective ranges exceeds the above range, it is difficult to maintain a high thermal conductivity. Underneath, a thinner reflective layer is formed. On the other hand, when the above-mentioned high-thermal-conducting scattering particles are set in the above range, they are advantageous in coating and high in thermal conductivity.
  • the high-reflection scattering particles and the high-refractive scattering particles having a whiteness of more than 90 are preferably spherical.
  • the spherical scattering particles are selected to improve the fluidity of the glass powder in a molten state. Further, since the radius of curvature of the spherical scattering particles is uniform in all directions, the sintering stress of each direction is close to that of the glass powder, and the viscosity after sintering is easily improved. The strength is increased to increase the density of sintering with the scattering particles. It is preferable that the radius of the highly reflective scattering particles and the high refractive scattering particles having a whiteness of more than 90 is 0.2 to 0.5 ⁇ m. .
  • the white scattering particles in this region have the highest reflectance in the visible region, which is advantageous for improving the luminescent properties of the wavelength conversion device comprising the diffuse reflection layer prepared by the above materials.
  • the whiteness is greater than 90
  • the high-reflection scattering particles and the high-refractive scattering particles are spherical, the high thermal-conductive scattering particles are in the form of flakes, and the mass ratio of the spherical particles to the flaky particles is not more than 2.25 : 1 . Controlling the ratio of spherical particles to flake particles helps to adjust the amount of both, thereby achieving a more ideal heat dissipation effect.
  • the highly reflective scattering particles having a whiteness greater than 90 are alumina.
  • the high refractive scattering particles are titanium dioxide, and the high thermal scattering particles are Boron nitride.
  • titanium dioxide has a higher refractive index, which can shorten scattering, refract optical path and reduce absorption. Therefore, higher reflectance can be achieved at a thinner thickness, and a thinner thickness further reduces thermal resistance. Therefore, the composite diffuse reflection layer of flaky boron nitride, spherical alumina and titania can achieve higher reflectance and lower thermal resistance in the case of thinner thickness, thereby contributing to improvement of high power density of the entire wavelength conversion device. Luminous efficacy and stability under laser excitation.
  • a diffuse reflection layer which is prepared from the above diffuse reflection material is also provided in the present invention.
  • the diffuse reflection layer is prepared by using the above diffuse reflection material, such that the diffuse reflection layer has a thickness of less than 30 ⁇ In the case of 100um, the reflectance can still be higher than 90%.
  • the diffuse reflection layer may be prepared by an existing process.
  • the method for preparing the diffuse reflection layer includes the following steps: the whiteness is greater than 90
  • the high-reflection scattering particles, the high-refractive scattering particles, the high thermal-conductive scattering particles, and the binder and the organic carrier are mixed to form a mixed material; the mixed material is coated on the surface of the substrate to be sintered to form a diffuse reflection layer.
  • the above coating step is carried out by knife coating, spin coating or screen printing, wherein a doctor blade method is preferably employed.
  • the blade coating method is advantageous for increasing the orientation of the sheet-like scattering particles, increasing the contact area between the particles, and further improving the thermal conductivity.
  • a diffuse reflection layer can be formed by sintering at 500-1000 °C.
  • Organic carriers which can be used in the present invention include, but are not limited to, silicone oil, ethanol, ethylene glycol, xylene, ethyl cellulose, acetyl tributyl citrate, terpineol, and butyl groups of various systems such as phenyl and methyl groups. Kikabi alcohol, butyl carbitol acetate, One or more of PVA, PVB, PAA, PEG, in the present invention, preferably a mixture of silicone oil or ethyl cellulose + terpineol + butyl carbitol acetate, the organic carrier can be 360-420 ° C The underlying is completely decomposed and removed, thereby reducing its effect on the diffuse reflection layer.
  • the amount of the organic vehicle may be based on the formulation to obtain a suitable viscosity; or, depending on the preparation process, it may be appropriately adjusted. For blade coating, spin coating or screen printing processes, the viscosity requirements are different. Currently, for blade coating, the mass fraction of the organic carrier is 30 ⁇ 70%.
  • the above-mentioned mixing material is coated on the surface of the substrate, and the step of sintering to form the diffuse reflection layer comprises: coating the mixed material on the surface of the substrate, sintering to form the first sub-diffuse reflective layer; and mixing the material Coating on the first diffuse reflection layer, sintering to form a second sub-diffuse reflective layer; repeating the steps of coating and sintering to form a multi-layered diffuse reflective layer to form the diffuse reflective layer.
  • This method of multi-layer coating and sintering is advantageous for improving the orientation of the rod-shaped or flat-shaped scattering particles and improving the thermal conductivity thereof.
  • the wavelength conversion device includes a high thermal conductivity substrate 1 a phosphor layer 3 disposed on the highly thermally conductive substrate 1, wherein the phosphor layer 3 includes a backlight surface S1 and a photosensitive surface S2, and a diffuse reflection layer between the highly thermally conductive substrate 1 and the phosphor layer 3
  • the diffuse reflection layer 2 is prepared by using the above diffuse reflection material.
  • the above-mentioned diffuse reflection layer 2 By forming the diffuse reflection layer 2 by using the above-mentioned diffuse reflection material, the above-mentioned diffuse reflection layer can be used in a thin thickness At the same time, maintaining a high diffuse reflectance can balance the light efficiency and thermal stability of the wavelength conversion device, and improve the luminous stability of the wavelength conversion device under high power laser excitation. More preferably, the diffuse reflection layer in the above wavelength conversion device The thickness of 2 is 30 to 100 ⁇ m, and the reflectance of the diffuse reflection layer is higher than 90%.
  • a light source system including the above-described wavelength conversion device is also provided in the present invention.
  • the light source system is improved in light emission stability.
  • the projection system can utilize the above-described light source system to enhance the illumination stability of the projection system, especially under high power laser excitation.
  • Alumina whiteness is 98, purchased from Shanghai Supermicro Nanotechnology Co., Ltd.;
  • Barium sulfate whiteness is 98, purchased from Foshan Anyi Nano Material Co., Ltd.;
  • Magnesium oxide whiteness of 98, purchased from Shanghai Supermicro Nanotechnology Co., Ltd.;
  • Titanium dioxide rutile type, with a refractive index of 2.7, purchased from Shanghai Supermicro Technology Co., Ltd.;
  • Zirconia refractive index of 2.1, purchased from Shanghai Super Micro Nanotechnology Co., Ltd.;
  • Zinc oxide Refractive index of 2.0, purchased from Shanghai Supermicro Nanotechnology Co., Ltd.;
  • Cerium oxide refractive index of 2.01, Zhangzhou Kemingrui Nonferrous Metal Materials Co., Ltd.;
  • Aluminum nitride purchased from Shanghai Super Micro Nanotechnology Co., Ltd.;
  • the whiteness of the above materials is greater than 85.
  • the binder is in a borosilicate glass having a B 2 O 3 content of 10 to 20% and a silica content of 70 to 90%.
  • the boron silicate glass was purchased from the Schott Group of Germany.
  • Substrate silicon nitride, silicon carbide, boron nitride, aluminum nitride, antimony oxide.
  • Raw material alumina (spherical particle size 0.2 ⁇ m) 0.1 g, titanium oxide (spherical particle size 0.2 ⁇ m) 0.6 g Boron nitride (flat shape, length in the flat direction: 0.7 ⁇ m, length in the thickness direction: 0.02 ⁇ m) 0.4 g, glass frit 1 g.
  • Preparation method alumina, titania, boron nitride, and glass powder with 1 g
  • the organic carrier organic carrier is terpineol, butyl carbitol acetate, ethyl cellulose
  • the steps of sintering, repeated patterning and sintering were carried out to form a diffuse reflection layer having a thickness of 30 ⁇ m, and the reflectance of the diffuse reflection layer was measured to be 92.4%.
  • Raw material Magnesium oxide (spherical particle size 0.3 ⁇ m) 0.08 g, zirconia (spherical particle size 0.3 ⁇ m) 0.7 g
  • Preparation method the above magnesium oxide, zirconium oxide, aluminum nitride, and glass powder and 1 g of organic carrier (organic carrier is PVA).
  • organic carrier is PVA
  • the aqueous solution is mixed to form a mixed material, which is scraped on the surface of the silicon nitride substrate, sintered at 600 ° C, and subjected to repeated steps of blade coating and sintering to form a thickness of 30 ⁇ m.
  • the reflectance of the diffuse reflection layer was measured to be 90.8%.
  • Raw material barium sulfate (spherical particle size 0.5 ⁇ m) 0.08g, zinc oxide (spherical particle size 0.5 ⁇ m) 0.5g
  • Preparation method the above-mentioned barium sulfate, zinc oxide, aluminum nitride, and glass powder with 2.5 g
  • the organic carrier (the organic carrier is formed by dissolving ethyl cellulose in terpineol and acetyl tributyl citrate mixed solvent) to form a mixed material, and the mixed material is scraped on the surface of the boron nitride substrate at 1000 ° C.
  • the steps of sintering, repeated patterning and sintering were carried out to form a diffuse reflection layer having a thickness of 30 ⁇ m, and the reflectance of the diffuse reflection layer was measured to be 91.3%.
  • Raw material Alumina (spherical particle size 0.4 ⁇ m) 0.15g, titanium oxide (spherical particle size 0.5 ⁇ m) 0.6g Boron nitride (flat shape, length in the flat direction: 7 ⁇ m, length in the thickness direction: 0.25 ⁇ m) 0.3 g, glass frit 1 g.
  • Preparation method the above alumina, titanium oxide, boron nitride, and glass powder and 5.4 g of organic carrier (organic carrier is PVB Dissolved in an ethylene glycol mixed solvent to form a mixed material, which is scraped on the surface of a silicon carbide substrate, sintered at 900 ° C, and repeatedly subjected to a step of coating and sintering to form a thickness of 30 ⁇ m.
  • organic carrier organic carrier is PVB Dissolved in an ethylene glycol mixed solvent to form a mixed material, which is scraped on the surface of a silicon carbide substrate, sintered at 900 ° C, and repeatedly subjected to a step of coating and sintering to form a thickness of 30 ⁇ m.
  • the reflectance of the diffuse reflection layer was measured to be 92.6%.
  • Raw material Magnesium oxide (spherical particle size 0.6 ⁇ m) 0.15g, titanium oxide (spherical particle size 0.2 ⁇ m) 0.5g Aluminum nitride (rod shape, length in the longitudinal direction of 0.7 ⁇ m, diameter in the circumferential direction of 0.05 ⁇ m) 0.45 g, and glass frit 1 g.
  • Preparation method the above alumina, magnesia, boron nitride, and glass powder and 5.8 g of organic carrier (organic carrier is PVA).
  • organic carrier is PVA
  • the aqueous solution is mixed to form a mixed material, which is scraped on the surface of the cerium oxide substrate, sintered at 500 ° C, and repeatedly subjected to a step of coating and sintering to form a diffuse reflection layer having a thickness of 30 ⁇ m.
  • the reflectance of the diffuse reflection layer was measured to be 91.6%.
  • Raw material calcium oxide (spherical particle size 0.5 ⁇ m) 0.1 g, cerium oxide (spherical particle size 0.2 ⁇ m) 0.6 g Boron nitride (rod shape, length in the longitudinal direction of 7 ⁇ m, diameter in the circumferential direction of 0.25 ⁇ m) 0.4 g, glass frit 1 g.
  • Preparation method calcium oxide, cerium oxide, boron nitride, and glass powder with 1 g
  • the organic carrier organic carrier is terpineol, butyl carbitol acetate, ethyl cellulose
  • the steps of sintering, repeated blade coating and sintering were carried out to form a diffuse reflection layer having a thickness of 30 ⁇ m, and the reflectance of the diffuse reflection layer was measured to be 90.2%.
  • Raw material alumina (spherical particle size 0.25 ⁇ m) 0.2g, titanium dioxide (spherical particle size 0.2 ⁇ m) 1.0 g , glass powder 1g.
  • Preparation method alumina, titanium dioxide and glass powder with 1 g
  • the organic carrier organic carrier is terpineol, butyl carbitol acetate, ethyl cellulose
  • the steps of sintering, repeated patterning and sintering were carried out to form a diffuse reflection layer having a thickness of 30 ⁇ m, and the reflectance of the diffuse reflection layer was measured to be 92.9%.
  • implementation 1 uses whiteness greater than 90 as compared to the reflectance of the diffuse emissive layer formed by the preparation of two scattering particles.
  • Highly reflective scattering particles such as alumina, magnesia, barium sulfate or calcium oxide, high refractive index particles such as titanium oxide, zirconium oxide, zinc oxide or cerium oxide, highly thermally conductive particles such as boron nitride, aluminum nitride particles.
  • alumina magnesium oxide or barium sulfate
  • titanium oxide zirconia or zinc oxide
  • the reflectance of the diffuse reflection layer formed by using calcium oxide as a reflective particle and yttrium oxide as a combination of high refractive particles and boron nitride is relatively low, the reflectance can also be achieved. more than 90 percent.
  • the inventors prepared the wavelength conversion device by the diffuse emission layer prepared in Examples 1-5, 1 ' and Comparative Example 1. And in the case where the diffuse reflection layer and the light-emitting layer have the same thickness in the prepared wavelength conversion device, the luminous flux of the test wavelength conversion device varies with the laser current.
  • Test method the wavelength conversion device prepared in the above embodiment is fixed to the spot of the laser light source, the emitted light is collected by an integrating sphere, and the emission spectrum is detected by a fiber spectrometer.
  • Luminous flux of the wavelength conversion device The spectrometer detected by the fiber optic spectrometer is recorded by software, and then the luminous flux is calculated.
  • the luminous flux of the wavelength conversion device is excited by a certain power of blue laser to evaluate its luminous efficacy.
  • the thermal stability of the sample is judged by the linearity of the increase in the luminous flux of the blue light.
  • Examples 1-5 and 1 ' A wavelength conversion device formed by using the diffuse emitting layer prepared by using the raw material of the present invention, when the laser driving current is 0.12-1.2A In the range, as the driving current increases, the luminous flux of the wavelength conversion device gradually increases, and the enhancement range of each embodiment is relatively large; but when the driving current is higher than 1.08A, the embodiments 1 to 5 The luminous flux still showed an increasing trend, while the luminous fluxes in Example 1 ' and Comparative Example 1 began to decrease, but the decreasing range of Example 1 ' was relatively small; when the driving current was higher than 1.2 A, Example 1 The luminous flux in ' and Comparative Example 1 has been severely attenuated, while Examples 1 to 5 still maintain a high luminous flux.
  • the synergistic action of the components in the diffuse reflection material of the present invention makes the prepared diffuse reflection layer not only have a high reflectance, but also achieves an unexpected technical effect in terms of thermal stability performance. Under the driving current intensity of 1.3A, the brightness of the illuminating device can be further improved.
  • the diffuse reflection layer is prepared by using boron nitride (sheet), titanium dioxide (spherical) and alumina (spherical) as raw materials, and the reflectance of the diffuse reflection layer is analyzed by changing the amount and particle diameter of each raw material and the thickness of the diffuse reflection layer. The relationship with the powder bonding situation.
  • Preparation method boron nitride, titanium dioxide, aluminum oxide, and glass powder with 0.5 ⁇ 5.4 g
  • the organic carrier (the organic carrier is ethyl cellulose dissolved in terpineol, butyl carbitol, butyl carbitol acetate, acetyl citrate tributyl ester mixed solvent) is mixed to form a mixed material, which will be mixed
  • the material is scraped on the surface of the ceramic substrate, Sintering at 800 °C to form a diffuse reflection layer.
  • Powder bonding properties The tape was adhered to the diffuse reflection layer, and then peeled off, and the powder adhesion property was judged by observing whether or not the powder remained on the tape.
  • the good bonding means that there is no powder residue on the tape, and the poor bonding means that there is powder residue on the tape.
  • the integrating sphere compares the diffuse light power of the test sample.
  • Examples 6 to 14 are as Examples 15 to 34.
  • the reflectivity of the diffuse reflection layer prepared using a single raw material boron nitride or two raw materials of boron nitride and aluminum oxide is relatively low, less than 90%.
  • the diffuse emission layer prepared by using the above three materials of the present invention has a reflectance higher than 90% at the same thickness.
  • Example 6-14 in Table 2 It can be seen that in the case of using a single raw material or only two raw materials, the diffuse reflection layer formed by sintering boron nitride and glass frit and the diffuse emission layer formed by sintering the mixed particles of boron nitride and alumina with the glass powder can be reflected.
  • the rate has a strong thickness dependence, that is, in the case of a thinner thickness, the reflectance is low, such as a thickness lower than In the case of 52 ⁇ m, the reflectance is less than 90%.
  • Examples 15 to 34 using the raw materials of the present invention When titanium dioxide is added, the reflectivity of the prepared diffuse emission layer is significantly reduced with thickness depending on the synergy between titanium dioxide and aluminum oxide and boron nitride, when the thickness is from 90 ⁇ m to 30 ⁇ m. The reflectance did not decrease significantly; and an unexpected effect of a reflectance higher than 90% was achieved in the case of thinner than ⁇ 50 ⁇ m.
  • the addition of small-sized spherical alumina particles or titanium dioxide can improve the adhesion properties of the flaky boron nitride particles in the glass frit, as in the implementation 8
  • the single 0.4 parts of boron nitride shown did not achieve good adhesion, and the diffuse reflection layer formed by using 0.4 parts by mass of boron nitride and 0.2 parts by mass of alumina in Example 14 was not good, and Example 20 When more than 0.7 parts by weight of titanium dioxide is used in 21 and 21, the bonding property is also relatively poor.
  • 0.1 ⁇ 0.15 parts of alumina and 0.5 ⁇ 0.6 can be added to 0.4 ⁇ 0.5 parts of boron nitride powder.
  • the titanium dioxide powder can not only achieve good adhesion to the ceramic substrate, but also has adhesive stability, and can achieve high reflectance; at the same time, the dependence of the reflectance on the thickness is also reduced, and the thickness can be thinned. It still maintains a high reflectivity.
  • Examples 16, 21, 20, 25, and 34 As an example, a wavelength conversion device is fabricated. Tested in a diffuse reflective layer (thickness 30 ⁇ 40 ⁇ m) In the case of the same thickness as the light-emitting layer, the luminous flux of the wavelength conversion device varies with the laser current, and the test results of the luminous flux of the wavelength conversion device are shown in Table 3.
  • the diffuse reflection layer (thickness 30 ⁇ 40 ⁇ m) is maintained in the wavelength conversion device.
  • the wavelength conversion device produced is significantly enhanced in luminescence intensity under high power laser excitation.
  • the addition of the boron nitride raw material causes a synergistic effect between the three, so that the thermal conductivity of the prepared diffuse reflection layer is remarkably enhanced, thereby enhancing the luminous intensity of the wavelength conversion device under high power laser excitation.
  • the present invention is directed to the problem that the thermal conductivity of the diffuse reflection layer of the current wavelength conversion device is relatively low, thereby affecting the luminescence stability under high power density laser excitation, by adding a sheet.
  • Boron nitride scattering particles, flaky boron nitride have high thermal conductivity, and the sheet structure is favorable for the particles to overlap each other to form a heat conduction network, thereby improving the thermal conductivity of the entire diffuse reflection layer;
  • the scattering particles and the glass powder are difficult to be sintered and dense.
  • the spherical scattering particles are selected to improve the fluidity of the glass powder in the molten state.
  • the spherical particles have uniform curvature radii in all directions, the sintering of the glass powder in all directions is performed. The stress is close to the size, and the bonding strength after sintering is easily increased, thereby increasing the density of sintering with the scattering particles. Further, the spherical scattering particles of titanium dioxide having a small influence on the flowability of the glass powder at high temperature sintering, spherical scattering particles and flakes are selected. The mass ratio of the scattering particles is not greater than 2.25 : 1 If it is too high, the ideal heat dissipation effect cannot be achieved.
  • the optical path of the scattering and refracting light paths can be shortened, and the absorption can be reduced. Therefore, a higher reflectance at a thinner thickness can be achieved, and a thinner thickness further reduces the thermal resistance. Therefore, the composite diffuse reflection layer of flaky boron nitride, spherical alumina and titania can achieve higher reflectance and lower thermal resistance in the case of thinner thickness, thereby contributing to improvement of high power density of the entire wavelength conversion device. Luminescence stability under laser excitation.

Abstract

一种漫反射材料、漫反射层、波长转换装置以及光源系统。该漫反射材料包括白色散射粒子和粘结剂,白色散射粒子的白度大于85,且白色散射粒子包括白度大于90的高反射散射粒子、折射率大于等于2.0的高折射散射粒子以及高热导散射粒子,高热导散射粒子为氮化硼和/或氮化铝粒子,高热导散射粒子的颗粒形状为棒状或扁平状。实现了在保持高反射率的同时减薄漫反射层厚度,使波长转换装置兼具高光效和高热稳定性。

Description

漫反射材料、漫反射层、波长转换装置以及光源系统 技术领域
本发明涉及光学能源领域,具体而言,涉及一种漫反射材料、漫反射层、波长转换装置以及光源系统。
背景技术
目前,蓝光激光激发高速旋转的色轮能够有效解决荧光粉的热猝灭问题而使得高效低成本的激光显示成为现实,逐渐发展成为激光光源的主流技术之一。在该种方案中,光源包括激发光源和波长转换装置,其中波长转换装置包括反射基底和涂覆在反射基底上的荧光粉片,以及用于驱动反射基底转动的马达,使得来自激发光源的激发光在荧光粉片上形成的光斑按圆形路径作用于该荧光粉片
现有的波长转换装置中反射基底采用镜面铝。这种镜面铝中的高反射层采用高纯铝或者高纯银。随着激光光源功率的提高,镜面银 / 铝存在高温氧化发黑问题将越来越严重。为了解决这个问题,一般采用粘接剂粘接白色漫反射粒子形成的漫反射层或者多孔反射陶瓷来替代镀银 / 铝的金属反射层,在一定程度上可以避免反射层在高温下反射率下降的问题。
技术问题
但是这种漫反射层的反射机理是通过散射粒子对特定光波的多次散射 - 反射产生,漫反射层要达到较高的漫反射率,其膜层必须达到较高厚度,一般需要 200µm 以上的厚度,而这种厚度相对于镜面银表面的介质保护层几百个纳米厚度来说,这样的膜厚会增加荧光层产生热量的传导路径,从而具有较高的热阻,这对波长转换装置的发光热稳定性是不利的。如何兼顾波长转换装置的光效和热稳定性,已经成为了研发人员的一个新的课题。
目前,采用高反射粒子亚微米级氧化铝和遮盖力强的辅助粒子二氧化钛能够在较薄的厚度情况下实现较高的反射率,但这种材料形成的波长转换装置在高功率密度的激光激发下的发光稳定性不好。因此,仍需要对现有的波长转换装置进行改进,以提高其光效和热稳定性。
技术解决方案
本发明旨在提供一种漫反射材料、漫反射层波长转换装置以及光源系统,以提高漫反射材料的反射率,并提高波长转换装置的热稳定性。
为了实现上述目的,根据本发明的一个方面,提供了一种 漫反射材料,包括白色散射粒子和粘结剂,其中,白色散射粒子的白度大于 85 ,且白色散射粒子包括白度大于 90 的高反射散射粒子、折射率大于等于 2.0 的高折射散射粒子以及高热导散射粒子,高热导散射粒子为氮化硼和 / 或 氮化铝 ,高热导散射粒子的颗粒形状为棒状或扁平状。
所述扁平状包括片状、板状或条状;优选为片状。
进一步地, 白色散射粒子按照重量份计,包括: 0.08 ~ 0.15 份的白度大于 90 的高反射散射粒子、 0.5 ~ 0.7 份的高折射散射粒子,以及 0.3 ~ 0.5 份的高热导散射粒子。
进一步地, 白色散射粒子和粘结剂的重量比为 0.88 ~ 1.15 : 1 。
进一步地, 白度大于 90 的高反射散射粒子和高折射散射粒子为球形;优选白度大于 90 的高反射散射粒子和高折射散射粒子的半径为 0.2 ~ 0.5µm 。
进一步地, 白度大于 90 的高反射散射粒子为氧化铝、氧化镁和硫酸钡中的一种或多种;高折射散射粒子为二氧化钛、氧化锆和氧化锌中的一种或多种;当高热导散射粒子为扁平状时,高热导散射粒子在扁平方向的长度为 0.7 ~ 7µm ,厚度方向的长度为 0.02~0.25µm ;当高热导散射粒子为棒状时,高热导散射粒子在长度方向的长度为 0.7 ~ 7µm ,在圆周方向的直径为 0.02~0.25µm 。
根据本发明的另一方面,提供了一种 漫反射层,该漫反射层采用上述任一种漫反射材料制备而成。
根据本发明的又一方面,提供了 一种漫反射层的制备方法,该制备方法包括以下步骤:将上述任一种漫反射材料与有机载体混合,形成混合材料;将混合材料涂覆在基材表面上,烧结形成漫反射层。
进一步地,将 混合材料涂覆在基材表面上的步骤中采用刮涂、旋涂或丝网印刷的方式进行涂覆。
进一步地, 将混合材料涂覆在基材表面上,烧结形成漫反射层的步骤包括:将混合材料涂覆在基材表面上,烧结形成第一子漫反射层;将混合材料涂覆在第一子漫反射层表面上,烧结形成第二子漫反射层;重复涂覆和烧结的步骤,形成多层子漫反射层,进而形成漫反射层。
根据本发明的一方面,提供了 一种波长转换装置,包括高导热基板、设置在高导热基板上的荧光层,以及位于高导热基板和荧光层之间的漫反射层,漫反射层为上述任一种漫反射层。
进一步地, 漫反射层的厚度为 30 ~ 100µm ,漫反射层的反射率高于 90% 。
根据本发明的另一方面,提供了 一种 光源系统,包括 波长转换装置,波长转换装置为上述波长转换装置。
有益效果
应用本发明的技术方案一种漫反射材料、漫反射层、波长转换装置以及光源系统。通过以白度大于 90 的高反射散射粒子、高折射散射粒子和高热导散射粒子为原料,通过三者之间的协同作用,利用高折射散射粒子主要起减薄反射层作用,利用高热导散射粒子主要起增强漫反射层导热作用,进而有利于在减薄漫反射层的厚度的情况下,保持漫反射层的漫反射率,从而兼顾波长转换装置的光效和热稳定性,提升了波长转换装置在高功率激光激发下的发光稳定性。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图 1 示出了根据本发明一种典型的实施方式中波长转换装置的结构示意图。
本发明的最佳实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
在本发明中术语 ' 白度 ' 是指表面白色的程度,以白色含有量的百分率表示,通常以 氧化镁 为标准白度 100 ,并定它为标准反射率 100% ,以 蓝光 照射氧化镁标准板表面的反射率百分率来表示试样的 蓝光白度 ;用红、绿、蓝三种滤色片或三种光源测出三个数值,平均值为 三色光 白度,主要通过光电白度计测量。
在本发明中术语 ' 折射率 ' 是指光在真空中的速度与光在该材料中的速度之比率,是通过最小偏向角法测试得到的。
在本发明中术语'反射率'是指物光面对入射光线的反射能力,称为矿物的反射力,是通过以硫酸钡漫反射白板为标准,积分球对比测试样品漫反射光功率测试得到的。
在本发明中的'扁平状'包括片状、条状或板状等常见的形状。
正如背景技术部分所指出的,在现有技术中存在波长转换装置的光效和热稳定性难以兼顾的技术问题。为了改善这一问题,在本发明中提供了一种漫反射材料。这种漫反射材料包括白色散射粒子和粘结剂,其中,白色散射粒子的白度大于 85 ,且白色散射粒子 包括白度大于 90 的高反射散射粒子、折射率大于等于 2.0 的高折射散射粒子和高热导散射粒子,高热导散射粒子为氮化硼和 / 或氮化铝粒子,高热导散射粒子的颗粒形状为棒状或扁平状。
利用上述漫反射材料制备的漫反射层在实际操作过程中,可见光光子经过白色散射粒子时,一部分光被具有反射功能的反射粒子直接反射回界面,另一部分光在具有折射功能的折射粒子,以及具有导热功能的导热粒子的作用下,继续向前散射,折射。经过一段光程,最终经过多次折射 - 反射回界面。这段光程的长短与折射率有关系,一般相对于介质的折射率越高,光程越短;光程越短,被吸收的概率降低,反射率就越高,因此,达到相同反射率的情况下,包含较高折射率的折射粒子的漫反射层厚度越薄,较薄的漫反射层有利于降低其热阻,提高波长转换装置在高功率激光激发下的稳定性。在本发明中优选采用折射率在 2.0 以上的高折射散射粒子。优选地,上述高折射散射粒子包括但不限于二氧化钛,氧化锆和氧化锌中的一种或多种。
进一步地,上述漫反射材料所制备的漫反射层中,可见光区中的长波长红光光子的前向散射能力较强,因此在相同情况下,其在漫反射层中的折射 - 反射光路径的光程较绿光、蓝光光子长,因此,加入折射率相对较高的反射粒子有利于减弱白色散射粒子对红光光子反射率较低的问题,进而提高漫反射层对整个可见区的反射率。在本发明中优选采用白度大于 90 的高反射散射粒子。优选地,上述白度大于 90 的高反射散射粒子包括但不限于氧化铝,氧化镁和硫酸钡中的一种或多种,上述粒子制备而成的漫发射层的反射率高,能够大于 90% 。
更进一步地,上述漫反射材料所制备的漫反射层中,具有导热功能的导热粒子主要起增强漫反射层导热作用。导热粒子具有的导热性能越好,越有利于转移在光反射过程中所产生的热量。在本发明中优选采用高热导散射粒子。优选地,上述高热导散射粒子为氮化硼和 / 或氮化铝粒子。通过将高热导散射粒子的颗粒形状设置为棒状或扁平状,进一步提高散射粒子间接触面积的提高,形成导热网络,以有利于提高漫反射层的热导率,从而有利于提高具有上述漫发射层的波长转换装置在高功率激光激发时的发光热稳定性。
另外,通过控制上述白度大于 90 的高反射散射粒子、高折射散射粒子和高热导散射粒子的白度均在 85 以上 ,有利于降低散射粒子对可见区光子的吸收率,进而优化包含有上述材料所制备的漫反射层的波长转换装置的发光性能。
在本发明上述漫反射材料中,通过将均为白色的且白度大于 90 的高反射散射粒子、高折射散射粒子和高热导散射粒子三者协同作用,利用具有高折射功能的高折射散射粒子主要起减薄反射层作用;利用具有高热导功能的高热导散射粒子主要起增强漫反射层导热作用。通过将高热导散射粒子的颗粒形状设置为棒状或扁平状以形成导热网络提高漫反射层的热导率,从而有利于提高波长转换装置对高功率激光激发的发光热稳定性。进而有利于在减薄漫反射层的厚度的 情况下,保持漫反射层的漫反射率,从而兼顾 波长转换装置的 光效和热稳定性 ,提升了波长转换装置在高功率激光激发下的发光稳定性。
在本发明上述漫反射材料中,只要同时包括白度大于 90 的高反射散射粒子、高折射散射粒子和高热导散射粒子就能够在减薄漫反射层的厚度的 情况下,保持漫反射层的漫反射率 。在本发明的一种优选实施方式中,上述散射粒子按照重量份计,包括 0.08 ~ 0.15 份 的白度大于 90 的高反射散射粒子、 0.5 ~ 0.7 份的高折射散射粒子以及 0.3 ~ 0.5 份 的高热导散射粒子。优选上述漫反射材料中,白色散射粒子和粘结剂的重量比为 0.88 ~ 1.15 : 1 。按照上述配比混合上述散射粒子能够更好地协调白色散射粒子的反射、折射以及导热功能,进而更好地 兼顾 波长转换装置的 光效和热稳定性 ,提升了波长转换装置在高功率激光激发下的发光稳定性。
在本发明中可以使用的粘结剂为 无机粘接剂,其优选 包括但不限于 玻璃粉,水玻璃或者玻璃釉料;更优选硼硅酸盐玻璃。采用上述材料作为粘结剂具有耐热性好的优点;当选用硼硅酸盐玻璃作为粘结剂时,具有结构强度高,导热性能相对更好。在本发明一种更优选的实施例中,上述粘结剂为 B2O3 质量百分含量为 10~20% ,氧化硅为 70 ~ 90% 的硼硅酸盐玻璃,具有上述含量范围的硼硅酸盐玻璃具有更好的抗热震性能。
在本发明上述漫反射材料中,优选上述高导热散射粒子为扁平状或棒状,扁平状或棒状的导热粒子,因其在扁平方向的长度远大于其在厚度方向的长度,或者在长度方向的长度远大于其在圆周直径的长度,使得各导热粒子间的接触面积较大,有利于增加散射粒子间接触面积的提高,更好地形成导热网络。更为优选地,当高热导散射粒子为扁平状时,高热导散射粒子在扁平方向的长度为 0.7 ~ 7µm ,厚度方向的长度为 0.02~0.25µm ;当高热导散射粒子为棒状时,高热导散射粒子在长度方向的长度为 0.7 ~ 7µm ,在圆周方向的直径的长度为 0.02~0.25µm 。 本发明所采用的上述高导热散射粒子的在上述方向上的长度不局限于上述范围,但当上述高导热粒子上述各方向上的长度超出上述范围时,难以在保持较高的导热率的情况下,形成较薄的反射层。而将上述高导热散射粒子的根据其形状的不同,设定在上述范围时能够兼具利于涂覆和导热率较高的特点。
优选地,上述白度大于 90 的高反射散射粒子和高折射散射粒子优选为球形。 选取球状散射粒子,有利于提高玻璃粉熔融状态下的流动性,进一步地,由于球状散射粒子各个方向的曲率半径较为一致,因而各个方向与玻璃粉的烧结应力大小接近,容易提高烧结之后的粘接强度,从而提高与散射粒子的烧结致密度。 优选白度大于 90 的高反射散射粒子和高折射散射粒子的半径为 0.2 ~ 0.5µm 。在这个区域的白色散射粒子对可见区反射率最高,有利于提高包含有上述材料所制备的漫反射层的波长转换装置的发光性能。
更为优选地,在上述漫反射材料中,白度大于 90 的高反射散射粒子和高折射散射粒子为球形,高热导散射粒子为片状,球状粒子与片状粒子的质量比例不大于 2.25 : 1 。控制球状粒子与片状粒子的比值,有利于调整两者的用量,进而获得更为理想的散热效果。进一步优选地,上述漫反射材料中,白度大于 90 的高反射散射粒子为 氧化铝, 高折射散射粒子为二 氧化钛, 高热导散射粒子为 氮化硼。其中二氧化钛具有较高的折射率,可以缩短散射,折射光路光程,减少吸收,因此,能实现较薄厚度下较高的反射率,较薄的厚度进一步降低了热阻。因此,片状氮化硼,球状氧化铝和二氧化钛的复合漫反射层能够实现较薄厚度情况下,较高的反射率和较低的热阻,从而有利于提高整个波长转换装置在高功率密度激光激发下的发光光效和稳定性。
同时,在本发明中还提供了一种漫反射层,该漫反射层由上述漫反射材料制备而成。这种漫反射层通过采用上述漫反射材料制备而成,使得这种漫反射层在厚度低于 30 ~ 100um 情况下,反射率依然可以高于 90% 。
上述漫反射层采用现有工艺制备而成即可,在本发明的一种优选实施方式中,上述漫反射层的制备方法包括以下步骤:将白度大于 90 的高反射散射粒子,高折射散射粒子,高热导散射粒子以及粘结剂和有机载体混合,形成混合材料;将混合材料以涂覆在基材表面上,烧结形成漫反射层。优选地,上述涂覆步骤采用刮涂,旋涂或丝网印刷的方式,其中优选采用刮涂的方式。刮涂方式有利于提高片状散射粒子的取向,提高粒子间的接触面积,进而提高热导率。优选地,在本发明中上述烧结步骤中,在 500-1000 ℃烧结形成即可形成漫反射层。
在本发明中可以使用的有机载体包括但不限于苯基、甲基等各个体系的硅油、乙醇、乙二醇、二甲苯、乙基纤维素、乙酰柠檬酸三丁酯、松油醇、丁基卡必醇、丁基卡必醇乙酸酯、 PVA 、 PVB 、 PAA 、 PEG 中的一个或者多个混合体,本发明中优选为硅油或乙基纤维素 + 松油醇 + 丁基卡必醇乙酸酯混合液,这种有机载体可以在 360-420℃ 下被完全分解排除,进而降低其对漫反射层的影响。而有机载体的量可以根据是配方以配置得到合适的粘度为准;或者,根据制备工艺的不同而进行适当调整。对于刮涂,旋涂或者丝网印刷工艺,粘度要求是不一样的,目前对于刮涂来说,有机载体的质量分数范围是 30~70% 。
更优选地,上述将混合材料涂覆在基材表面上,烧结形成所述漫反射层的步骤包括:将混合材料涂覆在基材表面上,烧结形成第一子漫反射层;将混合材料涂覆在第一漫反射层,烧结形成第二子漫反射层;重复涂覆和烧结的步骤,形成多层子漫反射层,进而形成所述漫反射层。这种采用多层涂覆烧结的方式,有利于提高棒状或扁平状散射粒子的取向度,提高其热导率。
同时,在本发明中还提供了一种波长转换装置。如图 1 所示,这种波长转换装置包括高导热基板 1 、设置在高导热基板 1 上的荧光层 3 ,其中荧光层 3 包括背光面 S1 和感光面 S2 ,以及位于高导热基板 1 和荧光层 3 之间的漫反射层 2 ,其中,漫反射层 2 采用上述漫反射材料制备而成。通过采用上述漫反射材料制备形成漫反射层 2 ,利用上述漫反射层,能够在厚度较薄 的同时保持较高的漫反射率,能够兼顾 波长转换装置的 光效和热稳定性 ,提升了波长转换装置在高功率激光激发下的发光稳定性。更为优选地,上述波长转换装置中漫反射层 2 的厚度为 30 ~ 100µm ,且其漫反射层的反射率高于 90% 。
另外,在本发明中还提供了一种光源系统,光源系统包括上述波长转换装置。通过采用上述波长转换装置,提高了使得光源系统发光稳定性。在实际应用中,投影系统可以利用上述光源系统,使得投影系统的发光稳定性增强,尤其在高功率激光激发下的发光稳定性。
以下将结合实施例以及对比例进一步说明本发明的有益效果。
一、以下各实施例中所使用的原料选择
氧化铝:白度为 98 ,购自 上海超微纳米科技有限 公司;
硫酸钡:白度为 98 ,购自 佛山市安亿纳米材料有限 公司;
氧化镁:白度为 98 ,购自 上海超微纳米科技有限 公司;
氧化钙,白度为 92 ,建德市奥邦钙制品有限公司;
二氧化钛:金红石型,折射率为 2.7 ,购自 上海超微纳米科技有限 公司;
氧化锆:折射率为 2.1 ,购自 上海超微纳米科技有限 公司;
氧化锌:折射率为 2.0 ,购自 上海超微纳米科技有限 公司;
氧化镧;折射率为 2.01 ,赣州科明锐有色金属材料有限公司;
氮化硼:购 上海超微纳米科技有限 公司;
氮化铝:购自 上海超微纳米科技有限 公司;
上述原料的白度均大于 85 。
粘结剂为 B2O3 含量为 10~20% ,氧化硅含量为 70~ 90% 的硼硅酸盐玻璃中。该硼的硅酸盐玻璃购买自 德国肖特集团 。
基材:氮化硅,碳化硅,氮化硼,氮化铝,氧化铍。
二、实施例及数据
( 1 )实施例 1 至 5 及对比例 1
实施例 1
原料:氧化铝(球形粒径 0.2µm ) 0.1g 、氧化钛(球形粒径 0.2µm ) 0.6g 、氮化硼(扁平状,在扁平方向的长度为 0.7µm ,在厚度方向的长度为 0.02µm ) 0.4g 、玻璃粉 1g 。
制备方法:将氧化铝、二氧化钛、氮化硼、以及玻璃粉与 1 g 有机载体(有机载体为松油醇,丁基卡比醇乙酸酯,乙基纤维素)混合,形成混合材料,将混合材料刮涂在氮化铝基材表面上, 800 ℃ 烧结,重复刮涂和烧结的步骤,形成厚度为 30µm 漫反射层,测得该漫反射层的反射率为 92.4% 。
实施例 2
原料:氧化镁(球形粒径 0.3µm ) 0.08g 、氧化锆(球形粒径 0.3µm ) 0.7g 、氮化铝(棒状,在长度方向的长度为 1.0µm ,在圆周方向的直径长度为 0.02µm ) 0.3g 、玻璃粉 1 g 。
制备方法:将上述氧化镁、氧化锆、氮化铝、以及玻璃粉与 1g 有机载体(有机载体为 PVA 的水溶液)混合,形成混合材料,将所述混合材料以刮在氮化硅基材表面上, 600 ℃ 烧结,重复刮涂和烧结的步骤,形成厚度为 30µm 漫反射层,测得该漫反射层的反射率为 90.8% 。
实施例 3
原料:硫酸钡(球形粒径 0.5µm ) 0.08g 、氧化锌(球形粒径 0.5µm ) 0.5g 、氮化铝(扁平状,在扁平方向的长度为 2.5µm ,在厚度方向的长度为 0.1µm ) 0.3g 、玻璃粉 1g 。
制备方法:将上述硫酸钡、氧化锌、氮化铝、以及玻璃粉与 2.5 g 有机载体(有机载体为乙基纤维素溶解于松油醇,乙酰柠檬酸三丁酯混合溶剂中形成)混合,形成混合材料,将混合材料以刮在氮化硼基材表面上, 1000 ℃ 烧结,重复刮涂和烧结的步骤,形成厚度为 30 µm 漫反射层,测得该漫反射层的反射率为 91.3% 。
实施例 4
原料:氧化铝(球形粒径 0.4µm ) 0.15g 、氧化钛(球形粒径 0.5µm ) 0.6g 、氮化硼(扁平状,在扁平方向的长度为 7µm ,在厚度方向的长度为 0.25µm ) 0.3g 、玻璃粉 1g 。
制备方法:将上述氧化铝、氧化钛、氮化硼、以及玻璃粉与 5.4 g 有机载体(有机载体为 PVB 溶于乙醇 乙二醇混合溶剂中形成)混合,形成混合材料,将所述混合材料以刮在碳化硅基材表面上, 900 ℃ 烧结,重复刮涂和烧结的步骤,形成厚度为 30 µm 漫反射层,测得该漫反射层的反射率为 92.6% 。
实施例 5
原料:氧化镁(球形粒径 0.6µm ) 0.15g 、氧化钛(球形粒径 0.2µm ) 0.5g 、氮化铝(棒状,在长度方向的长度为 0.7µm ,在圆周方向的直径长度为 0.05µm ) 0.45g 、玻璃粉 1g 。
制备方法:将上述氧化铝、氧化镁、氮化硼、以及玻璃粉与 5.8 g 有机载体(有机载体为 PVA 的水溶液)混合,形成混合材料,将所述混合材料以刮在氧化铍基材表面上, 500 ℃ 烧结,重复刮涂和烧结的步骤,形成厚度为 30 µm 漫反射层, 测得该漫反射层的反射率为 91.6% 。
实施例 1 '
原料:氧化钙(球形粒径 0.5µm ) 0.1g 、氧化镧(球形粒径 0.2µm ) 0.6g 、氮化硼(棒状,在长度方向的长度为 7µm ,在圆周方向的直径长度为 0.25µm ) 0.4g 、玻璃粉 1g 。
制备方法:将氧化钙、氧化镧、氮化硼、以及玻璃粉与 1 g 有机载体(有机载体为松油醇,丁基卡比醇乙酸酯,乙基纤维素)混合,形成混合材料,将混合材料刮涂在氮化铝基材表面上, 800 ℃ 烧结,重复刮涂和烧结的步骤,形成厚度为 30µm 漫反射层,测得该漫反射层的反射率为 90.2% 。
对比例 1
原料:氧化铝(球形粒径 0.25µm ) 0.2g 、二氧化钛(球形粒径 0.2µm ) 1.0 g ,玻璃粉 1g 。
制备方法:将氧化铝、二氧化钛以及玻璃粉与 1 g 有机载体(有机载体为松油醇,丁基卡比醇乙酸酯,乙基纤维素)混合,形成混合材料,将混合材料刮涂在氮化铝基材表面上, 800 ℃ 烧结,重复刮涂和烧结的步骤,形成厚度为 30µm 漫反射层,测得该漫反射层的反射率为 92.9% 。
从上述实施 1~5 、实施 1 ' 以及对比例可以看出,与对比例采用两种散射粒子制备形成的漫发射层的反射率相比,本发明采用白度大于 90 的高反射散射粒子,如氧化铝、氧化镁、硫酸钡或氧化钙,高折射率粒子,如氧化钛、氧化锆、氧化锌或氧化镧,高导热粒子,如氮化硼,氮化铝粒子为原料制备形成漫反射层的反射率无明显变化,都相对较高。由此可知,氧化铝(氧化镁或硫酸钡)和氧化钛(氧化锆或氧化锌)粒子协同作用,使得所制备的漫发射层在较低厚度情况下也能够实现高反射率。相比而言,虽然采用氧化钙作为反射粒子和氧化镧作为高折射粒子与氮化硼组合形成的漫反射层的反射率相对较低,但反射率也都能达到 90% 以上。
进一步地,发明人 以实施例 1-5 、 1 ' 和对比例 1 所制备的漫发射层制备波长转换装置 ,并且在所制备的波长转换装置中漫反射层和发光层相同的厚度情况下,测试波长转换装置的发光光通量随激光电流变化。
测试方法:将上述实施例制备的波长转换装置固定到激光光源光斑处,用积分球收集发射光,光纤光谱仪探测发射光谱。
波长转换装置的光通量:将光纤光谱仪探测到的光谱仪通过软件记录,然后计算其光通量。
其中,通过一定功率的蓝光激光激发波长转换装置的光通量来评价其光效性能 ,通过测试样品的光通量随蓝光功率增加的线性度来评判其热稳定性能。
测试结果:如表 1 所示。表 1. 不同漫反射层的发光光通量随激光电流变化
激光驱动电流( A ) 不同漫反射层的波长转换装置光通量(lm)
实施例 1 实施例 2 实施例 3 实施例 4 实施例 5 实施例 1 ' 对比例 1
0.12 644 630 635 645 637 616 636
0.36 1925 1878 1887 1913 1895 1840 1905
0.6 3164 3090 3107 3151 3116 3035 3134
0.84 4306 4212 4236 4296 4250 4140 4273
1.08 5278 5175 5200 5275 5214 5075 5020
1.2 5581 5389 5401 5490 5401 5006 4758
1.3 5156 5204 5003 5300 5280 严重衰减 严重衰减
从上表 1 的数据可以看出,实施例 1-5 和 1 ' 采用本发明的原料所制备的漫发射层所形成的波长转换装置,当激光驱动电流在 0.12-1.2A 范围内,随着驱动电流的增加,波长转换装置的光通量逐渐增加,且各实施例增强幅度都比较大;但当驱动电流高于 1.08A 时,实施例 1~5 的光通量依然呈现增长趋势,而实施例 1 ' 和对比例 1 中的光通量开始递减,但是实施例 1 ' 的下降幅度相对较小;当驱动电流高于 1.2A 时,实施例 1 ' 和对比例 1 中的光通量已经严重衰减,而实施例 1~5 依然能够保持较高的光通量。可见,高导热氮化硼 / 氮化铝粒子对于漫反射层较强的导热作用,使得波长转换装置的临界驱动激光电流变大,有助于亮度的提高。因此,本发明漫反射材料中各组分协同作用使得制备所得的漫反射层不仅具有较高的反射率,而且在热稳定性能方面取得了预料不到的技术效果,在高达 1.3A 的驱动电流强度下,发光装置的亮度可以进一步提高。
(二)实施例 6-34
以氮化硼(片状)、二氧化钛(球形)以及氧化铝(球形)为原料制备漫反射层,通过改变各原料的用量和粒径,以及漫反射层的厚度,分析漫反射层的反射率与粉体粘结情况之间的关系。
原料粒径范围与份数:如表 2 所示。
制备方法:将氮化硼、二氧化钛、氧化铝、以及玻璃粉与 0.5~5.4 g 有机载体(有机载体为乙基纤维素溶解于松油醇,丁基卡必醇,丁基卡必醇乙酸酯,乙酰柠檬酸三丁酯混合溶剂中形成)混合,形成混合材料,将混合材料以刮在陶瓷基材表面上, 800 ℃ 烧结形成漫反射层。
对各实施例的漫反射层的性能进行如下测试一,测试一结果见表 2.
粉体粘结性能: 用胶带粘附到漫反射层上,然后揭开,通过观察胶带上是否残留粉体来判断粉体粘接性能。其中粘结好是指胶带上没有粉末残留,粘结不好是指胶带上有粉末残留。
反射率: 以硫酸钡漫反射白板为标准, 积分球对比测试样品漫反射光功率。
表 2 :
实施例号 漫反射层厚度( µm ) 5~7µm 氮化硼 /g 0.7µm 氮化硼 /g 0.2~0.5µm 氧化铝 /g 0.2µm TiO2
/g
0.5µm TiO2 /g 玻璃粉 /g 反射率 % 粉体粘接情况
6 42-48 0.25 / / / / 1 75.8
7 49-52 0.3 / / / / 1 81.1
8 30-40 0.4 / / / / 1 87.2 不好
9 30-35 / 0.4 / / / 1 85.5
10 46-50 / 0.4 / / / 1 87.2
11 45-50 0.4 / 0.08 / / 1 88.3
12 40-46 0.4 / 0.1 / / 1 89.3
13 56-60 0.4 / 0.1 / / 1 90.4
14 30-40 0.4 / 0.2 / / 1 89.6 不好
15 36-38 0.3 / 0.1 / 0.5 1 90.5
16 33-35 0.4 / 0.1 / 0.6 1 92.6
17 58-59 0.4 / 0.1 / 0.6 1 94.7
18 85-89 0.4 / 0.1 / 0.6 1 94.9
19 37-38 0.5 / 0.1 / 0.6 1 92.9 不好
20 35-38 0.5 / 0.2 / 0.6 1 93.5 不好
21 36-39 0.4 / 0.1 / 0.8 1 91.9 不好
22 34-36 0.4 / 0.1 0.5 / 1 94.9
23 65-68 0.4 / 0.1 0.5 / 1 96.1
24 95 0.4 / 0.1 0.5 / 1 96.7
25 35-40 0.4 / 0.1 0.6 / 1 94.4
26 72-76 0.4 / 0.1 0.6 / 1 95.5
27 98-102 0.4 / 0.1 0.6 / 1 94.9
28 37-38 0.5 / 0.1 0.5 / 1 94.3
29 74-79 0.5 / 0.1 0.5 / 1 95.4
30 98-103 0.5 / 0.1 0.5 / 1 96.3
31 37-39 0.5 / 0.15 0.5 / 1 94.3
32 58-66 0.5 / 0.15 0.5 / 1 95.7
33 79-96 0.5 / 0.15 0.5 / 1 96.8
34 43-46 0.5 / 0.2 0.5 / 1 94.2 不好
从表 2 可以看出,实施例 6 至 14 作为实施例 15 至 34 的比较例,在采用单一原料氮化硼或采用两种原料氮化硼与氧化铝所制备的漫反射层的反射率相对较低,低于 90% ;而采用本发明的上述三种原料所制备的漫发射层在相同厚度下的反射率均高于 90% 。
具体来看,由实施例 6-9 的数据可以看出,当氮化硼(片状方向长度为 5~7µm )的添加量从 0.25 份增加到 0.4 份时,其反射率从 76% 提高到 87% ;但是由于其粒子形状为片状,其在玻璃粉中的添加量不能太高,进一步可以看出,当氮化硼( 5~7µm )添加量 0.25 份增加到 0.3 ,到 0.4 份时,其在基板上的粘接性能越来越低,进一步增加氮化硼的含量,会存在氮化硼(片状方向长度为 5~7 µm )掉粉现象。如实施例 9 ,对于小粒径的氮化硼(片状方向长度为 0.7 µm )也是同样的情况,这是因为片状粒子容易形成卡片搭桥结构,起到相互支撑的作用,阻碍材料的收缩。因此,本发明上述实施例中,通过控制氮化硼在特定的含量范围内,从而避免了片状散射粒子难以与玻璃形成致密结构和长度方向与厚度方向烧结应力不一致而造成的烧结以后粘接强度较低的缺陷。
进一步,由表 2 中实施例 6-14 可以看出,在采用单一原料或仅用两种原料的情况下,氮化硼与玻璃粉烧结形成的漫反射层和氮化硼与氧化铝混合粒子与玻璃粉烧结形成的漫发射层的反射率存在较强的厚度依赖性,也就是说,在厚度较薄的情况下,反射率低,比如厚度低于 52µm 情况下,反射率不到 90% 。而采用本发明原料的实施例 15~34 ,当加入二氧化钛以后,通过二氧化钛与氧化铝和氮化硼之间的协同作用,使得所制备的漫发射层的反射率随厚度的依赖明显减小,当厚度从 90µm 薄至 30µm 时 ,反射率无明显下降;且在较薄至 <50µm 的情况下也实现了反射率高于 90% 的预料不到的效果。
进一步地,加入小粒径球状氧化铝粒子或二氧化钛能够改善片状氮化硼粒子在玻璃粉中的粘接性能,如实施 8 所示的单独 0.4 份氮化硼不能实现良好粘接,实施例 14 采用 0.4 质量份的氮化硼和 0.2 质量份的氧化铝所形成的漫反射层粘接性能也不好,实施例 20 和 21 采用的大于 0.7 重量份的二氧化钛时,粘结性能也相对较差。而由实施例 15 至 18 、 22 、 25 、 28 以及实施例 31 可以看出,在 0.4~0.5 份质量的氮化硼粉中能够加入 0.1~0.15 份的氧化铝和 0.5~ 0.6 份的二氧化钛粉,不仅能够实现与陶瓷基板的良好粘接,具有粘接稳定性,而且能够实现较高的反射率;同时,反射率对厚度的依赖性也降低,能够实现厚度较薄的情况下依然保持较高的反射率。
更进一步地,对比表 2 中实施例 11~14 和 8 数据可以看出,当氮化硼中加入少量的氧化铝时,其反射率有了明显提高,体现了氧化铝的高反射粒子作用。进一步地,对比表 2 中实施例 6~ 14 和实施例 15~34 数据可以看出,球状氧化铝和球状二氧化钛的加入能够改善氮化硼的粘接性能,这主要是因为小粒径球状氧化铝和二氧化钛能够改善玻璃粉熔融状态下的流动性,从而改善其粘接性能,从而使得其制备成波长转换装置具备较高的热稳定性。
测试二
以对比例 1 ,实施例 16 、 21 、 20 、 25 和 34 为例,制作波长转换装置。测试在漫反射层(厚度为 30~40 µm )和发光层相同的厚度情况下,波长转换装置的发光光通量随激光电流变化,其中,波长转换装置光通量的测试结果如表 3 所示。
由表 3 中数据可以看出,在保持波长转换装置中漫反射层(厚度为 30~40 µm )和发光层相同的厚度情况下,当在氧化铝和二氧化钛中加入氮化硼之后,制作而成的波长转换装置在高功率激光激发下的发光强度明显增强。由此可知,氮化硼原料的加入,使得三者之间产生协同作用,使得所制备的漫反射层的热导率明显增强,进而增强了波长转换装置在高功率激光激发下的发光强度。
表 3. 不同漫反射层的发光光通量随激光电流变化
激光驱动电流( A ) 不同漫反射层的波长转换装置光通量(流明)
对比例 1 实施例 16 实施例 20 实施例21 实施例 25 实施例 34
0.12 636 644 648 637 652 651
0.36 1905 1925 1931 1901 1948 1935
0.6 3134 3164 3046 3007 3210 3104
0.84 4273 4306 3900 4130 4380 3946
1.08 5020 5278 3105 3585 5378 3213
1.2 4758 5581 严重衰减 严重衰减 5700 严重衰减
1.3 严重衰减 5056 / / 5680 /
进一步地, 结合表 2 和表 3 中数据,对比实施例 12 与 14 , 19 与 20 , 33 与 34 可以看出,虽然氧化铝含量的提高有利于提高反射率,但是过高的氧化铝含量,比如氧化铝的含量达到 0.2 ,其漫反射层烧结致密度较差,如表 3 的实施例 20 和 34 所示,随着激光电流升高,光通量 1.2A 就出现严重衰减,这是因为,氧化铝作为玻璃网络中间体,在玻璃粉烧结过程中,会增加玻璃高温熔融状态下的粘度,不利于烧结致密。因而,在氮化硼和氧化钛存在情况下,氧化铝的含量不能超高 0.15 份;同时,对比实施例 16 , 19 , 20 , 21 可以看出,虽然氧化钛含量的提高有利于降低高反射率漫反射层的厚度,且有利于提高烧结致密度,但是过高的氧化钛含量造成漫反射粒子含量过高,也不利于烧结,因此,相对于玻璃粉质量份数,氧化钛质量份数若超过 0.7 ,(如表 3 的实施例 21 所示,达到 0.8 份时,随着激光电流升高,驱动电流达到 1.2A 时,光通量就出现严重衰减,而且漫反射粒子与粘结剂的重量比不能超过 1.15 : 1 。
从上述数据可以看出,本发明针对目前波长转换装置的漫反射层厚度较厚导致的热导率较低,从而影响其在高功率密度激光激发下的发光稳定性的问题,通过添加片状氮化硼散射粒子,片状氮化硼具有较高的热导率,且片状结构有利于粒子间相互搭接形成导热网络,从而提高整个漫反射层的热导率;同时,针对片状散射粒子与玻璃粉难以烧结致密问题,选取球状散射粒子,有利于提高玻璃粉熔融状态下的流动性,进一步地,由于球状散射粒子各个方向的曲率半径较为一致,因而各个方向与玻璃粉的烧结应力大小接近,容易提高烧结之后的粘接强度,从而提高与散射粒子的烧结致密度,进一步地,偏向选取对玻璃粉高温烧结流动性影响较小的球状散射粒子二氧化钛,球状散射粒子与片状散射粒子的质量比例不大于 2.25 : 1 ,过高的话,无法达到理想的散热效果。进一步地,选取高折射率散射粒子二氧化钛,可以缩短散射、折射光路光程,减少吸收。因此,能实现较薄厚度下较高的反射率,较薄的厚度进一步降低了热阻。因此,片状氮化硼,球状氧化铝和二氧化钛的复合漫反射层能够实现较薄厚度情况下,较高的反射率和较低的热阻,从而有利于提高整个波长转换装置在高功率密度激光激发下的发光稳定性。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

1. 一种漫反射材料,包括白色散射粒子和粘结剂,其特征在于,所述白色散射粒子的白度大于85,且所述白色散射粒子包括白度大于90的高反射散射粒子、折射率大于等于2.0的高折射散射粒子以及高热导散射粒子,所述高热导散射粒子为氮化硼和/或氮化铝,所述高热导散射粒子的颗粒形状为棒状或扁平状。
2. 根据权利要求1所述的漫反射材料,其特征在于,所述白色散射粒子按照重量份计,包括:0.08~0.15份的所述白度大于90的高反射散射粒子、0.5~0.7份的所述高折射散射粒子以及0.3~0.5份的所述高热导散射粒子。
3. 根据权利要求1或2所述的漫反射材料,其特征在于,所述白色散射粒子和所述粘结剂的重量比为0.88~1.15:1。
4. 根据权利要求1所述的漫反射材料,其特征在于,所述白度大于90的高反射散射粒子和所述高折射散射粒子为球形;优选所述白度大于90的高反射散射粒子和所述高折射散射粒子的半径为0.2~0.5µm。
5. 根据权利要求1、2或4所述的漫反射材料,其特征在于,
所述白度大于90的高反射散射粒子为氧化铝、氧化镁和硫酸钡中的一种或多种;
所述高折射散射粒子为二氧化钛、氧化锆和氧化锌中的一种或多种;
当所述高热导散射粒子为扁平状时,所述高热导散射粒子在扁平方向的长度为0.7~7µm,厚度方向的长度为0.02~0.25µm;当所述高热导散射粒子为棒状时,所述高热导散射粒子在长度方向的长度为0.7~7µm,在圆周方向的直径为0.02~0.25µm。
6. 一种漫反射层,其特征在于,所述漫反射层采用权利要求1至5中任一项所述的漫反射材料制备而成。
7. 一种漫反射层的制备方法,其特征在于,包括以下步骤:
将权利要求1至5中任一项所述的漫反射材料与有机载体混合,形成混合材料;
将所述混合材料涂覆在基材表面上,烧结形成所述漫反射层。
8. 根据权利要求7所述的制备方法,其特征在于,将所述混合材料涂覆在基材表面上的步骤中采用刮涂、旋涂或丝网印刷的方式进行涂覆。
9. 根据权利要求8所述的制备方法,其特征在于,将所述混合材料涂覆在基材表面上,烧结形成所述漫反射层的步骤包括:
将所述混合材料涂覆在基材表面上,烧结形成第一子漫反射层;
将所述混合材料涂覆在第一子漫反射层表面上,烧结形成第二子漫反射层;
重复所述涂覆和所述烧结的步骤,形成多层子漫反射层,进而形成所述漫反射层。
10. 一种波长转换装置,包括高导热基板(1)、设置在所述高导热基板(1)上的荧光层(3),以及位于所述高导热基板(1)和所述荧光层(3)之间的漫反射层(2),其特征在于,所述漫反射层(2)为权利要求6所述的漫反射层。
11. 根据权利要求10所述的波长转换装置,其特征在于,所述漫反射层(2)的厚度为30~100µm,所述漫反射层的反射率高于90%。
12. 一种光源系统,包括波长转换装置,其特征在于,所述波长转换装置为权利要求10或11中所述的波长转换装置。
PCT/CN2015/096219 2014-12-11 2015-12-02 漫反射材料、漫反射层、波长转换装置以及光源系统 WO2016091107A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177010549A KR101926475B1 (ko) 2014-12-11 2015-12-02 난반사 재료, 난반사층, 파장 변환 장치 및 광원 시스템
US15/534,940 US10386548B2 (en) 2014-12-11 2015-12-02 Diffuse reflection material, diffuse reflection layer, wavelength conversion device and light source system
EP15866417.7A EP3244238B1 (en) 2014-12-11 2015-12-02 Diffuse reflection material, diffuse reflection layer, wavelength conversion device and light source system
JP2017508614A JP6553168B2 (ja) 2014-12-11 2015-12-02 乱反射材料、乱反射層、波長変換装置及び光源システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410766308.7 2014-12-11
CN201410766308.7A CN105732118B (zh) 2014-12-11 2014-12-11 漫反射材料、漫反射层、波长转换装置以及光源系统

Publications (1)

Publication Number Publication Date
WO2016091107A1 true WO2016091107A1 (zh) 2016-06-16

Family

ID=56106694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096219 WO2016091107A1 (zh) 2014-12-11 2015-12-02 漫反射材料、漫反射层、波长转换装置以及光源系统

Country Status (7)

Country Link
US (1) US10386548B2 (zh)
EP (1) EP3244238B1 (zh)
JP (1) JP6553168B2 (zh)
KR (1) KR101926475B1 (zh)
CN (1) CN105732118B (zh)
TW (1) TWI567123B (zh)
WO (1) WO2016091107A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018095211A1 (zh) * 2016-11-25 2018-05-31 深圳市光峰光电技术有限公司 发光陶瓷结构及其制备方法、相关发光装置和投影装置
CN112811937A (zh) * 2020-12-30 2021-05-18 哈尔滨工业大学 一种氮化硅陶瓷基材表面高反射防激光膜层的制备方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1022313B1 (nl) * 2014-11-28 2016-03-15 Puratos N.V. Enzym-inhibitorcomplexen
CN107783360A (zh) * 2016-08-25 2018-03-09 深圳市光峰光电技术有限公司 光源装置及显示系统
US10802385B2 (en) * 2017-08-08 2020-10-13 Panasonic Intellectual Property Management Co., Ltd. Phosphor plate, light source apparatus, and projection display apparatus
JP7142205B2 (ja) * 2017-08-08 2022-09-27 パナソニックIpマネジメント株式会社 蛍光板、光源装置、及び投写型映像表示装置
JP2019090856A (ja) * 2017-11-10 2019-06-13 パナソニックIpマネジメント株式会社 波長変換デバイス、光源装置、照明装置、及び、投写型映像表示装置
KR102602233B1 (ko) * 2018-02-21 2023-11-15 삼성디스플레이 주식회사 레이저 조사 장치
CN109532282A (zh) * 2018-11-21 2019-03-29 丰颂教育科技(江苏)有限公司 一种纳米无尘可投影可擦洗白板
CN113614635A (zh) 2019-04-19 2021-11-05 美题隆精密光学(上海)有限公司 用于波长转换装置的耐高温反射层
CN112240536A (zh) * 2019-07-16 2021-01-19 深圳市绎立锐光科技开发有限公司 光源装置、光导及光导的制造方法
CN110670831A (zh) * 2019-10-16 2020-01-10 墙煌新材料股份有限公司 一种高膜厚漫反射涂层铝板及其制造工艺
CN110676358A (zh) * 2019-11-04 2020-01-10 佛山市国星半导体技术有限公司 一种高亮度正装led芯片及其制作方法
CN110818248B (zh) * 2019-11-22 2022-05-27 广州光联电子科技有限公司 一种高导热、高折射率荧光玻璃层及其制备方法
CN113138043B (zh) * 2020-01-16 2022-04-22 清华大学 光压测量装置及光压测量方法
CN113625515B (zh) * 2020-05-08 2023-07-04 中强光电股份有限公司 波长转换装置及投影装置
CN112151661A (zh) * 2020-10-22 2020-12-29 弘凯光电(深圳)有限公司 Led发光装置及其封装方法
US20230197749A1 (en) * 2021-12-22 2023-06-22 Visera Technologies Company Ltd. Light diffuser, image sensor package having the same, and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1632614A (zh) * 2004-12-29 2005-06-29 中国科学院紫金山天文台 填充有功能型光反射材料的闪烁探测器及其制作方法
CN1640948A (zh) * 2004-12-29 2005-07-20 中国科学院紫金山天文台 高反射率功能型漫反射材料及其制备方法
CN101088961A (zh) * 2006-06-14 2007-12-19 史考特公司 光陶瓷、用光陶瓷制备的光学元件以及映射光学组件
CN103102668A (zh) * 2013-01-08 2013-05-15 北京化工大学 一种聚合物漫反射材料的配方及制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005120278A (ja) * 2003-10-17 2005-05-12 Oki Electric Ind Co Ltd 光学反射塗料およびそれにより形成した光学反射塗膜
JP5081488B2 (ja) * 2006-04-20 2012-11-28 Jfeスチール株式会社 六方晶窒化ホウ素粉末
JP2008145942A (ja) * 2006-12-13 2008-06-26 Nippon Steel Corp 光拡散反射材料とその製造方法、及び電子機器
JP2009231269A (ja) * 2008-02-25 2009-10-08 Sumitomo Chemical Co Ltd 反射板及び発光装置
JP5530165B2 (ja) * 2009-12-17 2014-06-25 スタンレー電気株式会社 光源装置および照明装置
US8556437B2 (en) * 2009-12-17 2013-10-15 Stanley Electric Co., Ltd. Semiconductor light source apparatus and lighting unit
US9574050B2 (en) * 2010-03-23 2017-02-21 Asahi Rubber Inc. Silicone resin reflective substrate, manufacturing method for same, and base material composition used in reflective substrate
JP5967890B2 (ja) * 2011-09-30 2016-08-10 日本タングステン株式会社 膜状の無機材料
CN106195924B (zh) * 2013-06-08 2019-05-03 深圳光峰科技股份有限公司 一种波长转换装置及其制作方法、相关发光装置
CN203489180U (zh) * 2013-10-15 2014-03-19 深圳市光峰光电技术有限公司 波长转换装置及其光源系统、投影系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1632614A (zh) * 2004-12-29 2005-06-29 中国科学院紫金山天文台 填充有功能型光反射材料的闪烁探测器及其制作方法
CN1640948A (zh) * 2004-12-29 2005-07-20 中国科学院紫金山天文台 高反射率功能型漫反射材料及其制备方法
CN101088961A (zh) * 2006-06-14 2007-12-19 史考特公司 光陶瓷、用光陶瓷制备的光学元件以及映射光学组件
CN103102668A (zh) * 2013-01-08 2013-05-15 北京化工大学 一种聚合物漫反射材料的配方及制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018095211A1 (zh) * 2016-11-25 2018-05-31 深圳市光峰光电技术有限公司 发光陶瓷结构及其制备方法、相关发光装置和投影装置
CN112811937A (zh) * 2020-12-30 2021-05-18 哈尔滨工业大学 一种氮化硅陶瓷基材表面高反射防激光膜层的制备方法
CN112811937B (zh) * 2020-12-30 2022-07-08 哈尔滨工业大学 一种氮化硅陶瓷基材表面高反射防激光膜层的制备方法

Also Published As

Publication number Publication date
EP3244238A1 (en) 2017-11-15
JP6553168B2 (ja) 2019-07-31
EP3244238A4 (en) 2018-08-15
EP3244238B1 (en) 2022-04-20
CN105732118B (zh) 2020-03-24
JP2017527847A (ja) 2017-09-21
US20170322349A1 (en) 2017-11-09
CN105732118A (zh) 2016-07-06
TWI567123B (zh) 2017-01-21
TW201620967A (zh) 2016-06-16
KR101926475B1 (ko) 2018-12-10
KR20170065552A (ko) 2017-06-13
US10386548B2 (en) 2019-08-20

Similar Documents

Publication Publication Date Title
WO2016091107A1 (zh) 漫反射材料、漫反射层、波长转换装置以及光源系统
US20210404631A1 (en) Wavelength conversion device, manufacturing method thereof, and related illumination device
EP3128350B1 (en) Wavelength conversion sheet, backlight unit, and film for protecting luminescent substance
US10580944B2 (en) Wavelength conversion member, light-emitting device, and method for manufacturing wavelength conversion member
WO2015144083A1 (zh) 一种多层结构玻璃荧光粉片及其制备方法及发光装置
WO2016173525A1 (zh) 一种波长转换装置、发光装置及投影装置
TWI823976B (zh) 波長轉換元件、製造其之方法、光轉換裝置、及產生白光的方法
CN104595852A (zh) 一种波长转换装置、漫反射层、光源系统及投影系统
KR20020084132A (ko) 반사체, 사이드라이트형 백라이트장치 및 반사체용 기판
WO2018095211A1 (zh) 发光陶瓷结构及其制备方法、相关发光装置和投影装置
EP3816682B1 (en) Optical wavelength conversion member, optical wavelength conversion device, and light emitting device
JP2017021297A (ja) 量子ドットシート、バックライト及び液晶表示装置
WO2016105027A1 (ko) 유기발광소자용 광추출 기판 제조방법, 유기발광소자용 광추출 기판 및 이를 포함하는 유기발광소자
US11500278B2 (en) Wavelength-converting element, projection apparatus, and manufacturing method of wavelength-converting element
WO2020052228A1 (zh) 波长转换装置及光源系统
JP2018098088A (ja) 量子ドットシートを有するバックライト、及び該バックライトを備えた液晶表示装置
WO2020063154A1 (zh) 光反射材料、反射层及其制备方法
WO2019203520A1 (ko) 형광체 모듈
EP2998768A1 (en) Optical component
WO2020045719A1 (ko) 광 추출 구조체 및 유기 발광 조명 장치
WO2017135584A1 (ko) 광 확산제를 사용한 형광체 플레이트
WO2022037317A1 (zh) 波长转换装置及其制备方法
TWI805221B (zh) 光學組件及顯示裝置
WO2009145500A2 (ko) 광 여기 발광장치와 그 제조방법, 및 이를 이용한 백색 광원
WO2020091444A1 (ko) 차량용 램프 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866417

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017508614

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177010549

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15534940

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015866417

Country of ref document: EP