WO2020045719A1 - 광 추출 구조체 및 유기 발광 조명 장치 - Google Patents

광 추출 구조체 및 유기 발광 조명 장치 Download PDF

Info

Publication number
WO2020045719A1
WO2020045719A1 PCT/KR2018/010460 KR2018010460W WO2020045719A1 WO 2020045719 A1 WO2020045719 A1 WO 2020045719A1 KR 2018010460 W KR2018010460 W KR 2018010460W WO 2020045719 A1 WO2020045719 A1 WO 2020045719A1
Authority
WO
WIPO (PCT)
Prior art keywords
scattering
degree
substrate
light
light emitting
Prior art date
Application number
PCT/KR2018/010460
Other languages
English (en)
French (fr)
Inventor
장하준
Original Assignee
주식회사 첨단랩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 첨단랩 filed Critical 주식회사 첨단랩
Priority to US16/634,801 priority Critical patent/US11233223B2/en
Publication of WO2020045719A1 publication Critical patent/WO2020045719A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/877Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0247Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of voids or pores
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission

Definitions

  • the disclosed embodiments relate to light extraction structures and organic light emitting lighting devices.
  • the organic light emitting device has recently been increased in utilization in that it can be flexibly implemented as a self-luminous device.
  • Such an organic light emitting device is mainly used as a display device having a plurality of pixels to implement an image.
  • the organic light emitting device when used as a surface light emitting device, since the light generated in the light emitting layer has to pass through many interfaces until it is emitted to the light extraction surface, there is a lot of light loss in this process, and thus the light extraction efficiency is inferior. there is a problem. This reduction in light extraction efficiency increases power consumption, which in turn has the side effect of reducing the lifetime of the lighting device.
  • an embodiment is to provide a light extraction structure and an organic light emitting lighting device having a high light extraction efficiency, improved power efficiency. have.
  • the substrate having a first surface and a second surface facing each other, provided with a light incident to the first surface and exited to the second surface, A plurality of pores irregularly distributed in the substrate, wherein the substrate is to be scattered when the light penetrates the substrate, the scattering is the first scattering by the pores, the first surface and the first A light extracting structure including a second scattering by at least one of two surfaces and having a relative difference between the first scattering by the first scattering and the second scattering by the second scattering may be provided.
  • the average total transmittance of the wavelength of the light of the substrate may be 70% or more.
  • the average total transmittance of the wavelength of the light of the substrate may be less than 70%.
  • the pores When the first scattering degree by the first scattering is greater than the second scattering degree by the second scattering, the pores have a first diameter, and the second scattering degree by the second scattering is applied to the first scattering. When larger than the first scattering degree, the pores have a second diameter, the first diameter may be larger than the second diameter.
  • the first scattering degree by the first scattering is greater than the second scattering degree by the second scattering
  • at least one of the first surface and the second surface has a first roughness
  • at least one of the first surface and the second surface may have a second roughness
  • the second roughness may be greater than the first roughness
  • Another embodiment includes a substrate, a sealing member coupled to the substrate, an organic light emitting part interposed between the substrate and the sealing member, and sealed by the substrate and the sealing member, and the light emitted from the organic light emitting part.
  • a substrate positioned on a side from which light is extracted, the substrate having a first surface and a second surface opposed to each other, the substrate being provided such that the light emitted from the organic light emitting portion enters the first surface and exits the second surface;
  • a light extracting film including a plurality of pores irregularly distributed in the substrate, wherein the substrate is to be scattered when the light passes through the substrate, wherein the scattering is performed by the first scattering by the pore particles.
  • a second scattering by at least one of the first and second surfaces, and the substrate has a relative difference between the first scattering by the first scattering and the second scattering by the second scattering. It is possible to provide a lock having an organic light emitting illumination device.
  • the average total transmittance of the wavelength of the light of the substrate may be 70% or more.
  • the average total transmittance of the wavelength of the light of the substrate may be less than 70%.
  • the pores When the first scattering degree by the first scattering is greater than the second scattering degree by the second scattering, the pores have a first diameter, and the second scattering degree by the second scattering is applied to the first scattering. When larger than the first scattering degree, the pores have a second diameter, the first diameter may be larger than the second diameter.
  • the first scattering degree by the first scattering is greater than the second scattering degree by the second scattering
  • at least one of the first surface and the second surface has a first roughness
  • at least one of the first surface and the second surface may have a second roughness
  • the second roughness may be greater than the first roughness
  • the organic light emitting device high power efficiency can be raised, and accordingly, the life of the organic light emitting device can be increased.
  • FIG. 1 is a schematic cross-sectional view of a light extracting structure according to an embodiment.
  • FIG. 2 is a schematic cross-sectional view of a light extracting structure according to another exemplary embodiment.
  • FIG. 3 is a schematic cross-sectional view of an organic light emitting diode display according to another embodiment.
  • FIG. 4 is a schematic cross-sectional view of an organic light emitting diode display according to another embodiment.
  • FIG. 5 is a partial cross-sectional view showing an embodiment of the organic light emitting unit.
  • FIG. 6 is a cross-sectional SEM photograph (a) and a surface SEM photograph (b) of the first embodiment.
  • FIG. 7 is a cross-sectional SEM photograph (a) and a surface SEM photograph (b) for the second embodiment.
  • FIG 8 is a cross-sectional SEM photograph (a) and a surface SEM photograph (b) for the third embodiment.
  • FIG. 9 shows the total transmittance according to the wavelength band of the visible light region of the first embodiment (A), the second embodiment (B), and the third embodiment (C).
  • FIG. 10 shows an optical haze value according to the wavelength band of the visible light region of the first embodiment A, the second embodiment B, and the third embodiment C.
  • FIG. 11 shows the power efficiency of the first to third embodiments (C) and the comparative example (ref).
  • a part such as a film, a region, a component, or the like is on or on another part, not only is it directly above the other part, but also another film, a region, a component, etc. is interposed therebetween. This includes any case.
  • FIG. 1 is a schematic cross-sectional view of a light extracting structure 1 according to one embodiment.
  • the light extracting structure 1 may include a base 101 and a plurality of pores 102 irregularly distributed in the base 101.
  • the substrate 101 may be formed of a light transmissive polymer material. According to an embodiment, the substrate 101 may include polyimide. Such a substrate 101 may be provided to be flexible.
  • the substrate 101 has a first surface 11 and a second surface 12 opposed to each other, wherein the first surface 11 is an incident surface to which light is incident, and the second surface ( 12) can be a light exiting surface. Accordingly, light may enter the substrate 101 through the first surface 11 and exit through the second surface 12.
  • a plurality of pores 102 may be irregularly distributed between the first surface 11 and the second surface 12 of the substrate 101.
  • the pores 102 may function as scattering particles of light, may form voids in which the inside is empty, and may have a refractive index of air in this space.
  • the substrate 101 as described above may be scattered when light passes through the substrate 101.
  • the scattering may include a first scattering S1 by the pores 102 and a second scattering S2 by at least one of the first and second surfaces 11 and 12.
  • This first scattering S1 may include Mie Scattering.
  • the first scattering S1 may form light scattering in a form in which most of the first scattering S1 spreads in a direction in which light travels.
  • the light passing through the substrate 101 may be the second scattering (S2) by at least one of the first surface 11, which is the incident surface and the second surface 12, which is the exit surface.
  • the second scattering S2 may include scattering formed by the second surface 12.
  • the second scattering S2 may include surface scattering. In the second scattering S2, the scattered light may spread not only in the traveling direction of the light but also in a direction other than the traveling direction, and may be spread in the lateral direction.
  • the light extracting structure 1 may be provided such that a first scattering degree by the first scattering S1 and a second scattering degree by the second scattering S2 have a relative difference. That is, the light extracting structure 1 according to the embodiment is provided so that the first scattering degree by the first scattering S1 is greater than the second scattering degree by the second scattering S2 according to the required optical properties. Can be. According to another exemplary embodiment, the light extracting structure 1 is provided such that the second scattering degree by the second scattering S2 is greater than the first scattering degree by the first scattering S1 according to the required optical properties. Can be.
  • the average total transmittance of the light extraction structure 1 with respect to the wavelength of light may be 70% or more.
  • the average total reflectance with respect to the wavelength of the light of the substrate 101 may be less than 20%.
  • the average total transmittance with respect to the wavelength of the light may correspond to the average value of the total integrated transmittance which appears when the wavelength of the light is changed.
  • the average total reflectance with respect to the wavelength of the light may correspond to the average value of the total integrated reflectance that appears when the wavelength of the light varies.
  • the light extracting structure 1 when the first scattering degree by the first scattering S1 is greater than the second scattering degree by the second scattering S2, the light extracting structure having high transparency and low reflectivity ( 1) can be obtained.
  • the average haze value of the wavelength of light may be about 80% or more, and thus, may exhibit high diffusivity, and the change in luminance according to the viewing angle is minimized, thereby achieving Lambert emission. ) Can be achieved.
  • the light extraction efficiency of the lighting device when the light extracting structure 1 is attached to the lighting device, the light extraction efficiency of the lighting device may be improved, the user may obtain a uniform white lighting effect, and the power efficiency may be increased.
  • the substrate ( 101) when the second scattering degree by the second scattering S2 in the light extraction structure 1 is greater than the first scattering degree by the first scattering S1, the substrate ( 101), i.e., the average total transmittance with respect to the wavelength of light of the light extraction structure 1 may be less than 70%. In this case, the average total reflectance with respect to the wavelength of the light of the substrate 101 may be 20% or more.
  • the second scattering degree by the second scattering S2 when the second scattering degree by the second scattering S2 is larger than the first scattering degree by the first scattering S1, although the transparency is relatively low and the reflectance is relatively high,
  • the average light diffusion value for the wavelength may be about 80% or more, and thus may exhibit high diffusivity.
  • the change in luminance according to the viewing angle is reduced, thereby obtaining an effect close to Lambertian emission, and the change in color coordinates according to the viewing angle can be reduced. Therefore, when the light extracting structure 1 is attached to the lighting device, the light extraction efficiency of the lighting device may be improved, the user may obtain a uniform white lighting effect, and the power efficiency may be increased.
  • the light diffusion value of the light extracting structure 1 increases as the wavelength of the light increases.
  • the light diffusing value of the light extracting structure 1 is decreased when the second scattering degree due to the second scattering S2 is greater than the first scattering degree due to the first scattering S1.
  • the wavelength of the light increases, it may be reduced to the second angle. In this case, the second angle may be greater than the first angle.
  • the average light diffusion value according to the wavelength of light is the light extraction structure 1 when the first scattering degree by the first scattering (S1) is larger than the second scattering degree by the second scattering (S2) is the second
  • the second scattering degree by scattering S2 is higher than the light extraction structure 1 when the second scattering degree is larger than the first scattering degree by the first scattering S1. That is, in terms of light diffusion, the light extracting structure 1 when the first scattering degree by the first scattering S1 is larger than the second scattering degree by the second scattering S2 is the second scattering.
  • the second scattering degree by (S2) is greater than the light scattering structure 1 when the first scattering degree by the first scattering (S1) is relatively excellent characteristics can be exhibited.
  • the pores 102 when the first scattering degree by the first scattering (S1) is greater than the second scattering degree by the second scattering (S2), the pores 102 Has a first diameter, and when the second scattering degree by the second scattering S2 is greater than the first scattering degree by the first scattering S1, the pores 102 have a second diameter.
  • the first diameter may be larger than the second diameter.
  • the first scattering degree by the first scattering S1 when the first scattering degree by the first scattering S1 is greater than the second scattering degree by the second scattering S2, the first surface The surface roughness of at least one of 11 and the second surface 12 becomes a first roughness, and a second scattering degree by the second scattering S2 is a first scattering degree by the first scattering S1.
  • the surface roughness of at least one of the first surface 11 and the second surface 12 may be a second roughness, wherein the second roughness may be provided larger than the first roughness. have.
  • the size of the pores 102 has a greater effect on the first scattering S1.
  • the size of the pores 102 may be a radius of 0.5 ⁇ m or more have.
  • the radius of the pore 102 may be a long axis reference. More specifically, the pore 102 may have a radius of 1 ⁇ m or more.
  • the surface roughness of at least one of the first surface 11 and the second surface 12 may be 20 nm or less based on rms.
  • the first scattering degree due to the first scattering S1 is greater than the second scattering degree due to the second scattering S2, at least one surface of the first surface 11 and the second surface 12 is formed. Roughness may not significantly affect the optical properties of the light extraction structure 1. Therefore, in the light extracting structure 1 according to one embodiment, when the first scattering degree by the first scattering S1 is designed to be larger than the second scattering degree by the second scattering S2, the pores The size of the 102 can be designed to have a radius of 0.5 ⁇ m or more.
  • the first surface ( 11) and the surface roughness of at least one of the second surface 12 may have a greater influence on the first scattering S1.
  • the first surface 11 and the second surface may be 50 nm or more based on rms.
  • the pore 102 may have a radius of 1 ⁇ m or less. Specifically, the pore 102 may have a radius of 0.5 ⁇ m or less.
  • the size of the pores 102 is larger than the optical properties of the light extraction structure 1. May not affect. Therefore, in the light extracting structure 1 according to an embodiment, when the second scattering degree by the second scattering S2 is designed to be larger than the first scattering degree by the first scattering S1,
  • the surface roughness of at least one of the first surface 11 and the second surface 12 may be designed to be 50 nm or more based on rms.
  • the light extracting structure 1 may have a single film shape as shown in FIG. 1.
  • the present disclosure is not limited thereto, and the light extracting structure 1 may further include a base 100 positioned adjacent to the first surface 11 as shown in FIG. 2. have.
  • the base 100 may function as a support for forming the base 101 in the manufacturing process of the base 101.
  • the base 100 may be provided in a substrate and / or film shape, may be rigid or flexible, and may be made of a light transmissive glass material or a polymer material.
  • the organic light emitting lighting device 2 may include a substrate 21 and a sealing member 22 facing each other and an organic light emitting part 24 positioned therebetween.
  • the substrate 21 and the sealing member 22 may be coupled to each other, and the organic light emitting part 24 interposed therebetween may be sealed by blocking external air.
  • the sealing member 22 may be provided in the shape of a substrate and coupled to the substrate 21 by a sealant 23 positioned at an edge thereof.
  • the sealing member 22 may include a thin film structure including at least one film. In this case, the sealing member 22 may be formed on the substrate 21 to cover the organic light emitting part 24.
  • the organic light emitting lighting device 2 according to the embodiment shown in FIG. 3 is provided to emit light emitted from the organic light emitting unit 24 in the direction of the substrate 21.
  • the light extracting structure 1 according to one embodiment may be combined. In this case, the light extracting structure 1 may be positioned such that the first surface 11 described above faces the substrate 21.
  • the organic light emitting diode lighting apparatus 2 according to another exemplary embodiment illustrated in FIG. 4 is provided so that light emitted from the organic light emitting unit 24 is emitted in the direction of the sealing member 22, and at this time, the sealing member 22 is provided.
  • the light extracting structure 1 according to the embodiments described above may be coupled to an outer surface of the light extractor. In this case, the light extracting structure 1 may be positioned such that the aforementioned first surface 11 faces the sealing member 22.
  • the organic light emitting unit 24 may include an organic light emitting device that emits white light. As shown in FIG. 5, the first electrode 241 formed on the substrate 21 and the second electrode facing the organic light emitting unit 24 are opposite to each other. 242 and the organic layer 243 interposed between the first electrode 241 and the second electrode 242.
  • the first electrode 241 and the second electrode 242 may act as an anode and a cathode, respectively, and their polarities may be reversed.
  • the first electrode 241 includes a conductor having a high work function when acting as an anode and a conductor having a low work function when acting as a cathode.
  • the second electrode 242 also includes a conductor having a low work function when acting as a cathode, and includes a conductor having a high work function when acting as an anode.
  • a transparent conductive oxide such as ITO, In 2 O 3, ZnO, IZO, or a noble metal such as Au may be used.
  • Ag, Al, Mg, Li, Ca, LiF / Ca, LiF / Al, etc. may be used as the low work function conductor.
  • the first electrode 241 may be provided in a light transmission type, and the second electrode 242 may be provided to include a light reflector.
  • the first electrode 241 when the first electrode 241 acts as an anode, it is formed by forming ITO, IZO, ZnO, or In 2 O 3 having a high work function.
  • the first electrode 241 when the first electrode 241 acts as a cathode, the first electrode 241 may be thinly formed to have a transflective film made of Ag, Al, Mg, Li, Ca, LiF / Ca, LiF / Al, etc. having a low work function.
  • the second electrode 242 When the second electrode 242 acts as a cathode, the second electrode 242 may be formed to be a reflective film made of metal having a small work function such as Li, Ca, LiF / Ca, LiF / Al, Al, Mg, Ag, or the like.
  • the second electrode 242 acts as an anode, the second electrode 242 is formed by forming ITO, IZO, ZnO, In 2 O 3, or the like.
  • the first electrode 241 includes a light reflector, and the second electrode 242 is light transmissive.
  • a reflector is formed of Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, or a compound thereof, and the like. It is formed by forming ITO, IZO, ZnO, In2O3, or the like having a high work function on the film.
  • the first electrode 241 acts as a cathode, the first electrode 241 is formed of Ag, Al, Mg, Li, Ca, LiF / Ca, LiF / Al, or the like having a low work function and capable of light reflection.
  • the second electrode 242 When the second electrode 242 acts as a cathode, the second electrode 242 may be thinly formed to have a transflective film made of metal having a small work function such as Li, Ca, LiF / Ca, LiF / Al, Al, Mg, Ag, or the like. Of course, a transparent conductor such as ITO, IZO, ZnO, or In 2 O 3 may be formed on the metal semi-transmissive layer to compensate for the problem of high resistance due to its thin thickness. When the second electrode 242 acts as an anode, the second electrode 242 is formed by forming ITO, IZO, ZnO, In 2 O 3, or the like.
  • the organic layer 243 may include a first organic layer 2431, a second organic layer 2432, and an emission layer 2433 interposed therebetween.
  • the first organic layer 2431 and the second organic layer 2432 are used to promote the flow of holes and electrons from the anode and the cathode.
  • the first organic layer 2431 is a hole injection / A transport layer and / or an electron block layer may be included, and the second organic layer 2432 may include an electron injection / transport layer and / or a hole block layer.
  • the first organic layer 2431 may include an electron injection / transport layer and / or a hole block layer
  • the second organic layer 225 may have a hole injection / transport layer and / or It may include an electron blocking layer.
  • the light emitting layer 2433 may be formed by using a single organic compound capable of emitting white light, or by stacking two or more organic light emitting layers having different colors.
  • the red light emitting layer, the green light emitting layer, and the blue light emitting layer may be sequentially stacked, and the sky blue layer may be formed on the mixed layer of red and green.
  • the method of achieving white light emission can be variously applied.
  • the organic light emitting unit 24 as described above may be provided to have a plurality of pixels, but is not limited thereto, and may be provided as a surface emitting type of a single pixel.
  • the light extracting structure 1 may improve light extraction efficiency with respect to the light emitted from the organic light emitting unit 24 as described above, and obtain a uniform white lighting effect. In addition, high power efficiency can be achieved.
  • the organic light emitting lighting device 2 is formed by directly depositing the substrate 101 of the light extraction structure 1 as shown in FIG. 1 on the surface of the substrate 21 or the sealing member 22. It can manufacture.
  • the present invention is not necessarily limited thereto, and the light extracting structure 1 illustrated in FIG. 1 may be attached to the substrate 21 or the sealing member 22 using a separate adhesive member and / or a bonding method.
  • the light extracting structure 1 shown in FIG. 2 may attach the base 100 to the substrate 21 or the sealing member 22 using a separate adhesive member and / or a bonding method.
  • a more specific embodiment of the light extraction structure 1 as described above is as follows.
  • the coating composition may include a colorless polyamic acid.
  • the coating composition was mixed with 4,4'-oxydiphthalic anhydride and 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane in a DMAc solvent in a 1: 1 molar ratio, and stirred for 24 hours, followed by 3 wt% DMAc solvent. It can be prepared by dilution.
  • the base may be a base 100 as shown in FIG. 2, but is not limited thereto, and may be the substrate 21 and / or the sealing member 22 shown in FIGS. 3 and 4. have.
  • the base coated with the coating composition is supported on a solvent for forming pores.
  • the pore-forming solvent may use polar protic solvents, and may include alcohol.
  • the first embodiment was 100% of de-ionized water (DIW).
  • DIW de-ionized water
  • the ratio of deionized water and ethanol was 50% each.
  • the third example was made 100% ethanol.
  • the polyimide base substrate 101 was formed through the first to third embodiments formed in this way by thermal drying at 170 ° C.
  • FIG. 6 is a cross-sectional SEM picture (a) and a surface SEM picture (b) for the first embodiment
  • FIG. 7 is a cross-sectional SEM picture (a) and a surface SEM picture (b) for the second embodiment
  • FIG. 8 Are cross-sectional SEM photographs (a) and surface SEM photographs (b) for the third embodiment.
  • the first embodiment which is the thickness of the substrate as the formed film, is 3.1 mu m
  • the second embodiment is 2.9 mu m
  • the third embodiment is 1.3 mu m.
  • the film thickness of the first embodiment is higher than that of the third embodiment with respect to the film of the same composition.
  • the size of the formed pores is about 3 ⁇ m in the maximum pore size (based on the long axis) in the first embodiment, about 1.6 ⁇ m in the second embodiment, and about 1.3 ⁇ m in the third embodiment. It can be seen that the pore size of the first embodiment is significantly larger than that of the third embodiment.
  • the surface roughness (rms basis) is 3.6 nm in the first embodiment, 17 nm in the second embodiment, and 68 nm in the third embodiment. It can be seen that the surface roughness of the third embodiment is significantly larger than that of the first embodiment.
  • FIG. 9 shows the total transmittance according to the wavelength band of the visible light region of the first embodiment (A), the second embodiment (B), and the third embodiment (C). As can be seen in FIG. 9, it can be seen that the first embodiment A shows the highest total transmittance, and the third embodiment C shows the lowest total transmittance.
  • Example 1 (A) shows an average total transmission of about 74%. At this time, the average total reflectance of the first embodiment (A) is 15%.
  • Example 2 (B) shows an average total transmission of about 73%. At this time, the average total reflectance of the second embodiment (B) is 15%.
  • Example 3 (C) shows an average total transmission of about 59%. At this time, the average total reflectance of Example 3 (C) is 26%.
  • FIG. 10 shows an optical haze value according to the wavelength band of the visible light region of the first embodiment A, the second embodiment B, and the third embodiment C.
  • the light diffusion value of the first embodiment A decreases with a gentle angle as the wavelength increases, and the light diffusion value of the second embodiment B decreases as the wavelength increases. Decrease at an urgent angle.
  • the light diffusion value of the third embodiment (C) decreases at the steepest angle as the wavelength increases. Accordingly, the total average light diffusion value also decreases from the first embodiment A to the third embodiment C.
  • the average light diffusion value was about 80% or more.
  • the light extracting structure thus formed was installed in the organic light emitting lighting device 2 as shown in FIGS. 3 and 5.
  • 700 micrometers of glass was used for the board
  • the first organic layer 2431 uses a MoO 3 1 nm and CBP45 nm stacked structure, and the second organic layer 2432 uses a Bphen 45 nm and a LiF 1 nm stacked structure.
  • the light emitting layer 2433 used CBP: Ir (ppy) 2 (acac) for 15 nm.
  • FIG. 11 compares the power efficiency of the first embodiment (A) to the third embodiment (C) and the comparative example (ref) in the organic light emitting lighting device. Comparative example (ref) does not use the light extraction structure.
  • the first embodiment (A) to the third embodiment (C) is very high power efficiency compared to the comparative example (ref).
  • FIG. 12 shows the comparison between the first and third embodiments C and the external quantum efficiency EQE of the comparative example ref. As can be seen in Figure 12, it can be seen that the first embodiment (A) to the third embodiment (C) is very high external quantum efficiency compared to the comparative example (ref).
  • FIG. 13 illustrates a change in relative luminance for each emission angle
  • FIG. 14 illustrates a change in color coordinates for each emission angle.
  • the first embodiment A and the second embodiment B draw a curve close to Lambert emission.
  • the third embodiment (C) shows a form in which the luminance increases from the side. Therefore, the first embodiment A and the second embodiment B can obtain a uniform lighting effect, and the third embodiment C can obtain a lighting effect with enhanced side luminance.
  • the user may obtain a uniform white lighting effect regardless of the angle.
  • the first embodiment A and the second embodiment B described above may correspond to the case where the first scattering degree by the first scattering is greater than the second scattering degree by the second scattering.
  • the third embodiment (C) may correspond to a case where the second scattering degree due to the second scattering is greater than the first scattering degree due to the first scattering.
  • the first embodiment (A) and the second embodiment (B) show higher optical characteristics, but in the case of the third embodiment (C), since the characteristics are higher than those of the comparative example, It is enough to use.
  • the present invention not only can the light extraction efficiency of the illumination be increased by using the optical difference sufficient to be used as the illumination, but also the desired optical characteristics can be realized and the power efficiency can be improved.
  • the present invention can be used as an optical film, it can be applied to the organic light emitting lighting device.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

산란 효과를 더욱 극대화시킴으로써, 광 추출 효율을 높일 수 있고, 유기 발광 조명 장치로서 높은 전력 효율을 올릴 수 있고, 이에 따라 유기 발광 조명 장치의 수명을 높일 수 있는 광 추출 구조체 및 이를 포함하는 유기 발광 조명 장치에 관한 것이다.

Description

광 추출 구조체 및 유기 발광 조명 장치
개시된 실시예들은 광 추출 구조체 및 유기 발광 조명 장치에 관한 것이다.
유기 발광 소자는 자발광 소자로서 플렉시블하게 구현 가능하다는 점에서 최근 그 활용도가 높아지고 있다.
이러한 유기 발광 소자는, 주로 복수의 픽셀을 갖고 영상을 구현하는 디스플레이 장치로서 많이 사용되고 있다.
한편, 상기 유기 발광 소자를 면 발광 조명 장치로서 사용하는 경우, 발광층에서 생성된 빛이 광 추출면으로 출사되기까지 많은 계면을 거쳐야 하기 때문에 이 과정에서 광 손실이 많고, 이에 따라 광 추출 효율이 떨어지는 문제가 있다. 이러한 광 추출 효율의 저하는 전력 소모를 증대시키고, 이는 결국 조명 장치의 수명을 줄이는 부작용을 낳게 된다.
상기와 같이 유기 발광 조명 장치에서 광 추출 효율이 저하되는 문제를 해결하기 위하여, 일 실시예는, 광 추출 효율이 높고, 전력 효율이 향상된 광 추출 구조체 및 유기 발광 조명 장치를 제공하는 데에 목적이 있다.
상기와 같은 목적을 달성하기 위하여, 본 발명의 실시예는, 서로 대향된 제1 면 및 제2 면을 갖고, 빛이 상기 제1 면으로 입사해서 상기 제2 면으로 출사하도록 구비된 기재와, 상기 기재 내에 불규칙적으로 분포하는 복수의 기공을 포함하고, 상기 기재는 상기 빛이 상기 기재를 투과할 때 산란되도록 하는 것으로, 상기 산란은, 상기 기공에 의한 제1 산란과, 상기 제1 면 및 제2 면 중 적어도 하나에 의한 제2 산란을 포함하며, 상기 제1 산란에 의한 제1 산란도와 제2 산란에 의한 제2 산란도가 상대적 차이를 갖도록 구비된 광 추출 구조체를 제공할 수 있다.
상기 제1 산란에 의한 제1 산란도가 상기 제2 산란에 의한 제2 산란도보다 클 때, 상기 기재의 상기 빛의 파장에 대한 평균 총투과율은 70% 이상일 수 있다.
상기 제2 산란에 의한 제2 산란도가 상기 제1 산란에 의한 제1 산란도보다 클 때, 상기 기재의 상기 빛의 파장에 대한 평균 총투과율은 70% 미만일 수 있다.
상기 제1 산란에 의한 제1 산란도가 상기 제2 산란에 의한 제2 산란도보다 클 때, 상기 기공은 제1 직경을 갖고, 상기 제2 산란에 의한 제2 산란도가 상기 제1 산란에 의한 제1 산란도보다 클 때, 상기 기공은 제2 직경을 가지며, 상기 제1 직경은 상기 제2 직경보다 클 수 있다.
상기 제1 산란에 의한 제1 산란도가 상기 제2 산란에 의한 제2 산란도보다 클 때, 상기 제1 면 및 제2 면 중 적어도 하나는 제1 거칠기를 갖고, 상기 제2 산란에 의한 제2 산란도가 상기 제1 산란에 의한 제1 산란도보다 클 때, 상기 제1 면 및 제2 면 중 적어도 하나는 제2 거칠기를 가지며, 상기 제2 거칠기는 상기 제1 거칠기보다 클 수 있다.
다른 일 실시예는, 기판과, 상기 기판과 결합되는 밀봉부재와, 상기 기판과 밀봉부재의 사이에 개재되고, 상기 기판 및 밀봉부재에 의해 밀봉되는 유기 발광부와, 상기 유기 발광부로부터 발광된 광이 취출되는 측에 위치한 것으로, 서로 대향된 제1 면 및 제2 면을 갖고, 상기 유기 발광부로부터 발광된 광이 상기 제1 면으로 입사해서 상기 제2 면으로 출사하도록 구비된 기재와, 상기 기재 내에 불규칙적으로 분포하는 복수의 기공을 포함하는 광 추출 필름을 포함하고, 상기 기재는 상기 광이 상기 기재를 투과할 때 산란되도록 하는 것으로, 상기 산란은, 상기 기공 입자에 의한 제1 산란과, 상기 제1 면 및 제2 면 중 적어도 하나에 의한 제2 산란을 포함하며, 상기 기재는 상기 제1 산란에 의한 제1 산란도와 제2 산란에 의한 제2 산란도가 상대적 차이를 갖도록 구비된 유기 발광 조명 장치를 제공할 수 있다.
상기 제1 산란에 의한 제1 산란도가 상기 제2 산란에 의한 제2 산란도보다 클 때, 상기 기재의 상기 빛의 파장에 대한 평균 총투과율은 70% 이상일 수 있다.
상기 제2 산란에 의한 제2 산란도가 상기 제1 산란에 의한 제1 산란도보다 클 때, 상기 기재의 상기 빛의 파장에 대한 평균 총투과율은 70% 미만일 수 있다.
상기 제1 산란에 의한 제1 산란도가 상기 제2 산란에 의한 제2 산란도보다 클 때, 상기 기공은 제1 직경을 갖고, 상기 제2 산란에 의한 제2 산란도가 상기 제1 산란에 의한 제1 산란도보다 클 때, 상기 기공은 제2 직경을 가지며, 상기 제1 직경은 상기 제2 직경보다 클 수 있다.
상기 제1 산란에 의한 제1 산란도가 상기 제2 산란에 의한 제2 산란도보다 클 때, 상기 제1 면 및 제2 면 중 적어도 하나는 제1 거칠기를 갖고, 상기 제2 산란에 의한 제2 산란도가 상기 제1 산란에 의한 제1 산란도보다 클 때, 상기 제1 면 및 제2 면 중 적어도 하나는 제2 거칠기를 가지며, 상기 제2 거칠기는 상기 제1 거칠기보다 클 수 있다.
상기한 바와 같은 본 발명의 실시예들에 따르면, 광 추출 효율을 높일 수 있다.
유기 발광 조명 장치로서 높은 전력 효율을 올릴 수 있고, 이에 따라 유기 발광 조명 장치의 수명을 높일 수 있다.
도 1은 일 실시예에 따른 광 추출 구조체를 개략적으로 나타낸 단면도이다.
도 2는 다른 일 실시예에 따른 광 추출 구조체를 개략적으로 나타낸 단면도이다.
도 3은 또 다른 일 실시예에 따른 유기 발광 조명 장치를 개략적으로 도시한 단면도이다.
도 4는 또 다른 일 실시예에 따른 유기 발광 조명 장치를 개략적으로 도시한 단면도이다.
도 5는 유기 발광부의 일 실시예를 도시한 부분 단면도이다.
도 6은 제1 실시예에 대한 단면 SEM 사진(a) 및 표면 SEM 사진(b)이다.
도 7은 제2 실시예에 대한 단면 SEM 사진(a) 및 표면 SEM 사진(b)이다.
도 8은 제3 실시예에 대한 단면 SEM 사진(a) 및 표면 SEM 사진(b)이다.
도 9는 제1 실시예(A), 제2 실시예(B) 및 제3 실시예(C)의 가시광 영역의 파장대에 따른 총 투과율을 나타낸 것이다.
도 10은 제1 실시예(A), 제2 실시예(B) 및 제3 실시예(C)의 가시광 영역의 파장대에 따른 광 확산 값(optical haze value)을 나타낸 것이다.
도 11은 제1 실시예(A) 내지 제3 실시예(C)와, 비교예(ref)의 전력 효율을 나타낸 것이다.
도 12는 제1 실시예(A) 내지 제3 실시예(C)와, 비교예(ref)의 외부 양자 효율(EQE)을 나타낸 것이다.
도 13은 발광 각도 별 상대 휘도 변화를 나타낸 것이다.
도 14는 발광 각도 별 색좌표 변화를 나타낸 것이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 본 발명의 효과 및 특징, 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 동일하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
이하의 실시예에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
이하의 실시예에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다.
이하의 실시예에서, 막, 영역, 구성 요소 등의 부분이 다른 부분 위에 또는 상에 있다고 할 때, 다른 부분의 바로 위에 있는 경우뿐만 아니라, 그 중간에 다른 막, 영역, 구성 요소 등이 개재되어 있는 경우도 포함한다.
어떤 실시예가 달리 구현 가능한 경우에 특정한 공정 순서는 설명되는 순서와 다르게 수행될 수도 있다. 예를 들어, 연속하여 설명되는 두 공정이 실질적으로 동시에 수행될 수도 있고, 설명되는 순서와 반대의 순서로 진행될 수 있다.
도면에서는 설명의 편의를 위하여 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 예컨대, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 이하의 실시예는 반드시 도시된 바에 한정되지 않는다.
도 1은 일 실시예에 따른 광 추출 구조체(1)를 개략적으로 나타낸 단면도이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 광 추출 구조체(1)는, 기재(101)와, 이 기재(101) 내에 불규칙적으로 분포하는 복수의 기공(102)을 포함할 수 있다.
상기 기재(101)는 광 투과성 폴리머재로 구비될 수 있는 데, 일 실시예에 따르면 폴리 이미드를 포함할 수 있다. 이러한 기재(101)는 플렉시블하게 구비될 수 있다.
상기 기재(101)는 서로 대향된 제1 면(11)과 제2 면(12)을 갖고, 이 때, 상기 제1 면(11)은 빛이 입사하는 입사면이 되고, 상기 제2 면(12)은 빛이 출사하는 출사면이 될 수 있다. 따라서 빛은 상기 기재(101)를 제1 면(11)을 통해 입사해 제2 면(12)을 통해 출사할 수 있다.
상기 기재(101)의 제1 면(11)과 제2 면(12)의 사이에는 복수의 기공(102)이 불규칙하게 분포할 수 있다. 상기 기공(102)은 빛의 산란 입자로서 기능할 수 있는 것으로, 내부가 비어 있는 공동을 형성할 수 있고, 이 공간에서 에어의 굴절율을 가질 수 있다.
상기와 같은 기재(101)는 빛이 기재(101)를 투과할 때 산란되도록 하는 것일 수 있다.
이러한 산란은 상기 기공(102)에 의한 제1 산란(S1)과, 상기 제1 면(11) 및 제2 면(12) 중 적어도 하나에 의한 제2 산란(S2)을 포함할 수 있다.
상기 기재(101)를 투과하는 빛은 그 경로 상에 불규칙하게 배치되어 있는 기공(102)에 부딪치게 되고 기공(102)을 형성하는 에어와 기재(101)를 구성하는 폴리머와의 굴절율 차이로 인하여 빛은 산란을 하게 된다. 이러한 제1 산란(S1)은 미산란(Mie Scattering)을 포함할 수 있다. 상기 제1 산란(S1)은 대부분이 빛의 진행 방향으로 퍼지는 형태로 빛의 산란을 이룰 수 있다.
한편 상기 기재(101)를 투과하는 빛은 입사면인 제1 면(11) 및 출사면인 제2 면(12) 중 적어도 하나에 의해 제2 산란(S2)을 할 수 있다. 일 실시예에 따르면, 상기 제2 산란(S2)은 상기 제2 면(12)에 의해 이루어지는 산란을 포함할 수 있다. 이러한 제2 산란(S2)은 표면 산란(Surface Scattering)을 포함할 수 있다. 상기 제2 산란(S2)은 산란된 빛이 빛의 진행방향 뿐 아니라 진행 방향 이외의 방향으로도 많이 퍼질 수 있으며, 측면 방향으로 퍼질 수도 있다.
일 실시예에 따른 상기 광 추출 구조체(1)는 상기 제1 산란(S1)에 의한 제1 산란도와 상기 제2 산란(S2)에 의한 제2 산란도가 상대적 차이를 갖도록 구비될 수 있다. 즉, 일 실시예에 따른 상기 광 추출 구조체(1)는 요구되는 광학적 특성에 따라 제1 산란(S1)에 의한 제1 산란도가 제2 산란(S2)에 의한 제2 산란도보다 크도록 구비될 수 있다. 다른 일 실시예에 따른 상기 광 추출 구조체(1)는 요구되는 광학적 특성에 따라 상기 제2 산란(S2)에 의한 제2 산란도가 제1 산란(S1)에 의한 제1 산란도보다 크도록 구비될 수 있다.
일 실시예에 따르면, 상기 광 추출 구조체(1)에서, 상기 제1 산란(S1)에 의한 제1 산란도가 상기 제2 산란(S2)에 의한 제2 산란도보다 클 때, 상기 기재(101), 즉 광 추출 구조체(1)의 상기 빛의 파장에 대한 평균 총투과율은 70% 이상일 수 있다. 이 때, 상기 기재(101)의 상기 빛의 파장에 대한 평균 총반사율은 20% 미만일 수 있다. 상기 빛의 파장에 대한 평균 총투과율은 빛의 파장이 달라질 때 나타나는 총 적분 투과율의 평균값에 대응할 수 있다. 상기 빛의 파장에 대한 평균 총반사율은 빛의 파장이 달라질 때 나타나는 총 적분 반사율의 평균값에 대응할 수 있다.
이처럼 광 추출 구조체(1)에 있어서, 제1 산란(S1)에 의한 제1 산란도가 상기 제2 산란(S2)에 의한 제2 산란도보다 큰 경우, 투명도가 높고 반사도가 낮은 광 추출 구조체(1)를 얻을 수 있다. 아울러, 이 경우 빛의 파장에 대한 평균 광확산(haze)값은 약 80% 이상이 될 수 있으며, 따라서 높은 확산도를 나타낼 수 있고, 보는 각도에 따른 휘도의 변화가 최소화되어 람베르트 발광(Lambertian emission)를 이룰 수 있다. 뿐만 아니라 보는 각도에 따른 색좌표의 변화도 최소화시킬 수 있다. 또한 상기 광 추출 구조체(1)를 조명 장치에 부착할 경우 조명 장치의 광 추출 효율을 향상시키고, 사용자가 균일한 백색 조명 효과를 얻을 수 있으며, 높은 전력 효율을 올릴 수 있다.
다른 일 실시예에 따르면, 상기 광 추출 구조체(1)에서, 상기 제2 산란(S2)에 의한 제2 산란도가 상기 제1 산란(S1)에 의한 제1 산란도보다 클 때, 상기 기재(101), 즉 광 추출 구조체(1)의 상기 빛의 파장에 대한 평균 총투과율은 70% 미만일 수 있다. 이 때, 상기 기재(101)의 상기 빛의 파장에 대한 평균 총반사율은 20% 이상일 수 있다.
이처럼 광 추출 구조체(1)에 있어서, 제2 산란(S2)에 의한 제2 산란도가 상기 제1 산란(S1)에 의한 제1 산란도보다 큰 경우, 투명도가 비교적 낮고 반사도가 비교적 높지만, 빛의 파장에 대한 평균 광확산값은 약 80% 이상이 될 수 있으며, 따라서 높은 확산도를 나타낼 수 있다. 또 보는 각도에 따른 휘도의 변화가 줄여 람베르트 발광(Lambertian emission)에 가까운 효과를 얻을 수 있고, 보는 각도에 따른 색좌표의 변화도 작게 할 수 있다. 따라서 상기 광 추출 구조체(1)를 조명 장치에 부착할 경우 조명 장치의 광 추출 효율을 향상시키고, 사용자가 균일한 백색 조명 효과를 얻을 수 있으며, 높은 전력 효율을 올릴 수 있다.
상기 제1 산란(S1)에 의한 제1 산란도가 상기 제2 산란(S2)에 의한 제2 산란도보다 클 때, 상기 광 추출 구조체(1)의 광확산값은 상기 빛의 파장이 증가함에 따라 제1 각도로 줄어들고, 상기 제2 산란(S2)에 의한 제2 산란도가 상기 제1 산란(S1)에 의한 제1 산란도보다 클 때, 상기 광 추출 구조체(1)의 광확산값은 상기 빛의 파장이 증가함에 따라 제2 각도로 줄어들 수 있다. 이 때 상기 제2 각도는 상기 제1 각도보다 클 수 있다. 따라서 빛의 파장에 따른 평균 광확산값은 제1 산란(S1)에 의한 제1 산란도가 상기 제2 산란(S2)에 의한 제2 산란도보다 클 때의 광 추출 구조체(1)가 제2 산란(S2)에 의한 제2 산란도가 상기 제1 산란(S1)에 의한 제1 산란도보다 클 때의 광 추출 구조체(1)에 비해 높게 된다. 즉, 광확산의 측면에서 볼 때, 제1 산란(S1)에 의한 제1 산란도가 상기 제2 산란(S2)에 의한 제2 산란도보다 클 때의 광 추출 구조체(1)가 제2 산란(S2)에 의한 제2 산란도가 상기 제1 산란(S1)에 의한 제1 산란도보다 클 때의 광 추출 구조체(1)에 비해 상대적으로 우수한 특징을 나타낼 수 있다. 다만, 전술한 바와 같이 상기 제2 산란(S2)에 의한 제2 산란도보다 클 때의 광 추출 구조체(1)의 경우에도 조명 장치에 사용하기에 충분한 광확산값을 얻을 수 있고, 각도 별 휘도 변화 및 색좌표 변화를 줄일 수 있어, 조명 용도로서의 광학적 특성을 나타낼 수 있다.
일 실시예에 따른 광 추출 구조체(1)에 있어서, 상기 제1 산란(S1)에 의한 제1 산란도가 상기 제2 산란(S2)에 의한 제2 산란도보다 클 때, 상기 기공(102)은 제1 직경을 갖고, 상기 제2 산란(S2)에 의한 제2 산란도가 상기 제1 산란(S1)에 의한 제1 산란도보다 클 때, 상기 기공(102)은 제2 직경을 갖는다고 볼 때, 상기 제1 직경은 상기 제2 직경보다 크게 구비될 수 있다.
다른 일 실시예에 따른 광 추출 구조체(1)에 있어서, 상기 제1 산란(S1)에 의한 제1 산란도가 상기 제2 산란(S2)에 의한 제2 산란도보다 클 때, 상기 제1 면(11) 및 제2 면(12) 중 적어도 하나의 표면 거칠기는 제1 거칠기가 되고, 상기 제2 산란(S2)에 의한 제2 산란도가 상기 제1 산란(S1)에 의한 제1 산란도보다 클 때, 상기 제1 면(11) 및 제2 면(12) 중 적어도 하나의 표면 거칠기는 제2 거칠기가 될 수 있는 데, 이 때 상기 제2 거칠기는 상기 제1 거칠기보다 크게 구비될 수 있다.
제1 산란(S1)에 의한 제1 산란도가 상기 제2 산란(S2)에 의한 제2 산란도보다 큰 경우, 상기 기공(102)의 크기가 상기 제1 산란(S1)에 보다 큰 영향을 미칠 수 있다. 일 실시예에 따르면, 상기 제1 산란(S1)에 의한 제1 산란도가 상기 제2 산란(S2)에 의한 제2 산란도보다 큰 경우, 상기 기공(102)의 크기는 반경 0.5㎛ 이상일 수 있다. 이 때, 상기 기공(102)의 반경은 장축 기준일 수 있다. 더욱 구체적으로 상기 기공(102)의 크기는 반경 1㎛ 이상일 수 있다. 그리고 이 경우의 제1 면(11) 및 제2 면(12) 중 적어도 하나의 표면 거칠기는 rms기준 20nm 이하일 수 있다. 이처럼 제1 산란(S1)에 의한 제1 산란도가 상기 제2 산란(S2)에 의한 제2 산란도보다 큰 경우에는, 제1 면(11) 및 제2 면(12) 중 적어도 하나의 표면 거칠기는 광 추출 구조체(1)의 광학적 특성에 큰 영향을 미치지 않을 수 있다. 따라서, 일 실시예에 따른 광 추출 구조체(1)에 있어서, 제1 산란(S1)에 의한 제1 산란도가 상기 제2 산란(S2)에 의한 제2 산란도보다 크도록 설계할 경우, 기공(102)의 크기를 반경 0.5㎛ 이상이 되도록 설계할 수 있다.
다른 일 실시예에 따른 광 추출 구조체(1)에 있어서, 제2 산란(S2)에 의한 제2 산란도가 상기 제1 산란(S1)에 의한 제1 산란도보다 큰 경우, 상기 제1 면(11) 및 제2 면(12) 중 적어도 하나의 표면 거칠기가 상기 제1 산란(S1)에 보다 큰 영향을 미칠 수 있다. 다른 일 실시예에 따르면, 상기 제1 산란(S1)에 의한 제1 산란도가 상기 제2 산란(S2)에 의한 제2 산란도보다 큰 경우, 상기 제1 면(11) 및 제2 면(12) 중 적어도 하나의 표면 거칠기는 rms기준 50nm 이상일 수 있다. 그리고 이 경우 상기 기공(102)의 크기는 반경 1㎛ 이하일 수 있다. 구체적으로 상기 기공(102)의 크기는 반경 0.5㎛ 이하일 수 있다. 이처럼 제2 산란(S2)에 의한 제2 산란도가 상기 제1 산란(S1)에 의한 제1 산란도보다 큰 경우에는, 기공(102)의 크기는 광 추출 구조체(1)의 광학적 특성에 큰 영향을 미치지 않을 수 있다. 따라서, 일 실시예에 따른 광 추출 구조체(1)에 있어서, 제2 산란(S2)에 의한 제2 산란도가 상기 제1 산란(S1)에 의한 제1 산란도보다 크도록 설계할 경우, 제1 면(11) 및 제2 면(12) 중 적어도 하나의 표면 거칠기를 rms기준 50nm 이상이 되도록 설계할 수 있다.
이상 설명한 바와 같은 실시예들에 따른 광 추출 구조체(1)는 도 1에 도시된 것과 같이 단일의 필름 형상일 수 있다. 그러나 반드시 이에 한정되는 것은 아니고, 또 다른 일 실시예에 따른 광 추출 구조체(1)는 도 2에 도시된 것과 같이 상기 제1 면(11)에 인접하게 위치하는 베이스(100)를 더 포함할 수 있다. 상기 베이스(100)는 상기 기재(101)의 제조 과정에서 기재(101)를 형성하기 위한 서포트의 기능을 할 수 있다. 상기 베이스(100)는 기판 및/또는 필름 형상으로 구비될 수 있고, 리지드(rigid) 또는 플렉시블하게 구비될 수 있으며, 광투과 가능한 글래스재 또는 폴리머재로 구비될 수 있다.
도 3은 또 다른 일 실시예에 따른 유기 발광 조명 장치(2)를 개략적으로 도시한 단면도이다. 도 3에 도시된 실시예에 따르면, 상기 유기 발광 조명 장치(2)는 서로 대향된 기판(21)과 밀봉부재(22) 및 이들의 사이에 위치하는 유기 발광부(24)를 포함할 수 있다. 상기 기판(21)과 밀봉부재(22)는 서로 결합될 수 있으며, 이들 사이에 개재된 유기 발광부(24)를 외기와 차단시켜 밀봉할 수 있다. 도 3에 도시된 일 실시예에 따르면, 상기 밀봉부재(22)는 기판의 형상으로 구비되어 가장자리에 위치한 실런트(23)에 의해 기판(21)과 결합될 수 있다. 그러나 반드시 이에 한정되는 것은 아니고 밀봉부재(22)는 적어도 하나 이상의 막을 포함하는 박막 구조체를 포함할 수 있고, 이 경우 유기 발광부(24)를 덮도록 기판(21) 상에 성막된 것일 수 있다.
도 3에 도시된 실시예에 따른 유기 발광 조명 장치(2)는 유기 발광부(24)에서 발광된 빛이 기판(21)의 방향으로 출사하도록 구비되며, 이 때 기판(21)의 외면에 전술한 실시예들에 따른 광 추출 구조체(1)가 결합될 수 있다. 이 경우 상기 광 추출 구조체(1)는 전술한 제1 면(11)이 기판(21)을 향하도록 위치할 수 있다.
도 4에 도시된 또 다른 실시예에 따른 유기 발광 조명 장치(2)는 유기 발광부(24)에서 발광된 빛이 밀봉 부재(22)의 방향으로 출사하도록 구비되며, 이 때 밀봉 부재(22)의 외면에 전술한 실시예들에 따른 광 추출 구조체(1)가 결합될 수 있다. 이 경우 상기 광 추출 구조체(1)는 전술한 제1 면(11)이 밀봉 부재(22)를 향하도록 위치할 수 있다.
상기 유기 발광부(24)는 백색광을 발광하는 유기 발광 소자를 포함할 수 있는 데, 도 5에서 볼 수 있듯이, 기판(21) 상에 형성된 제1전극(241)과, 이에 대향된 제2전극(242)과, 이들 제1전극(241)과 제2전극(242)의 사이에 개재되는 유기층 (243)으로 구비될 수 있다.
제1전극(241) 및 제2전극(242)은 각각 애노드(Anode) 및 캐소드(Cathode)로 작용할 수 있는 데, 그 극성은 반대로 되어도 무방하다.
상기 제1전극(241)은 만일 애노드로 작용할 경우에는 일함수가 높은 도전체를 포함하도록 하고, 캐소드로 작용할 경우에는 일함수가 낮은 도전체를 포함하도록 한다. 제2전극(242)도 캐소드로 작용하는 경우에는 일함수가 낮은 도전체를 포함하도록 하고, 애노드로 작용하는 경우에는 일함수가 높은 도전체를 포함하도록 한다. 일함수가 높은 도전체로는 ITO, In2O3, ZnO, IZO 등의 투명 도전성 산화물이나, Au 등의 귀금속(noble metal)이 사용될 수 있다. 일함수가 낮은 도전체로는 Ag, Al, Mg, Li, Ca, LiF/Ca, LiF/Al 등이 사용될 수 있다.
도 3에서 볼 수 있는 배면 발광형 구조에서 상기 제1 전극(241)은 광투과형으로 구비되고, 제2 전극(242)은 광반사체를 포함하도록 구비될 수 있다.
이를 위해, 상기 제1전극(241)이 애노드로 작용하는 경우에는 일함수가 높은 ITO, IZO, ZnO, 또는 In2O3 등을 성막하여 형성한다. 그리고, 제1전극(241)이 캐소드로 작용하는 경우에는 일함수가 낮은 Ag, Al, Mg, Li, Ca, LiF/Ca, LiF/Al 등으로 반투과막이 되도록 얇게 형성할 수 있다.
상기 제2전극(242)은 캐소드로 작용하는 경우에는 일함수가 작은 Li, Ca, LiF/Ca, LiF/Al, Al, Mg, Ag 등의 금속으로 반사막이 되도록 형성할 수 있다. 제2전극(242)이 애노드로 작용하는 경우에는 ITO, IZO, ZnO, 또는 In2O3 등으로 성막하여 형성한다.
도 4에서 볼 수 있는 전면 발광형 구조에서는 상기 제1전극(241)은 광반사체를 포함하도록 하고, 상기 제2전극(242)은 광투과형이 되도록 한다.
이를 위해, 상기 제1전극(241)이 애노드로 작용하는 경우에는 Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, 및 이들의 화합물 등으로 반사체를 형성하고, 이 반사체 상에 일함수가 높은 ITO, IZO, ZnO, 또는 In2O3 등을 성막하여 형성한다. 그리고, 제1전극(241)이 캐소드로 작용하는 경우에는 일함수가 낮고 광반사가 가능한 Ag, Al, Mg, Li, Ca, LiF/Ca, LiF/Al 등으로 형성한다.
상기 제2전극(242)은 캐소드로 작용하는 경우에는 일함수가 작은 Li, Ca, LiF/Ca, LiF/Al, Al, Mg, Ag 등의 금속으로 반투과막이 되도록 얇게 형성할 수 있다. 물론, 이러한 금속 반투과막 상에 ITO, IZO, ZnO, 또는 In2O3 등의 투명도전체를 형성해 두께가 얇음에 따른 고저항 문제를 보완할 수 있다. 제2전극(242)이 애노드로 작용하는 경우에는 ITO, IZO, ZnO, 또는 In2O3 등으로 성막하여 형성한다.
유기층(243)은 제1 유기층(2431)과 제2 유기층(2432)과 이들 사이에 개재된 발광층(2433)을 포함할 수 있다.
제1유기층(2431) 및 제2유기층(2432)은 애노드 및 캐소드로부터의 정공 및 전자의 흐름을 촉진시키기 위한 것으로, 제1전극(241)이 애노드일 경우 제1유기층(2431)은 정공 주입/수송층 및/또는 전자블록층을 포함할 수 있고, 제2유기층(2432)은 전자 주입/수송층 및/또는 정공블록층을 포함할 수 있다. 그리고, 제1전극(241)이 캐소드일 경우 제1유기층(2431)은 전자 주입/수송층 및/또는 정공블록층을 포함할 수 있고, 제2유기층(225)은 정공 주입/수송층이 및/또는 전자블록층을 포함할 수 있다.
발광층(2433)은 백색 발광이 가능한 단일의 유기 화합물을 사용하거나, 서로 다른 색상의 두 층 이상의 유기 발광층을 적층하여 형성할 수 있다.
두 층 이상의 유기 발광층을 적층하여 형성하는 경우에는 적색 발광층, 녹색 발광층, 및 청색 발광층을 순차로 적층하여 형성할 수 있고, 적색과 녹색의 혼합층상에 스카이 블루층을 적층하여 형성할 수도 있다.
백색 발광을 이루는 방법은 이 밖에도 다양하게 적용 가능하다.
이상 설명한 바와 같은 유기 발광부(24)는 복수개의 화소를 갖도록 구비될 수도 있는 데, 반드시 이에 한정되는 것은 아니며, 단일 화소의 면 발광형으로 구비될 수도 있다.
상기와 같은 유기 발광 조명 장치(2)에서 광 추출 구조체(1)는 전술한 바와 같이 유기 발광부(24)에서 발광된 빛에 대한 광 추출 효율을 향상시키고, 균일한 백색 조명 효과를 얻을 수 있을 뿐 아니라, 높은 전력 효율을 올릴 수 있다.
이러한 유기 발광 조명 장치(2)는 기판(21) 또는 밀봉 부재(22)를 베이스로 하여 그 표면에 도 1에 도시된 바와 같은 광 추출 구조체(1)의 기재(101)를 직접 성막하는 형태로 제조할 수 있다. 그러나 반드시 이에 한정되는 것은 아니고, 기판(21) 또는 밀봉 부재(22)에 별도의 접착 부재 및/또는 접합 방법을 이용하여 도 1에 도시된 광 추출 구조체(1)를 부착할 수 있다. 또한, 도 2에 도시된 광 추출 구조체(1)는 베이스(100)를 기판(21) 또는 밀봉 부재(22)에 별도의 접착 부재 및/또는 접합 방법을 이용하여 부착할 수 있다.
상기와 같은 광 추출 구조체(1)의 보다 구체적인 실시예는 다음과 같다.
코팅 조성액을 준비한다.
일 실시예에 따르면, 상기 코팅 조성액은 무색의 폴리 아믹산을 포함할 수 있다.
상기 코팅 조성액은 4,4'-oxydiphthalic anhydride 과 2,2-bis[4-(4-aminophenoxy)phenyl] hexafluoropropane 을 DMAc 용매에 1:1 몰비로 혼합하고, 24시간 Stirring한 후 3wt% DMAc 용매로 희석하여 제조할 수 있다.
다음으로 이 코팅 조성액을 베이스에 코팅한다. 상기 베이스는 도 2에 도시된 바와 같은 베이스(100)가 될 수 있는 데, 반드시 이에 한정되는 것은 아니고, 도 3 및 도 4에 도시된 기판(21) 및/또는 밀봉 부재(22)가 될 수 있다.
이렇게 코팅 조성액이 코팅된 베이스를 기공 형성용 용매에 담지한다.
상기 기공 형성용 용매는 극성 양성자 용매(Polar protic solvents)를 사용할 수 있는 데, 알코올을 포함하는 것일 수 있다.
상기 기공 형성용 용매로서, 제1 실시예는 탈이온수(DIW, De-Ionized Water) 100%로 하였다. 제2 실시예는 탈이온수와 에탄올의 비율을 각각 50%씩으로 하였다. 제3 실시예는 에탄올 100%로 하였다.
이렇게 형성된 제1 내지 제3 실시예를 170℃에서 열 건조하는 단계를 거쳐 폴리 이미드계 기재(101)를 형성하였다.
도 6은 제1 실시예에 대한 단면 SEM 사진(a) 및 표면 SEM 사진(b)이고, 도 7은 제2 실시예에 대한 단면 SEM 사진(a) 및 표면 SEM 사진(b)이며, 도 8은 제3 실시예에 대한 단면 SEM 사진(a) 및 표면 SEM 사진(b)이다.
형성된 막인 기재의 두께인 제1 실시예는 3.1㎛이고, 제2 실시예는 2.9㎛이고, 제3 실시예는 1.3㎛이다. 이처럼 동일 조성의 막에 대해 제1 실시예의 막 두께가 제3 실시예에 비해 높음을 알 수 있다.
형성된 기공의 크기는, 제1 실시예는 최대 기공 크기(장축 기준)가 약 3㎛이고, 제2 실시예는 약 1.6㎛이고, 제3 실시예는 약 1.3㎛이다. 제1 실시예의 기공 크기가 제3 실시예에 비해 현저히 큼을 알 수 있다.
표면 거칠기(rms 기준)는, 제1 실시예가 3.6nm이고, 제2 실시예는 17nm, 제3 실시예는 68nm이다. 제3 실시예의 표면 거칠기가 제1 실시예에 비해 현저히 큼을 알 수 있다.
도 9는 제1 실시예(A), 제2 실시예(B) 및 제3 실시예(C)의 가시광 영역의 파장대에 따른 총 투과율을 나타낸 것이다. 도 9에서 볼 수 있듯이 제1 실시예(A)가 가장 높은 총 투과율을 나타내는 것을 알 수 있고, 제3 실시예(C)가 가장 낮은 총 투과율을 나타냄을 알 수 있다.
제1 실시예(A)는 약 74%의 평균 총투과율을 나타낸다. 이 때 제1 실시예(A)의 평균 총반사율은 15%이다.
제2 실시예(B)는 약 73%의 평균 총투과율을 나타낸다. 이 때 제2 실시예(B)의 평균 총반사율은 15%이다.
제3 실시예(C)는 약 59%의 평균 총투과율을 나타낸다. 이 때 제3 실시예(C)의 평균 총반사율은 26%이다.
도 10은 제1 실시예(A), 제2 실시예(B) 및 제3 실시예(C)의 가시광 영역의 파장대에 따른 광 확산 값(optical haze value)을 나타낸 것이다.
도 10에서 볼 수 있듯이, 제1 실시예(A)의 광 확산값은 파장이 증가함에 따라 완만한 각도를 이루며 감소하고, 제2 실시예(B)의 광 확산값은 파장이 증가함에 따라 이보다 급한 각도를 이루며 감소한다. 제3 실시예(C)의 광 확산값은 파장이 증가함에 따라 가장 급한 각도를 이루며 감소한다. 이에 따라 전체 평균 광 확산값도 제1 실시예(A)에서 제3 실시예(C)로 갈수록 떨어지게 된다. 그러나 각 경우에 모두 약 80% 이상의 평균 광 확산값을 나타내었다.
이렇게 형성된 광 추출 구조체를 도 3 및 도 5에 도시된 바와 같은 유기 발광 조명 장치(2)에 설치하였다. 기판(21)으로 글라스 700㎛를 사용하고, 제1 전극(241)은 ITO 150nm, 제2 전극(242)은 알루미늄 200nm를 사용하였다. 제1 유기층(2431)은 MoO3 1nm, CBP45nm 적층 구조를 사용하고, 제2 유기층(2432)은 Bphen 45nm, LiF 1nm 적층 구조를 사용하였다. 발광층(2433)은 CBP: Ir(ppy)2(acac) 를 15nm 사용하였다.
도 11은 이러한 유기 발광 조명 장치에 제1 실시예(A) 내지 제3 실시예(C)를 형성한 것과, 비교예(ref)의 전력 효율을 비교한 것이다. 비교예(ref)는 광 추출 구조체를 사용하지 않은 것이다.
도 11에서 볼 수 있듯이, 제1 실시예(A) 내지 제3 실시예(C)가 비교예(ref)에 비해 전력 효율이 매우 높음을 알 수 있다.
도 12는 제1 실시예(A) 내지 제3 실시예(C)와, 비교예(ref)의 외부 양자 효율(EQE)을 비교한 것이다. 도 12에서 볼 수 있듯이, 제1 실시예(A) 내지 제3 실시예(C)가 비교예(ref)에 비해 외부 양자 효율이 매우 높음을 알 수 있다.
도 13은, 발광 각도 별 상대 휘도 변화를 나타낸 것이고 도 14는 발광 각도 별 색좌표 변화를 나타낸 것이다.
도 13에서 볼 수 있듯이, 제1 실시예(A)와 제2 실시예(B)는 람베르트 발광에 가까운 커브를 그리고 있음을 알 수 있다. 다만 제3 실시예(C)는 측면에서 휘도가 상승하는 형태를 보임을 알 수 있다. 따라서 제1 실시예(A) 및 제2 실시예(B)는 균일한 조명 효과를, 제3 실시예(C)는 측면 휘도가 강화된 조명 효과를 얻을 수 있다.
도 14에서 볼 수 있듯이, 제1 내지 제3 실시예(C)는 비교예에 비해 각도에 따른 색좌표 변화가 적기 때문에 사용자가 각도에 무관하게 균일한 백색 조명 효과를 얻을 수 있다.
위에서 설명한 제1 실시예(A) 및 제2 실시예(B)는 전술한 제1 산란에 의한 제1 산란도가 제2 산란에 의한 제2 산란도보다 큰 경우에 해당될 수 있다. 그리고 제3 실시예(C)는 제2 산란에 의한 제2 산란도가 제1 산란에 의한 제1 산란도보다 큰 경우에 해당될 수 있다. 전술한 바와 같이 제1 실시예(A) 및 제2 실시예(B)가 더 높은 광학적 특성을 나타내나, 제3 실시예(C)의 경우에도 비교예에 비해 높은 특성을 올리므로 조명 장치에서 충분히 사용 가능하다. 이처럼 본 발명에 따르면, 조명으로서 사용하기에 충분한 광학적 차이를 이용하여 조명의 광 추출 효율을 올릴 수 있을 뿐 아니라, 원하는 광학적 특성을 구현할 수 있고, 전력 효율을 개선할 수 있다.
본 발명은 첨부된 도면에 도시된 일 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서 본 발명의 진정한 보호 범위는 첨부된 청구 범위에 의해서만 정해져야 할 것이다.
본 발명은 광학적 필름으로 사용 가능하며, 유기 발광 조명장치에 적용될 수 있다.

Claims (10)

  1. 서로 대향된 제1 면 및 제2 면을 갖고, 빛이 상기 제1 면으로 입사해서 상기 제2 면으로 출사하도록 구비된 기재; 및
    상기 기재 내에 불규칙적으로 분포하는 복수의 기공;을 포함하고,
    상기 기재는 상기 빛이 상기 기재를 투과할 때 산란되도록 하는 것으로,
    상기 산란은, 상기 기공 에 의한 제1 산란과, 상기 제1 면 및 제2 면 중 적어도 하나에 의한 제2 산란을 포함하며,
    상기 제1 산란에 의한 제1 산란도와 제2 산란에 의한 제2 산란도가 상대적 차이를 갖도록 구비된 광 추출 구조체.
  2. 제1항에 있어서,
    상기 제1 산란에 의한 제1 산란도가 상기 제2 산란에 의한 제2 산란도보다 클 때, 상기 기재의 상기 빛의 파장에 대한 평균 총투과율은 70% 이상인 광 추출 구조체.
  3. 제1항에 있어서,
    상기 제2 산란에 의한 제2 산란도가 상기 제1 산란에 의한 제1 산란도보다 클 때, 상기 기재의 상기 빛의 파장에 대한 평균 총투과율은 70% 미만인 광 추출 구조체.
  4. 제1항에 있어서,
    상기 제1 산란에 의한 제1 산란도가 상기 제2 산란에 의한 제2 산란도보다 클 때, 상기 기공은 제1 직경을 갖고,
    상기 제2 산란에 의한 제2 산란도가 상기 제1 산란에 의한 제1 산란도보다 클 때, 상기 기공은 제2 직경을 가지며,
    상기 제1 직경은 상기 제2 직경보다 큰, 광 추출 구조체.
  5. 제1항에 있어서,
    상기 제1 산란에 의한 제1 산란도가 상기 제2 산란에 의한 제2 산란도보다 클 때, 상기 제1 면 및 제2 면 중 적어도 하나는 제1 거칠기를 갖고,
    상기 제2 산란에 의한 제2 산란도가 상기 제1 산란에 의한 제1 산란도보다 클 때, 상기 제1 면 및 제2 면 중 적어도 하나는 제2 거칠기를 가지며,
    상기 제2 거칠기는 상기 제1 거칠기보다 큰, 광 추출 구조체.
  6. 기판;
    상기 기판과 결합되는 밀봉부재;
    상기 기판과 밀봉부재의 사이에 개재되고, 상기 기판 및 밀봉부재에 의해 밀봉되는 유기 발광부; 및
    상기 유기 발광부로부터 발광된 광이 취출되는 측에 위치한 것으로, 서로 대향된 제1 면 및 제2 면을 갖고, 상기 유기 발광부로부터 발광된 광이 상기 제1 면으로 입사해서 상기 제2 면으로 출사하도록 구비된 기재와, 상기 기재 내에 불규칙적으로 분포하는 복수의 기공을 포함하는 광 추출 필름;을 포함하고,
    상기 기재는 상기 광이 상기 기재를 투과할 때 산란되도록 하는 것으로,
    상기 산란은, 상기 기공 입자에 의한 제1 산란과, 상기 제1 면 및 제2 면 중 적어도 하나에 의한 제2 산란을 포함하며,
    상기 기재는 상기 제1 산란에 의한 제1 산란도와 제2 산란에 의한 제2 산란도가 상대적 차이를 갖도록 구비된 유기 발광 조명 장치.
  7. 제6항에 있어서,
    상기 제1 산란에 의한 제1 산란도가 상기 제2 산란에 의한 제2 산란도보다 클 때, 상기 기재의 광투과율은 70% 이상인 유기 발광 조명 장치.
  8. 제6항에 있어서,
    상기 제2 산란에 의한 제2 산란도가 상기 제1 산란에 의한 제1 산란도보다 클 때, 상기 기재의 광투과율은 70% 미만인 유기 발광 조명 장치.
  9. 제6항에 있어서,
    상기 제1 산란에 의한 제1 산란도가 상기 제2 산란에 의한 제2 산란도보다 클 때, 상기 기공은 제1 직경을 갖고,
    상기 제2 산란에 의한 제2 산란도가 상기 제1 산란에 의한 제1 산란도보다 클 때, 상기 기공은 제2 직경을 가지며,
    상기 제1 직경은 상기 제2 직경보다 큰, 유기 발광 조명 장치.
  10. 제6항에 있어서,
    상기 제1 산란에 의한 제1 산란도가 상기 제2 산란에 의한 제2 산란도보다 클 때, 상기 제1 면 및 제2 면 중 적어도 하나는 제1 거칠기를 갖고,
    상기 제2 산란에 의한 제2 산란도가 상기 제1 산란에 의한 제1 산란도보다 클 때, 상기 제1 면 및 제2 면 중 적어도 하나는 제2 거칠기를 가지며,
    상기 제2 거칠기는 상기 제1 거칠기보다 큰, 유기 발광 조명 장치.
PCT/KR2018/010460 2018-08-29 2018-09-07 광 추출 구조체 및 유기 발광 조명 장치 WO2020045719A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/634,801 US11233223B2 (en) 2018-08-29 2018-09-07 Structure for extracting light and organic electroluminescent lighting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180102180A KR102103516B1 (ko) 2018-08-29 2018-08-29 광 추출 구조체 및 유기 발광 조명 장치
KR10-2018-0102180 2018-08-29

Publications (1)

Publication Number Publication Date
WO2020045719A1 true WO2020045719A1 (ko) 2020-03-05

Family

ID=69644406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010460 WO2020045719A1 (ko) 2018-08-29 2018-09-07 광 추출 구조체 및 유기 발광 조명 장치

Country Status (3)

Country Link
US (1) US11233223B2 (ko)
KR (1) KR102103516B1 (ko)
WO (1) WO2020045719A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102524611B1 (ko) * 2020-05-04 2023-04-24 주식회사 첨단랩 광 피부관리 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033002A (ja) * 2000-07-18 2002-01-31 Nippon Electric Glass Co Ltd 発光構造体
US20050231106A1 (en) * 2004-04-07 2005-10-20 Hitachi Displays, Ltd. Light-emitting element and display thereof
KR100737979B1 (ko) * 2005-03-18 2007-07-13 도레이새한 주식회사 기공이 형성된 광확산 필름
KR20130097744A (ko) * 2010-08-06 2013-09-03 쌩-고벵 글래스 프랑스 유기 발광 다이오드 장치용 확산층을 갖는 지지체, 이러한 지지체를 포함하는 유기 발광 장치
US20150323711A1 (en) * 2012-11-30 2015-11-12 Sharp Kabushiki Kaisha Scatterer substrate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2178343B2 (en) * 2007-07-27 2020-04-08 AGC Inc. Translucent substrate, method for manufacturing the translucent substrate and organic led element
JP2017069167A (ja) * 2015-10-02 2017-04-06 凸版印刷株式会社 有機el素子およびその製造方法、有機el照明、有機el光源、有機el表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033002A (ja) * 2000-07-18 2002-01-31 Nippon Electric Glass Co Ltd 発光構造体
US20050231106A1 (en) * 2004-04-07 2005-10-20 Hitachi Displays, Ltd. Light-emitting element and display thereof
KR100737979B1 (ko) * 2005-03-18 2007-07-13 도레이새한 주식회사 기공이 형성된 광확산 필름
KR20130097744A (ko) * 2010-08-06 2013-09-03 쌩-고벵 글래스 프랑스 유기 발광 다이오드 장치용 확산층을 갖는 지지체, 이러한 지지체를 포함하는 유기 발광 장치
US20150323711A1 (en) * 2012-11-30 2015-11-12 Sharp Kabushiki Kaisha Scatterer substrate

Also Published As

Publication number Publication date
US11233223B2 (en) 2022-01-25
US20210066664A1 (en) 2021-03-04
KR102103516B1 (ko) 2020-04-23
KR20200025198A (ko) 2020-03-10

Similar Documents

Publication Publication Date Title
WO2017026820A1 (ko) 발광 소자 및 이를 구비한 표시 장치
WO2017146476A1 (ko) 디스플레이 장치 및 그의 제조 방법
WO2016080710A1 (ko) 초소형 led 소자를 포함하는 전극어셈블리 및 그 제조방법
WO2012148234A2 (ko) 풀컬러 led 디스플레이 장치 및 그 제조방법
WO2013009016A2 (en) Optical member, display device having the same and method for fabricating the same
WO2016032160A1 (ko) 디스플레이 패널 및 이의 제조 방법
CN103219357A (zh) 显示设备
WO2017111223A1 (en) Organic light emitting display apparatus
WO2016144062A1 (ko) 광학 부재 및 이를 구비하는 표시 장치
WO2019164063A1 (ko) 디스플레이 디바이스
EP4204900A1 (en) Display device
WO2020045719A1 (ko) 광 추출 구조체 및 유기 발광 조명 장치
WO2017082640A1 (ko) 고굴절 및 저굴절 유/무기 하이브리드 재료를 이용한 oled 소자용 적층체 및 oled 소자의 제조방법, 이에 의해 제조되는 oled 소자
CN215067626U (zh) 一种灯板以及拼接显示屏
US9570709B2 (en) Method for manufacturing ultrathin organic light-emitting device
WO2020080603A1 (ko) 표시 장치 및 그의 제조 방법
WO2023121424A1 (ko) 발광 모듈 및 그것을 포함하는 디스플레이 장치
WO2020111358A1 (ko) 양면 발광 조명 장치
TWI303532B (en) Electroluminescent device with improved light output
WO2022169028A1 (ko) 디스플레이 디바이스
WO2021153827A1 (ko) 컬러휠
WO2021251717A1 (ko) 발광 소자를 갖는 유닛 픽셀 및 디스플레이 장치
WO2021215667A1 (en) Display device
KR102352322B1 (ko) 광 추출 구조체 및 유기 발광 조명 장치
WO2020179944A1 (ko) 경화기용 광 추출 구조체 및 조명 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18931810

Country of ref document: EP

Kind code of ref document: A1