EP2123786A1 - Procédé de fabrication de tôles d'aciers dual phase laminées à froid à trés haute résistance et tôles ainsi produites - Google Patents

Procédé de fabrication de tôles d'aciers dual phase laminées à froid à trés haute résistance et tôles ainsi produites Download PDF

Info

Publication number
EP2123786A1
EP2123786A1 EP08290474A EP08290474A EP2123786A1 EP 2123786 A1 EP2123786 A1 EP 2123786A1 EP 08290474 A EP08290474 A EP 08290474A EP 08290474 A EP08290474 A EP 08290474A EP 2123786 A1 EP2123786 A1 EP 2123786A1
Authority
EP
European Patent Office
Prior art keywords
product
temperature
steel sheet
rolled
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08290474A
Other languages
German (de)
English (en)
Inventor
Catherine Vinci
Gloria Restrepo Garces
Antoine Moulin
Tom Waterschoot
Mohamed Goune
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal France SA
Original Assignee
ArcelorMittal France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ArcelorMittal France SA filed Critical ArcelorMittal France SA
Priority to EP08290474A priority Critical patent/EP2123786A1/fr
Priority to AT09761870T priority patent/ATE555225T1/de
Priority to RU2010152214/02A priority patent/RU2470087C2/ru
Priority to PL09761870T priority patent/PL2291547T3/pl
Priority to MX2010012584A priority patent/MX2010012584A/es
Priority to US12/993,498 priority patent/US20110168300A1/en
Priority to EP09761870A priority patent/EP2291547B1/fr
Priority to JP2011510017A priority patent/JP5425896B2/ja
Priority to CA2725290A priority patent/CA2725290C/fr
Priority to ES09761870T priority patent/ES2386701T3/es
Priority to CN2009801183844A priority patent/CN102046827B/zh
Priority to PCT/FR2009/000574 priority patent/WO2009150319A1/fr
Priority to KR1020107028478A priority patent/KR101328768B1/ko
Priority to BRPI0912879-4A priority patent/BRPI0912879B1/pt
Priority to UAA201015426A priority patent/UA100056C2/ru
Publication of EP2123786A1 publication Critical patent/EP2123786A1/fr
Priority to ZA2010/07964A priority patent/ZA201007964B/en
Priority to MA33333A priority patent/MA32294B1/fr
Priority to US15/097,039 priority patent/US10190187B2/en
Priority to US16/213,455 priority patent/US20190106765A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention relates to the manufacture of cold-rolled and annealed sheets of so-called "dual-phase" steels having a very high strength and a deformability for the manufacture of parts by shaping, in particular in the automotive industry.
  • the dual-phase steels whose structure includes martensite, possibly bainite, in a ferritic matrix, have developed a great deal because they combine high resistance with significant possibilities of deformation.
  • their yield strength is relatively low compared to their breaking strength, which gives them a very favorable ratio (yield strength / strength) during forming operations.
  • Their consolidation capacity is very large, which allows a good distribution of deformations in the case of a collision and obtaining a significantly higher yield strength on the part after forming.
  • EP0796928A1 also describes cold-rolled Dual Phase steels with a resistance greater than 550 MPa, composition 0.05-0.3% C, 0.8-3% Mn, 0.4-2.5% Al, 0, 01 to 0.2% Si.
  • the ferritic matrix contains martensite, bainite and / or residual austenite.
  • the examples presented show that the resistance does not exceed 660 MPa, even for a high carbon content (0.20-0.21%)
  • the document JP11350038 describes Dual Phase steels with a strength greater than 980 MPa, composition 0.10-0.15% C, 0.8-1.5% Si, 1.5-2.0% Mn, 0.01-0 , 05% P, less than 0.005% S, 0.01-0.07% Al in solution, less than 0.01% N, additionally containing one or more elements: 0.001-0.02% Nb, 0.001-0 , 02% V, 0.001-0.02% Ti.
  • This high strength is, however, obtained at the cost of a significant addition of silicon which certainly allows the formation of martensite, but may nevertheless lead to the formation of surface oxides which deteriorate the coating on quenching.
  • the object of the present invention is to provide a method of manufacturing dual-phase steel plates very high strength, cold rolled, bare or coated, not having the disadvantages mentioned above.
  • the invention also aims to provide a manufacturing method in which small variations in the parameters do not lead to significant changes in the microstructure or mechanical properties.
  • the invention also aims to provide a sheet of steel easily fabricated by cold rolling, that is to say whose hardness after the hot rolling step is limited so that the rolling forces remain moderate during of the cold rolling step.
  • the invention also aims to provide an economical manufacturing process by avoiding the addition of expensive alloying elements.
  • the subject of the invention is a dual-phase cold-rolled and annealed steel sheet having a strength of between 980 and 1100 MPa, an elongation at break of greater than 9%, the composition of which comprises the contents being expressed in terms of weight: 0.055% ⁇ C ⁇ 0.095%, 2% ⁇ Mn ⁇ 2.6%, 0.005% ⁇ Si ⁇ 0.35%, S ⁇ 0.005%, P ⁇ 0.050%, 0.1 ⁇ Al ⁇ 0.3% , 0,05% ⁇ Mo ⁇ 0,25%, 0,2% ⁇ Cr ⁇ 0,5%, with the proviso that Cr + 2Mo ⁇ 0.6%, Ni ⁇ 0.1%, 0,010 ⁇ Nb ⁇ 0,040%, 0,010 ⁇ Ti ⁇ 0.050%, 0.0005 ⁇ B ⁇ 0.0025%, 0.002% ⁇ N ⁇ 0.007%, the balance of the composition consisting of iron and unavoidable impurities resulting from the preparation.
  • the composition of the steel contains, the content being expressed by weight: 0.12% ⁇ Al ⁇ 0.25%.
  • the composition of the steel contains, the content being expressed by weight: 0.10% ⁇ Si ⁇ 0.30%.
  • the composition of the steel preferably contains: 0.15% ⁇ Si ⁇ 0.28%.
  • the composition contains: P ⁇ 0.015%.
  • the microstructure of the sheet preferably contains 35 to 50% of martensite in surface proportion.
  • the complement of the microstructure consists of 50 to 65% of ferrite in surface proportion.
  • the complement of the microstructure consists of 1 to 10% of bainite and 40 to 64% of ferrite in surface proportion.
  • the surface fraction of non-recrystallized ferrite relative to the entire ferritic phase is preferably less than or equal to 15%.
  • the steel sheet preferably has a ratio between its elastic limit R e and its resistance R m such that: 0.6 RRe / R m ⁇ 0.8.
  • the sheet is galvanized continuously.
  • the sheet has a galvannealed coating.
  • the invention also relates to a manufacturing method according to one of the above characteristics , characterized in that the temperature T M is between 760 and 830 ° C.
  • the cooling rate V R is greater than or equal to 15 ° C / s.
  • the invention also relates to the use of a steel sheet according to any one of the above characteristics, or manufactured by a process according to any one of the above characteristics, for the manufacture of structures or safety for motor vehicles.
  • carbon plays an important role in the formation of the microstructure and in the mechanical properties: below 0.055% by weight, the resistance becomes insufficient. Beyond 0.095%, a lengthening of 9% can no longer be guaranteed. The weldability is also reduced.
  • manganese is an element that increases quenchability and reduces carbide precipitation. A minimum content of 2% by weight is necessary to obtain the desired mechanical properties. However, beyond 2.6%, its gammagenic character leads to the formation of a band structure too marked.
  • Silicon is a component involved in the deoxidation of liquid steel and hardening in solid solution. This element also plays an important role in the formation of the microstructure by preventing the precipitation of carbides and by promoting the formation of martensite which enters the structure of the Dual Phase steels. It plays an effective role beyond 0.005%.
  • an increase in the silicon content degrades the dip coating ability by promoting the formation of adherent oxides on the surface of the products: its content must be limited to 0.35% by weight, and preferably 0.30% to obtain a good coating.
  • the silicon decreases the weldability: a content of less than 0.28% makes it possible simultaneously to ensure very good weldability as well as good coating.
  • the ductility is reduced due to the excessive presence of sulfides such as MnS which decrease the ability to deform, especially during hole expansion tests.
  • Phosphorus is an element that hardens in solid solution but decreases spot weldability and hot ductility, particularly because of its ability to segregate at grain boundaries or co-segregate with manganese. For these reasons, its content must be limited to 0.050%, and preferably to 0.015% in order to obtain a good spot welding ability.
  • Aluminum plays an important role in the invention by preventing the precipitation of carbides and promoting the formation of martensitic constituents upon cooling. These effects are obtained when the aluminum content is greater than 0.1%, and preferably when the aluminum content is greater than 0.12%.
  • AlN aluminum limits grain growth during annealing after cold rolling.
  • This element is also used for the deoxidation of the liquid steel in an amount usually less than about 0.050%. It is usually considered that higher levels increase the erosion of refractories and the risk of plugging the nozzles. In excessive amounts, aluminum reduces hot ductility and increases the risk of defects in continuous casting. It is also sought to limit inclusions of alumina, in particular in the form of clusters, in order to ensure sufficient elongation properties.
  • the inventors have demonstrated, in connection with the other elements of the composition, that an amount of aluminum up to 0.3% by weight could be added without adverse effect vis-à-vis other properties required particularly with respect to the deformability, and also provided the desired microstructural and mechanical properties.
  • An aluminum content of up to 0.25% by weight makes it possible to ensure the formation of a fine microstructure without large martensitic islands which would play a detrimental role on the ductility.
  • the inventors have shown that, surprisingly, it was possible to obtain a high level of resistance, between 980 and 1100 MPa, even in spite of the limitation of additions of aluminum and silicon. This is achieved by the particular combination of the alloying or microalloying elements according to the invention, in particular by virtue of the additions of Mo, Cr, Nb, Ti, B.
  • molybdenum plays an effective role on quenchability and delays the enlargement of ferrite and the appearance of bainite.
  • a content greater than 0.25% excessively increases the cost of the additions.
  • chromium in an amount greater than 0.2%, chromium, by its role on quenchability, also contributes to delay the formation of proeutectoid ferrite. Beyond 0.5%, the cost of the addition is too excessive.
  • chromium and molybdenum contents are such that: Cr + (2 ⁇ Mo) ⁇ 0.6%.
  • the coefficients in this relation reflect the respective influence of these two elements on the quenchability in order to favor the obtaining of a fine ferritic structure.
  • the titanium and niobium contents above make it possible to ensure that the nitrogen is completely trapped in the form of nitrides or carbonitrides, so that the boron is in free form and can play an effective role on the quenchability.
  • the minimum boron content to ensure effective quenchability is 0.0005%. Above 0.0025%, the effect on the quenchability is saturated and there is a detrimental effect on the coating and hot ductility.
  • nitrides and carbonitrides In order to form a sufficient amount of nitrides and carbonitrides, a minimum content of 0.002% nitrogen is required. The nitrogen content is limited to 0.007% to avoid the formation of BN which would decrease the amount of free boron required for the hardening of the ferrite.
  • Ni may be performed to provide additional hardening of the ferrite. This addition is, however, limited to 0.1% for cost reasons.
  • the cast semi-finished products are first brought to a temperature T R greater than 1150 ° C. in order to reach at all points a temperature favorable to the high deformations which the steel will undergo during rolling.
  • T R a temperature favorable to the high deformations which the steel will undergo during rolling.
  • the temperature T R is too high, the austenitic grains increase undesirably.
  • the only precipitates that can effectively control the size of the austenitic grain are titanium nitrides, and the reheat temperature should be limited to 1250 ° C to maintain a fine austenitic grain at this stage.
  • the hot rolling step of these semi-finished products starting at more than 1150 ° C. can be done directly after casting so well. that an intermediate heating step is not necessary in this case.
  • the semi-finished product is hot-rolled in a temperature range where the structure of the steel is totally austenitic: if T FL is lower than the start-of-transformation temperature of the austenite at cooling A r3 , the ferrite grains are hardened by rolling and ductility is reduced.
  • a rolling end temperature of greater than 850 ° C. will be chosen.
  • the hot-rolled product is then rolled at a temperature T bob of between 500 and 570 ° C.
  • T bob of between 500 and 570 ° C. This temperature range makes it possible to obtain a complete bainitic transformation during the quasi-isothermal maintenance associated with the winding.
  • the winding temperature is too low, the hardness of the product is increased, which increases the efforts required during the subsequent cold rolling.
  • the hot-rolled product is pickled according to a method known per se, then cold rolling is carried out with a reduction ratio preferably comprised between 30 and 80%.
  • the cold-rolled product is then heated, preferably in a continuous annealing installation, with an average heating rate Vc of between 1 and 5 ° C./s.
  • Vc average heating rate
  • T M annealing temperature
  • the heating is carried out up to an annealing temperature T M between the temperature A c1 (allotropic transformation start temperature at heating) + 40 ° C, and A c3 (end of allotropic transformation temperature at heating) - 30 ° C, that is to say in a particular temperature range of the intercritical domain: when T M is less than (A c1 + 40 ° C), the structure may further comprise non-recrystallized ferrite zones, the surface fraction of which may reach 15%. This proportion of non-recrystallized ferrite is evaluated as follows: after having identified the ferritic phase within the microstructure, the surface percentage of non-recrystallized ferrite relative to the entire ferritic phase is quantified.
  • An annealing temperature T M makes it possible to obtain an amount of austenite sufficient to subsequently form the cooling of the martensite in an amount such that the desired characteristics are attained.
  • a temperature T M lower than (A c3 - 30 ° C) also makes it possible to ensure that the carbon content of the austenite islands formed at the temperature T M indeed leads to a subsequent martensitic transformation: when the annealing temperature is too high The carbon content of the austenite islands becomes too low, leading to subsequent transformation into bainite or unfavorable pearlite.
  • too high a temperature leads to an increase in the size of niobium precipitates which lose some of their curing ability. The final mechanical strength is then reduced.
  • a temperature T M of between 760 ° C. and 830 ° C. is preferably chosen for this purpose.
  • a minimum holding time t M of 30s at the temperature T M allows the dissolution of the carbides, a partial transformation into austenite is carried out. The effect is saturated beyond a duration of 300 s.
  • a holding time greater than 300s is also difficult to comply with the productivity requirements of continuous annealing equipment, in particular the speed of scrolling.
  • the holding time t M is between 30 and 300s.
  • This cooling can be carried out from the temperature T M in one or several steps and may involve in the latter case different cooling modes such as cold or boiling water baths, jets of water or gas . These possible accelerated cooling modes can be combined to obtain a complete martensitic transformation of the austenite. After this martensitic transformation, the sheet is cooled to room temperature.
  • the microstructure of steels whose matrix is ferritic, has also been determined.
  • the surface fractions of bainite and martensite have been quantified after Picral and LePera reagent attack respectively, followed by image analysis using Aphelion TM software.
  • the non-recrystallized ferrite surface fraction was also determined by optical and scanning electron microscopy observations in which the ferritic phase was identified and the recrystallized fraction within this ferritic phase quantified.
  • Non-recrystallized ferrite is generally in the form of elongated islands by rolling.
  • the folding ability was quantified as follows: sheets were folded in a block on themselves in several turns. In this way, the bending radius decreases each turn. The foldability is then evaluated by noting the presence of cracks on the surface of the folded block, the rating being expressed from 1 (low foldability) to 5 (very good ability). satisfactory.
  • the sheets according to the invention have good weldability, in particular resistance, the equivalent carbon being less than 0.25.
  • the steel plates IX3 (galvanized) and IX6 (galvannealed) were annealed at a temperature T M too low: consequently, the fraction of non-recrystallized ferrite is excessive as well as the martensite fraction.
  • T M temperature
  • the figure 2 illustrates the microstructure of the steel sheet IX3: note the presence of non-recrystallized ferrite in the form of elongate islands (marked (A)) coexisting with recrystallized ferrite and martensite, the latter constituting appearing darker on the micrograph.
  • a Micrograph in Scanning Electron Microscopy ( figure 3 ) makes it possible to finely distinguish the zones of non recrystallized ferrite (A) from those recrystallized (B).
  • Sheet IX5 is a galvannealed sheet annealed at a temperature T M too high: the carbon content of austenite at high temperature then becomes too low and the appearance of bainite is favored at the expense of the formation of martensite. Coalescence of niobium precipitates is also observed, which causes a loss of hardening. The resistance is then insufficient, the ratio Re / R m being too high.
  • IX7 galvannealed sheet was cooled at a speed V R too slow after the annealing step: the transformation of the austenite formed into ferrite then occurs in this cooling step excessively, the steel sheet containing at the stage final a proportion of bainite too important and a proportion of martensite too low, which leads to insufficient resistance.
  • the composition of the steel sheet R does not correspond to the invention, its carbon content being too high, and its content of manganese, aluminum, niobium, titanium, boron being too low. As a result, the martensite fraction is too weak so that the mechanical strength is insufficient.
  • the steel sheets according to the invention will be used profitably for the manufacture of structural parts or safety in the automotive industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)

Abstract

L'invention concerne une Tôle d'acier Dual Phase laminée à froid et recuite de résistance comprise entre 980 et 1100MPa, d'allongement à rupture supérieur à 9 %, dont la composition comprend, les teneurs étant exprimées en poids : 0,055% ‰¤C ‰¤ 0,095%, 2% ‰¤Mn ‰¤2,6%, 0,005% ‰¤ Si‰¤ 0,35%, S‰¤0,005%, P ‰¤0,050%, 0,1 ‰¤Al ‰¤ 0,3%, 0,05%‰¤Mo ‰¤0,25%, 0,2%‰¤Cr‰¤0,5%, étant entendu que Cr+2Mo‰¤0,6%, Ni‰¤ 0,1%, 0,010‰¤Nb ‰¤0,040%, 0,010‰¤Ti ‰¤0.050%, 0,0005 ‰¤B ‰¤0,0025%, 0,002%‰¤N‰¤0,007%, le reste de la composition étant constitué de fer et d'impuretés inévitables résultant de l'élaboration.

Description

  • L'invention concerne la fabrication de tôles laminées à froid et recuites d'aciers dits « dual-phase » présentant une très haute résistance et une aptitude à la déformation pour la fabrication de pièces par mise en forme, en particulier dans l'industrie automobile.
    Les aciers dual-phase, dont la structure comprend de la martensite, éventuellement de la bainite, au sein d'une matrice ferritique, ont connu un grand développement car ils allient une résistance élevée à des possibilités importantes de déformation. A l'état de livraison, leur limite d'élasticité est relativement basse comparée à leur résistance à la rupture, ce qui leur confère un rapport (limite d'élasticité/résistance) très favorable lors des opérations de formage. Leur capacité de consolidation est très grande, ce qui permet une bonne répartition des déformations dans le cas d'une collision et l'obtention d'une limite d'élasticité nettement plus importante sur pièce après formage. On peut réaliser ainsi des pièces aussi complexes qu'avec des aciers conventionnels, mais avec des propriétés mécaniques plus élevées, ce qui autorise une diminution d'épaisseur pour tenir un cahier des charges fonctionnel identique. De la sorte, ces aciers sont une réponse efficace aux exigences d'allègement et de sécurité des véhicules. Dans le domaine des tôles laminées à chaud (d'épaisseur allant par exemple de 1 à 10mm) ou laminées à froid (épaisseur allant par exemple de 0,5 à 3 mm), ce type d'aciers trouve notamment des applications pour des pièces de structures et de sécurité pour les véhicules automobile, telles que les traverses, longerons, pièces de renfort, ou encore les voiles de roues.
  • Les exigences récentes d'allègement et de réduction de la consommation d'énergie ont conduit à une demande accrue d'aciers dual-phase à très haute résistance, c'est à dire dont la résistance mécanique Rm est comprise entre 980 et 1100MPa. Outre ce niveau de résistance, ces aciers doivent présenter une bonne soudabilité et une bonne aptitude à la galvanisation en continu au trempé. Ces aciers doivent également présenter une bonne aptitude au pliage.
  • La fabrication d'aciers Dual Phase à haute résistance est par exemple décrite dans le document EP1201780 A1 relatif à des aciers de composition : 0,01-0,3%C. 0,01-2%Si, 0,05-3%Mn, <0,1%P, <0,01%S, 0,005-1%Al, dont la résistance mécanique est supérieure à 540MPa, qui présentent une bonne résistance à la fatigue et une aptitude à l'expansion de trou. Cependant, la plupart des exemples présentés dans ce document révèlent une résistance inférieure à 875 MPa. Les rares exemples dans ce document allant au delà de cette valeur sont relatifs à des aciers à forte teneur en carbone (0,25 ou 0,31%) pour lesquelles l'aptitude au soudage et à l'expansion de trou n'est pas suffisante.
  • Le document EP0796928A1 décrit par ailleurs des aciers Dual Phase laminés à froid dont la résistance est supérieure à 550MPa, de composition 0,05-0,3%C, 0,8-3%Mn, 0,4-2,5%Al, 0,01-0,2%Si. La matrice ferritique contient de la martensite, de la bainite et/ou de l'austénite résiduelle. Les exemples présentés montrent que la résistance ne dépasse pas 660MPa, même pour une teneur en carbone élevée (0,20-0,21 %)
  • Le document JP11350038 décrit des aciers Dual Phase dont la résistance est supérieure à 980MPa, de composition 0,10-0,15%C, 0,8-1,5%Si, 1,5-2,0%Mn, 0,01-0,05%P, moins de 0,005%S, 0,01-0,07%Al en solution, moins de 0,01%N, contenant en outre un ou plusieurs éléments : 0,001-0,02%Nb, 0,001-0,02%V, 0,001-0,02%Ti. Cette résistance élevée est cependant obtenue au prix d'une addition importante de silicium qui permet certes la formation de martensite, mais peut néanmoins conduire à la formation d'oxydes superficiels qui détériorent la revêtabilité au trempé.
  • Le but de la présente invention est de proposer un procédé de fabrication de tôles d'aciers dual-phase à très haute résistance, laminées à froid, nues ou revêtues, ne présentant pas les inconvénients mentionnés précédemment.
  • Elle vise à mettre à disposition des tôles d'acier Dual Phase présentant une résistance mécanique comprise entre 980 et 1100 MPa conjointement avec un allongement à rupture supérieur à 9% et une bonne aptitude au formage, notamment au pliage
  • L'invention vise également à mettre à disposition un procédé de fabrication dont de faibles variations des paramètres n'entraînent pas de modifications importantes de la microstructure ou des propriétés mécaniques.
  • L'invention vise également à mettre à disposition une tôle d'acier aisément fabricable par laminage à froid, c'est à dire dont la dureté après l'étape de laminage à chaud est limitée de telle sorte que les efforts de laminage restent modérés lors de l'étape de laminage à froid.
  • Elle vise également à disposer d'une tôle d'acier apte au dépôt d'un revêtement métallique, en particulier par galvanisation au trempé selon les procédés usuels.
  • Elle vise encore à disposer d'un acier présentant une bonne aptitude au soudage au moyen des procédés d'assemblage usuels tels que le soudage par résistance par points.
  • L'invention vise également à mettre à disposition un procédé de fabrication économique en évitant l'addition d'éléments d'alliage coûteux.
  • A cet effet, l'invention a pour objet une tôle d'acier Dual Phase laminée à froid et recuite de résistance comprise entre 980 et 1100MPa, d'allongement à rupture supérieur à 9 %, dont la composition comprend, les teneurs étant exprimées en poids : 0,055% ≤C ≤ 0,095%, 2% ≤Mn ≤2,6%, 0,005% ≤ Si≤ 0,35%, S≤0,005%, P ≤0,050%, 0,1 ≤Al ≤ 0,3%, 0,05% ≤Mo ≤0,25%, 0,2%≤Cr≤0,5%, étant entendu que Cr+2Mo≤0.6%, Ni≤ 0,1%, 0,010≤Nb ≤0,040%, 0,010≤Ti ≤0,050%, 0,0005 ≤B ≤0,0025%, 0,002%≤N≤0,007%, le reste de la composition étant constitué de fer et d'impuretés inévitables résultant de l'élaboration.
  • Préférentiellement, la composition de l'acier contient, la teneur étant exprimée en poids : 0,12% ≤Al≤0.25%.
  • Selon un mode préféré, la composition de l'acier contient, la teneur étant exprimée en poids : 0,10% ≤ Si ≤ 0,30%.
  • La composition de l'acier contient à titre préférentiel :0.15% ≤ Si ≤ 0,28%.
  • Selon un mode préféré, la composition contient : P ≤0,015%.
  • La microstructure de la tôle contient préférentiellement 35 à 50% de martensite en proportion surfacique.
  • Selon un mode particulier, le complément de la microstructure est constitué de 50 à 65% de ferrite en proportion surfacique.
  • Selon un autre mode particulier, le complément de la microstructure est constitué de 1 à 10% de bainite et de 40 à 64% de ferrite en proportion surfacique.
  • La fraction surfacique de ferrite non recristallisée rapportée à la totalité de la phase ferritique est préférentiellement inférieure ou égale à 15%.
  • La tôle d'acier possède préférentiellement un rapport entre sa limite d'élasticité Re et sa résistance Rm tel que : 0,6≤Re/Rm ≤0,8.
  • Selon un mode particulier, la tôle est galvanisée en continu.
  • Selon un autre mode particulier, la tôle comporte un revêtement galvannealed.
  • L'invention a également pour objet un procédé de fabrication d'une tôle d'acier Dual Phase laminée à froid et recuite caractérisé en ce qu'on approvisionne un acier de composition selon l'une quelconque des caractéristiques ci-dessus, puis
    • on coule l'acier sous forme de demi-produit, puis
    • on porte le demi-produit à une température 1150°C≤TR≤1250°C, puis
    • on lamine à chaud le demi-produit avec une température de fin de laminage TFL ≥Ar3 pour obtenir un produit laminé à chaud, puis
    • on bobine le produit laminé à chaud à une température 500°C ≤Tbob≤ 570°C, puis on décape le produit laminé à chaud, puis on effectue un laminage à froid avec un taux de réduction compris entre 30 et 80% pour obtenir un produit laminé à froid, puis
    • on chauffe le produit laminé à froid à une vitesse 1°C/s≤VC≤5°C/s jusqu'à une température de recuit TM telle que: Ac1+40°C≤TM≤Ac3-30°C où l'on effectue un maintien pendant une durée : 30s≤tM≤300s de façon à obtenir un produit chauffé et recuit avec une structure comprenant de l'austénite, puis
    • on refroidit le produit jusqu'à une température inférieure à la température Ms avec une vitesse V suffisante pour que l'austénite se transforme totalement en martensite.
  • L'invention a également pour objet un procédé de fabrication d'une tôle d'acier Dual Phase laminée à froid, recuite et galvanisée caractérisé en ce qu'on approvisionne le produit chauffé et recuit avec une structure comprenant de l'austénite selon la caractéristique ci-dessus puis,
    • on refroidit le produit chauffé et recuit avec une vitesse VR suffisante pour éviter la transformation de l'austénite en ferrite, jusqu'à atteindre une température proche de la température TZn de galvanisation au trempé, puis
    • on galvanise en continu le produit par immersion dans un bain de zinc ou d'alliage de Zn à une température 450°C≤TZn≤480°C pour obtenir un produit galvanisé, puis
    • on refroidit le produit galvanisé jusqu'à la température ambiante avec une vitesse V'R supérieure à 4°C/s pour obtenir une tôle d'acier laminée à froid, recuite et galvanisée.
  • L'invention a également pour objet un procédé de fabrication d'une tôle d'acier Dual Phase laminée à froid et galvannealed, caractérisé en ce qu'on approvisionne le produit chauffé et recuit avec une structure comprenant de l'austénite selon la caractéristique ci-dessus, puis,
    • on refroidit le produit chauffé et recuit avec une vitesse VR suffisante pour éviter la transformation de ladite austénite en ferrite, jusqu'à atteindre une température proche de la température TZn de galvanisation au trempé, puis
    • on galvanise en continu le produit par immersion dans un bain de zinc ou d'alliage de Zn à une température 450°C≤TZn≤480°C pour obtenir un produit galvanisé, puis
    • on chauffe le produit galvanisé à une température TG comprise entre 490 et 550°C pendant une durée tG comprise entre 10 et 40 s pour obtenir un produit galvannealed, puis
    • on refroidit le produit galvannealed jusqu'à la température ambiante à une vitesse V"R supérieure à 4°C/s, pour obtenir une tôle d'acier laminée à froid et galvannealed.
  • L'invention a également pour objet un procédé de fabrication selon l'une des caractéristiques ci-dessus, caractérisé en ce que la température TM est comprise entre 760 et 830°C.
  • Selon un mode particulier, la vitesse de refroidissement VR est supérieure ou égale à 15°C/s.
  • L'invention a également pour objet l'utilisation d'une tôle d'acier selon l'une quelconque des caractéristiques ci-dessus, ou fabriquée par un procédé selon l'une quelconque des caractéristiques ci-dessus, pour la fabrication de pièces de structures ou de sécurité pour véhicules automobiles.
  • D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description ci-dessous, donnée à titre d'exemple et faite en référence aux figures annexées ci-jointes selon lesquelles :
    • La figure 1 présente un exemple de microstructure d'une tôle d'acier selon l'invention
    • Les figures 2 et 3 présentent des exemples de microstructure de tôles d'acier non conforme à l'invention.
  • L'invention va maintenant être décrite de façon plus précise, mais non limitative, en considérant ses différents éléments caractéristiques :
  • En ce qui concerne la composition chimique de l'acier, le carbone joue un rôle important sur la formation de la microstructure et sur les propriétés mécaniques : au-dessous de 0,055% en poids, la résistance devient insuffisante. Au-delà de 0,095%, un allongement de 9% ne peut plus être garanti. La soudabilité est également réduite.
  • Outre un effet durcissant par solution solide, le manganèse est un élément qui augmente la trempabilité et réduit la précipitation de carbures. Une teneur minimale de 2% en poids est nécessaire pour obtenir les propriétés mécaniques désirées. Cependant, au-delà de 2,6%, son caractère gammagène conduit à la formation d'une structure en bandes trop marquée.
  • Le silicium est un élément participant à la désoxydation de l'acier liquide et au durcissement en solution solide. Cet élément joue en outre un rôle important dans la formation de la microstructure en empêchant la précipitation des carbures et en favorisant la formation de martensite qui entre dans la structure des aciers Dual Phase. Il joue un rôle effectif au-delà de 0,005%. Une addition de silicium en quantité supérieure à 0,10%, préférentiellement supérieure à 0,15%, permet d'atteindre les plus hauts niveaux de résistance visés par l'invention. Cependant, une augmentation de la teneur en silicium dégrade l'aptitude au revêtement au trempé en favorisant la formation d'oxydes adhérents à la surface des produits : sa teneur doit être limitée à 0,35% en poids, et préférentiellement à 0,30% pour obtenir une bonne revêtabilité. En outre, le silicium diminue la soudabilité : une teneur inférieure à 0,28% permet d'assurer simultanément une très bonne aptitude au soudage ainsi qu'une bonne revêtabilité.
  • Au-delà d'une teneur en soufre de 0,005%, la ductilité est réduite en raison de la présence excessive de sulfures tels que MnS qui diminuent l'aptitude à la déformation, en particulier lors d'essais d'expansion de trou.
  • Le phosphore est un élément qui durcit en solution solide mais qui diminue la soudabilité par points et la ductilité à chaud, particulièrement en raison de son aptitude à la ségrégation aux joints de grains ou à la co-ségrégation avec le manganèse. Pour ces raisons, sa teneur doit être limitée à 0,050%, et préférentiellement à 0,015% afin d'obtenir une bonne aptitude au soudage par points.
  • L'aluminium joue un rôle important dans l'invention en empêchant la précipitation des carbures et en favorisant la formation des constituants martensitiques au refroidissement. Ces effet sont obtenus lorsque la teneur en aluminium est supérieure à 0,1%, et préférentiellement lorsque la teneur en aluminium est supérieure à 0,12%.
  • Sous forme d'AlN, l'aluminium limite la croissance du grain lors du recuit après laminage à froid. Cet élément est aussi utilisé pour la désoxydation de l'acier liquide en quantité usuellement inférieure à environ 0,050%. On considère en effet habituellement que des teneurs plus importantes accroissent l'érosion des réfractaires et le risque de bouchage des busettes. En quantité excessive, l'aluminium diminue la ductilité à chaud et augmente le risque d'apparition de défauts en coulée continue. On cherche également à limiter les inclusions d'alumine, en particulier sous forme d'amas, dans le but de garantir des propriétés d'allongement suffisantes. Or les inventeurs ont mis en évidence, en liaison avec les autres éléments de la composition, qu'une quantité d'aluminium allant jusqu'à 0,3% en poids pouvait être ajoutée sans effet néfaste vis-à-vis des autres propriétés requises, en particulier vis-à-vis de l'aptitude à la déformation, et permettait également d'obtenir les propriétés microstructurales et mécaniques visées. Au delà de 0,3%, il existe un risque d'interaction entre le métal liquide et le laitier lors de la coulée continue, qui conduit à l'apparition éventuelle de défauts. Une teneur en aluminium allant jusqu'à 0,25% en poids permet d'assurer la formation d'une microstructure fine sans îlots martensitiques de grande taille qui joueraient un rôle néfaste sur la ductilité.
  • Les inventeurs ont montré que, d'une manière surprenante, il était possible d'obtenir un niveau de résistance élevé, compris entre 980 et 1100MPa, même en dépit de la limitation des additions d'aluminium et de silicium. Ceci est obtenu par la combinaison particulière des éléments d'alliage ou de microalliage selon l'invention en particulier grâce aux additions de Mo, Cr, Nb,Ti, B.
  • En quantité supérieure à 0,05% en poids, le molybdène joue un rôle efficace sur la trempabilité et retarde le grossissement de la ferrite et l'apparition de la bainite. Cependant, une teneur supérieure à 0,25% accroît excessivement le coût des additions.
  • En quantité supérieure à 0,2%, le chrome, par son rôle sur la trempabilité, contribue également à retarder la formation de ferrite proeutectoïde. Au delà de 0,5%, le coût de l'addition est là aussi excessif.
  • Les effets conjoints du chrome et du molybdène sur la trempabilité sont pris en compte dans l'invention selon leurs caractéristiques propres ; selon l'invention, les teneurs en chrome et en molybdène sont telles que : Cr+(2 x Mo) ≤0,6%. Les coefficients dans cette relation traduisent l'influence respective de ces deux éléments sur la trempabilité en vue de favoriser l'obtention d'une structure ferritique fine.
  • Le titane et le niobium sont des éléments de microalliage utilisés conjointement selon l'invention :
    • En quantité comprise entre 0,010 et 0,050%, le titane se combine essentiellement à l'azote et au carbone pour précipiter sous forme de nitrures et/ou de carbonitrures. Ces précipités sont stables lors d'un réchauffage des brames à 1150-1250°C avant le laminage à chaud, ce qui permet de contrôler la taille du grain austénitique. Au delà d'une teneur en titane de 0,050%, il existe un risque de former des nitrures de titane grossiers précipités dès l'état liquide, qui tendent à réduire la ductilité.
    • En quantité supérieure à 0,010%, le niobium est très efficace pour former de fins précipités de Nb(CN) dans l'austénite ou dans la ferrite lors du laminage à chaud, ou encore lors du recuit dans une gamme de température voisine de l'intervalle de transformation intercritique. Il retarde la recristallisation lors du laminage à chaud et lors du recuit et affine la microstructure. Cependant, une quantité excessive en niobium diminuant la soudabilité, il convient de limiter celle-ci à 0,040%.
  • Les teneurs en titane et en niobium ci-dessus permettent de faire en sorte que l'azote soit entièrement piégé sous forme de nitrures ou de carbonitrures, si bien que le bore se trouve sous forme libre et peut jouer un rôle efficace sur la trempabilité.
  • La teneur minimale en bore pour assurer une trempabilité efficace est de 0,0005%. Au delà de 0,0025%, l'effet sur la trempabilité est saturé et on constate un effet néfaste sur la revètabilité et sur la ductilité à chaud.
  • Afin de former une quantité suffisante de nitrures et de carbonitrures, une teneur minimale de 0,002% en azote est requise. La teneur en azote est limitée à 0,007% pour éviter la formation de BN qui diminuerait la quantité de bore libre nécessaire au durcissement de la ferrite.
  • Une addition optionnelle de nickel peut être réalisée de façon à obtenir un durcissement supplémentaire de la ferrite. Cette addition est cependant limitée à 0,1 % pour des raisons de coût.
  • La mise en oeuvre du procédé de fabrication d'une tôle laminée selon l'invention est la suivante :
    • On approvisionne un acier de composition selon l'invention
    • On procède à la coulée d'un demi-produit à partir de cet acier. Cette coulée peut être réalisée en lingots ou en continu sous forme de brames d'épaisseur de l'ordre de 200mm. On peut également effectuer la coulée sous forme de brames minces de quelques dizaines de millimètres d'épaisseur ou de bandes minces entre cylindres d'acier contra-rotatifs.
  • Les demi-produits coulés sont tout d'abord portés à une température TR supérieure à 1150 °C pour atteindre en tout point une température favorable aux déformations élevées que va subir l'acier lors du laminage. Cependant, si la température TR est trop importante, les grains austénitiques croissent de façon indésirable. Dans ce domaine de température, les seuls précipités susceptibles de contrôler efficacement la taille du grain austénitique sont les nitrures de titane, et il convient de limiter la température de réchauffage à 1250°C afin de maintenir un grain austénitique fin à ce stade.
  • Naturellement, dans le cas d'une coulée directe de brames minces ou de bandes minces entre cylindres contra-rotatifs, l'étape de laminage à chaud de ces demi-produits débutant à plus de 1150°C peut se faire directement après coulée si bien qu'une étape de réchauffage intermédiaire n'est pas nécessaire dans ce cas.
  • On lamine à chaud le demi-produit dans un domaine de température où la structure de l'acier est totalement austénitique : si TFL est inférieure à la température de début de transformation de l'austénite au refroidissement Ar3, les grains de ferrite sont écrouis par le laminage et la ductilité est réduite. Préférentiellement, on choisira une température de fin de laminage supérieure à 850°C.
  • On bobine ensuite le produit laminé à chaud à une température Tbob comprise entre 500 et 570°C : cette gamme de température permet d'obtenir une transformation bainitique complète pendant le maintien quasi-isotherme associé au bobinage. Lorsque la température de bobinage est trop basse, la dureté du produit est augmentée, ce qui augmente les efforts nécessaires lors du laminage à froid à froid ultérieur.
  • On décape le produit laminé à chaud selon un procédé connu en lui-même, puis on effectue un laminage à froid avec un taux de réduction compris préférentiellement entre 30 et 80%.
  • On chauffe ensuite le produit laminé à froid, préférentiellement au sein d'une installation de recuit continu, avec une vitesse moyenne de chauffage Vc comprise entre 1 et 5'C/s. En relation avec la température de recuit TM ci-dessous, cette gamme de vitesse de chauffage permet d'obtenir une fraction de ferrite non recristallisée inférieure ou égale à 15%.
  • Le chauffage est effectué jusqu'à une température de recuit TM comprise entre la température Ac1 (température de début de transformation allotropique au chauffage)+40°C, et Ac3 (température de fin de transformation allotropique au chauffage) - 30°C, c'est à dire dans une gamme de température particulière du domaine intercritique : lorsque TM est inférieure à (Ac1+40°C), la structure peut comporter encore des zones de ferrite non recristallisées dont la fraction surfacique peut atteindre 15%. Cette proportion de ferrite non recristallisée est évaluée de la façon suivante : après avoir identifié la phase ferritique au sein de la microstructure, on quantifie le pourcentage surfacique de ferrite non recristallisée rapportée à la totalité de la phase ferritique. On a mis en évidence que ces zones non recristallisées jouent un rôle néfaste sur la ductilité et ne permettent pas d'obtenir les caractéristiques visées par l'invention. Une température de recuit TM selon l'invention permet d'obtenir une quantité d'austénite suffisante pour former ultérieurement au refroidissement de la martensite en quantité telle que les caractéristiques désirées soient atteintes. Une température TM inférieure à (Ac3 - 30°C) permet également d'assurer que la teneur en carbone des îlots d'austénite formés à la température TM conduit bien à une transformation martensitique ultérieure : lorsque la température de recuit est trop élevée, la teneur en carbone des îlots d'austénite devient trop faible, ce qui conduit à une transformation ultérieure en bainite ou en perlite non favorable. De plus, une température trop élevée conduit à un accroissement de la taille des précipités de niobium qui perdent une partie de leur capacité de durcissement. La résistance mécanique finale est alors diminuée.
  • On choisira préférentiellement à cet effet une température TM comprise entre 760°C et 830°C.
  • Une durée de maintien minimale tM de 30s à la température TM permet la dissolution des carbures, une transformation partielle en austénite est réalisée. L'effet est saturé au delà d'une durée de 300 s. Un temps de maintien supérieur à 300s est également difficilement compatible avec les exigences de productivité des installations de recuit continu, en particulier la vitesse de défilement. La durée de maintien tM est comprise entre 30 et 300s.
  • Les étapes suivantes du procédé différent selon que l'on fabrique une tôle d'acier non revêtue, ou galvanisée en continu au trempé, ou galvannealed :
    • Dans le premier cas, à la fin du maintien de recuit, on effectue un refroidissement jusqu'à une température inférieure à la température Ms (température de début de formation de la martensite) avec une vitesse de refroidissement V suffisante pour que l'austénite formée lors du recuit se transforme totalement en martensite.
  • Ce refroidissement peut être effectué à partir de la température TM en une seule ou en plusieurs étapes et peut faire intervenir dans ce dernier cas différents modes de refroidissement tels que des bains d'eau froide ou bouillante, des jets d'eau ou de gaz. Ces éventuels modes de refroidissement accéléré peuvent être combinés de façon à obtenir une transformation martensitique complète de l'austénite. Après cette transformation martensitique, le tôle est refroidie jusqu'à la température ambiante.
  • La microstructure de la tôle nue refroidie est alors constituée d'une matrice ferritique avec des îlots de martensite dont la proportion surfacique est comprise entre 35 et 50%, et est exempte de bainite.
    • Dans le cas où l'on souhaite fabriquer une tôle galvanisée en continu au trempé, à la fin du maintien de recuit, on refroidit le produit jusqu'à atteindre une température proche de la température TZn de galvanisation au trempé, la vitesse de refroidissement VR étant suffisamment rapide pour éviter la transformation de l'austénite en ferrite. A cet effet, la vitesse de refroidissement VR est préférentiellement supérieure à 15°C/s. On effectue la galvanisation au trempé par immersion dans un bain de zinc ou d'alliage de zinc dont la température TZn est comprise entre 450 et 480°C. Une transformation partielle de l'austénite en bainite intervient à ce stade, qui conduit à la formation de 1 à 10% de bainite, cette valeur étant exprimée en proportion surfacique. Le maintien dans cette gamme de température doit être inférieur à 80s de façon à limiter la proportion surfacique de bainite à 10% et obtenir ainsi une proportion suffisante de martensite. On refroidit ensuite le produit galvanisé à une vitesse comprise V'R supérieure à 4°C/s jusqu'à la température ambiante dans le but de transformer complètement la fraction d'austénite restante en martensite : on obtient de la sorte une tôle d'acier laminée à froid, recuite et galvanisée contenant en proportion surfacique 40-64% de ferrite, 35-50% de martensite et 1-10% de bainite.
    • Dans le cas où l'on souhaite fabriquer une tôle d'acier Dual Phase laminée à froid et « galvannealed », c'est à dire galvanisée-alliée, on refroidit le produit à la fin du maintien de recuit jusqu'à atteindre une température proche de la température TZn de galvanisation au trempé, la vitesse de refroidissement VR étant suffisamment rapide pour éviter la transformation de l'austénite en ferrite. A cet effet, la vitesse de refroidissement VR est préférentiellement supérieure à 15°C/s. On effectue la galvanisation au trempé par immersion dans un bain de zinc ou d'alliage de zinc dont la température TZn est comprise entre 450 et 480°C. Une transformation partielle de l'austénite en bainite intervient à ce stade, qui conduit à la formation de 1 à 10% de bainite, cette valeur étant exprimée en proportion surfacique. Le maintien dans cette gamme de température doit être inférieur à 80s de façon à limiter la proportion de bainite à 10%. Après la sortie du bain de zinc, on chauffe le produit galvanisé à une température TG comprise entre 490 et 550°C pendant une durée tG comprise entre 10 et 40s. On provoque ainsi l'interdiffusion du fer et de la fine couche de zinc ou d'alliage de zinc déposée lors de l'immersion, ce qui permet d'obtenir un produit galvannealed. On refroidit ce produit jusqu'à la température ambiante avec une vitesse V"R supérieure à 4°C/s: on obtient de la sorte une tôle d'acier galvannealed à matrice ferritique, contenant en proportion surfacique 40-64% de ferrite, 35-50% de martensite et 1-10% de bainite. La martensite se trouve typiquement sous forme d'îlots de taille moyenne inférieure à 4 micromètres, voire deux micromètres, ces îlots présentant majoritairement, pour plus de 50% d'entre eux, une morphologie massive plutôt qu'une morphologie allongée. La morphologie d'un îlot donné est caractérisée par le rapport entre sa taille maximale Lmax et minimale Lmjn. Un îlot donné est considéré comme possédant une morphologie massive lorsque son rapport L max L min
      Figure imgb0001
      est inférieur ou égal à 2.
  • La présente invention va être maintenant illustrée à partir des exemples suivants donnés à titre non limitatif :
  • Exemple:
  • On a élaboré des aciers dont la composition figure au tableau ci-dessous, exprimée en pourcentage pondéral, Outre les aciers IX à IZ ayant servi à la fabrication de tôles selon l'invention, on a indiqué à titre de comparaison la composition d'un acier R ayant servi à la fabrication de tôles de référence. Tableau 1 Compositions d'aciers (% poids). R= Référence Valeurs soulignées : Non conformes à l'invention.
    Acier C (%) Mn (%) Si (%) S (%) P (%) Al (%) Mo (%) Cr (%) Cr+2Mo (%) Ni (%) Nb (%) Ti (%) B (%) N (%)
    IX 0,071 2,498 0,275 0.003 0,011 0,150 0,104 0.304 0,512 0,022 0,039 0,025 0,0024 0.004
    IY 0,076 2,430 0.3 0,003 0,012 0,120 0.09 0,33 0,51 0,030 0,024 0.024 0,0018 0,0035
    IZ 0,062 2,030 0,163 0,003 0,011 0,125 0,055 0,27 0,38 0,020 0,011 0,015 0,0011 0,004
    R 0.143 1.910 0,23 0,002 0.012 0.035 0.1 0,24 0,44 . : : : 0,004
  • Des demi-produits coulés correspondant aux compositions ci-dessus ont été réchauffés à 1230°C puis laminés à chaud jusqu'à une épaisseur de 2,8-4 mm dans un domaine où la structure est entièrement austénitique. Les conditions de fabrication de ces produits laminés à chaud (température de fin de laminage TFL, température de bobinage Tbob) sont indiquées au tableau 2. Tableau 2 Conditions de fabrication des produits laminés à chaud
    Acier TFL(°C) Ar3 (°C) Tbob(°C)
    IX 890 705 530
    IY 880 715 540
    IZ 880 735 530
    R 880 700 550
  • Les produits laminés à chaud ont été ensuite décapés puis laminés à froid jusqu'à une épaisseur de 1,4 à 2 mm soit un taux de réduction de 50%. A partir d'une même composition, certains aciers ont fait l'objet de différentes conditions de fabrication. Les références IX1, IX2 et IX3 désignent par exemple trois tôles d'aciers fabriquées selon des conditions différentes à partir de la composition d'acier IX. Les tôles ont été galvanisées au trempé dans un bain de zinc à une température TZn de 460°C, d'autres ont fait en outre l'objet d'un traitement de galvannealing. Le tableau 3 indique les conditions de fabrication des tôles recuites après laminage à froid :
    • Vitesse de chauffage Vc
    • Température de recuit TM.
    • Temps de maintien au recuit tM
    • Vitesse de refroidissement après recuit VR
    • Vitesse de refroidissement après galvanisation V'R
    • Température de galvannealing TG
    • Durée de galvannealing tG
    • Vitesse de refroidissement V"R après traitement de galvannealing
  • Les températures de transformation Ac1 et Ac3 ont été également portées au tableau 3. Tableau 3 Conditions de fabrications des tôles laminées à froid et recuites Valeurs soulignées : non conformes à l'invention
    Tôle d'acier Vc (°C/s) TM (°C) Ao1-Ac2 (°C) tM (s) VR (°C/s) V'R (°C/s) TQ (°C) tG (s) V'R (°C/s)
    IX1 Invention 2 800 710-870 90 20 18 - - -
    IX2 Invention 2 780 710-870 90 20 18 - - -
    IX3 Référence 2 740 710-870 100 17 15 - - -
    IX4 Invention 2 800 710-870 100 20 - 520 10 10
    IX5 Référence 2 850 710-870 100 20 - 520 10 10
    IX6 Référence 2 745 710-870 100 20 - 520 10 10
    IX7 Référence 2 800 710-870 100 10 - 520 10 10
    IY1 Exemple 2 2 780 710-865 90 20 18 - - -
    IY2 Exemple 2 800 710-865 100 20 - 520 10 10
    IZ Example 2 800 710-865 100 20 - 520 10 10
    R Référence 2 800 715-810 90 20 18 - - -
  • Les propriétés mécaniques de traction obtenues (limite d'élasticité Re, résistance Rm, allongement à rupture A ont été portées au tableau 4 ci-dessous. Le rapport Re/Rm a été également indiqué.
  • On a également déterminé la microstructure des aciers, dont la matrice est ferritique. Les fractions surfaciques de bainite et de martensite ont été quantifiées après attaque aux réactifs Picral et LePera respectivement, suivies par une analyse d'image grâce au logiciel Aphelion. On a également déterminé la fraction surfacique de ferrite non recristallisée grâce à des observations en microscopie optique et électronique à balayage où l'on a identifié la phase ferritique, puis quantifié la fraction recristallisée au sein de cette phase ferritique. La ferrite non recristallisée se présente en général sous forme d'îlots allongés par le laminage.
  • L'aptitude au pliage a été quantifiée de la façon suivante : des tôles ont été pliées à bloc sur elles-mêmes en plusieurs tours. De la sorte, le rayon de pliage diminue à chaque tour. L'aptitude au pliage est ensuite évaluée en relevant la présence de fissures à la surface du bloc plié, la cotation étant exprimée de 1 (faible aptitude au pliage) à 5 (très bonne aptitude) Des résultats cotés 1-2 sont considérés comme non satisfaisants. Tableau 4 Résultats obtenus sur les tôles laminées à froid et recuites Valeurs soulignées : non conformes à l'invention
    Tôle d'acier Fraction de ferrite (%) Fraction de bainite (%) Fraction de martensite (%) Fraction de ferrite non recristallisée (%) Re (MPa) Rm (MPa) Re/Rm A (%) Aptitude au pliage
    IX1 Invention 50 6 44 0 720 1020 0,71 11 3
    IX2 Invention 52 2 46 0 680 1030 0,66 10 3
    IX3 référence 48 0 52 25 700 1120 0.62 6 1
    IX4 Invention 50 8 42 0 760 1030 0,74 10 3
    IX5 référence 55 12 33 0 780 950 0.82 12 3
    IX6 référence 46 1 53 20 750 1130 0,66 7 1
    IX7 référence 56 11 33 0 755 955 0.79 12 3
    IY1 Exemple 52 2 46 0 650 1030 0,63 13 4
    IY2 Exemple 50 7 43 0 680 1020 0,67 12 4
    IZ Exemple 48 6 46 0 630 1025 0,61 14 4
    R référence 72 3 25 0 490 810 0,60 18 2
  • Les tôles d'aciers selon l'invention présentent un ensemble de caractéristiques microstructurales et mécaniques permettant la fabrication avantageuse de pièces, notamment pour des applications structurales :
    • résistance comprise entre 980 et 1100Pa, rapport Re/Rm compris entre 0,6 et 0,8, allongement à rupture supérieur à 9%, bonne aptitude au pliage. La figure 1 illustre la morphologie de la tôle d'acier IX1, où la ferrite est totalement recristallisée.
  • Les tôles selon l'invention présentent une bonne aptitude au soudage, notamment par résistance, le carbone équivalent étant inférieur à 0,25.
  • Par comparaison, les tôles de référence n'offrent pas ces mêmes caractéristiques :
  • Les tôles d'acier IX3 (galvanisée) et IX6 (galvannealed) ont été recuites à une température TM trop faible : en conséquence, la fraction de ferrite non recristallisée est excessive ainsi que la fraction de martensite. Ces caractéristiques microstructurales sont associées à une diminution de l'allongement et de l'aptitude au pliage. La figure 2 illustre la microstructure de la tôle d'acier IX3 : on note la présence de ferrite non recristallisée sous forme d'îlots allongés (repérés (A)) coexistant avec la ferrite recristallisée et la martensite, ce dernier constituant apparaissant plus foncé sur la micrographie. Une micrographie en Microscopie Electronique à Balayage (figure 3) permet de distinguer finement les zones de ferrite non recristallisée (A) de celles recristallisées (B).
  • La tôle IX5 est une tôle galvannealed recuite à une température TM trop élevée : la teneur en carbone de l'austénite à haute température devient alors trop faible et l'apparition de la bainite est favorisée au détriment de la formation de martensite. On assiste également à une coalescence des précipités de niobium, ce qui provoque une perte de durcissement. La résistance est alors insuffisante, le rapport Re/Rm étant trop élevé.
  • La tôle IX7 galvannealed a été refroidie à une vitesse VR trop lente après l'étape de recuit : la transformation de l'austénite formée en ferrite se produit alors dans cette étape de refroidissement de façon excessive, la tôle d'acier contenant au stade final une proportion de bainite trop importante et une proportion de martensite trop faible, ce qui conduit à une résistance insuffisante.
  • La composition de la tôle d'acier R ne correspond pas à l'invention, sa teneur en carbone étant trop importante, et sa teneur en manganèse, aluminium, niobium, titane, bore étant trop faibles. En conséquence, la fraction de martensite est trop faible si bien que la résistance mécanique est insuffisante. Les tôles d'aciers selon l'invention seront utilisées avec profit pour la fabrication de pièces de structures ou de sécurité dans l'industrie automobile.

Claims (18)

  1. Tôle d'acier Dual Phase laminée à froid et recuite de résistance comprise entre 980 et 1100MPa, d'allongement à rupture supérieur à 9 %, dont la composition comprend, les teneurs étant exprimées en poids : 0 , 055 % C 0 , 095 %
    Figure imgb0002
    2 % Mn 2 , 6 %
    Figure imgb0003
    0 , 005 % Si 0 , 35 %
    Figure imgb0004
    S 0 , 005 %
    Figure imgb0005
    P 0 , 050 %
    Figure imgb0006
    0 , 1 Al 0 , 3 %
    Figure imgb0007
    0 , 05 % Mo 0 , 25 %
    Figure imgb0008
    0 , 2 % Cr 0 , 5 %
    Figure imgb0009

    étant entendu que Cr+2Mo≤0,6% Ni 0 , 1 %
    Figure imgb0010
    0 , 010 Nb 0 , 040 %
    Figure imgb0011
    0 , 010 Ti 0 , 050 %
    Figure imgb0012
    0 , 0005 B 0 , 0025 %
    Figure imgb0013
    0 , 002 % N 0 , 007 %
    Figure imgb0014

    le reste de la composition étant constitué de fer et d'impuretés inévitables résultant de l'élaboration
  2. Tôle d'acier selon la revendication. 1, caractérisée en ce que la composition dudit acier contient, la teneur étant exprimée en poids : 0 , 12 % Al 0 , 25 %
    Figure imgb0015
  3. Tôle d'acier selon la revendication 1 ou 2, caractérisée en ce que la composition dudit acier contient, la teneur étant exprimée en poids : 0 , 10 % Si 0 , 30 %
    Figure imgb0016
  4. Tôle d'acier selon la revendication 1 ou 2, caractérisée en ce que la composition dudit acier contient, la teneur étant exprimée en poids : 0 , 15 % Si 0 , 28 %
    Figure imgb0017
  5. Tôle d'acier selon l'une quelconque des revendications 1 à 4, caractérisée en ce que la composition dudit acier contient, la teneur étant exprimée en poids : P 0 , 015 %
    Figure imgb0018
  6. Tôle d'acier selon l'une quelconque des revendications 1 à 5, caractérisée en ce que sa microstructure contient 35 à 50% de martensite en proportion surfacique
  7. Tôle d'acier selon la revendication 6, caractérisée en ce que le complément de ladite microstructure est constitué de 50 à 65% de ferrite en proportion surfacique
  8. Tôle d'acier selon la revendication 6, caractérisée en ce que le complément de ladite microstructure est constitué de 1 à 10% de bainite et de 40 à 64% de ferrite en proportion surfacique
  9. Tôle d'acier selon l'une quelconque des revendications 1 à 8 caractérisée en ce que sa fraction surfacique de ferrite non recristallisée rapportée à la totalité de la phase ferritique, est inférieure ou égale à 15%
  10. Tôle d'acier selon l'une quelconque des revendications 1 à 9 caractérisée en ce que le rapport entre sa limite d'élasticité Re et sa résistance Rm est tel que : o,6≤Re/Rm ≤0,8
  11. Tôle d'acier selon l'une quelconque des revendications 1 à 6 ou 8 à 10, caractérisée qu'elle est galvanisée en continu
  12. Tôle d'acier selon l'une quelconque des revendications 1 à 6 ou 8 à 10, caractérisée qu'elle comporte un revêtement galvannealed
  13. Procédé de fabrication d'une tôle d'acier Dual Phase laminée à froid et recuite caractérisé en ce qu'on approvisionne un acier de composition selon l'une quelconque des revendications 1 à 5, puis
    - on coule ledit acier sous forme de demi-produit, puis
    - on porte ledit demi-produit à une température 1150°C≤TR≤1250°C, puis
    - on lamine à chaud ledit demi-produit avec une température de fin de laminage TFL ≥Ar3 pour obtenir un produit laminé à chaud, puis
    - on bobine ledit produit laminé à chaud à une température Tbob telle que : 500°C ≤Tbob≤ 570°C, puis
    - on décape ledit produit laminé à chaud, puis
    - on effectue un laminage à froid avec un taux de réduction compris entre 30 et 80% pour obtenir un produit laminé à froid, puis
    - on chauffe ledit produit laminé à froid à une vitesse 1°C/s≤VC≤5°C/s jusqu'à une température de recuit TM telle que : Ac1+40°C≤TM≤Ac3-30°C où l'on effectue un maintien pendant une durée : 30s≤tM≤300s de façon à obtenir un produit chauffé et recuit avec une structure comprenant de l'austénite, puis
    - on refroidit ledit produit jusqu'à une température inférieure à la température Ms avec une vitesse V suffisante pour que ladite austénite se transforme totalement en martensite
  14. Procédé de fabrication d'une tôle d'acier Dual Phase laminée à froid, recuite et galvanisée caractérisé en ce qu'on approvisionne ledit produit chauffé et recuit avec une structure comprenant de l'austénite selon la revendication 13 puis,
    - on refroidit ledit produit chauffé et recuit avec une vitesse VR suffisante pour éviter la transformation de ladite austénite en ferrite, jusqu'à atteindre une température proche de la température TZn de galvanisation au trempé, puis
    - on galvanise en continu ledit produit par immersion dans un bain de zinc ou d'alliage de Zn à une température 450°C≤TZn≤480°C pour obtenir un produit galvanisé, puis
    - on refroidit ledit produit galvanisé jusqu'à la température ambiante avec une vitesse V'R supérieure à 4°C/s pour obtenir une tôle d'acier laminée à froid, recuite et galvanisée
  15. Procédé de fabrication d'une tôle d'acier Dual Phase laminée à froid et galvannealed, caractérisé en ce qu'on approvisionne ledit produit chauffé et recuit avec une structure comprenant de l'austénite selon la revendication 13 puis,
    - on refroidit ledit produit chauffé et recuit avec une vitesse VR suffisante pour éviter la transformation de ladite austénite en ferrite, jusqu'à atteindre une température proche de la température TZn de galvanisation au trempé, puis
    - on galvanise en continu ledit produit par immersion dans un bain de zinc ou d'alliage de Zn à une température 450°C≤TZn≤480°C pour obtenir un produit galvanisé, puis
    - on chauffe ledit produit galvanisé à une température TG comprise entre 490 et 550°C pendant une durée tG comprise entre 10 et 40 s pour obtenir un produit galvannealed, puis
    - on refroidit ledit produit galvannealed jusqu'à la température ambiante à une vitesse V"R supérieure à 4°C/s, pour obtenir une tôle d'acier laminée à froid et galvannealed
  16. Procédé de fabrication selon l'une quelconque des revendications 13 à 15, caractérisé en ce que ladite température TM est comprise entre 760 et 830°C
  17. Procédé de fabrication selon la revendication 14 ou 15, caractérisé en ce que ladite vitesse de refroidissement VR est supérieure ou égale à 15°C/s
  18. Utilisation d'une tôle d'acier selon l'une quelconque des revendications 1 à 12, ou fabriquée par un procédé selon l'une quelconque des revendications 13 à 17, pour la fabrication de pièces de structures ou de sécurité pour véhicules automobiles
EP08290474A 2008-05-21 2008-05-21 Procédé de fabrication de tôles d'aciers dual phase laminées à froid à trés haute résistance et tôles ainsi produites Withdrawn EP2123786A1 (fr)

Priority Applications (19)

Application Number Priority Date Filing Date Title
EP08290474A EP2123786A1 (fr) 2008-05-21 2008-05-21 Procédé de fabrication de tôles d'aciers dual phase laminées à froid à trés haute résistance et tôles ainsi produites
ES09761870T ES2386701T3 (es) 2008-05-21 2009-05-15 Procedimiento de fabricación de chapas de acero de doble fase laminadas en frío con resistencia muy elevada y chapas así obtenidas
CN2009801183844A CN102046827B (zh) 2008-05-21 2009-05-15 非常高强度的冷轧双相钢片材的制造方法和这样生产的片材
PL09761870T PL2291547T3 (pl) 2008-05-21 2009-05-15 Sposób wytwarzania blach ze stali dwufazowej, walcowanych na zimno, o bardzo dużej wytrzymałości i blachy w ten sposób wytwarzane
MX2010012584A MX2010012584A (es) 2008-05-21 2009-05-15 Metodo de fabricacion de chapas de acero de fase dual laminadas en frio de muy alta resistencia y laminas asi producidas.
US12/993,498 US20110168300A1 (en) 2008-05-21 2009-05-15 Manufacturing method for very high-strength cold-rolled dual-phase steel sheets and sheets so produced
EP09761870A EP2291547B1 (fr) 2008-05-21 2009-05-15 Procede de fabrication de toles d'aciers dual phase laminees a froid a tres haute resistance et toles ainsi produites
JP2011510017A JP5425896B2 (ja) 2008-05-21 2009-05-15 極めて高い強度の冷間圧延された二相鋼板を製造する方法およびこれにより製造された鋼板
CA2725290A CA2725290C (fr) 2008-05-21 2009-05-15 Procede de fabrication de toles d'aciers dual phase laminees a froid a tres haute resistance et toles ainsi produites
AT09761870T ATE555225T1 (de) 2008-05-21 2009-05-15 Verfahren zur herstellung von kaltgewalzten dualphasenstahlblechen mit sehr hoher festigkeit und so hergestellte bleche
RU2010152214/02A RU2470087C2 (ru) 2008-05-21 2009-05-15 Способ производства холоднокатаных листов из двухфазной стали, обладающей очень высокой прочностью, и полученные таким способом листы
PCT/FR2009/000574 WO2009150319A1 (fr) 2008-05-21 2009-05-15 Procede de fabrication de toles d'aciers dual phase laminees a froid a tres haute resistance et toles ainsi produites
KR1020107028478A KR101328768B1 (ko) 2008-05-21 2009-05-15 초고강도의 냉간 압연된 2 상 강판의 제조 방법 및 이에 의해 제조된 강판
BRPI0912879-4A BRPI0912879B1 (pt) 2008-05-21 2009-05-15 Chapa de aço bifásico laminada a frio e recozida e processo de fabricação de uma chapa de aço bifásico laminada a frio e recozida
UAA201015426A UA100056C2 (ru) 2008-05-21 2009-05-15 Способ производства холоднокатаного и отожженного листа из двухфазной стали, полученный таким способом лист, способ производства холоднокатаного, отожженного и оцинкованного листа из двухфазной стали (варианты) и использование указанного стального листа
ZA2010/07964A ZA201007964B (en) 2008-05-21 2010-11-08 Manufacturing method for very high-strength cold-rolled dual-phase steel sheets and sheets so produced
MA33333A MA32294B1 (fr) 2008-05-21 2010-11-11 Procede de fabrication de toles d'aciers dual phase laminees a froid a tres haute resistance et toles ainsi produites
US15/097,039 US10190187B2 (en) 2008-05-21 2016-04-12 Manufacturing method for very high-strength, cold-rolled, dual-phase steel sheets
US16/213,455 US20190106765A1 (en) 2008-05-21 2018-12-07 Very high-strength, cold-rolled, dual steel sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08290474A EP2123786A1 (fr) 2008-05-21 2008-05-21 Procédé de fabrication de tôles d'aciers dual phase laminées à froid à trés haute résistance et tôles ainsi produites

Publications (1)

Publication Number Publication Date
EP2123786A1 true EP2123786A1 (fr) 2009-11-25

Family

ID=39855450

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08290474A Withdrawn EP2123786A1 (fr) 2008-05-21 2008-05-21 Procédé de fabrication de tôles d'aciers dual phase laminées à froid à trés haute résistance et tôles ainsi produites
EP09761870A Active EP2291547B1 (fr) 2008-05-21 2009-05-15 Procede de fabrication de toles d'aciers dual phase laminees a froid a tres haute resistance et toles ainsi produites

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP09761870A Active EP2291547B1 (fr) 2008-05-21 2009-05-15 Procede de fabrication de toles d'aciers dual phase laminees a froid a tres haute resistance et toles ainsi produites

Country Status (16)

Country Link
US (3) US20110168300A1 (fr)
EP (2) EP2123786A1 (fr)
JP (1) JP5425896B2 (fr)
KR (1) KR101328768B1 (fr)
CN (1) CN102046827B (fr)
AT (1) ATE555225T1 (fr)
BR (1) BRPI0912879B1 (fr)
CA (1) CA2725290C (fr)
ES (1) ES2386701T3 (fr)
MA (1) MA32294B1 (fr)
MX (1) MX2010012584A (fr)
PL (1) PL2291547T3 (fr)
RU (1) RU2470087C2 (fr)
UA (1) UA100056C2 (fr)
WO (1) WO2009150319A1 (fr)
ZA (1) ZA201007964B (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016198906A1 (fr) * 2015-06-10 2016-12-15 Arcelormittal Acier a haute résistance et procédé de fabrication
CN109402525A (zh) * 2018-11-28 2019-03-01 北京首钢冷轧薄板有限公司 一种780MPa级屈服强度1000MPa级抗拉强度的双相钢加工方法
EP3730635A4 (fr) * 2017-12-22 2020-10-28 Posco Feuille d'acier à haute résistance présentant de propriétés de résistance aux chocs et une aptitude au formage excellentes, et son procédé de fabrication
EP3730636A4 (fr) * 2017-12-22 2020-10-28 Posco Tôle d'acier à haute résistance présentant une excellente aptitude au façonnage, et procédé de fabrication de celle-ci
CN115612816A (zh) * 2022-09-30 2023-01-17 攀钢集团攀枝花钢铁研究院有限公司 含硼钢制备复相钢、热成形用钢镀层板的方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2123786A1 (fr) 2008-05-21 2009-11-25 ArcelorMittal France Procédé de fabrication de tôles d'aciers dual phase laminées à froid à trés haute résistance et tôles ainsi produites
CN103732781B (zh) * 2011-07-29 2016-07-06 新日铁住金株式会社 合金化热浸镀锌层和具有该层的钢板以及其制造方法
CN102618802B (zh) * 2012-03-20 2013-08-21 东北大学 一种超细晶粒双相钢材料及其制备方法
WO2014037627A1 (fr) 2012-09-06 2014-03-13 Arcelormittal Investigación Y Desarrollo Sl Procede de fabrication de pieces d'acier revêtues et durcies a la presse, et tôles prerevêtues permettant la fabrication de ces pieces
US9790567B2 (en) * 2012-11-20 2017-10-17 Thyssenkrupp Steel Usa, Llc Process for making coated cold-rolled dual phase steel sheet
JP6048123B2 (ja) * 2012-12-20 2016-12-21 新日鐵住金株式会社 耐酸性に優れた高強度鋼板及びその製造方法
CN103882202B (zh) * 2012-12-20 2016-03-30 上海梅山钢铁股份有限公司 一种连续退火高强热镀锌钢的制造方法
CN103060703B (zh) * 2013-01-22 2015-09-23 宝山钢铁股份有限公司 一种780MPa级冷轧双相带钢及其制造方法
US20140261919A1 (en) * 2013-03-14 2014-09-18 Thyssenkrupp Steel Usa, Llc Low carbon-high manganese steel and manufacturing process thereof
CN103469112A (zh) * 2013-09-29 2013-12-25 宝山钢铁股份有限公司 一种高成形性冷轧双相带钢及其制造方法
DE102013224851A1 (de) * 2013-12-04 2015-06-11 Schaeffler Technologies AG & Co. KG Kettenelement
WO2015088523A1 (fr) 2013-12-11 2015-06-18 ArcelorMittal Investigación y Desarrollo, S.L. Tôle en acier laminée à froid et recuite
EP3054025B1 (fr) * 2013-12-18 2018-02-21 JFE Steel Corporation Tôle d'acier galvanisé à chaud à haute résistance et son procédé de fabrication
WO2016016676A1 (fr) * 2014-07-30 2016-02-04 ArcelorMittal Investigación y Desarrollo, S.L. Procédé de fabrication de tôles d'acier, pour durcissement sous presse, et pièces obtenues par ce procédé
CN110218942A (zh) * 2015-01-14 2019-09-10 Ak钢铁产权公司 具有改善性质的双相钢
CN104947023B (zh) * 2015-06-10 2017-08-08 武汉钢铁(集团)公司 无粉化厚规格锌铁合金化板的生产方法
WO2017006144A1 (fr) * 2015-07-09 2017-01-12 Arcelormittal Acier pour trempe à la presse et pièce trempée à la presse fabriquée à partir d'un tel acier
CN105950998B (zh) * 2016-07-11 2018-01-26 攀钢集团攀枝花钢铁研究院有限公司 一种1000MPa级低碳热镀锌双相钢及其制备方法
CN108642380B (zh) * 2018-05-15 2020-08-25 首钢集团有限公司 一种900MPa级别的抗冲击波钢板及其制造方法
RU2699480C1 (ru) * 2018-12-14 2019-09-05 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства холоднокатаного проката
CN109943778B (zh) * 2019-04-30 2020-08-11 马鞍山钢铁股份有限公司 一种扩孔性能优异的590MPa级冷轧双相钢及其生产方法
RU2743946C1 (ru) * 2019-11-05 2021-03-01 Публичное акционерное общество "Магнитогорский металлургический комбинат" Способ производства холоднокатаного высокопрочного проката из двухфазной ферритно-мартенситной стали
RU2718604C1 (ru) * 2019-11-05 2020-04-08 Публичное акционерное общество "Магнитогорский металлургический комбинат" Способ производства холоднокатаного высокопрочного проката различных классов прочности из двухфазной ферритно-мартенситной стали
WO2021116741A1 (fr) * 2019-12-13 2021-06-17 Arcelormittal Tôle d'acier laminée à froid et traitée thermiquement et procédé de fabrication de celle-ci
RU2751072C1 (ru) * 2020-09-02 2021-07-07 Публичное Акционерное Общество "Новолипецкий металлургический комбинат" Способ производства высокопрочной холоднокатаной стали
CN112176147B (zh) * 2020-10-13 2021-06-08 五矿营口中板有限责任公司 一种适合于大线能焊接的正火厚钢板的制造方法
CN115181840B (zh) * 2021-04-02 2024-08-09 宝山钢铁股份有限公司 780MPa级别高成形性热镀铝锌或热镀锌铝镁双相钢及快速热处理制造方法
CN113481435B (zh) * 2021-06-29 2022-09-16 鞍钢股份有限公司 一种900MPa级热轧复相钢及其生产方法
CN113817961B (zh) * 2021-08-26 2022-06-21 马鞍山钢铁股份有限公司 彩涂基料用热浸镀锌钢板及其制造方法
CN114107806A (zh) * 2021-10-29 2022-03-01 马鞍山钢铁股份有限公司 一种高加工硬化率及表面质量的450MPa级热镀锌双相钢及其生产方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0796928A1 (fr) 1996-03-19 1997-09-24 Thyssen Stahl Aktiengesellschaft Acier à plusieurs phases et procédé pour sa fabrication
JPH11350038A (ja) 1998-06-12 1999-12-21 Nkk Corp 延性及び伸びフランジ成形性に優れた複合組織型高張力冷延鋼板の製造方法
JP2000017385A (ja) * 1998-06-29 2000-01-18 Nippon Steel Corp 動的変形特性に優れたデュアルフェーズ型高強度冷延鋼板とその製造方法
FR2790009A1 (fr) * 1999-02-22 2000-08-25 Lorraine Laminage Acier dual-phase a haute limite d'elasticite
EP1201780A1 (fr) 2000-04-21 2002-05-02 Nippon Steel Corporation Plaque d'acier presentant une excellente aptitude a l'ebarbage et une resistance elevee a la fatigue, et son procede de production
US20030091857A1 (en) * 2001-11-15 2003-05-15 Bethlehem Steel Corporation Method for coating a steel alloy and a product therefrom
US20030129444A1 (en) * 2000-11-28 2003-07-10 Saiji Matsuoka Composite structure type high tensile strength steel plate, plated plate of composite structure type high tensile strength steel and method for their production
EP1548142A1 (fr) * 2003-12-25 2005-06-29 Kabushiki Kaisha Kobe Seiko Sho Tôle d'acier à résistance élevée laminée à froid, ayant une excellente adhesivité d'une couche de revêtement
US20080099109A1 (en) * 2006-10-31 2008-05-01 Hyundai Motor Company High-strength steel sheets with excellent formability and method for manufacturing the same

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545270A (en) 1994-12-06 1996-08-13 Exxon Research And Engineering Company Method of producing high strength dual phase steel plate with superior toughness and weldability
US5545269A (en) 1994-12-06 1996-08-13 Exxon Research And Engineering Company Method for producing ultra high strength, secondary hardening steels with superior toughness and weldability
DE10023036A1 (de) * 2000-05-11 2001-11-22 Siemens Ag Verfahren zum Kaltstart von Brennstoffzellen einer Brennstoffzellenanlage und zugehörige Brennstoffzellenanlage
RU2190685C1 (ru) * 2001-06-29 2002-10-10 Открытое акционерное общество "Новолипецкий металлургический комбинат" Сталь для производства листового проката
US6902829B2 (en) * 2001-11-15 2005-06-07 Isg Technologies Inc. Coated steel alloy product
FR2844281B1 (fr) * 2002-09-06 2005-04-29 Usinor Acier a tres haute resistance mecanique et procede de fabrication d'une feuille de cet acier revetue de zinc ou d'alliage de zinc
JP4235030B2 (ja) * 2003-05-21 2009-03-04 新日本製鐵株式会社 局部成形性に優れ溶接部の硬さ上昇を抑制した引張強さが780MPa以上の高強度冷延鋼板および高強度表面処理鋼板
JP4214006B2 (ja) * 2003-06-19 2009-01-28 新日本製鐵株式会社 成形性に優れた高強度鋼板およびその製造方法
JP4635525B2 (ja) * 2003-09-26 2011-02-23 Jfeスチール株式会社 深絞り性に優れた高強度鋼板およびその製造方法
ES2391164T3 (es) * 2003-09-30 2012-11-22 Nippon Steel Corporation Chapa delgada de acero laminado en frío, de alta resistencia, con alto límite de elasticidad, y superior ductilidad y soldabilidad, chapa delgada de acero galvanizado por inmersión en caliente, de alta resistencia, con alto límite de elasticidad, chapa delgada de acero galvanizado y recocido por inmersión en caliente, de alta resistencia, con alto límite de eleasticidad, y métodos para la producción de las mismas
JP4380348B2 (ja) * 2004-02-09 2009-12-09 Jfeスチール株式会社 表面品質に優れる高強度溶融亜鉛めっき鋼板
JP4843982B2 (ja) * 2004-03-31 2011-12-21 Jfeスチール株式会社 高剛性高強度薄鋼板およびその製造方法
JP3889767B2 (ja) * 2005-03-31 2007-03-07 株式会社神戸製鋼所 溶融亜鉛めっき用高強度鋼板
JP4959161B2 (ja) * 2005-09-05 2012-06-20 新日本製鐵株式会社 耐食性と伸びと穴拡げ性に優れた溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板
JP4665692B2 (ja) * 2005-09-29 2011-04-06 Jfeスチール株式会社 曲げ剛性に優れた高強度薄鋼板およびその製造方法
EP1990431A1 (fr) * 2007-05-11 2008-11-12 ArcelorMittal France Procédé de fabrication de tôles d'acier laminées à froid et recuites à très haute résistance, et tôles ainsi produites
EP2123786A1 (fr) 2008-05-21 2009-11-25 ArcelorMittal France Procédé de fabrication de tôles d'aciers dual phase laminées à froid à trés haute résistance et tôles ainsi produites

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0796928A1 (fr) 1996-03-19 1997-09-24 Thyssen Stahl Aktiengesellschaft Acier à plusieurs phases et procédé pour sa fabrication
JPH11350038A (ja) 1998-06-12 1999-12-21 Nkk Corp 延性及び伸びフランジ成形性に優れた複合組織型高張力冷延鋼板の製造方法
JP2000017385A (ja) * 1998-06-29 2000-01-18 Nippon Steel Corp 動的変形特性に優れたデュアルフェーズ型高強度冷延鋼板とその製造方法
FR2790009A1 (fr) * 1999-02-22 2000-08-25 Lorraine Laminage Acier dual-phase a haute limite d'elasticite
EP1201780A1 (fr) 2000-04-21 2002-05-02 Nippon Steel Corporation Plaque d'acier presentant une excellente aptitude a l'ebarbage et une resistance elevee a la fatigue, et son procede de production
US20030129444A1 (en) * 2000-11-28 2003-07-10 Saiji Matsuoka Composite structure type high tensile strength steel plate, plated plate of composite structure type high tensile strength steel and method for their production
US20030091857A1 (en) * 2001-11-15 2003-05-15 Bethlehem Steel Corporation Method for coating a steel alloy and a product therefrom
EP1548142A1 (fr) * 2003-12-25 2005-06-29 Kabushiki Kaisha Kobe Seiko Sho Tôle d'acier à résistance élevée laminée à froid, ayant une excellente adhesivité d'une couche de revêtement
US20080099109A1 (en) * 2006-10-31 2008-05-01 Hyundai Motor Company High-strength steel sheets with excellent formability and method for manufacturing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016198906A1 (fr) * 2015-06-10 2016-12-15 Arcelormittal Acier a haute résistance et procédé de fabrication
WO2016198940A3 (fr) * 2015-06-10 2017-10-19 Arcelormittal Acier à haute résistance et procédé de fabrication
US10697052B2 (en) 2015-06-10 2020-06-30 Arcelormittal High strength steel and production method
EP3730635A4 (fr) * 2017-12-22 2020-10-28 Posco Feuille d'acier à haute résistance présentant de propriétés de résistance aux chocs et une aptitude au formage excellentes, et son procédé de fabrication
EP3730636A4 (fr) * 2017-12-22 2020-10-28 Posco Tôle d'acier à haute résistance présentant une excellente aptitude au façonnage, et procédé de fabrication de celle-ci
US11345984B2 (en) 2017-12-22 2022-05-31 Posco High-strength steel sheet with excellent crashworthiness characteristics and formability and method of manufacturing the same
US11345985B2 (en) 2017-12-22 2022-05-31 Posco High-strength steel sheet with excellent crashworthiness characteristics and formability and method of manufacturing the same
US11519051B2 (en) 2017-12-22 2022-12-06 Posco Co., Ltd High-strength steel sheet having excellent processability and method for manufacturing same
US11827950B2 (en) 2017-12-22 2023-11-28 Posco Co., Ltd Method of manufacturing high-strength steel sheet having excellent processability
CN109402525A (zh) * 2018-11-28 2019-03-01 北京首钢冷轧薄板有限公司 一种780MPa级屈服强度1000MPa级抗拉强度的双相钢加工方法
CN115612816A (zh) * 2022-09-30 2023-01-17 攀钢集团攀枝花钢铁研究院有限公司 含硼钢制备复相钢、热成形用钢镀层板的方法
CN115612816B (zh) * 2022-09-30 2024-02-02 攀钢集团攀枝花钢铁研究院有限公司 含硼钢制备复相钢、热成形用钢镀层板的方法

Also Published As

Publication number Publication date
ES2386701T3 (es) 2012-08-27
EP2291547B1 (fr) 2012-04-25
BRPI0912879A2 (pt) 2017-05-16
CN102046827B (zh) 2013-03-06
CA2725290C (fr) 2015-10-13
RU2470087C2 (ru) 2012-12-20
PL2291547T3 (pl) 2012-09-28
CN102046827A (zh) 2011-05-04
CA2725290A1 (fr) 2009-12-17
WO2009150319A1 (fr) 2009-12-17
US20160222486A1 (en) 2016-08-04
KR101328768B1 (ko) 2013-11-13
UA100056C2 (ru) 2012-11-12
EP2291547A1 (fr) 2011-03-09
MX2010012584A (es) 2011-04-05
RU2010152214A (ru) 2012-06-27
MA32294B1 (fr) 2011-05-02
JP5425896B2 (ja) 2014-02-26
KR20110013490A (ko) 2011-02-09
US10190187B2 (en) 2019-01-29
US20190106765A1 (en) 2019-04-11
BRPI0912879B1 (pt) 2018-06-26
ATE555225T1 (de) 2012-05-15
US20110168300A1 (en) 2011-07-14
JP2011523440A (ja) 2011-08-11
ZA201007964B (en) 2011-07-27

Similar Documents

Publication Publication Date Title
EP2291547B1 (fr) Procede de fabrication de toles d&#39;aciers dual phase laminees a froid a tres haute resistance et toles ainsi produites
CN110312813B (zh) 高强度钢板及其制造方法
EP3084014B1 (fr) Acier à haute résistance et procédé de fabrication
CA2838665C (fr) Tole d&#39;acier laminee a froid et revetue de zinc ou d&#39;alliage de zinc, procede de fabrication et utilisation d&#39;une telle tole
JP5041083B2 (ja) 加工性に優れた高張力溶融亜鉛めっき鋼板およびその製造方法
EP1913169B1 (fr) Procede de fabrication de tôles d&#39;acier presentant une haute resistance et une excellente ductilite, et tôles ainsi produites
JP4700764B2 (ja) 成形性と溶接性に優れた高強度冷延鋼板、高強度亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板、及びそれらの製造方法
JP4737319B2 (ja) 加工性および耐疲労特性に優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法
EP3146083B1 (fr) Tôle d&#39;acier doublement recuite a hautes caracteristiques mecaniques de resistance et de ductilite, procede de fabrication et utilisation de telles tôles
WO2016198940A2 (fr) Acier à haute résistance et procédé de fabrication
CN111433380A (zh) 高强度镀锌钢板及其制造方法
WO2017168962A1 (fr) Tôle d&#39;acier mince, tôle d&#39;acier plaquée, procédé de fabrication de tôle d&#39;acier laminée à chaud, procédé de fabrication de tôle d&#39;acier laminée à froid très dure, procédé de fabrication de tôle d&#39;acier mince, et procédé de fabrication de tôle d&#39;acier plaquée
KR20190023093A (ko) 고강도 박강판 및 그 제조 방법
TW201323655A (zh) 成形性優良之熔融鍍鋅鋼板及合金化熔融鍍鋅鋼板與其製造方法
TW201418480A (zh) 成形性優異之高強度熔融鍍鋅鋼板
EP2020451A1 (fr) Procédé de fabrication de tôles d&#39;acier à hautes caractéristiques de résistance et de ductilité, et tôles ainsi produites
JP2009263686A (ja) 溶接性と伸びフランジ性の良好な高強度鋼板
JP6409916B2 (ja) 熱延鋼板の製造方法および冷延フルハード鋼板の製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20100525

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100927

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110208