EP0796928A1 - Acier à plusieurs phases et procédé pour sa fabrication - Google Patents

Acier à plusieurs phases et procédé pour sa fabrication Download PDF

Info

Publication number
EP0796928A1
EP0796928A1 EP96109744A EP96109744A EP0796928A1 EP 0796928 A1 EP0796928 A1 EP 0796928A1 EP 96109744 A EP96109744 A EP 96109744A EP 96109744 A EP96109744 A EP 96109744A EP 0796928 A1 EP0796928 A1 EP 0796928A1
Authority
EP
European Patent Office
Prior art keywords
cold
strip
steel
rolled
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96109744A
Other languages
German (de)
English (en)
Inventor
Bertram Dipl.-Ing. Ehrhardt
Thomas Wilhelm Dipl.-Ing. Schaumann
Klaus-Peter Dr.-Ing. Imlau
Olaf Dr.-Ing. Maid
Wolfgang Dr.-Ing. Müschenborn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thyssen Stahl AG
Original Assignee
Thyssen Stahl AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thyssen Stahl AG filed Critical Thyssen Stahl AG
Publication of EP0796928A1 publication Critical patent/EP0796928A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching

Definitions

  • the invention relates to a steel with a pearlite-free, predominantly ferritic structure and a method for its production.
  • Dual phase steels for short "DP steels” are characterized by a strong hardening especially with small plastic strains and a low yield strength ratio. Thus, even small degrees of deformation lead to higher component strength, which can be increased further after pre-forming due to the high bake hardening potential.
  • “Bake hardening” is understood to mean artificial aging as a result of stove enamelling, which leads to a further increase in component strength.
  • DP steels therefore make a contribution to weight-optimized construction, particularly from the point of view of energy saving and passive safety.
  • the processing properties of DP steels can be assessed as very favorable due to the low yield strength ratio and high work hardening capacity.
  • the forming process is positively influenced by a lower springback compared to other high-strength steels.
  • the ductility loss that always occurs with conventional high-strength steels Conventional softer steels, which manifests itself, for example, in a decrease in the uniform elongation, is significantly lower with DP steel.
  • the structure of conventional DP steels consists of 70 to 90 vol .-% ferrite, the rest of martensite.
  • the hard martensite is embedded in the island in the soft ferritic matrix.
  • other carbon-rich transformation structures bainite
  • Smaller quantities, particularly when silicon is added to the alloy, which inhibits carbide formation, may also contain thermodynamically metastable residual austenite. Metastable residual austenite improves the forming properties during cold forming.
  • DP steels can be produced both by hot rolling with a special rolling strategy and by cold rolling with subsequent heat treatment.
  • hot strip DP steel analyzes are necessary, the conversion behavior of which is characterized by strong pre-eutectoid ferrite formation and pearlite formation which has been postponed for long periods.
  • alloy compositions are sensible in which a high carbon activity and a shift of the GOS line in the iron-carbon diagram to the right, ie to higher carbon contents, is observed in order to favor the carbon enrichment of the austenite during annealing in the two-phase ferrite-austenite region .
  • the annealing time required for segregation is reduced with increasing carbon activity.
  • the critical cooling rate decreases as the carbon content of the austenite increases. So there can be fewer after annealing in the two-phase area Cooling rates are used to set a predominantly ferritic-martensitic structure.
  • the formation of ferrite after hot forming can be promoted by silicon.
  • With manganese, pearlite formation can be suppressed both after hot forming and during continuous annealing.
  • red scale is formed, which is associated with the risk of scale rolling.
  • surface inhomogeneities may also be present on the strip surface after pickling.
  • the red scale which cannot be removed even with very high injection pressures in the hot strip mill, also leads to a reduction in the pickling speed. This is associated with a significant drop in productivity.
  • DP-steel containing silicon cannot be galvanized in continuous hot-dip galvanizing lines because the zinc only very poorly wets the steel. For this reason, it is also not possible to manufacture silicon-containing DP steel in the galvannealed version.
  • the temperature cycle of a galvannealing hot-dip coating would in principle offer the possibility for Si-alloyed DP steel to produce metastable residual austenite, which further improves the cold formability.
  • DP cold strip of the galvannealed surface finish by means of a continuous hot-dip galvanizing system is also possible with other alloy concepts known to date for DP cold strip, including the concept with Si, not reliable because the pearlite formation under the process conditions of most z. Z. existing systems is not sufficiently suppressed.
  • the formation of pearlite is associated with the loss of the dual-phase steel characteristic.
  • DP steels with a predominant ferrite content contain 0.03 to 0.12% C, up to 0.8% Si and 0.8 to 1.7% Mn (DE 29 24 340 C2) or 0.02 to 0.2% C, 0.05 to 2.0% Si, 0.5 to 2% Mn, 0.3 to 1.5% Cr and 1% Cu, Ni and Mo (EP 0 072 867 B1). Both steels only contain aluminum in amounts that result from calming down with aluminum. However, DP steels of this composition are not suitable for hot-dip galvanizing for the reason mentioned above.
  • DP steels that can be represented as cold strip contain 0.03 to 0.12% C, at most 0.8% Si and 0.8 to 1.7% Mn (DE 29 24 340 C2).
  • Such DP steels are generally very sensitive to changes in the annealing parameters, mainly to changes in the cooling rate in the rapid cooling part. As the cooling rate decreases, the mechanical properties, in particular the yield ratio, often deteriorate.
  • a steel with 0.08 to 0.20% C, 1.5 to 3.5% Mn, 0.1 to 0.5% Cr and 0.010 to 0.1% Nb also allows this Representation of a DP steel as a cold strip, but makes welding more difficult due to the increased carbon equivalent.
  • the structure After cold rolling with subsequent heat treatment in a hot-dip galvanizing plant or in a continuous annealing furnace, the structure consists of a ferritic matrix in which island-like martensite is embedded. Depending on the manufacturing conditions, proportions of intermediate and residual austenite can also be set.
  • Aluminum ensures extensive ferrite formation during annealing between the conversion temperatures Ac 1 and Ac 3 without loss of productivity in the claimed content range.
  • the formation of perlite is postponed at significantly longer times to such an extent that it is sufficiently suppressed for cooling rates that are easy to implement on an industrial scale.
  • the galvannealing process can be carried out under customary conditions, it being possible to improve the phase characteristics by adjusting residual austenite.
  • Manganese also delays pearlite formation.
  • the solid solution strengthening effect increases the strength of the steel.
  • treatment of the melt with calcium makes sense in order to convert stretched manganese sulfides and other sulfides into a globular form that is less detrimental to forming.
  • the carbon content should be at least 0.05%.
  • the steel should not contain more than 0.3% C.
  • Titanium up to 0.05% leads to an increase in strength through grain refinement and precipitation hardening and improves cold formability.
  • Chromium increases the strength and improves the temper resistance of the martensite and thus enables the bake hardening potential to be fully exploited. However, more than 0.8% Cr is not required and would only increase the price.
  • Molybdenum up to 0.5% lowers the critical cooling rate and thus reduces the risk of third-party residual stresses, since the hot-dip galvanizing process can be carried out with a lower cooling capacity. This offers greater security against band ripple due to third-party residual stresses.
  • Nickel serves to increase the strength through solidification and to lower the Transition temperatures and the cooling rates required for diffusion-free conversion. Nickel also has an austenite-stabilizing effect in an amount of up to 0.5%.
  • niobium increases the strength through grain refinement and precipitation hardening in quantities of up to 0.05% and improves the hardenability.
  • Phosphorus up to 0.08% can be added to increase the strength by solid-solution strengthening.
  • the steel according to the invention is particularly insensitive to changes in the annealing parameters.
  • a steel of this composition can be very reliable, i. H. regardless of fluctuations in production conditions. It can also be coated very well, especially galvanized. Red scale does not form in the preliminary hot strip.
  • the structure After cold rolling with a degree of cold rolling ⁇ ⁇ 40%, the structure recrystallizes between 740 and 850 ° C.
  • the two-phase ferrite-austenite area is subsequently cooled to the zinc bath temperature.
  • the cooling rates are between 10 and 50 K / s.
  • the zinc bath temperatures are between 450 and 485 ° C.
  • Slow cooling down to temperatures of 650 ° C before rapid cooling is also permitted and offers the possibility of Controlling the enrichment of austenite with carbon. Even with this slow cooling there is no risk of pearlite formation because aluminum shifts pearlite formation at significantly longer times.
  • the steel After galvanizing, the steel is immediately cooled in a hot-dip galvanizing line, or when a cold strip with a zinc-iron alloy layer is produced in the "galvannealed" version, the steel is reheated to temperatures between 480 and 580 ° C.
  • the new alloy concept allows the production of a high-strength, good cold-formable, surface-finished, i.e. coated, weldable cold strip in the "galvanized” versions and a higher-strength, good cold-formable, surface-finished cold-rolled strip in the "galvannealed” version with improved spot weldability, which is particularly required in automated welding lines is.
  • a special feature of the steel according to the invention is its pronounced insensitivity to fluctuations in the annealing parameters, which leads to a high degree of production reliability.
  • the steel was heated to 750 ° C at 6 K / s and then further heated to 830 ° C at 1.2 K / s. From the two-phase area, there was first a slow cooling at 4 K / s to 680 ° C, followed by an accelerated cooling at 20 K / s to 470 ° C. After passing through the 470 ° C. warm zinc strip, the mixture was cooled to room temperature at 10 K / s. Steel A was immediately rolled in line with a skin pass level of 0.8%.
  • this dual-phase steel has a ferritic matrix in which martensite islands are evenly embedded.
  • the martensite is located both on the triple points of the ferrite grains and along the ferrite grain boundaries.
  • the ferrite grain size is around 60 ⁇ m 2 . Bainite or other structural components are not present.
  • Galvanized dual-phase steel is quasi-isotropic.
  • the planar isotropy ⁇ r is - 0.02.
  • the cold strip was heated to 750 ° C at 6 K / s and then further heated to 830 ° C at 1.2 K / s. From the two-phase area, there was first a slow cooling at 4 K / s to 720 ° C, followed by an accelerated cooling at 20 K / s to 470 ° C. After passing through the 470 ° C warm zinc bath, induction heating at 12 K / s followed by the galvannealing temperature of 520 ° C followed by cooling at 10 K / s to room temperature. The galvanneal cold strip from steel B was immediately cold rolled in line with a skin pass of 1.1%.
  • the galvanneal cold strip After the annealing treatment, the galvanneal cold strip has a pearlite-free ferritic matrix with a ferrite grain size of around 60 ⁇ m 2 , in which martensite islands are evenly embedded.
  • the martensite islands concentrate on the triple points of the ferrite grains, but also occur along the ferrite grain boundaries, accompanied by traces of bainite.
  • Another steel C according to the invention alloyed with 0.21% C, 1.50% Mn, 1.03% Al was melted in an induction furnace.
  • the cast block was forged and hot-rolled after mechanical processing. The last rolling pass took place between 920 and 950 ° C.
  • a cold strip sample was then conductively heated to 740 ° C. at 7 K / s in the ambient atmosphere and then heated further to 820 ° C at 1.2 K / s. From the two-phase area, there was then an accelerated cooling at 35 K / s to 550 ° C., followed by a milder cooling at 4 K / s to a temperature of 450 ° C., corresponding to a customary zinc bath temperature. The sample was then heated to a temperature of 500 ° C. at 7 K / s, kept at 500 ° C. for 5 s, then cooled to 350 ° C. at 35 K / s and finally cooled to room temperature at 10 K / s. The cycle corresponds to a common galvannealing process.
  • the sample made of steel C according to the invention which was heat-treated like galvanneal cold strip, has a pearlite-free ferritic matrix after the annealing treatment, in which martensite islands and bainite areas with 8.5 vol.% Residual austenite are uniformly embedded. These embedded phases are found along the grain boundaries, concentrating on the triple points of the ferrite grains.
  • the ferrite grain size is approximately 70 ⁇ m 2 .
  • This steel according to the invention has the mechanical properties given in Table 2.
  • a steel D according to the invention alloyed with 0.21% C, 1.49% Mn, 1.99% Al, was melted in an induction furnace.
  • the cast block was forged and hot-rolled after mechanical processing. The last rolling pass took place between 920 and 950 ° C.
  • a cold strip sample was then conductively heated to 760 ° C. at 7 K / s in the ambient atmosphere and then further heated to 840 ° C. at 1.2 K / s. From the two-phase area there was then an accelerated cooling at 35 K / s to 550 ° C, followed by a milder cooling at 4 K / s to a temperature of 450 ° C, corresponding to a typical zinc bath temperature.
  • the sample was then heated to a temperature of 500 ° C. at 7 K / s, held at 500 ° C. for 5 s, then cooled to 350 ° C. at 35 K / s and finally cooled to 10 K / s to room temperature. This cycle corresponds to a common galvannealing process.
  • this steel D according to the invention has a pearlite-free ferritic matrix, in which martensite islands and bainite areas with 11% by volume of austenite are uniformly embedded. These embedded phases are found along the grain boundaries, concentrating on the triple points of the ferrite grains.
  • the ferrite grain size is approximately 80 ⁇ m 2 .
  • Samples of the coated cold strip produced in this way have mechanical properties as indicated in Table 2. Plate 1 Chemical composition (in mass -%) stole C. Mn Si Al Cr P S A, B 0.073 1.44 0.052 1.27 0.35 0.02 0.001 V 0.092 1.24 0.035 0.04 0.47 0.014 0.014 C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
EP96109744A 1996-03-19 1996-06-18 Acier à plusieurs phases et procédé pour sa fabrication Withdrawn EP0796928A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19610675A DE19610675C1 (de) 1996-03-19 1996-03-19 Mehrphasenstahl und Verfahren zu seiner Herstellung
DE19610675 1996-03-19

Publications (1)

Publication Number Publication Date
EP0796928A1 true EP0796928A1 (fr) 1997-09-24

Family

ID=7788680

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96109744A Withdrawn EP0796928A1 (fr) 1996-03-19 1996-06-18 Acier à plusieurs phases et procédé pour sa fabrication

Country Status (2)

Country Link
EP (1) EP0796928A1 (fr)
DE (1) DE19610675C1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1642990A1 (fr) * 2003-06-19 2006-04-05 Nippon Steel Corporation Plaque d'acier a haute resistance a excellente formabilite et procede de production correspondant
EP2123786A1 (fr) 2008-05-21 2009-11-25 ArcelorMittal France Procédé de fabrication de tôles d'aciers dual phase laminées à froid à trés haute résistance et tôles ainsi produites
EP2264207A1 (fr) 2002-12-20 2010-12-22 Arcelormittal France Composition d'acier pour la production de produits laminés à froid en acier à plusieurs phases
RU2443787C2 (ru) * 2006-11-14 2012-02-27 Зальцгиттер Флахшталь Гмбх Способ получения ленты из двухфазной стали повышенной прочности
DE102012006017A1 (de) 2012-03-20 2013-09-26 Salzgitter Flachstahl Gmbh Hochfester Mehrphasenstahl und Verfahren zur Herstellung eines Bandes aus diesem Stahl
US8715427B2 (en) 2001-08-29 2014-05-06 Arcelormittal France Sa Ultra high strength steel composition, the process of production of an ultra high strength steel product and the product obtained
CN107002206A (zh) * 2014-07-07 2017-08-01 塔塔钢铁艾默伊登有限责任公司 具有高强度和高度可成形性的钢带材、具有热浸锌基涂层的钢带材
DE102017209982A1 (de) 2017-06-13 2018-12-13 Thyssenkrupp Ag Hochfestes Stahlblech mit verbesserter Umformbarkeit

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19708666A1 (de) * 1997-03-04 1998-09-10 Schloemann Siemag Ag Verfahen und Anlage zum Herstellen von Metallband
WO2000050658A1 (fr) * 1999-02-22 2000-08-31 Nippon Steel Corporation Plaque d'acier galvanise a haute resistance, d'excellent comportement pour l'adhesion des placages de metal et la mise en forme sous presse, et plaque d'acier allie galvanise a haute resistance, et procede de production correspondant
DE10023488B4 (de) * 1999-05-10 2008-11-20 Europipe Gmbh Verfahren zur Herstellung von geschweißten Stahlrohren hoher Festigkeit, Zähigkeits- und Verformungseigenschaften
DE19937271C2 (de) 1999-08-06 2003-01-09 Hille & Mueller Gmbh & Co Verfahren zur Herstellung von tiefzieh- oder abstreckziehfähigem, veredeltem Kaltband, sowie Kaltband, vorzugsweise zur Herstellung von zylindrischen Behältern und insbesondere Batteriebehältern
DE10020118B4 (de) * 2000-04-22 2009-11-12 Schaeffler Kg Wälzlagerbauteil
DE102005057599A1 (de) * 2005-12-02 2007-06-06 Volkswagen Ag Leichtbaustahl
KR100985298B1 (ko) * 2008-05-27 2010-10-04 주식회사 포스코 리징 저항성이 우수한 저비중 고강도 열연 강판, 냉연강판, 아연도금 강판 및 이들의 제조방법
JP5894463B2 (ja) * 2012-02-27 2016-03-30 株式会社神戸製鋼所 耐水素脆化感受性に優れた溶接金属の形成方法
DE102012013113A1 (de) 2012-06-22 2013-12-24 Salzgitter Flachstahl Gmbh Hochfester Mehrphasenstahl und Verfahren zur Herstellung eines Bandes aus diesem Stahl mit einer Mindestzugfestigkleit von 580MPa
DE102013013067A1 (de) 2013-07-30 2015-02-05 Salzgitter Flachstahl Gmbh Siliziumhaltiger, mikrolegierter hochfester Mehrphasenstahl mit einer Mindestzugfestigkeit von 750 MPa und verbesserten Eigenschaften und Verfahren zur Herstellung eines Bandes aus diesem Stahl
DE102014017273A1 (de) 2014-11-18 2016-05-19 Salzgitter Flachstahl Gmbh Hochfester lufthärtender Mehrphasenstahl mit hervorragenden Verarbeitungseigenschaften und Verfahren zur Herstellung eines Bandes aus diesem Stahl
DE102014017275A1 (de) 2014-11-18 2016-05-19 Salzgitter Flachstahl Gmbh Hochfester lufthärtender Mehrphasenstahl mit hervorragenden Verarbeitungseigenschaften und Verfahren zur Herstellung eines Bandes aus diesem Stahl
DE102014017274A1 (de) 2014-11-18 2016-05-19 Salzgitter Flachstahl Gmbh Höchstfester lufthärtender Mehrphasenstahl mit hervorragenden Verarbeitungseigenschaften und Verfahren zur Herstellung eines Bandes aus diesem Stahl
DE102015111177A1 (de) 2015-07-10 2017-01-12 Salzgitter Flachstahl Gmbh Höchstfester Mehrphasenstahl und Verfahren zur Herstellung eines kaltgewalzten Stahlbandes hieraus
DE102017123236A1 (de) 2017-10-06 2019-04-11 Salzgitter Flachstahl Gmbh Höchstfester Mehrphasenstahl und Verfahren zur Herstellung eines Stahlbandes aus diesem Mehrphasenstahl

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247586A (ja) * 1992-03-02 1993-09-24 Nkk Corp めっき密着性に優れた高強度高延性溶融亜鉛めっき鋼板
JPH07207413A (ja) * 1994-01-12 1995-08-08 Nippon Steel Corp 加工性に優れた引張強さ45〜65kgf/mm2 の高強度複合組織冷延鋼板とその製造方法
US5470529A (en) * 1994-03-08 1995-11-28 Sumitomo Metal Industries, Ltd. High tensile strength steel sheet having improved formability

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312884B2 (fr) * 1972-09-19 1978-05-06
DE2320185B2 (de) * 1973-04-19 1977-11-03 Thyssen Aktiengesellschaft vorm. August Thyssen-Hütte, 4100 Duisburg Verwendung eines stahls
FR2241624A1 (en) * 1973-07-13 1975-03-21 Int Nickel Ltd Fabrication of articles in chromium steels - using spheroidised structure and formation of martensite after deformation
JPS54163719A (en) * 1978-06-16 1979-12-26 Nippon Steel Corp Production of high tensile strength * low yield ratio and high extensibility composite textured steel panel with excellent workability
JPS57137426A (en) * 1981-02-20 1982-08-25 Kawasaki Steel Corp Production of low yield ratio, high tensile hot rolled steel plate by mixed structure
JP3037767B2 (ja) * 1991-01-21 2000-05-08 川崎製鉄株式会社 低降伏比高強度溶融亜鉛めっき鋼板及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247586A (ja) * 1992-03-02 1993-09-24 Nkk Corp めっき密着性に優れた高強度高延性溶融亜鉛めっき鋼板
JPH07207413A (ja) * 1994-01-12 1995-08-08 Nippon Steel Corp 加工性に優れた引張強さ45〜65kgf/mm2 の高強度複合組織冷延鋼板とその製造方法
US5470529A (en) * 1994-03-08 1995-11-28 Sumitomo Metal Industries, Ltd. High tensile strength steel sheet having improved formability

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BRISBERGER, R. ET AL.: "Laboratory investigations on the morphology of the coating and the forming behaviour of galvannealed steel sheet.", IRON AND STEEL SOCIETY/AIME, WARRENDALE, PA,USA, CONFERENCE: GALVATECH '95. THE USE AND MANUFACTURE OF ZINC AND ZINC ALLOY COATED SHEET STEEL PRODUCTS INTO THE 21ST CENTURY., 17 September 1995 (1995-09-17) - 21 September 1995 (1995-09-21), CHICAGO, ILLINOIS, USA, pages 753 - 759, XP000653649 *
MAID, O., DAHL, W., STRASSBURGER, C., MUSCHENBORN, W.: "Effect of the production conditions of hot and cold rolled strips on the microstructure and mechanical properties of dual phase steels", STAHL EISEN, vol. 108, no. 8, 18 April 1988 (1988-04-18), DE, pages 31 - 36, XP000652095 *
MAID, O., DAHL, W., STRASSBURGER, C., MUSCHENBORN, W.: "Effect of the structural parameters on the mechanical properties of dual-phase steels.", STAHL EISEN, vol. 108, no. 8, 18 April 1988 (1988-04-18), DE, pages 21 - 30, XP000652094 *
PATENT ABSTRACTS OF JAPAN vol. 018, no. 004 (C - 1149) 6 January 1994 (1994-01-06) *
PATENT ABSTRACTS OF JAPAN vol. 095, no. 011 26 December 1995 (1995-12-26) *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8715427B2 (en) 2001-08-29 2014-05-06 Arcelormittal France Sa Ultra high strength steel composition, the process of production of an ultra high strength steel product and the product obtained
EP2264207A1 (fr) 2002-12-20 2010-12-22 Arcelormittal France Composition d'acier pour la production de produits laminés à froid en acier à plusieurs phases
EP1642990A4 (fr) * 2003-06-19 2006-11-29 Nippon Steel Corp Plaque d'acier a haute resistance a excellente formabilite et procede de production correspondant
US7922835B2 (en) 2003-06-19 2011-04-12 Nippon Steel Corporation High strength steel sheet excellent in formability
US8262818B2 (en) 2003-06-19 2012-09-11 Nippon Steel Corporation Method for producing high strength steel sheet excellent in formability
EP1642990A1 (fr) * 2003-06-19 2006-04-05 Nippon Steel Corporation Plaque d'acier a haute resistance a excellente formabilite et procede de production correspondant
RU2443787C2 (ru) * 2006-11-14 2012-02-27 Зальцгиттер Флахшталь Гмбх Способ получения ленты из двухфазной стали повышенной прочности
EP2123786A1 (fr) 2008-05-21 2009-11-25 ArcelorMittal France Procédé de fabrication de tôles d'aciers dual phase laminées à froid à trés haute résistance et tôles ainsi produites
WO2009150319A1 (fr) * 2008-05-21 2009-12-17 Arcelormittal Investigacion Y Desarrollo Sl Procede de fabrication de toles d'aciers dual phase laminees a froid a tres haute resistance et toles ainsi produites
US10190187B2 (en) 2008-05-21 2019-01-29 Arcelormittal Manufacturing method for very high-strength, cold-rolled, dual-phase steel sheets
DE102012006017A1 (de) 2012-03-20 2013-09-26 Salzgitter Flachstahl Gmbh Hochfester Mehrphasenstahl und Verfahren zur Herstellung eines Bandes aus diesem Stahl
WO2013139319A1 (fr) 2012-03-20 2013-09-26 Salzgitter Flachstahl Gmbh Acier polyphasé à haute résistance et procédé de fabrication d'une bande à partir dudit acier
US10519525B2 (en) 2012-03-20 2019-12-31 Salzgitter Flachstahl Gmbh High strength multi-phase steel, and method for producing a strip from said steel
CN107002206A (zh) * 2014-07-07 2017-08-01 塔塔钢铁艾默伊登有限责任公司 具有高强度和高度可成形性的钢带材、具有热浸锌基涂层的钢带材
CN107002206B (zh) * 2014-07-07 2019-03-15 塔塔钢铁艾默伊登有限责任公司 具有高强度和高度可成形性的钢带材、具有热浸锌基涂层的钢带材
DE102017209982A1 (de) 2017-06-13 2018-12-13 Thyssenkrupp Ag Hochfestes Stahlblech mit verbesserter Umformbarkeit
EP3415646A1 (fr) * 2017-06-13 2018-12-19 ThyssenKrupp Steel Europe AG Tôle d'acier haute résistance à malléabilité améliorée

Also Published As

Publication number Publication date
DE19610675C1 (de) 1997-02-13

Similar Documents

Publication Publication Date Title
DE19610675C1 (de) Mehrphasenstahl und Verfahren zu seiner Herstellung
EP2855717B1 (fr) Tôle d'acier et méthode pour son obtention
EP2864517B1 (fr) Acier multiphase à haute résistance et procédé pour la fabrication d'une bande faite de cet acier présentant une résistance à la traction minimale de 580 mpa
DE60033498T2 (de) Heissgetauchtes galvanisiertes stahlblech mit hoher festigkeit und hervorragenden eigenschaften beim umformen und galvanisieren
EP2809819B1 (fr) Acier multiphases très résistant, aux propriétés améliorées lors de sa fabrication et de son traitement
DE60125253T2 (de) Hochfestes warmgewalztes Stahlblech mit ausgezeichneten Reckalterungseigenschaften
DE60133493T2 (de) Feuerverzinktes Stahlblech und Verfahren zu dessen Herstellung
EP3027784B1 (fr) Acier multiphase à haute résistance, micro-allié et contenant du silicium, présentant une résistance minimale à la traction de 750 mpa et des propriétés améliorées et procédé de fabrication d'une bande à partir de cet acier
EP3221484B1 (fr) Procédé de production d'une bande en acier polyphasé, durcissant à l'air, ayant une haute résistance et ayant d'excellentes propriétés de mise en oeuvre
EP2836614B1 (fr) Acier polyphasé à haute résistance et procédé de fabrication d'une bande à partir dudit acier
EP3221478B1 (fr) Bande à chaud ou à froid d'un acier multiphasé à haute résistance durcissant à l'air qui présente d'excellentes propriétés de traitement et procédé de fabrication d'une bande à chaud ou à froid à partir de cet acier multiphasé à haute résistance durcissant à l'air
EP3221483B1 (fr) Acier multiphases autotrempant en profondeur à haute résistance mécanique avec excellent aptitude au faconnage et procédé de fabrication d'une bande de cet acier
EP3320120A1 (fr) Acier multiphase à haute résistance et procédé de fabrication d'une bande d'acier laminée à froid composée dudit acier
WO1998040522A1 (fr) Procede permettant de fabriquer un feuillard d'acier a resistance et a malleabilite elevees
EP3504349B1 (fr) Procédé de fabrication d'une bande d'acier à résistance très élevée présentant des propriétés améliorées lors du traitement ultérieur et une telle bande d'acier
EP3692178B1 (fr) Procede de fabrication d'une bande d'acier a partir d'un acier multiphase a tres haute resistance
DE3046941A1 (de) "verfahren zur herstellung eines zweiphasen-stahlblechs"
EP3724359B1 (fr) Produit plat en acier laminé à chaud, à rigidité élevée, doté d'une résistance à la fissuration de bords élevée ainsi que d'une capacité de durcissement à la cuisson élevée et procédé de fabrication d'un tel produit plat en acier
DE2924167A1 (de) Verfahren zur herstellung von kaltgewalztem stahlblech mit doppelphasigem gefuege
EP3512968B1 (fr) Procédé pour fabriquer un produit plat en acier à partir d'un acier au manganèse et produit plat en acier résultant
EP3658307B9 (fr) Pièce en tôle fabriquée par formage à chaud d'un produit plat en acier et procédé pour sa fabrication
WO2018050637A1 (fr) Procédé de fabrication d'une bande laminée à chaud ou à froid et/ou d'un produit plat en acier laminé de manière flexible constitué par un acier contenant du manganèse, hautement solide et produit plat en acier ainsi obtenu
EP4159880A1 (fr) Produit plat en acier laminé à froid pour emballages et procédé de fabrication d'un produit plat en acier
EP4139492A1 (fr) Produit d'acier plat laminé à chaud et son procédé de fabrication

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: LT PAYMENT 960618;LV PAYMENT 960618;SI PAYMENT 960618

17P Request for examination filed

Effective date: 19970830

17Q First examination report despatched

Effective date: 19980120

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19980731