RU2443787C2 - Способ получения ленты из двухфазной стали повышенной прочности - Google Patents

Способ получения ленты из двухфазной стали повышенной прочности Download PDF

Info

Publication number
RU2443787C2
RU2443787C2 RU2009122381/02A RU2009122381A RU2443787C2 RU 2443787 C2 RU2443787 C2 RU 2443787C2 RU 2009122381/02 A RU2009122381/02 A RU 2009122381/02A RU 2009122381 A RU2009122381 A RU 2009122381A RU 2443787 C2 RU2443787 C2 RU 2443787C2
Authority
RU
Russia
Prior art keywords
equal
less
steel
steel strip
content
Prior art date
Application number
RU2009122381/02A
Other languages
English (en)
Other versions
RU2009122381A (ru
Inventor
Юрген ШПЕР (DE)
Юрген ШПЕР
Торстен МАИВАЛЬД (DE)
Торстен МАИВАЛЬД
Томас ЭВЕРТЦ (DE)
Томас ЭВЕРТЦ
Мануэль ОТТО (DE)
Мануэль ОТТО
Свен ШУЛЬЦ (DE)
Свен ШУЛЬЦ
Original Assignee
Зальцгиттер Флахшталь Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Зальцгиттер Флахшталь Гмбх filed Critical Зальцгиттер Флахшталь Гмбх
Publication of RU2009122381A publication Critical patent/RU2009122381A/ru
Application granted granted Critical
Publication of RU2443787C2 publication Critical patent/RU2443787C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Abstract

Изобретение относится к области металлургии, в частности для изготовления холодно- или горячекатаной ленты из двухфазной стали повышенной прочности с высокой характеристикой деформируемости, используемой при производстве автомобилей облегченной конструкции. Для обеспечения однородных механических и технологических свойств при изготовлении ленты с изменяющейся толщиной по длине и ширине ее получают из стали, содержащей, вес.%: углерод от 0,1 до 0,16, алюминий от 0,02 до 0,05, кремний от 0,40 до 0,60, марганец 1,5 до 2,0, фосфор меньше или равно 0,020, сера меньше или равно 0,003, азот меньше или равно 0,01, ниобий больше или равно 0,01, ванадий больше или равно 0,02, остальное - железо и присущие стали сопутствующие элементы, при оптимальной добавке титана. Холодно- или горячекатаную стальную ленту подвергают непрерывнму отжигу, при этом ее нагревают в проходной отжигательной печи за одну стадию до температуры от 820 до 1000°С, предпочтительно от 840 до 1000°С, затем охлаждают с температуры отжига при скорости от 15 до 30°С/с. 12 з.п. ф-лы.

Description

Изобретение относится к способу изготовления холодно- или горячекатаной ленты из двухфазной стали повышенной прочности с усовершенствованной характеристикой деформируемости, предназначенной, в частности, для автомобилей облегченной конструкции согласно ограничительной части п.1 формулы изобретения.
Жесткая борьба за автомобильный рынок вынуждает изготовителей к постоянному поиску в т.ч. решений по снижению удельного расхода топлива при сохранении наивысшего комфорта и максимальной безопасности пассажиров. При этом решающее значение имеют, с одной стороны, снижение веса всех компонентов автомобиля и, с другой стороны, по возможности оптимальные свойства отдельных конструктивных элементов при большой статической и динамической нагрузке во время эксплуатации, а также в случае аварии. Такую необходимость поставщики стараются учесть таким образом, чтобы посредством высокопрочных сталей и сталей с повышенной прочностью стало возможным уменьшить толщину стенок при одновременном улучшении свойств конструктивных элементов как в процессе их изготовления, так и при эксплуатации. Поэтому такие стали должны отвечать повышенным требованиям в отношении прочности, растяжимости, вязкости, поглощения энергии и обрабатываемости, например, при холодной деформации, сварке и/или обработке поверхности.
В данной области все большее применение находят так называемые двухфазные стали, обладающие положительной деформируемостью при одновременно высоких прочностных показателях. При этом двухфазные стали имеют преимущественно ферритно-мартенситную структуру.
В этой связи будут рассмотрены как холоднокатаные, так и горячекатаные ленты из двухфазных сталей.
Обычно холоднокатаные стальные ленты по экономическим соображениям обжигают непрерывным способом с целью рекристаллизации и получения хорошо деформируемого тонкого листа.
В зависимости от состава сплава и толщины ленты режим печи (скорость протяжки, температура отжига, скорость охлаждения) задается в соответствии с требуемой структурой, а также механическими и технологическими свойствами.
Для получения двухфазной структуры холоднокатаную ленту нагревают в проходной отжигательной печи до такой температуры, чтобы при охлаждении образовалась требуемая ферритно-мартенситная структура.
Если вследствие жестких требований в отношении коррозионной защиты поверхность горяче- или холоднокатаных лент подлежит цинкованию горячим способом, то отжиг проводится обычно в проходной отжигательной печи, расположенной перед цинковальной ванной.
Также и в горячекатаной ленте, в зависимости от состава легирующих компонентов, в некоторых случаях требуемую двухфазную структуру задают лишь во время отжига в проходной печи с тем, чтобы на основе по возможности однородной аустенитной структуры можно было достигнуть требуемых механических свойств.
При непрерывном отжиге горяче- и холоднокатаных лент из двухфазных сталей с известным из источников ЕР 0152665 В1, ЕР 0691415 В1 и ЕР 0510718 В1 составом легирующих элементов трудность заключается в том, что для параметров отжига существует лишь узкое технологическое окно, необходимое для обеспечения однородных механических свойств по длине ленты.
Для достижения стабильности таких сталей при рекристаллизационном отжиге холодной ленты, достаточной для образования требуемой двухфазной структуры, известные стали содержат в соответствующих количествах, например, Cr, Mo, Nb или В. На стоимость выплавки двухфазной стали большое влияние оказывают в этом случае, в частности, такие дорогостоящие элементы, как Cr и Mo.
Узкое технологическое окно означает в этой связи, что в зависимости от толщины отжигаемой ленты должна выбираться скорость ее протяжки такой, чтобы в ленте обеспечивалось равномерное распределение температуры, а также достигались при охлаждении требуемая двухфазная структура и механические и технологические свойства.
При больших технологических окнах требуемые свойства ленты достигаются при одних и тех же параметрах печи при разных толщинах отжигаемых лент.
В процессе изготовления часто приходится последовательно отжигать в зависимости от предписания также ленты разной толщины, например 1,5 и 2,0 мм.
Равномерное распределение температуры трудно осуществимо как раз при разных толщинах в переходном диапазоне от одной ленты к другой и приводит при составах сплава со слишком узким технологическим окном к тому, что более тонкая лента либо слишком медленно протягивается через печь, что снижает производительность, либо более толстая лента слишком быстро протягивается через отжигательную печь, вследствие чего возникает опасность, что не произойдет равномерного распределения температуры и, следовательно, не будут получены необходимые механические и технологические свойства. Следствием этого является рост брака или числа рекламаций со стороны заказчика.
Особо острой становится проблема слишком узкого технологического окна при отжиге в том случае, когда требуется изготовить оптимальные по нагрузке конструктивные элементы из горяче- или холоднокатаной ленты, толщина которых изменяется по их длине и, при необходимости, ширине, т.е. после гибкой прокатки. Способ изготовления стальной ленты с меняющейся толщиной по длине раскрыт, например, в источнике DE 10037867 A1.
В случае применения известных составов легирующих элементов для двухфазных сталей, из-за узкого технологического окна с большим трудом возможно обеспечить при непрерывном отжиге лент разной толщины одинаковые механические свойства по всей их длине.
При гибком способе горячей или холодной прокатки лент из сталей известных составов при наличии очень малых технологических окон участки ленты меньшей толщины обладают из-за процессов деформации при охлаждении либо слишком низкой прочностью, обусловленной повышенным содержанием феррита, либо участки ленты с большей толщиной характеризуются слишком большими показателями, вызванными повышенным содержанием мартенсита. Однородные механические и технологические свойства ленты по ее длине и ширине практически не достижимы при известных составах легирующих элементов при непрерывном отжиге.
Поэтому в основу изобретения положена задача создания более оптимального по стоимости состава легирующих элементов в стали с повышенной прочностью и двухфазной структурой, с помощью которого технологическое окно для непрерывного отжига горяче- и холоднокатаных лент может быть расширено настолько, что наряду с лентами разной толщины могут изготавливаться и стальные ленты с изменяющейся толщиной по их длине и, при необходимости, ширине с достижением по возможности однородных механических и технологических свойств.
Согласно изобретению поставленная задача решается посредством стали следующего состава, вес.%:
С 0,1-≤0,16,
Al 0,02-≤0,05,
Si 0,40-≤0,60,
Mn 1,5-≤2,0,
P ≤0,020,
S ≤0,003,
N ≤0,01,
Nb ≥0,01,
V ≥0,02,
остальное - железо и присущие стали сопутствующие элементы, а также оптимальные добавки Ti в количестве ≤0,01 мас.%, при этом необходимая двухфазная структура достигается во время непрерывного отжига, причем холодно- или горячекатаная стальная лента нагревается в проходной отжигательной печи за одну стадию до температуры от 820 до 1000°С, предпочтительно от 840 до 1000°С, затем отожженная стальная лента охлаждается с температуры отжига при скорости от 15 до 30°С/с.
Двухфазная сталь повышенной прочности согласно изобретению, предназначенная для автомобилей облегченной конструкции, характеризуется тем, что в результате целевой добавки ванадия и ниобия и при отказе от дорогостоящих легирующих элементов, таких как молибден и хром, достигается настолько высокая стабильность, что благодаря ей при непрерывном отжиге может обеспечиваться требуемая двухфазная структура с однородными механическими и технологическими свойствами также и в лентах с изменяющейся толщиной по их длине и ширине с полностью аустенитной матрицей при очень высокой надежности процесса.
При обширных лабораторных исследованиях неожиданно было установлено, что в результате целевой добавки V в сочетании с Nb может быть получена двухфазная сталь, которая обеспечивает заметно более широкое технологическое окно при непрерывном отжиге. Также и при отжиге лент с разной толщиной и лент с изменяющейся толщиной могут достигаться при прочих постоянных параметрах печи одинаковые структуры, а также механические и технологические свойства лент.
Сталь, согласно изобретению, обеспечивает преимущество, заключающееся в достижении заметно большего технологического окна по сравнению с известными сталями. Результатом этого является повышенная надежность процесса при непрерывном отжиге или горячем цинковании холодно- или горячекатаной ленты с двухфазной структурой. Таким образом как в лентах горячего цинкования, так и в только горяче- или холоднокатаных лентах после непрерывного отжига могут достигаться однородные механические и технологические свойства. Это относится к непрерывному отжигу следующих друг за другом лент с разной толщиной, а также в особенности к лентам с изменяющейся толщиной по их длине и ширине.
Если согласно изобретению способом непрерывного отжига изготавливают горяче- или холоднокатаные ленты из двухфазной стали с изменяющейся толщиной, то из такого материала могут быть предпочтительно изготовлены способом деформации оптимальные по нагрузке конструктивные элементы.
Согласно изобретению речь идет о двухфазной стали с ок. 20% локальных включений мартенсита, относящейся к классу прочности ок. 800 МПа, предназначенной, в частности, для непрерывного горячего цинкования и для применения в установке непрерывного отжига. Путем факультативной добавки титана в количестве ≤0,01% задается согласно изобретению за счет образования нитридов или карбонитридов, в зависимости от содержания азота в стали, мелкозернистость структуры и оказывается воздействие на механические и технологические свойства.
Благодаря своей нечувствительности к технологическим колебаниям при термообработке создается область применения стали в виде прокатки лент с изменяющимися толщинами в продольном и поперечном направлениях по отношению к направлению прокатки.
Такая нечувствительность достигается применением ниобия и прежде всего ванадия, образующих при охлаждении стабильную или свободную от превращения зону.
Для достижения соответствующего эффекта сталь согласно изобретению содержит ванадий в количестве по меньшей мере 0,02% и ниобий в количестве по меньшей мере 0,01%. При этом ниобий действует также в качестве измельчающего зерно элемента, причем размер добавки ниобия корректируется с современным содержанием углерода и азота в стали.
Согласно изобретению также и добавка ванадия корректируется с содержанием углерода и азота, при этом однако размер добавки задается таким, чтобы для достижения достаточно большой стабильности поддерживалось достаточное количество ванадия в растворе. Если при непрерывном отжиге стремятся получить по возможности стабильные свойства и, следовательно, по возможности широкое технологическое окно, то содержание ванадия должно составлять не менее 0,06-0,10%, а содержание ниобия - более 0,02-0,05%. Дальнейшее повышение содержания ванадия или ниобия не ведет к дополнительному улучшению с учетом последующего замедленного фазового превращения стали и, следовательно, ширины технологического окна при непрерывном отжиге.
С целью достижения по возможности однородной исходной структуры для получения двухфазной структуры сначала отжигаемую ленту нагревают до температуры, при которой структура является полностью аустенитной. При этом температура отжига для стали, согласно изобретению, составляет, в основном, от 820 до, в основном, 1000°С, что зависит от конкретного состава сплава.
В ходе проведенных исследований было установлено, что для данной стали существует диапазон, в котором несмотря на температуру ниже 800°С не происходит обратного превращения аустенита в феррит, бейнит или мартенсит. Особое значение имеет при этом температурный диапазон ок. 450°С, так как в этом случае температура цинковой ванны соответствует горячему цинкованию.
Содержание феррита и аустенита (его остатка), образующееся при охлаждении, сохраняется вплоть до окончания технологической операции «цинкование». При последующем охлаждении остаточная часть аустенита полностью переходит в мартенсит. Параметры цинкования могут варьироваться в широком диапазоне. В зависимости от толщины ленты скорость цинкования составляет от 60 до 120 м/мин. Скорость охлаждения перед цинковой ванной и после нее остается относительно низкой и составляет 10-30°С/с.
Полученный материал может применяться на линии горячего цинкования или в установке только для непрерывного отжига в виде холодно- или горячекатаной ленты в дрессированном или не дрессированном состоянии, а также после термообработки (промежуточного отжига).
Одновременно присутствует возможность для увеличения или снижения доли феррита путем целенаправленного изменения режима охлаждения перед цинковой ванной. В результате становится возможной, например, выплавка сталей с частичным содержанием мартенсита.

Claims (13)

1. Способ изготовления холодно- или горячекатаной ленты из двухфазной стали с повышенной прочностью и высокой характеристикой деформируемости, предназначенной, в частности, для автомобилей с облегченной конструкцией, содержащей следующие элементы, вес.%:
углерод от 0,1 до 0,16 алюминий от 0,02 до 0,05 кремний от 0,40 до 0,60 марганец 1,5 до 2,0 фосфор меньше или равно 0,020 сера меньше или равно 0,003 азот меньше или равно 0,01 ниобий больше или равно 0,01 ванадий больше или равно 0,02,

остальное - железо и присущие стали сопутствующие элементы, а также оптимальная добавка титана, при этом двухфазная структура образуется при непрерывном отжиге, отличающийся тем, что холодно- или горячекатаную стальную ленту нагревают в проходной отжигательной печи за одну стадию до температуры от 820 до 1000°С, предпочтительно от 840 до 1000°С, затем отожженную стальную ленту охлаждают с температуры отжига при скорости от 15 до 30°С/с.
2. Способ по п.1, отличающийся тем, что содержание ванадия составляет 0,06 вес %.
3. Способ по п.1, отличающийся тем, что содержание ванадия составляет 0,08 вес.%.
4. Способ по любому из пп.1-3, отличающийся тем, что содержание ниобия составляет 0,02 вес.%.
5. Способ по любому из пп.1-3, отличающийся тем, что содержание ниобия составляет 0,04 вес.%.
6. Способ по любому из пп.1-3, отличающийся тем, что содержание титана меньше или равно 0,01%.
7. Способ по п.4, отличающийся тем, что содержание титана меньше или равно 0,01%.
8. Способ по п.5, отличающийся тем, что содержание титана меньше или равно 0,01%.
9. Способ по любому из пп.1-3, отличающийся тем, что в заключение стальную ленту подвергают дрессировке.
10. Способ по п.4, отличающийся тем, что в заключение стальную ленту подвергают дрессировке.
11. Способ по п.5, отличающийся тем, что в заключение стальную ленту подвергают дрессировке.
12. Способ по п.6, отличающийся тем, что в заключение стальную ленту подвергают дрессировке.
13. Способ по п.7 или 8, отличающийся тем, что в заключение стальную ленту подвергают дрессировке.
RU2009122381/02A 2006-11-14 2007-11-13 Способ получения ленты из двухфазной стали повышенной прочности RU2443787C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006054300.9 2006-11-14
DE102006054300A DE102006054300A1 (de) 2006-11-14 2006-11-14 Höherfester Dualphasenstahl mit ausgezeichneten Umformeigenschaften

Publications (2)

Publication Number Publication Date
RU2009122381A RU2009122381A (ru) 2010-12-20
RU2443787C2 true RU2443787C2 (ru) 2012-02-27

Family

ID=39128645

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009122381/02A RU2443787C2 (ru) 2006-11-14 2007-11-13 Способ получения ленты из двухфазной стали повышенной прочности

Country Status (6)

Country Link
US (1) US20100000634A1 (ru)
EP (1) EP2094876B1 (ru)
KR (1) KR20090089311A (ru)
DE (1) DE102006054300A1 (ru)
RU (1) RU2443787C2 (ru)
WO (1) WO2008058530A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2491357C1 (ru) * 2012-05-10 2013-08-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ производства листовой стали
RU2666392C2 (ru) * 2013-07-30 2018-09-07 Зальцгиттер Флахшталь Гмбх СОДЕРЖАЩАЯ КРЕМНИЙ МИКРОЛЕГИРОВАННАЯ ВЫСОКОПРОЧНАЯ МНОГОФАЗНАЯ СТАЛЬ С МИНИМАЛЬНЫМ ПРЕДЕЛОМ ПРОЧНОСТИ ПРИ РАСТЯЖЕНИИ 750 МПа И УЛУЧШЕННЫМИ СВОЙСТВАМИ И СПОСОБ ПРОИЗВОДСТВА ЛЕНТЫ ИЗ ТАКОЙ СТАЛИ

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010034161B4 (de) 2010-03-16 2014-01-02 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung von Werkstücken aus Leichtbaustahl mit über die Wanddicke einstellbaren Werkstoffeigenschaften
DE102011010040B3 (de) 2011-02-02 2012-08-02 Salzgitter Flachstahl Gmbh Verfahren und Einrichtung zum Erzeugen eines gegossenen Bandes aus Stahl mit über den Bandquerschnitt und die Bandlänge einstellbaren Werkstoffeigenschaften
DE102011056847B4 (de) 2011-12-22 2014-04-10 Thyssenkrupp Rasselstein Gmbh Stahlblech zur Verwendung als Verpackungsstahl sowie Verfahren zur Herstellung eines Verpackungsstahls
DE102012002079B4 (de) 2012-01-30 2015-05-13 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines kalt- oder warmgewalzten Stahlbandes aus einem höchstfesten Mehrphasenstahl
DE102012006017A1 (de) * 2012-03-20 2013-09-26 Salzgitter Flachstahl Gmbh Hochfester Mehrphasenstahl und Verfahren zur Herstellung eines Bandes aus diesem Stahl
DE102012006941B4 (de) 2012-03-30 2013-10-17 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Bauteils aus Stahl durch Warmumformen
US9593399B2 (en) 2012-12-13 2017-03-14 Thyssenkrupp Steel Usa, Llc Process for making cold-rolled dual phase steel sheet
DE102013101847B3 (de) * 2013-02-25 2014-03-27 Thyssenkrupp Rasselstein Gmbh Verfahren zur Herstellung eines korrosionsbeständigen Stahlblechs
WO2014180456A1 (de) 2013-05-06 2014-11-13 Salzgitter Flachstahl Gmbh Verfahren zur herstellung von bauteilen aus leichtbaustahl
CN105420605A (zh) * 2015-11-30 2016-03-23 钢铁研究总院 一种超低屈强比冷轧双相钢及其制造方法
DE102017123236A1 (de) * 2017-10-06 2019-04-11 Salzgitter Flachstahl Gmbh Höchstfester Mehrphasenstahl und Verfahren zur Herstellung eines Stahlbandes aus diesem Mehrphasenstahl

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0510718A2 (en) * 1991-04-26 1992-10-28 Kawasaki Steel Corporation High strength cold rolled steel sheet having excellent non-agin property at room temperature and suitable for drawing and method of producing the same
RU2018542C1 (ru) * 1988-01-29 1994-08-30 Штальверке Пайне-Зальцгиттер АГ Способ изготовления холоднокатаной ленты или листа и стальной лист
EP0691415A1 (en) * 1991-03-15 1996-01-10 Nippon Steel Corporation High-strength, cold-rolled steel sheet excellent in formability, hot-dip zinc coated high-strength cold rolled steel sheet, and method of manufacturing said sheets
EP0796928A1 (de) * 1996-03-19 1997-09-24 Thyssen Stahl Aktiengesellschaft Mehrphasenstahl und Verfahren zu seiner Herstellung
RU2147040C1 (ru) * 1994-12-06 2000-03-27 Экссон Рисерч энд Энджиниринг Компани Высокопрочная двухфазная стальная пластина с повышенной жесткостью и пригодностью к сварке
RU2151214C1 (ru) * 1994-12-06 2000-06-20 Экссон Рисерч энд Энджиниринг Компани Двухфазная сталь и способ ее изготовления

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669359A (en) * 1979-10-16 1981-06-10 Kobe Steel Ltd Composite structure type high strength cold rolled steel sheet
JPH09291310A (ja) * 1996-04-26 1997-11-11 Nkk Corp 耐震建築用鋼材の製造方法
FR2790009B1 (fr) * 1999-02-22 2001-04-20 Lorraine Laminage Acier dual-phase a haute limite d'elasticite
AU3987400A (en) * 1999-04-21 2000-11-10 Kawasaki Steel Corporation High tensile hot-dip zinc-coated steel plate excellent in ductility and method for production thereof
DE19936151A1 (de) * 1999-07-31 2001-02-08 Thyssenkrupp Stahl Ag Höherfestes Stahlband oder -blech und Verfahren zu seiner Herstellung
EP1146132B1 (en) * 1999-10-22 2007-02-21 JFE Steel Corporation Hot-dip galvanized steel sheet having high strength and also being excellent in formability and galvanizing property
FR2830260B1 (fr) * 2001-10-03 2007-02-23 Kobe Steel Ltd Tole d'acier a double phase a excellente formabilite de bords par etirage et procede de fabrication de celle-ci
FR2833617B1 (fr) * 2001-12-14 2004-08-20 Usinor Procede de fabrication de toles laminees a froid a tres haute resistance d'aciers dual phase micro-allies

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2018542C1 (ru) * 1988-01-29 1994-08-30 Штальверке Пайне-Зальцгиттер АГ Способ изготовления холоднокатаной ленты или листа и стальной лист
EP0691415A1 (en) * 1991-03-15 1996-01-10 Nippon Steel Corporation High-strength, cold-rolled steel sheet excellent in formability, hot-dip zinc coated high-strength cold rolled steel sheet, and method of manufacturing said sheets
EP0510718A2 (en) * 1991-04-26 1992-10-28 Kawasaki Steel Corporation High strength cold rolled steel sheet having excellent non-agin property at room temperature and suitable for drawing and method of producing the same
RU2147040C1 (ru) * 1994-12-06 2000-03-27 Экссон Рисерч энд Энджиниринг Компани Высокопрочная двухфазная стальная пластина с повышенной жесткостью и пригодностью к сварке
RU2151214C1 (ru) * 1994-12-06 2000-06-20 Экссон Рисерч энд Энджиниринг Компани Двухфазная сталь и способ ее изготовления
EP0796928A1 (de) * 1996-03-19 1997-09-24 Thyssen Stahl Aktiengesellschaft Mehrphasenstahl und Verfahren zu seiner Herstellung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2491357C1 (ru) * 2012-05-10 2013-08-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ производства листовой стали
RU2666392C2 (ru) * 2013-07-30 2018-09-07 Зальцгиттер Флахшталь Гмбх СОДЕРЖАЩАЯ КРЕМНИЙ МИКРОЛЕГИРОВАННАЯ ВЫСОКОПРОЧНАЯ МНОГОФАЗНАЯ СТАЛЬ С МИНИМАЛЬНЫМ ПРЕДЕЛОМ ПРОЧНОСТИ ПРИ РАСТЯЖЕНИИ 750 МПа И УЛУЧШЕННЫМИ СВОЙСТВАМИ И СПОСОБ ПРОИЗВОДСТВА ЛЕНТЫ ИЗ ТАКОЙ СТАЛИ

Also Published As

Publication number Publication date
DE102006054300A1 (de) 2008-05-15
KR20090089311A (ko) 2009-08-21
US20100000634A1 (en) 2010-01-07
WO2008058530A1 (de) 2008-05-22
RU2009122381A (ru) 2010-12-20
EP2094876B1 (de) 2014-04-16
EP2094876A1 (de) 2009-09-02

Similar Documents

Publication Publication Date Title
RU2443787C2 (ru) Способ получения ленты из двухфазной стали повышенной прочности
JP6686035B2 (ja) 高強度鋼製品の製造方法およびこれによって得られる鋼製品
US9255313B2 (en) Steel sheet for hot press forming having low-temperature heat treatment property, method of manufacturing the same, method of manufacturing parts using the same, and parts manufactured by the same
RU2684655C1 (ru) Сверхпрочная многофазная сталь и способ производства холоднокатаной стальной полосы из нее
WO2011111332A1 (ja) 高強度鋼板の製造方法
EP2778247A1 (en) Steel sheet for hot press forming, hot press forming member, and manufacturing method thereof
US20130295402A1 (en) Steel Sheet for Formed Member Having Enhanced Ductility, Formed Member, and Method for Manufacturing the Formed Member
JP5310919B2 (ja) 耐時効性と焼付き硬化性に優れた高強度冷延鋼板の製造方法
CA3135015A1 (en) Steel sheet having excellent toughness, ductility and strength, and manufacturing method thereof
JP5860333B2 (ja) 加工性に優れた高降伏比高強度冷延鋼板
EP2772556A1 (en) Method for producing high-strength steel sheet having superior workability
EP3323905A1 (en) Hot press formed product having superior bendability and ultra-high strength and method for manufacturing same
JP2010065272A (ja) 高強度鋼板およびその製造方法
KR101449134B1 (ko) 용접성 및 굽힘가공성이 우수한 초고강도 냉연강판 및 그 제조방법
US10570476B2 (en) High-strength steel sheet and production method therefor
EP1867747A1 (en) Alloyed hot-dip galvanized steel sheet and method for producing same
WO2020162562A1 (ja) 溶融亜鉛めっき鋼板およびその製造方法
CN111448329A (zh) 经冷轧和涂覆的钢板及其制造方法
CN112689684B (zh) 经冷轧和涂覆的钢板及其制造方法
US11136642B2 (en) Steel sheet, plated steel sheet, method of production of hot-rolled steel sheet, method of production of cold-rolled full hard steel sheet, method of production of steel sheet, and method of production of plated steel sheet
RU2742998C1 (ru) Сверхпрочная многофазная сталь и способ изготовления стальной полосы из этой многофазной стали
EP3378958B1 (en) Plated steel plate and manufacturing method thereof
EP4114994B1 (en) High strength cold rolled and galvannealed steel sheet and manufacturing process thereof
KR101166995B1 (ko) 이상조직을 갖는 고강도 고성형성 용융아연도금강판 제조방법
EP3276021A1 (en) High-strength steel sheet and production method therefor