EP2107027A2 - Enrouleur automatique et procédé de détection de dysfonctionnement dans un enrouleur automatique - Google Patents

Enrouleur automatique et procédé de détection de dysfonctionnement dans un enrouleur automatique Download PDF

Info

Publication number
EP2107027A2
EP2107027A2 EP09155215A EP09155215A EP2107027A2 EP 2107027 A2 EP2107027 A2 EP 2107027A2 EP 09155215 A EP09155215 A EP 09155215A EP 09155215 A EP09155215 A EP 09155215A EP 2107027 A2 EP2107027 A2 EP 2107027A2
Authority
EP
European Patent Office
Prior art keywords
tension
yarn
measured value
automatic winder
malfunctioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09155215A
Other languages
German (de)
English (en)
Other versions
EP2107027B1 (fr
EP2107027A3 (fr
Inventor
Hisakatsu Imamura
Kenichi Murayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Machinery Ltd
Original Assignee
Murata Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Machinery Ltd filed Critical Murata Machinery Ltd
Publication of EP2107027A2 publication Critical patent/EP2107027A2/fr
Publication of EP2107027A3 publication Critical patent/EP2107027A3/fr
Application granted granted Critical
Publication of EP2107027B1 publication Critical patent/EP2107027B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H63/00Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package
    • B65H63/02Warning or safety devices, e.g. automatic fault detectors, stop-motions ; Quality control of the package responsive to reduction in material tension, failure of supply, or breakage, of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H59/00Adjusting or controlling tension in filamentary material, e.g. for preventing snarling; Applications of tension indicators
    • B65H59/40Applications of tension indicators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Definitions

  • the present invention relates to an automatic winder including a winding unit that winds a yarn unwound from a yarn supplying bobbin into a package in a yarn winding device to manufacture the package, and a method for detecting malfunction in the automatic winder which method detects any of the components of the winding unit which is malfunctioning.
  • FIG. 1 is a diagram showing an example of the general configuration of a winding unit in a conventional automatic winder.
  • the winding unit 1 includes a yarn supplying bobbin 3 located at the bottom of the winding unit 1 and insertingly installed upright on a tray 2 and a yarn winding device 4 located at the top of the winding unit 1 to wind a yarn Y unwound from the yarn supplying bobbin 3 into a package P.
  • a yarn unwinding assisting device 5, a tension applying portion 6, a splicer (yarn splicing device) 7, and a slub catcher 8 are provided in this order along a yarn path between the yarn supplying bobbin 3 and the yarn winding device 4; the yarn unwinding assisting device 5 is located lowest among these members.
  • the slub catcher 8 includes an integral or separate cutter (not shown in the drawings) so that when a yarn defect is detected, the corresponding portion can be immediately cut with the cutter.
  • a package P side yarn end and a yarn supplying bobbin 3 side yarn end resulting from the cutting are guided to the splicer 7 by yarn end catching portion (not shown in the drawings) for catching the respective yarn ends using suction air.
  • the splicer 7 then splices the yarn ends.
  • Guides 9, 10, 11 are provided, for example, above and below the slub catcher 8 and below the splicer 7 to guide the traveling yarn Y.
  • a plate 12 is provided in a direction crossing the yarn path.
  • a U-shaped guide groove 13 is formed in the plate 12.
  • the guide groove 13 is substantially formed of and partitioned by a hard chip such as ceramic.
  • the yarn winding device 4 includes a traverse drum 15 rotated by a driving drum 14, and a cradle 16 that supports the package P so that the package P can rotate in contact with the traverse drum 15 under an appropriate pressure.
  • a traverse groove 17 is formed in a peripheral surface of the traverse drum 15 to wind the yarn Y into the package P while traversing the yarn Y over an appropriate range.
  • the driving drum 14 is driven by a motor (not shown in the drawings).
  • the tension applying portion 6 conventionally adjusts winding tension based on empirical rules. That is, the tension applying portion 6 reduces the tension with increasing winding diameter of the package P so as to set the winding density of the package P to an ideal value.
  • the cradle 16, which supports the package P is linked to the tension applying portion 6 via a lever link mechanism so as to reduce the tension exerted by the tension applying portion 6 in a correlation with movement of the cradle 16.
  • this tension adjustment cannot deal with a possible variation in tension during winding. Then, for example, the tension may disadvantageously become excessive to break the yarn Y or make the winding shape of the package P improper.
  • a tension sensor 18 is provided at a traverse support point position of the traverse drum 15 to measure the winding tension of the yarn Y during winding.
  • a controller (not shown in the drawings) controls a driving section for the tension applying portion 6 based on a tension measured value obtained by the tension sensor 18. The controller then performs feedback control such that the yarn Y is wound under an optimum winding tension at which possible yarn breakage or the like is prevented.
  • the controller outputs a control signal to a motor (not shown in the drawings) that drives the driving drum 14, which drives the traverse drum 15, to control the rotation number of the motor to change the peripheral speed of the package P.
  • the winding unit 1 includes a large number of components such as the yarn unwinding assisting device 5, the tension applying portion 6, the splicer 7, the slub catcher 8, and the yarn winding device 4 which are provided in the winding unit 1 along the yarn path. Any of the components may malfunction during operation. When any component malfunctions during operation, detecting which of the components is malfunctioning is difficult.
  • An object of the present invention is to provide an automatic winder that detects any malfunctioning winding unit component to be easily based on a tension measured value from a tension sensor measuring the winding tension of a yarn being wound, and a method of detecting malfunctioning in the automatic winder.
  • the present invention provides an automatic winder including a winding unit guiding a yarn unwound from a yarn supplying bobbin through a yarn path to a yarn winding device and winding the yarn into a package in the yarn winding device to manufacture the package.
  • the winding unit comprises a tension sensor measuring tension of the yarn.
  • the automatic winder includes a component malfunction detecting section for detecting any of a plurality of components of the winding unit which is malfunctioning, based on a tension measured value detected by the tension sensor.
  • the component malfunction detecting section can detect which of the components is malfunctioning based on the tension change condition measured by the tension sensor. For example, the component malfunction detecting section pre-stores a tension change pattern for each of the components which is observed when the component malfunctions. Then, which of the components is malfunctioning can be easily detected by comparing a change in the tension measured value obtained by the tension sensor with the stored tension change patterns.
  • the component malfunction detecting section has a storage section in which a plurality of tension patterns are stored, the plurality tension patterns are an optimum winding tension and tension patterns obtained when the respective components malfunction, and when a tension measured value obtained by the tension sensor (18) deviates from the optimum tension pattern, the tension measured value is compared with each of the tension patterns obtained when the respective components malfunction, to determine a malfunctioning component. Thus, the malfunctioning component is determined.
  • the automatic winder includes a tension applying portion applying tension to the yarn passing through the yarn path and a driving section driving the tension applying portion.
  • the tension measured value obtained by the tension sensor is fed back to a controller which then controls the tension applied by the tension applying portion.
  • the component malfunction detecting section determines that the tension applying portion is malfunctioning when the tension remains unchanged even through the controller transmits an appropriate tension applying portion control signal to the driving section for the tension applying portion based on the tension measured value.
  • the tension applying portion is defective, even though the controller transmits an appropriate tension applying portion control signal to the tension applying portion based on the tension measured value, the tension applying portion fails to apply the appropriate tension to the yarn according to the tension applying portion control signal.
  • the component malfunction detecting section easily determines that the tension applying portion is malfunctioning.
  • An away-from-tension applying portion condition can be similarly sensed in which the tension applying portion per se is not defective but the yarn fails to pass through the tension applying portion and travels away from the tension applying portion.
  • the automatic winder includes a controller controlling rotation number of a motor driving the yarn winding device to control the tension of the yarn passing through the yarn path.
  • the tension measured value obtained by the tension sensor is fed back to the controller which then controls the tension.
  • the component malfunction detecting section determines that the yarn winding device is malfunctioning.
  • the yarn winding device including the traverse drum, the driving drum, the drum driving motor, and the cradle is defective
  • the controller transmits the appropriate control signal to the motor based on the tension measured value
  • the package fails to be properly rotated according to the control signal. This prevents the appropriate tension from being applied to the yarn. Therefore, where the tension remains unchanged even though the component malfunction detecting means transmits the appropriate motor control signal to the motor based on tension measured value, the component malfunction detecting section can easily determine that the yarn winding device is defective.
  • the automatic winder is characterized in that the component malfunction detecting section determines that the yarn supplying bobbin has fallen down when a tension change in a particular waveform is observed in the tension measured value obtained by the tension sensor.
  • the tension applied to the yarn exhibits a variation in the particular waveform as described below. Therefore, when the tension sensor detects a tension change in the particular waveform, the component malfunction detecting means determines that the yarn supplying bobbin has fallen down.
  • the automatic winder is characterized in that when the tension increases in proportion to unwinding of the yarn from the yarn supplying bobbin, the component malfunction detecting section determines that the yarn unwinding assisting device controlling an unwinding balloon from the yarn supplying bobbin is malfunctioning.
  • the yarn unwinding assisting device has the function of inhibiting a possible variation in tension applied to the yarn unwound from the yarn supplying bobbin and a possible increase in tension associated with progression of the unwinding.
  • the component malfunction detecting section can easily determine that the yarn unwinding assisting device is malfunctioning.
  • the present invention provides a method for detecting malfunction in an automatic winder including a winding unit that guides a yarn unwound from a yarn supplying bobbin through a yarn path to a yarn winding device winding the yarn into a package in the yarn winding device to manufacture the package, the method detecting any malfunctioning winding unit component of the automatic winder.
  • the method uses a tension sensor measuring tension of a yarn passing through a yarn path and a tension measured value detected by the tension sensor to detect any of components of the winding unit which is malfunctioning.
  • any of the components provided in the winding unit malfunctions, the tension applied to the yarn passing through the yarn path changes.
  • the tension change resulting from the malfunctioning component varies among the components.
  • any malfunctioning component can be easily detected based on the condition of the change in the tension measured value from the tension sensor.
  • the present invention allows which of the plurality of components provided in the winding unit is malfunctioning to be detected based on the tension measured value from the tension sensor. This enables the malfunctioning to be dealt with immediately after the malfunctioning has occurred. Checking a record of past improper tensions allows estimation of a yarn winding length corresponding to a point in time when the operation on the package has become improper. This enables the improper part of the yarn to be unwound and removed.
  • FIG. 2 shows an example of the general configuration of a winding unit in an automatic winder according to the present invention, and the general configuration of a component malfunction detecting section for detecting any malfunctioning component of the winding unit.
  • the winding unit 1 includes a controller 20 that controls tension applied to a yarn Y.
  • a tension measured value signal S1 is input to the controller 20; the tension measured value signal S1 is obtained by a tension sensor 18.
  • the controller 20 Based on the input tension measured value signal S1, the controller 20 outputs a control signal S2 allowing a driving section (solenoid) 26 for a tension applying portion 6 to be controlled.
  • the controller 20 thus controllably subjects the yarn Y to an optimum winding tension under which the yarn Y is prevented from being broken. That is, the controller 20 performs feedback control such that the tension measured value signal S1 obtained by the tension sensor 18 is fed back to the controller 20.
  • the winding tension applied when the yarn Y is unwound from one yarn supplying bobbin 3 tends to increase as the operation approaches the end of the unwinding (see a part of Figure 3 denoted by reference numeral 31).
  • the winding tension is kept optimum by performing control such that the adverse effect of the above-described tendency is eliminated.
  • the optimum value of the winding tension is varied depending on the winding diameter of a package P. For an inner layer potion corresponding to the start of winding, a higher tension is set to increase winding density. For an outer layer portion, a lower tension is set to reduce the winding density.
  • a control signal S2 may be output to the driving section 26 for the tension applying portion 6 to control operation of the tension applying portion 6.
  • the controller 20 may output a control signal S3 to a motor 21 for a yarn winding device 4.
  • the rotation number of the motor 21 may be controlled via the control signal S3 so as to control the rotation number of a driving drum 14 that drives a traverse drum 15 to change the peripheral speed of the package P.
  • the rotational control of the yarn winding device 4 allows the winding tension to be reliably controlled.
  • the slub catcher 8 includes an integral or separate cutter 27.
  • the slub catcher 8 detects a defect in the yarn Y and outputs a yarn defect detection signal S7 to the controller 20. Then, the cutter 27 is immediately driven to cut the defective portion.
  • a package P side yarn end and a yarn supplying bobbin 3 side yarn end of the cut yarn Y are caught by yarn end catching portion 7a, 7b including an upper yarn end suction port 7c and a lower yarn end suction port 7d. The yarn ends are then guided to a splicer 7 for yarn splicing.
  • the controller 20 When the unwinding of the yarn Y from the yarn supplying bobbin 3 is completed, the controller 20 outputs, to a tray 2, a yarn supplying bobbin switching signal S6 allowing the yarn supplying bobbin 3 to be switched to a new one.
  • the yarn unwinding assisting device 5 is controlled by the controller 20 via a driving mechanism 28 so as to maintain the distance ⁇ between the lower end of the yarn unwinding assisting device 5 and a chase portion from the yarn supplying bobbin 3 substantially constant.
  • Reference numeral 22 is a component malfunction detecting section that detects when any of the components provided in the winding unit 1 malfunctions.
  • the tension measured value signal S1 obtained by the tension sensor 18 is input to the component malfunction detecting section 22.
  • a detection control signal S4 is input to the component malfunction detecting section 22; the detection control signal S4 indicates that a sensor 23 has detected the control signal S2, output to the driving section 26 for the tension applying portion 6 by the controller 20.
  • a detection control signal S5 is input to the component malfunction detecting section 22; the control signal S5 indicates that a sensor 24 has detected the control signal S3, output to the motor 21 by the controller 20.
  • a display section 25 is connected to the component malfunction detecting section 22.
  • the component malfunction detecting section 22 monitors the tension measured value signal S1 obtained by the tension sensor 18.
  • the component malfunction detecting section 22 determines, through the monitoring, whether or not any of the components of the winding unit 1 is malfunctioning, based on the condition of a change in tension measured value.
  • the component malfunction detecting section 22 stores the name of the malfunctioning component, the occurrence time of the malfunctioning, and the like in a storage section 22a.
  • the component malfunction detecting section 22 displays the name of the malfunctioning component, the occurrence time of the malfunctioning, and the like on the display section 25.
  • the controller 20 inputs the control signals S2, S3 to the component malfunction detecting section 22; the control signal S2 is output to the driving section of the tension applying portion 6 by the controller 20, and the control signal S3 is output to the motor 21 by the controller 20.
  • the controller 20 outputs the appropriate control signal S2 to the driving section of the tension applying portion 6 based on the tension measured value signal S1.
  • the component malfunction detecting section 22 has the function of determining that the tension applying portion 6 (including the driving section 26) is malfunctioning if the tension measured value signal S1 remains unchanged even though the appropriate control signal S2 has been output.
  • the component malfunction detecting section 22 has the function of determining that the yarn winding device 4 is malfunctioning where the tension measured value signal S1 remains unchanged even though the appropriate control signal S3 has been output to the motor 21 based on the tension measured value signal S1.
  • the component malfunction detecting section 22 has the function of determining that the yarn supplying bobbin 3 has fallen down where the tension measured value signal S1 exhibits a tension a change in particular waveform as shown below.
  • the component malfunction detecting section 22 has the function of determining that the yarn unwinding assisting device 5, controlling an unwinding balloon from the yarn supplying bobbin 3, is malfunctioning where the tension increases in proportion to the unwinding of the yarn from the yarn supplying bobbin 3, as described below.
  • Figures 4 to 6 are diagrams showing the tension measured value obtained by the tension sensor 18 when the yarn Y is unwound from one yarn supplying bobbin 3.
  • Figure 5 shows the tension measured value obtained using a tension sensor that detects the tension via a piezoelectric element.
  • Figure 6 shows the tension measured value obtained using a tension sensor that detects the tension via a piezo element.
  • Figure 7 shows the tension measured value obtained using a tension sensor that detects the tension via a micro-distance sensor.
  • a portion T1 shows a change in tension measured value observed when pieces of the tension applying portion 6 are opened (tension applying portion open).
  • a portion T2 shows a change in tension measured value observed when the pieces of the tension applying portion 6 are pressed the yarn Y (tension applying portion press).
  • a portion T3 shows a change in tension measured value observed when the yarn supplying bobbin 3 comes into contact with the yarn unwinding assisting device 5 (bobbin contact).
  • the change in tension measured value varies slightly depending on a difference in the measurement principle of the tension sensor 18.
  • the tension measured value changes similarly when malfunctioning such as “tension applying portion open”, “tension applying portion press”, or “bobbin contact” occurs. That is, based on the change in the tension measured value from the tension sensor 18, defects in the tension applying portion 6 and the yarn unwinding assisting device 5, components provided in the winding unit 1, can be detected.
  • the tension measured value from the tension sensor 18 exhibits a change in a particular waveform as shown in Figure 7 .
  • the component malfunction detecting section 22 can determine that the yarn supplying bobbin 3 has fallen down.
  • the yarn unwinding assisting device 5 may malfunction and fail to control the balloon.
  • the tension measured value increases as the unwinding of the yarn supplying bobbin 3 progresses (time elapses).
  • the component malfunction detecting section 22 can determine that the yarn unwinding assisting device 5 is malfunctioning.
  • the condition of a change in tension measured value from the tension sensor 18 resulting from the malfunctioning of any of the components of the winding unit 1 varies among the components.
  • a change in tension measured value observed when each component malfunctions is patterned and pre-stored in the storage section 22a of the component malfunction detecting section 22. Then, when an abnormal change occurs in the tension measured value from the tension sensor 18, the measured value is compared with the data stored in the storage section to allow the malfunctioning component to be detected (determined).
  • the component malfunction detecting section 22 can detect when any of the components provided in the winding unit 1 malfunctions, based on the tension measured value signal S1 from the tension sensor 18. That is, the component malfunction detecting section 22 can detect when the yarn unwinding assisting device 5, the tension applying portion 6, or the yarn winding device 4 malfunctions. Moreover, the component malfunction detecting section 22 can detect when the yarn supplying bobbin 3 insertingly installed upright on the tray 2 has fallen down.
  • the component malfunction detecting section 22 allows the name of the malfunctioning component, the occurrence time of the malfunctioning, and the like to be displayed on the display section 25. This enables the malfunctioning to be dealt with immediately after the malfunction has occurred.
  • a record of past improper tensions is stored in the storage section 22a of the component malfunction detecting section 22. Thus, checking the record allows estimation of the winding length of the yarn on the package P corresponding to the occurrence of the malfunctioning. This enables the corresponding part of the yarn to be unwound and removed.
  • the controller 20 and the component malfunction detecting section 22 are separate from each other.
  • the present invention is not limited to this aspect.
  • the functions of the controller 20 and the functions of the component malfunction detecting section 22 can be provided by, for example, one personal computer. This enables one personal computer to implement both the controller 20 and the component malfunction detecting section 22.
  • one component malfunction detecting section 22 when the automatic winder includes a plurality of winding units, one component malfunction detecting section 22 is provided.
  • the one component malfunction detecting section 22 detects which of the components is malfunctioning and to which of the winding units the malfunctioning component belongs, to display the detection result on the display section.
  • the component malfunction detecting section 22 may further store a record of past improper tensions in the storage section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Filamentary Materials, Packages, And Safety Devices Therefor (AREA)
  • Tension Adjustment In Filamentary Materials (AREA)
EP09155215.8A 2008-03-31 2009-03-16 Enrouleur automatique et procédé de détection de dysfonctionnement dans un enrouleur automatique Active EP2107027B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008094299A JP5029468B2 (ja) 2008-03-31 2008-03-31 自動ワインダ、自動ワインダの動作不良検出方法

Publications (3)

Publication Number Publication Date
EP2107027A2 true EP2107027A2 (fr) 2009-10-07
EP2107027A3 EP2107027A3 (fr) 2012-08-22
EP2107027B1 EP2107027B1 (fr) 2016-11-16

Family

ID=40786848

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09155215.8A Active EP2107027B1 (fr) 2008-03-31 2009-03-16 Enrouleur automatique et procédé de détection de dysfonctionnement dans un enrouleur automatique

Country Status (3)

Country Link
EP (1) EP2107027B1 (fr)
JP (1) JP5029468B2 (fr)
CN (1) CN101549808B (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102442585A (zh) * 2011-09-16 2012-05-09 江苏华宇机械有限公司 一种用于络筒并捻设备的检测装置
EP2573028B1 (fr) 2011-09-21 2015-03-25 Murata Machinery, Ltd. Appareil de bobinage de fils et procédé de contrôle de tension de fil
WO2018224398A1 (fr) * 2017-06-07 2018-12-13 Oerlikon Textile Gmbh & Co. Kg Procédé et dispositif de surveillance d'une tension du fil sur un fil en cours de déplacement
DE102018007591A1 (de) * 2018-09-26 2020-03-26 Saurer Spinning Solutions Gmbh & Co. Kg Verfahren und Vorrichtung zum Detektieren einer Fadenschlinge bei einer Arbeitsstelle einer Auflaufspulen herstellenden Textilmaschine
CN115258809A (zh) * 2022-07-26 2022-11-01 中船重工(青岛)轨道交通装备有限公司 一种具有初张力设定和高效排除电机故障的锭子架电气控制系统

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013249189A (ja) * 2012-06-04 2013-12-12 Murata Machinery Ltd 糸巻取装置、糸巻取方法、及び、糸巻取システム
JP2014009405A (ja) * 2012-06-27 2014-01-20 Murata Mach Ltd 紡績機
CZ2012479A3 (cs) * 2012-07-12 2013-06-05 Rieter Cz S.R.O. Bubnový mezizásobník príze na pracovním míste textilního stroje a zpusob jeho rízení
JP2014019541A (ja) * 2012-07-18 2014-02-03 Murata Mach Ltd 糸監視装置及び糸巻取機
DE102012214051B3 (de) 2012-08-08 2014-02-06 SSM Schärer Schweiter Mettler AG Verfahren zum Adaptieren einer Changierbewegung eines Fadens an eine Flanschspule und Spulvorrichtung
CZ305558B6 (cs) * 2014-12-03 2015-12-09 Rieter Cz S.R.O. Způsob řízení textilního stroje s alespoň jedním snímačem příze na pracovním místě
DE102016121667A1 (de) * 2016-11-11 2018-05-17 Saurer Germany Gmbh & Co. Kg Verfahren zum Betreiben einer Spulstelle und Spulmaschine
JP2018090379A (ja) * 2016-12-02 2018-06-14 村田機械株式会社 自動ワインダ、糸巻取システム及び糸巻取方法
JP2018162137A (ja) * 2017-03-24 2018-10-18 村田機械株式会社 糸巻取機
CN107572310A (zh) * 2017-08-30 2018-01-12 广州弘雅服装科技有限公司 一种络纱操作控制方法
CZ2019198A3 (cs) * 2019-03-29 2020-10-07 Rieter Cz S.R.O. Způsob řízení prostředků pracovního místa textilního stroje a zařízení k jeho provádění

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1087175A (ja) 1996-09-09 1998-04-07 Murata Mach Ltd 自動ワインダ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558553A (ja) * 1991-09-02 1993-03-09 Murata Mach Ltd パツケージ検査システム
JPH0818756B2 (ja) * 1992-10-15 1996-02-28 村田機械株式会社 自動ワインダ
JP3722399B2 (ja) * 1997-05-26 2005-11-30 東レエンジニアリング株式会社 糸条製造工程における張力監視方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1087175A (ja) 1996-09-09 1998-04-07 Murata Mach Ltd 自動ワインダ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102442585A (zh) * 2011-09-16 2012-05-09 江苏华宇机械有限公司 一种用于络筒并捻设备的检测装置
EP2573028B1 (fr) 2011-09-21 2015-03-25 Murata Machinery, Ltd. Appareil de bobinage de fils et procédé de contrôle de tension de fil
WO2018224398A1 (fr) * 2017-06-07 2018-12-13 Oerlikon Textile Gmbh & Co. Kg Procédé et dispositif de surveillance d'une tension du fil sur un fil en cours de déplacement
US11305960B2 (en) 2017-06-07 2022-04-19 Oerlikon Textile Gmbh & Co. Kg Method and device for monitoring a yarn tension of a running yarn
US11840420B2 (en) 2017-06-07 2023-12-12 Oerlikon Textile Gmbh & Co. Kg Method and device for monitoring a yarn tension of a running yarn
DE102018007591A1 (de) * 2018-09-26 2020-03-26 Saurer Spinning Solutions Gmbh & Co. Kg Verfahren und Vorrichtung zum Detektieren einer Fadenschlinge bei einer Arbeitsstelle einer Auflaufspulen herstellenden Textilmaschine
CN115258809A (zh) * 2022-07-26 2022-11-01 中船重工(青岛)轨道交通装备有限公司 一种具有初张力设定和高效排除电机故障的锭子架电气控制系统

Also Published As

Publication number Publication date
JP5029468B2 (ja) 2012-09-19
CN101549808B (zh) 2013-06-19
CN101549808A (zh) 2009-10-07
EP2107027B1 (fr) 2016-11-16
JP2009242098A (ja) 2009-10-22
EP2107027A3 (fr) 2012-08-22

Similar Documents

Publication Publication Date Title
EP2107027B1 (fr) Enrouleur automatique et procédé de détection de dysfonctionnement dans un enrouleur automatique
EP2687469B1 (fr) Dispositif de surveillance de fil et machine de bobinage de fil
CN103420225B (zh) 纱线卷绕装置
EP2159180B1 (fr) Dispositif de bobinage de fil et enrouleur automatique
EP2700602B1 (fr) Dispositif de bobinage de fil, bobinoir de fil automatique, et machine textile
EP2159181B1 (fr) Dispositif de bobinage de fil et enrouleur automatique le comportant
JP2014024655A (ja) 糸巻取機
JP2012131643A (ja) ワインダを動作させる方法およびワインダ
CN101348200A (zh) 纱线卷绕装置
JP2013249189A (ja) 糸巻取装置、糸巻取方法、及び、糸巻取システム
JP2010042904A (ja) 糸巻取機
EP1787936A2 (fr) Maschine de textile
EP1795478B1 (fr) Machine textile
JP3951941B2 (ja) 自動ワインダ
JPH0542262U (ja) 自動ワインダの巻取ユニツト
EP1795477B1 (fr) Bobinoir
JP2009242096A (ja) 自動ワインダ
JP2013067482A (ja) 糸巻取装置及びテンション確認方法
EP2690044A2 (fr) Dispositif de bobinage de fil
JP3932950B2 (ja) 糸条巻取機の巻取制御監視装置
JP2009214984A (ja) パッケージの製造方法、糸巻取機及びパッケージ
JP2009242097A (ja) 自動ワインダ、自動ワインダのパッケージ巻取り方法
JP2009242094A (ja) テンションセンサ及び自動ワインダ
JP2009227413A (ja) 糸巻取機
JP2006188342A (ja) 自動ワインダにおける弾性糸の巻取方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIC1 Information provided on ipc code assigned before grant

Ipc: B65H 63/02 20060101ALI20120713BHEP

Ipc: B65H 59/32 20060101AFI20120713BHEP

Ipc: B65H 59/40 20060101ALI20120713BHEP

17P Request for examination filed

Effective date: 20121114

AKX Designation fees paid

Designated state(s): DE IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160531

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE IT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009042388

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009042388

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170817

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230321

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230328

Year of fee payment: 15