EP2007935B1 - Verfahren und vorrichtung zum abziehen und verstrecken eines multifilen fadens - Google Patents

Verfahren und vorrichtung zum abziehen und verstrecken eines multifilen fadens Download PDF

Info

Publication number
EP2007935B1
EP2007935B1 EP07723813.7A EP07723813A EP2007935B1 EP 2007935 B1 EP2007935 B1 EP 2007935B1 EP 07723813 A EP07723813 A EP 07723813A EP 2007935 B1 EP2007935 B1 EP 2007935B1
Authority
EP
European Patent Office
Prior art keywords
thread
godets
guided
loop
godet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07723813.7A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2007935A1 (de
Inventor
Helmut Weigend
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Textile GmbH and Co KG
Original Assignee
Oerlikon Textile GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Textile GmbH and Co KG filed Critical Oerlikon Textile GmbH and Co KG
Publication of EP2007935A1 publication Critical patent/EP2007935A1/de
Application granted granted Critical
Publication of EP2007935B1 publication Critical patent/EP2007935B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/12Stretch-spinning methods
    • D01D5/16Stretch-spinning methods using rollers, or like mechanical devices, e.g. snubbing pins
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/20Combinations of two or more of the above-mentioned operations or devices; After-treatments for fixing crimp or curl
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/08Interlacing constituent filaments without breakage thereof, e.g. by use of turbulent air streams
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J13/00Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass

Definitions

  • the invention relates to a method for stripping and stretching a multifilament yarn during melt spinning according to the preamble of claim 1 and to an apparatus for carrying out the method according to the preamble of claim 10.
  • the godet is assigned a loose role, such as from the DE 102 27 290 A1 is known. Depending on the number of thread wraps on the guide casing of the godets and depending on the number of simultaneously guided on the guide sheath threads thus long projecting godet systems are required.
  • Another object of the invention is to provide a method and a device of the generic type, in which, or which high stretching forces can be realized even with simply looped godets for the production of fully drawn threads.
  • the object of the invention is achieved by a method having the features of claim 1 and by a device having the features of claim 10.
  • the development of the invention in which the thread piece between the godets by a temperature and / or turbulence is treated, is particularly advantageous.
  • the stretching of the thread which is customary for stretching, can advantageously be carried out in the thread section between the godets and the deflection roller.
  • the tempered with large losses tempering in which the thread is performed in multiple wrapping on a heated guide shell of a galette, completely eliminated.
  • the free stretches of the thread loop between the godets and the pulley can be used as far advantageous for the treatment of the thread.
  • the device according to the invention has a treatment device in the thread run between the deflection roller and at least one of the godets, so that either the thread section can be treated in the tapering section of the thread loop or in the running section of the thread loop.
  • the treatment device in such a way that both the tapered section of the thread loop before the deflection roller and the outgoing section of the thread loop behind the deflection roller are treated uniformly by a treatment device.
  • the thread loop according to the invention between the godets leads to a high degree of flexibility in the design and arrangement of the treatment devices.
  • a contactless heating is selected, in which the piece of thread is heated by an infrared radiator.
  • Such tubular infrared radiators can be tuned in particular in their wavelength to the thread material, so that the temperature control can be carried out with high efficiency.
  • the heat treatment of the thread by an infrared radiator can be further improved by arranging a radiation transducer opposite the infrared radiator, wherein the thread is guided in the space between the radiation transducer and the infrared radiator.
  • the radiation converter By means of the radiation converter, the infrared steels, which are not suitable in their wavelength, can be converted and utilized to heat the yarn.
  • the yield of the infrared rays for heating the yarn can be significantly increased.
  • a particularly favorable arrangement can be achieved in that the overrun roller and the godets have a substantially uniform jacket diameter and that the radiant heater is arranged within the thread loop is.
  • both pieces of thread of the thread loop can be irradiated simultaneously for heating. It also results in a very compact design.
  • the godets can be driven and controlled independently of one another with different circumferential speeds of the guide sheaths or together with substantially the same circumferential speeds.
  • the godets are preferably assigned separate godet drives which can be controlled by a common control device or by separate control devices.
  • the development of the invention in which the thread is guided for stretching over several pairs of godets, wherein on each of the pairs of godets the stretched between the godets piece of thread is guided as a loop of thread, is particularly suitable to produce fully drawn threads with multiple treatment levels.
  • a last godet pair can be assigned a heating device which tempers the thread loop between the godets to perform a shrinking treatment. Accordingly, the last galette of the godet pair is operated at a slightly lower peripheral speed than the godet loop upstream.
  • the melt spinning processes are usually operated in such a way that several threads are produced in parallel at the same time.
  • the development of the invention is preferably used, in which a plurality of threads are simultaneously performed parallel to each other on the godets, so that the guide shells of the godets are formed correspondingly long.
  • the thread loops formed between the guide sheaths are preferably performed with a small distance in the range of 3 mm to 8 mm on the circumference of the deflection roller, so that even with a high number of threads, a very compact guide and arrangement can be maintained.
  • the method according to the invention and the device according to the invention are therefore particularly suitable for drawing off and drawing synthetic threads in a melt-spinning process. It is independent of whether textile threads, technical threads, crimped threads or composite threads are produced from the abovementioned individual threads or effect threads in the melt spinning process.
  • FIG. 1 a first embodiment of the device according to the invention in a melt spinning process for producing a POY yarn is shown schematically.
  • a heatable spinning head 1 For melt-spinning a multifilament yarn, a heatable spinning head 1 is provided which has on its underside a spinneret 3 with a multiplicity of nozzle openings and on its upper side a melt feed 2.
  • the melt inlet 2 is coupled to a melt source, not shown here, for example, to an extruder.
  • melt-leading and melt-promoting components can be arranged, which will not be discussed in detail at this point.
  • a cooling shaft 5 is formed, which is laterally connected to a blowing device 6.
  • a cooling air flow can be generated, which is introduced into the cooling shaft 5, so that an extruded through the spinneret 3 filament bundle 4 is cooled uniformly.
  • a collecting yarn guide 7 and a preparation device 8 are provided below the cooling shaft 5, to merge the filament bundle 4 into a yarn 9.
  • the godets 10.1 and 10.2 and the guide roller 11 are arranged in the yarn path, that the yarn 9 is fed over the circumference of the godet 10.1 and continued over the circumference of the godet 10.2.
  • the stretched between the godets 10.1 and 10.2 thread piece is guided as a thread loop 12 between the godets 10.1 and 10.2, wherein the end of the thread loop 12 is determined by the position of the guide roller 11 and wherein the thread 9 is deflected at the periphery of the guide roller 11.
  • the thread piece between the godets 10.1 and 10.2 is thereby swirled in the outgoing section of the thread loop 12 between the guide roller 11 and the godets 10.2 by a swirling device 22.
  • the thread 9 is guided with a speed difference between the godets 10.1 and 10.2.
  • the peripheral speed of the godet 10.2 is set equal to or slightly lower than the peripheral speed of the godet 10.1. In that regard, a draw of the thread takes place substantially in the upstream melt spinning zone.
  • the thread 9 is guided via a guide roller 13 to a winding device 14.
  • the thread 9 is wound into a bobbin 18, wherein the laying of the thread by a traversing device 15, a pressure roller 16 takes place on the spool 18.
  • the coil 18 is held by a driven winding spindle 17.
  • Fig. 2 is a further embodiment of the device according to the invention for carrying out the method according to the invention in a melt-spinning process for producing a fully drawn yarn (FDY) shown schematically.
  • FDY fully drawn yarn
  • overall device differs essentially only by the formation of the method and apparatus of the invention.
  • the means for melt-spinning the multifilament yarn and the means for winding the multifilament yarn are identical to the aforementioned embodiment Fig. 1 so that reference is made to the above description at this point.
  • the device according to the invention is formed with a plurality of godet pairs 32.1 and 32.2.
  • the first godet pair 32.1 is formed by the godets 10.1 and 10.2, which are arranged downstream of the preparation device 8.
  • a first guide roller 11.1 is arranged, each with the same distance to the godet 10.1 and 10.2.
  • a heater 20 is arranged, which has two opposing infrared radiators 21.1 and 21.2. Between the infrared radiators 21.1 and 21.2, the thread loop 12 is guided. For this purpose, the thread 9 is fed over the circumference of the godet 10.1.
  • the stretched between the godets 10.1 and 10.2 piece of thread is deflected by the guide roller 11.1 at the end of the thread loop 12, wherein the tapered portion of the thread loop 12 is heated by the infrared radiator 21.1 and the expiring thread section of the thread loop 12 through the infrared radiator 21.2. Subsequently, the thread 9 is guided over the circumference of the godet 10.2 in a draw zone formed between the godet pairs 32.1 and 32.2.
  • the thread 9 is withdrawn and stretched over the two pairs of godets 32.1 and 32.2.
  • the godets 10.1 and 10.2 of the first godet pair 32.1 are driven substantially at the same peripheral speed, wherein the thread 9 between the godets 10.1 and 10.2 is tempered within the thread loop 12.
  • a separate infrared radiator 21.1 and 21.2 is assigned to each section of the thread loop.
  • a speed difference is set such that the godet 10.3 rotates at a greater circumferential speed than the godet 10.2.
  • the thread 9 is thus stretched between the godet pairs 32.1 and 32.2. Before winding the thread 9 this holds a swirl that is performed immediately before the expiration of the last godets 10.4.
  • the godets 10.3 and 10.4 are operated with a slight difference in speed.
  • FIG. 2 illustrated embodiment shows an application of the device according to the invention and the inventive method in the production of fully drawn threads.
  • Particularly advantageous over the known in the prior art device results in the thread guide with simple looping on the godets 10.1 to 10.4. In that regard, long overhanging guide shells to accommodate multiple wraps of the thread are no longer required.
  • the tempering can be realized advantageously in the area of the thread loops between the godets 10.1 and 10.2.
  • the godet 10.1 has a guide casing 19.1, which is rotatably mounted on a godet carrier 24.1 and is driven in the direction of the arrow by a drive, not shown here.
  • the adjacent at a short distance second godet 10.2 also has a guide sheath 19.2, which is rotatably supported on the godet 24.2 and is driven by a drive, not shown here in the same direction to the first godet.
  • a deflection roller 11 is arranged at a distance from the guide sheaths 19.1 and 19.2.
  • the guide roller 11 is rotatably mounted on an axis 23, wherein the axis 23 is fixed to a carrier 33.
  • a treatment device 25 is provided, which could be formed for example as a heater or as a swirling device.
  • Fig. 3 Device shown is provided to guide a plurality of parallel threads 9.
  • two parallel threads 9 are guided in this embodiment, each with a Operaumschlingung to the guide shrouds 19.1 and 19.2.
  • the thread loops 12 formed between the guide sheaths 19.1 and 19.2 and the guide roller 11 also extend parallel to each other side by side, wherein preferably a thread pitch a is set between the thread loops in the range of 3 to 8 mm.
  • the threads 9 run parallel to the treatment device 25 in order to be simultaneously tempered or swirled. It should be expressly mentioned at this point that the embodiments shown above and the embodiments shown below are not based on the guidance of a thread are limited, but also at the same time could deduct and stretch several parallel threads.
  • Fig. 4 is shown a further embodiment of a device according to the invention, as for example in an in Fig. 2 illustrated melt spinning process would be used.
  • the embodiment according to Fig. 4 has a total of two pairs of godets 32.1 and 32.2.
  • the godets 10.1 and 10.2 is the guide roller 11.1 and the godets 10.3 and 10.4 of the second godet pair 32.2 associated with the guide roller 11.2.
  • the thread 9 is guided between the godets as a loop of thread 12.
  • both the thread loop 12 of the first godet pair 32.1 and the thread loop of the second godet pair 32.2 are tempered by a respective heating device 20.1 and 20.2.
  • the heaters 20.1 and 20.2 are identically constructed and have a plurality of infrared heaters 21.1 and 21.2. In the event that several threads are guided parallel to the circumference of the godets 10.1 to 10.4, further infrared emitters not shown here could be integrated within the heater 20.1 and 20.2.
  • the godets 10.1 and 10.2 of the first godet pair 32.1 are driven by separate godet drives 26.1 and 26.2.
  • the godet drives 26.1 and 26.2 are associated with a controller 27, so that the godets 10.1 and 10.2 are preferably operated at the same peripheral speeds.
  • the godets 10.3 and 10.4 of the second godet pair 32.2 are driven by separate godet drives 26.3 and 26.4 and separate control devices 28.1 and 28.2. This allows the godets 10.3 and 10.4 preferably operate at different peripheral speeds.
  • the thread 9 on the godets with a wrap angle in the range> 120 °, preferably> 160 ° out.
  • the wrap angle is shown with reference number a example in the godet 10.1.
  • the thread loop on the circumference of the deflection roller 11.1 and 11.2 is preferably produced with a wrap angle in the range of 180 °.
  • This in Fig. 4 illustrated embodiment is so far particularly suitable to perform a high draw on a synthetic thread.
  • more pairs of godets can be added with or without a heating device, so that, in addition to stretching, shrinking treatment, for example during the production of technical rubber, is also possible at the same time.
  • the godet 10.3 and 10.4 are preferably driven with a speed difference such that the piece of thread between the godets 10.3 and 10.4 within the thread loop 12 can perform a relaxation.
  • Fig. 5 a further embodiment of the device according to the invention is shown, as for example in the in Fig. 1 or Fig. 2 melt-spinning processes could be used.
  • the embodiment is substantially identical to the in Fig. 1 and 3 illustrated embodiments, so that only the differences will be explained at this point.
  • the guide roller 11.1 is guided between the godets 10.1 and 10.2 on a guide rail 31 movable.
  • the guide roller 11 can be moved back and forth between an application position and an operating position.
  • the application position is shown in dashed lines.
  • the guide rail 31 terminates in the operating position within a heating chamber 29.
  • the guide roller 11 is held in the operating position within the heating chamber 29, so that the thread loop 12 formed between the godets 10.1 and 10.2 is held substantially within the heating chamber 29.
  • Within the heating chamber 29 are the sections associated with the thread loop heating elements 30, preferably run without contact or by contact heating of the thread 9.
  • the movably held deflection roller 11 in the exemplary embodiment Fig. 5 allows easy threading of the thread 9 at the beginning of the process.
  • the thread 9 with simple wrap around the two godets 10.1 and 10.2 lead.
  • the situation is shown in dashed lines.
  • the guide roller 11 is guided from the contact position to the operating position, wherein the thread 9 between the godets 10.1 and 10.2 is detected and is guided to the opposite side of the godet in a loop of thread 12.
  • the application process is completed.
  • FIG. 5 illustrated embodiment can optionally be combined with the previously shown embodiments of the device according to the invention, so that even when using multiple pairs of godets, the application of the thread in a simple manner is executable.
  • the guide roller 11 is disposed in the central region above the godets 10.1 and 10.2.
  • the guide roller 11 and the godets 10.1 and 10.2 each have an identical in size guide sheath, so that the thread 9 is guided on the overflow roller 11 and the godets 10.1 and 10.2 at an identical sheath diameter.
  • an infrared radiator 21 is arranged as a treatment device.
  • the infrared radiator 21 is designed such that on both longitudinal sides in each case a radiation is generated, which is directed directly to a piece of thread of the thread loop 12.
  • Each longitudinal side of the infrared radiator 21 is associated with a radiation converter 34.1 and 34.2.
  • the radiation converter 34.1 forms above the godet 10.1 together with the infrared radiator 21 a free space through which the running of the galette 10.1 to overflow roller 11 thread piece of the thread loop 12 is guided.
  • On the opposite side of the running thread piece of the thread loop 12 is guided by the overrun roller 11 to the second galette 10.2 through a second space which extends between the infrared radiator 21 and the second radiation converter 34.2.
  • the godet 10.1 is driven by the godet drive 26.1 and the godet 10.2 by the godet drive 26.2.
  • the godet drives 26.1 and 26.2 are independently controlled via the control units 28.1 and 28.2.
  • the effect of the infrared radiator 21 is significantly increased by the associated radiation converter 34.1 and 34.2.
  • radiations in the medium wavelength range are particularly effective for heating polymer materials.
  • Polymer materials absorb the infrared radiation predominantly in the wavelength range of 3 to 5 ⁇ m.
  • Very short-wave and very long-wave infrared radiation which are also generated by an infrared radiator, cause no significant heating of the thread due to the lack of absorption effect of the thread material.
  • the unused radiation is then converted by the radiation converter 34.1 and 34.2 to a medium-wave radiation and reflected.
  • the electric power of the radiator can be exploited with higher efficiency for heating the thread.
  • a uniform heating of the thread is achieved by two-sided irradiation.
  • that is in Fig. 6 illustrated embodiment particularly suitable to produce defined stretching points during the drawing of the thread.
  • inventive method and the device according to the invention are not on the in Fig. 1 and 2 limited melt spinning processes.
  • the method and apparatus of the invention can be incorporated in any melt spinning process to make a multifilament yarn to draw and stretch one or more filaments after melt spinning.
  • different treatment stages and treatments can be carried out with it so that threads for technical applications can be produced in addition to textile applications. It can thus also produce composite threads or crimped threads such as carpet yarns.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
EP07723813.7A 2006-04-05 2007-03-30 Verfahren und vorrichtung zum abziehen und verstrecken eines multifilen fadens Not-in-force EP2007935B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006015895 2006-04-05
PCT/EP2007/002871 WO2007115703A1 (de) 2006-04-05 2007-03-30 Verfahren und vorrichtung zum abziehen und verstrecken eines multifilen fadens

Publications (2)

Publication Number Publication Date
EP2007935A1 EP2007935A1 (de) 2008-12-31
EP2007935B1 true EP2007935B1 (de) 2013-08-21

Family

ID=38477106

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07723813.7A Not-in-force EP2007935B1 (de) 2006-04-05 2007-03-30 Verfahren und vorrichtung zum abziehen und verstrecken eines multifilen fadens

Country Status (3)

Country Link
EP (1) EP2007935B1 (zh)
CN (1) CN101443490B (zh)
WO (1) WO2007115703A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007023723A1 (de) * 2007-05-22 2008-11-27 Oerlikon Textile Gmbh & Co. Kg Vorrichtung zum Abziehen und Verstrecken multifiler Fäden
TWI494477B (zh) * 2008-05-23 2015-08-01 Oerlikon Textile Gmbh & Co Kg 用以在融熔紡絲時抽出及拉伸一多絲紗線之方法及執行該方法之裝置
DE102008039378A1 (de) 2008-08-22 2010-02-25 Oerlikon Textile Gmbh & Co. Kg Verfahren zum Abziehen und Verstrecken eines multifilen Fadens beim Schmelzspinnen sowie eine Vorrichtung zur Durchführung des Verfahrens
JP5178461B2 (ja) * 2008-11-05 2013-04-10 Tmtマシナリー株式会社 紡糸巻取機
WO2011009497A1 (de) 2009-07-22 2011-01-27 Oerlikon Textile Gmbh & Co. Kg Verfahren zum abziehen und zum verstrecken eines synthetischen fadens sowie eine vorrichtung zur durchführung des verfahrens
DE102009037125A1 (de) 2009-08-11 2011-02-17 Oerlikon Textile Gmbh & Co. Kg Verfahren zum Schmelzspinnen, Verstrecken und Aufwickeln eines multifilen Fadens sowie eine Vorrichtung zur Durchführung des Verfahrens
WO2011009498A1 (de) 2009-07-24 2011-01-27 Oerlikon Textile Gmbh & Co. Kg Verfahren zum schmelzspinnen, verstrecken und aufwickeln eines multifilen fadens sowie eine vorrichtung zur durchführung des verfahrens
MY156861A (en) * 2010-05-11 2016-04-15 Cytec Tech Corp Apparatus and methods for spreading fiber bundles for the continuous production of prepreg
JP5937945B2 (ja) * 2012-10-12 2016-06-22 Tmtマシナリー株式会社 紡糸延伸装置
CN103938333B (zh) * 2014-03-31 2017-03-08 吴江明佳织造有限公司 纺织用拉伸装置
DE102017126837A1 (de) * 2016-11-23 2018-05-24 Ritter Elektronik Gmbh Elektrisch beheizbare Galette und Verfahren zum elektrischen Beheizen einer Galette
CN106769288B (zh) * 2016-12-01 2020-09-01 核工业第八研究所 一种纤维拉伸试样的制样装置及其应用
DE112018003953A5 (de) * 2017-08-01 2020-05-07 Oerlikon Textile Gmbh & Co. Kg Vorrichtung zur Herstellung von synthetischen Fäden
DE102021001146A1 (de) 2021-03-04 2022-09-08 Oerlikon Textile Gmbh & Co. Kg Vorrichtung zum Abziehen, Verstrecken und Aufwickeln einer Fadenschar

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5082611A (en) * 1988-07-15 1992-01-21 E. I. Du Pont De Nemours And Company Process for spinning and drawing monofilaments with high tenacity and high tensile uniformity
DE19503561A1 (de) * 1994-02-09 1995-08-10 Barmag Spinnzwirn Gmbh Mehrzonenstreckwerk für Textilmaschinen
DE19808480A1 (de) * 1998-03-02 1999-09-09 Lausitzer Teppichfaserwerk Gmb Vorrichtung zur Erhöhung der Variabilität von Streckfeldern bei der Verarbeitung von synthetisch linearen Hochpolymeren

Also Published As

Publication number Publication date
EP2007935A1 (de) 2008-12-31
CN101443490A (zh) 2009-05-27
WO2007115703A1 (de) 2007-10-18
CN101443490B (zh) 2013-01-02

Similar Documents

Publication Publication Date Title
EP2007935B1 (de) Verfahren und vorrichtung zum abziehen und verstrecken eines multifilen fadens
EP2283173B1 (de) Verfahren zum abziehen und verstrecken eines multifilen fadens beim schmelzspinnen sowie eine vorrichtung zur durchführung des verfahrens
EP2456913B1 (de) Verfahren zum schmelzspinnen, verstrecken und aufwickeln eines multifilen fadens sowie eine vorrichtung zur durchführung des verfahrens
WO2011009497A1 (de) Verfahren zum abziehen und zum verstrecken eines synthetischen fadens sowie eine vorrichtung zur durchführung des verfahrens
EP2318577B1 (de) Verfahren zum schmelzspinnen, verstrecken und aufwickeln eines multifilen fadens sowie eine vorrichtung zur durchführung des verfahrens
EP3036361B1 (de) Vorrichtung zur herstellung einer mehrzahl synthetischer fäden
DE102011109784A1 (de) Vorrichtung zum Schmelzspinnen, Abziehen, Verstrecken, Relaxieren und Aufwickeln eines synthetischen Fadens
WO2006018240A1 (de) Vorrichtung und verfahren zum schmelzspinnen, abziehen, behandeln und aufwickeln mehrerer synthetischer fäden
EP2567008B1 (de) Verfahren und vorrichtung zum schmelzspinnen, verstrecken und aufwickeln mehrerer synthetischer fäden
WO2016005063A1 (de) Verfahren und vorrichtung zur herstellung synthetischer vollverstreckter fäden
WO2015049312A1 (de) Verfahren und vorrichtung zur herstellung synthetischer vollverstreckter fäden
EP2347045B1 (de) Heizeinrichtung
DE102009037125A1 (de) Verfahren zum Schmelzspinnen, Verstrecken und Aufwickeln eines multifilen Fadens sowie eine Vorrichtung zur Durchführung des Verfahrens
EP2358932B1 (de) Vorrichtung zum texturieren und aufwickeln mehrerer fäden
EP2527502B1 (de) Vorrichtung zum Abziehen und Verstrecken eines synthetischen Fadens
WO2019034488A1 (de) Verfahren und vorrichtung zur herstellung eines multifilen vollverstreckten fadens aus einer polyamidschmelze
DE102010048017A1 (de) Verfahren und Vorrichtung zum Schmelzspinnen und Verstrecken mehrerer synthetischer Fäden
DE102015016800A1 (de) Verfahren zum Schmelzspinnen, Abziehen, Verstrecken, Relaxieren und Aufwickeln eines synthetischen Fadens für technische Anwendungszwecke und eine zugehörige Vorrichtung
WO2019030134A1 (de) Vorrichtung zum abziehen und aufwickeln einer fadenschar
WO2019025263A1 (de) Vorrichtung zur herstellung von synthetischen fäden
WO2003002793A1 (de) Falschdralltexturiermaschine
EP3117031B1 (de) Verfahren und vorrichtung zum schmelzspinnen, verstrecken, kräuseln und aufwickeln mehrerer fäden
WO2017063913A1 (de) Verfahren und vorrichtung zur herstellung feiner multifiler fäden
DE102008039378A1 (de) Verfahren zum Abziehen und Verstrecken eines multifilen Fadens beim Schmelzspinnen sowie eine Vorrichtung zur Durchführung des Verfahrens
WO2014127981A1 (de) Verfahren und vorrichtung zum schmelzspinnen und verstrecken mehrerer multifiler fäden

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081024

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RBV Designated contracting states (corrected)

Designated state(s): CH DE IT LI

17Q First examination report despatched

Effective date: 20110610

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130327

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130606

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007012190

Country of ref document: DE

Effective date: 20131017

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140522

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007012190

Country of ref document: DE

Effective date: 20140522

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150228

Year of fee payment: 9

Ref country code: CH

Payment date: 20150319

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150330

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007012190

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161001

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160330