EP1979162A2 - Film flexible a base de polymere fluore - Google Patents

Film flexible a base de polymere fluore

Info

Publication number
EP1979162A2
EP1979162A2 EP07731521A EP07731521A EP1979162A2 EP 1979162 A2 EP1979162 A2 EP 1979162A2 EP 07731521 A EP07731521 A EP 07731521A EP 07731521 A EP07731521 A EP 07731521A EP 1979162 A2 EP1979162 A2 EP 1979162A2
Authority
EP
European Patent Office
Prior art keywords
parts
pvdf
layer
film
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07731521A
Other languages
German (de)
English (en)
Inventor
Anthony Bonnet
Sandrine Duc
Cyrille Mathieu
Johann Laffargue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37102975&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1979162(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Arkema France SA filed Critical Arkema France SA
Priority to EP11177003A priority Critical patent/EP2412523A1/fr
Publication of EP1979162A2 publication Critical patent/EP1979162A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/22Articles comprising two or more components, e.g. co-extruded layers the components being layers with means connecting the layers, e.g. tie layers or undercuts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/16PVDF, i.e. polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0223Vinyl resin fibres
    • B32B2262/0238Vinyl halide, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/542Shear strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/71Resistive to light or to UV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • Y10T428/31544Addition polymer is perhalogenated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/259Coating or impregnation provides protection from radiation [e.g., U.V., visible light, I.R., micscheme-change-itemave, high energy particle, etc.] or heat retention thru radiation absorption
    • Y10T442/2607Radiation absorptive

Definitions

  • the present invention relates to a PVDF-based film for the protection of substrates and substrates covered by this film. It also relates to a multilayer structure associating a sheet of PET or PEN and the PVDF-based film. Finally, the invention relates to the uses of PVDF-based film or multilayer film, in particular for the protection of photovoltaic modules.
  • PVDF polyvinylidene fluoride
  • the Applicant has developed a PVDF-based film which has good flexibility and good tensile strength, which is usable in some applications. It has also developed a multilayer structure associating the PVDF-based film with a PET or PEN film. [The prior art]
  • Application EP 1382640 describes a film with two or three layers based on a PVDF homo- or copolymer.
  • the PVDF copolymer comprises 0 to 50% comonomer.
  • the examples describe the use of PVDF homopolymer.
  • the application EP 1566408 describes a film with two or three layers based on PVDF homo- or copolymer.
  • the PVDF copolymer comprises from 0 to 50% comonomer, advantageously from 0 to 25% and preferably from 0 to 15%.
  • the film does not contain any charge.
  • EP 172864 discloses a photovoltaic cell protected by a PVDF / PET film. There is no adhesive layer between PVDF and PET.
  • US Pat. No. 6,555,190 describes a multilayer structure associating in order a layer of PEN, an adhesive layer and a layer of a fluorinated polymer (PCTFE, PVDF, etc.).
  • the adhesive layer comprises a polyolefin functionalized with a carboxylic acid or an unsaturated anhydride or a homo- or copolymer comprising, as monomer (s), acrylic acid, alkyl acrylates and acrylates optionally modified with an unsaturated acid or anhydride.
  • the application US 2005/0268961 describes a photovoltaic module protected by a film comprising two fluoropolymer layers, one having a melting temperature of greater than 135 ° C., the other having a melting point of less than 135 ° C.
  • FIG. 1 represents an assembly 1 comprising a photovoltaic module 2 protected by 3.
  • FIG. 2 schematically represents an assembly 4 comprising a photovoltaic module 2 protected by the film 3.
  • the module 2 comprises a layer 6 made up of photovoltaic cells coated in a thermoplastic resin (for example in EVA).
  • the module 2 also comprises a glass plate 5 serving as a front support for the module 2.
  • the protection is provided by a multilayer structure 3 comprising a PET sheet 8 disposed between two PVDF-based films, referenced 7 and 7 '.
  • FIG. 3 represents a stamped part 9 (in the schematic form of a cup) constituted by a steel sheet 10 protected by a film based on PVDF, referenced 11.
  • the invention relates to a multilayer structure using a PVDF-based film as defined in claim 1.
  • the invention also relates to the uses of this structure and to the process for manufacturing a PVDF-based film.
  • PVDF PVDF
  • copolymers of VDF containing preferably at least 50% by weight of VDF and at least one other copolymerizable fluorinated monomer are thus designated.
  • the VDF contains, by weight, at least 50% of VDF, more preferably at least 75% and more preferably at least 85%.
  • a PVDF advantageously comprising by weight 5 to 20%, advantageously 7 to 13%, of at least one fluorinated comonomer for 80 to 95% of VDF, advantageously for 87 to 93% of VDF (hereinafter referred to as this type of PVDF by "flexible PVDF").
  • the flexible PVDF is used for compositions A and B.
  • the fluorinated comonomer copolymerizable with VDF is chosen for example from vinyl fluoride; trifluoroethylene (VF3); chlorotrifluoroethylene (CTFE); 1,2-difluoroethylene; tetrafluoroethylene
  • TFE hexafluoropropylene
  • HFP hexafluoropropylene
  • perfluoro (alkyl vinyl) ethers such as perfluoro (methyl vinyl) ether (PMVE), perfluoro (ethyl vinyl) ether (PEVE) and perfluoro (propyl vinyl) ether (PPVE); perfluoro (1,3-dioxole); perfluoro (2,2-dimethyl-1,3-dioxole) (PDD).
  • the fluorinated comonomer is chosen from chlorotrifluoroethylene (CTFE), hexafluoropropylene (HFP), trifluoroethylene (VF3) and tetrafluoroethylene (TFE).
  • CTFE chlorotrifluoroethylene
  • HFP hexafluoropropylene
  • VF3 trifluoroethylene
  • TFE tetrafluoroethylene
  • the comonomer is advantageously 1 HFP since it copolymerizes well with VDF and makes it possible to provide good thermomechanical properties.
  • the copolymer comprises only VDF and HFP.
  • the PVDF has a viscosity ranging from 100 Pa.s to 2000 Pa.s, the viscosity being measured at 230 ° C., at a shear rate of 100 sec -1 using a capillary rheometer.
  • this type of PVDF is well suited to extrusion, preferably the PVDF has a viscosity ranging from 300 Pa.s to 1200 Pa.s, the viscosity being measured at 230 ° C. at a shear rate of 100 s "1 using a capillary rheometer.
  • PMMA homopolymers of methyl methacrylate (MMA) and copolymers containing at least 50% by weight of MMA and at least one other monomer copolymerizable with MMA are thus designated.
  • comonomer copolymerizable with MMA mention may be made, for example, of alkyl (meth) acrylates, acrylonitrile, butadiene, styrene and isoprene.
  • alkyl (meth) acrylates examples include acrylonitrile, butadiene, styrene and isoprene.
  • (meth) alkyl acrylates are described in Kirk-Othmer, Encyclopedia of Chemical Technology, 4th edition in Vol. 1 pages 292-293 and in Vol. 16 pages 475-478.
  • the PMMA comprises, by weight, from 0 to 20% and preferably 5 to 15% of a C 1 -C 8 alkyl (meth) acrylate, which is preferably methyl acrylate and / or acrylate. ethyl.
  • PMMA can be functionalized, that is to say it contains, for example, acid, acid chloride, alcohol, anhydride functions. These functions can be introduced by grafting or by copolymerization.
  • it is an acid function provided by the acrylic acid comonomer. Two neighboring acrylic acid functions may dehydrate to form an anhydride.
  • the proportion of functions can be from 0 to 15% by weight of the PMMA including the possible functions.
  • PMMA may optionally comprise at least one acrylic elastomer but it is preferable to avoid using such a PMMA because the acrylic elastomer can induce bleaching of the film.
  • acrylic elastomer There are commercial grades of "shock" PMMA which contain an acrylic elastomer in the form of multilayer particles. The acrylic elastomer is then present in the PMMA as it is marketed (that is to say introduced into the resin during the manufacturing process) but it can also be added during the manufacture of the film.
  • the proportion of acrylic elastomer ranges from 0 to 30 parts for 70 to 100 parts of PMMA, the total being 100 parts.
  • the multilayer particles also commonly known as core-shell, may be used as acrylic elastomer, they comprise at least one elastomeric (or soft) layer, ie a layer formed of a polymer having a glass transition temperature (T 9 ) of less than -5 ° C. and at least one rigid (or hard) layer, that is to say formed of a polymer having a T 9 greater than 25 ° C.
  • the size particles are generally less than 1 ⁇ m and advantageously between 50 and 300 nm. Examples of core-shell multilayer particles can be found in the following documents: EP 1061100 A1, US 2004/0030046 A1, FR-A-2446296 or US 2005/0124761 A1. Particles having at least 80% by weight of soft elastomeric phase are preferred.
  • the function of the acrylic elastomer is to improve the tensile strength of PMMA (impact modifier) and to promote the flexibility of PMMA.
  • the MVI (melt volume index or melt flow rate by volume in the molten state) of the PMMA may be between 2 and 15 cm 3/10 min measured at 23O 0 C under a load of 3.8 kg.
  • the adhesive layer this makes it possible to adhere the film to the substrate and consists of any type of adhesive making it possible to adhere the film to the substrate.
  • the urethane (PU-adhesive), epoxy, acrylic or polyester glues can be used for the adhesive layer, whether in thermoplastic or thermosetting form.
  • PU glue it will be possible to use a PU glue.
  • UV absorber it may be, for example, the additives mentioned in US Pat. No. 5,256,472.
  • Benzotriazole, benzophenone or benzylidene malonate or quinazoline type compounds are advantageously used.
  • the dispersing agent its function is to help disperse the mineral filler.
  • It is preferably a polyalkylene glycol, i.e. a polymer containing alkylene oxide units (eg ethylene oxide or propylene oxide).
  • poly (oxyethylene) glycol called commonly polyethylene glycol (PEG).
  • the polyalkylene glycol preferably has a number average mass of between 1000 and 10000 g / mol.
  • the polyalkylene glycol makes it possible to coat the particles of the mineral filler and to avoid direct contact between the particles and the PVDF.
  • PEG polyethylene glycol of formula H (OC 2 H 4 ) n OH where n is an integer close to 76, between 70 and 80; the product of formula H (OC 2 H 4 ) d [OCH (CH 3 ) CH 2 ] e (OC 2 H 4 ) f OH where d, e and f denote integers with d + f is close to 108, between 100 and 110, and e close to 35, between 30 and 40; CARBOWAX ® 3350 having an average molecular weight of about 3500 g / mol; CARBOWAX ® 8000 having an average molecular weight of from about 8000 g / mol; polyglycol ® 8000 of Clariant with an average molecular weight ranging between 7000 and 9000 g / mol.
  • the mineral filler may be a metal oxide such as, for example, titanium dioxide (TiO 2 ), silica, quartz, alumina, a carbonate such as, for example, calcium, talc, mica, dolominte (CaCO 3 'MgCO 3), montmorillonite (aluminosilicate), BaSO 4, ZrSiO 4, Fe 3 O 4.
  • TiO 2 titanium dioxide
  • silica silica
  • quartz quartz
  • alumina a carbonate
  • carbonate such as, for example, calcium, talc, mica, dolominte (CaCO 3 'MgCO 3), montmorillonite (aluminosilicate), BaSO 4, ZrSiO 4, Fe 3 O 4.
  • the mineral filler has an opacifying function in the UV / visible range.
  • the protective action of the charge is complementary to that of the UV absorber.
  • the opacifying mineral filler retains a protective action longer (it is not degraded).
  • a charge of TiO 2 is particularly preferred from this point of view.
  • the mineral filler may have another function.
  • it may be a flame retardant filler, such as, for example, antimony oxide (Sb 2 O 3 , Sb 2 O 5 ), Al (OH) 3 , Mg (OH) 2 , huntite ( 3MgCO 3 -CaCO 3 ), hydromagnesite (3MgCO 3 * Mg (OH) 2 # 3H 2 O).
  • a flame retardant filler such as, for example, antimony oxide (Sb 2 O 3 , Sb 2 O 5 ), Al (OH) 3 , Mg (OH) 2 , huntite ( 3MgCO 3 -CaCO 3 ), hydromagnesite (3MgCO 3 * Mg (OH) 2 # 3H 2 O).
  • It can also be a conductive charge of electricity (for example, carbon black or carbon nanotubes).
  • the filler has a size generally between 0.05 ⁇ m and 1 mm.
  • the content of inorganic filler in composition A or C is between 0.1 and 30 parts (for a total of 100 parts).
  • the content varies between 10 and 25 parts, preferably between 10 and 20 parts.
  • the mineral filler content is at least 10 parts to observe a good effectiveness of the opacifying filler (and possibly flame retardant). It is also preferable that this content does not exceed 25 parts, or even 20 parts, so as not to degrade the mechanical properties of the layer which comprises the charge, and therefore the mechanical properties of the entire film.
  • PVDF-based film As regards the PVDF-based film, it comes in several forms.
  • the PVDF-based film comprises 50 to 100 parts of at least one PVDF, from 0 to 50 parts of at least one of PMMA, 0 to 30 parts of at least one mineral filler and from 0 to 3 parts of at least one dispersing agent, the total being 100 parts (composition A).
  • the film adheres to the substrate with the aid of an adhesive layer, which may for example be a layer of a polyurethane (PU) adhesive.
  • an adhesive layer which may for example be a layer of a polyurethane (PU) adhesive.
  • PU polyurethane
  • Composition A comprises from 50 to 70 parts of at least one PVDF, from 10 to 40 parts of at least one PMMA and from 10 to 25 parts of at least one mineral filler (preferably TiO 2 ), the total doing 100 parts.
  • the PVDF of composition A is a flexible PVDF.
  • the PVDF-based film comprises a layer of composition A and a layer of composition B comprising 5 to 40 parts of at least one PVDF, from 60 to 95 parts of at least one PMMA and 0 to 5 parts of at least one UV absorber, the total making 100 parts.
  • the film adheres to the substrate either with the aid of the composition B or with the aid of an adhesive layer disposed between the substrate and the composition layer B.
  • the substrate optionally an adhesive layer / a layer of composition B / a layer of composition A
  • the PVDF of composition B is a flexible PVDF.
  • the composition B does not contain any acrylic elastomer or core-shell particle.
  • the PVDF-based film comprises a layer of composition C comprising 80 to 100 parts of at least one PVDF, from 0 to 20 parts of at least one of PMMA, 0 to 30 parts of at least one mineral filler and from 0 to 3 parts of at least one dispersing agent, the total being 100 parts and a layer of composition A.
  • the film adheres to the substrate with the aid of an adhesive layer.
  • a multilayer structure comprising in the following order: the substrate / an adhesive layer / a layer of composition A / a layer of composition C
  • Composition C comprises only PVDF as polymer.
  • Composition A comprises from 50 to 70 parts of at least one PVDF, from 10 to 40 parts of minus one PMMA and from 10 to 25 parts of at least one mineral filler (preferably TiO 2 ), the total being 100 parts.
  • the PVDF of composition C is a PVDF homopolymer.
  • the PVDF of composition A is a flexible PVDF.
  • the PVDF-based film comprises a layer of composition C, a layer of composition A and a layer of composition B.
  • the film adheres to the substrate either with the composition B or with the aid of an adhesive layer.
  • a multilayer structure comprising in the following order: the substrate / optionally an adhesive layer / a layer of composition B / a layer of composition A / a layer of composition C
  • Composition C comprises only polymer as PVDF.
  • Composition B comprises from 5 to 40 parts of at least one PVDF, from 60 to 95 parts of at least one PMMA and from 0 to 5 parts of at least one UV absorber, the total being 100 parts.
  • Composition A comprises from 50 to 70 parts of at least one PVDF, from 10 to 40 parts of at least one PMMA and from 10 to 25 parts of at least one mineral filler (preferably TiO 2 ), the total doing 100 parts.
  • the PVDF of composition C is a PVDF homopolymer.
  • the PVDF of composition A and / or B is a flexible PVDF.
  • the layer of composition C which is arranged against the layer of composition A, is the most "outer" layer.
  • composition A and / or B preferably does not contain any acrylic elastomer or core-shell particle. Indeed, this can induce a bleaching of the film when the latter is subjected to deformation important, which is the case for example during the manufacture of the film is during the introduction of the film on the substrate (for example during the stamping of a sheet of metal protected by the film).
  • the PVDF-based film which protects the substrate therefore comprises, in order from the substrate, a layer of optional composition B, a layer of composition A, a layer of composition C, the film adhering to the substrate by an adhesive layer and if the composition layer B is present, the adhesive layer is optional.
  • the thickness of the composition layer A is preferably between 5 and 50 ⁇ m, preferably between 5 and 15 ⁇ m.
  • the thickness of the layer of composition B is preferably between 5 and 45 microns, preferably between 5 and 15 microns.
  • the thickness of the layer of composition C is preferably between 2 and 30 microns, preferably between 2 and 15 microns.
  • the PVDF film is preferably manufactured by the coextrusion technique, but it is also possible to use a solvent processing technique or by using the plaxing technique.
  • the PVDF-based film can also be manufactured by coextrusion-blowing film ("blown film").
  • blown film This technique consists in extruding, generally from bottom to top, a thermoplastic polymer through an annular die, the extrudate is simultaneously drawn longitudinally by a drawing device, usually in rolls, and inflated by a constant volume of air trapped between the die, the draw system and the wall of the sheath.
  • the inflated sheath also called “bubble” is generally cooled by an air blowing ring at the exit of the die.
  • the flat bubble is rolled up, either in the form of a sheath or after cutting into two separate films.
  • a semicrystalline fluid polymer is coextruded with a thermoplastic resin which is incompatible in such a way that after cooling and flattening of the bubble, the two extruded films are recovered separately from each other.
  • conventional means such as by separate winding separate films.
  • a bubble consists of a film of 25 microns of PVDF coextruded with a film of 60 microns of polyethylene (PE).
  • PE polyethylene
  • the thickness of the PE film should preferably be 1 to 5 times the thickness of the semi-crystalline polymer film. It is also written that it is not excluded to coextrude more than two films, but nothing is specified on the exact nature of the films in question.
  • International application WO 03/039840 discloses a process for manufacturing a fluorinated film which also uses an incompatible polymer, which may be a PE, a high impact polystyrene, a plasticized PVC and preferably a low density PE.
  • an incompatible polymer which may be a PE, a high impact polystyrene, a plasticized PVC and preferably a low density PE.
  • the process for manufacturing the film by the PVDF coextrusion-blow molding process consists of coextruding: a) the various layers of the PVDF-based film (of composition A, B, C); b) a layer L1 of a polyolefin adjacent to the composition layer A or the composition layer C; c) optionally another layer L2 of a polyolefin adjacent to all the extruded layers in a) and b), on the opposite side to the extruded layer in b), and after cooling the coextrudate, to recover, by separation of the (or) polyolefin layer (s), the PVDF-based film.
  • the polyolefin (also called “liner”) used in b) may be the same or different from that used in c).
  • Photovoltaic modules can be protected at the rear by the PVDF-based film.
  • a photovoltaic module makes it possible to convert light energy into electric current.
  • a photovoltaic module comprises photovoltaic cells mounted in series and connected together by means of electrical connection.
  • Photovoltaic cells are generally mono junction fabricated based on multi-crystalline silicon doped "P” with boron during the melting of silicon and doped "N” with phosphorus on their illuminated surface. These cells are put in place in a laminated stack.
  • the laminated stack may consist of EVA (ethylene-vinyl acetate copolymer) coating photovoltaic cells to protect the silicon from oxidation and moisture.
  • the stack is nested between a glass plate that serves as a support on one side and is protected by a film on the other side. The photovoltaic module is thus protected against aging (UV, salt spray, etc.) against scratches, moisture or water vapor
  • the module is generally protected by a multilayer structure sold under the brand or ICOSOLAR AKASOL ® ® which is an association of a film of TEDLAR ® (polyvinyl fluoride or PVF) and a PET film (polyethylene terephthalate).
  • TEDLAR ® polyvinyl fluoride
  • PET film polyethylene terephthalate
  • the multilayer structure therefore comprises a PET sheet bonded to at least one PVDF-based film as defined above and is in the form of: a film based on PVDF F1 / a PET film or in the form: a film with PVDF-based F1 / foil PET / PVDF-based film F2
  • the two movies F1 and F2 are as defined above. They may be identical or different, that is to say they may be independently of one another according to one of the four forms of the invention described. previously.
  • Each of the two films F1 or F2 adheres to the PET sheet using a layer of composition B or using an adhesive layer.
  • the multilayer structure comprises: a film based on PVDF F1 attached to a sheet of PET or PEN or else
  • composition layer B comprising from 5 to 40 parts of at least one PVDF, from 60 to 95 parts of at least one PMMA and from 0 to 5 parts of at least one UV absorber, the total being 100 parts ;
  • a layer of composition A comprising from 50 to 100 parts of at least one PVDF, from 0 to 50 parts of at least one PMMA, from 0 to 30 parts of at least one mineral filler and from 0 to 3 parts at least one dispersing agent, the total being 100 parts;
  • composition C comprising from 80 to 100 parts of at least one PVDF, from 0 to 20 parts of at least one PMMA, from 0 to 30 parts of at least one mineral filler and from 0 to 3 parts at least one dispersing agent, the total being 100 parts; tel:
  • An adhesive layer is placed between the PET or PEN film and the F1 and / or F2 film;
  • This adhesive layer being optional if the composition layer B is present.
  • the adhesive layer does not comprise any polyolefin functionalized with a carboxylic acid or an unsaturated anhydride or else a homo- or copolymer comprising, as monomer (s), acrylic acid, alkyl acrylates and acrylates optionally modified with an acid. or anhydride unsaturated.
  • compositions A and / or B contain no acrylic elastomer or core-shell particle.
  • the adhesive layer is optional if the composition layer B is present. If an adhesive layer is used, a PU adhesive is preferred.
  • the multilayer structure can be manufactured by hot compression of the various elements (that is to say the PET sheet, the film (s) based on PVDF, ). It is also possible to use the lamination technique which consists of continuously rolling the PVDF-based film (s) (previously in the form of a coil) with the PET film on which the adhesive was optionally deposited.
  • An example of vacuum lamination process for applying a structure of AKASOL ® or ICOSOLAR ® type on a photovoltaic module is described in US Pat. No. 5,593,532 and can be applied to the multilayer structure of the invention.
  • the structure is manufactured by combining the PVDF-based film (s) already formed with the PET film.
  • the adhesive layer comprises a polyolefin functionalized with a carboxylic acid or an unsaturated anhydride or a homo- or copolymer comprising, as monomer (s), acrylic acid, alkyl acrylates and acrylates optionally modified with an unsaturated acid or anhydride.
  • FIG. 1 shows schematically examples of a photovoltaic module 2 protected.
  • Reference 3 in FIG. 1 represents either a PVDF-based film or a multilayer structure associating a sheet of PET or PEN with one or two PVDF-based films.
  • the invention also relates to the photovoltaic module protected by the PVDF-based film or by the multilayer structure.
  • the following order is therefore: (the module) / adhesive layer / comp. B vent. / comp. A / comp. C vent.,
  • the adhesive layer being optional if the composition layer B is present.
  • the invention is however not limited to the photovoltaic module as described above or in FIG. 2. Further examples of photovoltaic modules will thus be found in FR 2863775 A1 (see in particular FIG. 1), US 6369316 B1, US 2004/0229394 A1, US 2005/0172997 A1, US 2005/0268961 A1.
  • the PVDF-based film can be used to protect a flexible substrate such as a technical textile that can be woven or non-woven. It may be a fabric made of PVC, polyester or polyamide, a glass fabric, a glass mat, a fabric of aramid or Kevlar, ....
  • a PVC tarpaulin is an example of a flexible substrate in PVC.
  • the film of the invention may be for example applied to the technical fabric using the lamination technique or by coating.
  • the invention also relates to the technical textile protected by the film based on PVDF.
  • the adhesive layer being optional if the composition layer B is present.
  • the PVDF-based film can be colaminated on a metal substrate which can be for example steel, copper or aluminum.
  • a metal substrate which can be for example steel, copper or aluminum.
  • it is a metal sheet, preferably steel.
  • the steel is galvanized, and is coated or not with a primer.
  • the steel can be treated with Zincrox or coated with B1236 acrylic / vinyl primer, B710 epoxy primer or CN4118 melamine polyester primer.
  • the PVDF-based film is sufficiently flexible so that the steel / film assembly can then undergo significant deformation. For example, the set can be stamped.
  • FIG. 3 represents an example of a piece of steel 10 protected by the PVDF-based film, referenced 10.
  • the part represents a metal cup (for example made of steel) obtained by stamping a sheet of metal on which was colaminated. movie.
  • the invention also relates to the metal substrate protected by the PVDF-based film.
  • the adhesive layer being optional if the composition layer B is present.
  • PVDF-1 VDF / HFP copolymer in the form of granules (10% HFP by weight) MVI 1, 1 cm 3/10 min (23O 0 C, 5 kg), having a viscosity of 2500 mPa s at 23O 0 C, 100 s -1 and a melting point of about 145 ° C.
  • Altuglas ® BS 580 (previously sold as OROGLAS ® BS8): PMMA company INTERNATIONAL Altuglas (formerly Atoglas) MVI 4.5 cm 3/10 min (23O 0 C, 3.8 kg) in the form of beads containing a comonomer, methyl acrylate at a level of 6% by weight. This PMMA does not contain a shock additive or acrylic elastomer.
  • PVDF-2 PVDF homopolymer in the form of granules MVI 1, 1 cm 3/10 min (23O 0 C, 5 kg).
  • PVDF-3 VDF / HFP copolymer in pellet form (17 weight% HFP) MVI of 10 cm 3/10 min (23O 0 C, 5 kg), having a viscosity of 900 mPa s at 23O 0 C, 100 s- 1 .
  • DESMODUR ® N-100 aliphatic isocyanate of CAS No. 28182-81-2 marketed by LANXESS.
  • FLUORAD ® FC-430 fluorinated surfactant from 3M.
  • TONE ® 201 poly (caprolactone) diol marketed by Union Carbide (molecular weight approximately 830 g / mol).
  • Example 1 (according to the invention. 1 st form)
  • a monolayer film consisting of 60 wt% of PVDF-1, 15% reference TiO2 R960 and 25% of Altuglas BS ® 580 is extruded as a film thickness of 15 microns and width of 2000 mm with the aid of a film extruder at a temperature of 245 ° C.
  • DBTL dibutyl tin dilaurate b
  • the monolayer film is then laminated at 130 ° C. on the polyester substrate (a PET / PU glue / monolayer film structure is thus obtained).
  • the adhesion obtained is greater than 40 N / cm. After a passage of 8 hours in an oven at 95 0 C the adhesion is retained, the structure can be folded easily without generating a crack in the fluorinated film.
  • a two-layer film consists of:
  • a layer of 10 ⁇ m thick containing PVDF-2 (100%) and with a width of 2000 mm is produced on a film extruder at a temperature of 245 ° C.
  • bilayer film is then laminated at 15O 0 C on the polyester substrate (thus obtaining a PET structure / PU adhesive / layer comprising PVDF-1 / layer comprising PVDF-2).
  • the adhesion obtained is greater than 60 N / cm. After a passage of 8 hours in an oven at 95 0 C, the adhesion is retained, the structure can be folded easily without generating a crack in the fluorinated film.
  • Example 3 (according to the invention. 1 st form)
  • DBTL dibutyl tin dilaurate b
  • the monolayer film is then laminated at 130 ° C. on the polyester substrate (a PET / PU glue / monolayer film structure is thus obtained).
  • the adhesion obtained is greater than 40 N / cm. After a passage of 8 hours in an oven at 95 0 C, the adhesion is retained, the structure can be folded easily without generating a crack in the fluorinated film. This film also has excellent fire resistance.
  • a two-layer structure consists of: • a layer 15 ⁇ m thick made up of 83% by weight of
  • PVDF-3 15% of Sb 2 O 3 and 2% of a PEG of mass 1500 g / mol of the company CLARIANT and
  • PETROCHEMICALS is carried out on a KIEFEL film blown extruder at a temperature of 245 ° C. No adhesion is generated between the two layers.
  • the PE layer is the L1 layer previously described ("liner").
  • DBTL dibutyl tin dilaurate b
  • the two-layer structure is then laminated at 130 ° C. on the polyester substrate, the layer in contact with the PU adhesive being that containing the PVDF-3. During and after the lamination phase, a PET / PU adhesive complex is thus obtained. / monolayer film containing PVDF-3, and protected by the PE layer which can then be removed simply before using the complex.
  • the adhesion obtained between the PET and the PVDF-based film is greater than 40 N / cm. After a passage of 8 hours in an oven at 95 0 C, the adhesion is retained, the structure can be folded easily without generating a crack in the fluorinated film. This film also has excellent fire resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Hybrid Cells (AREA)

Abstract

L'invention est relative à une structure multicouche comprenant • un film à base de PVDF F1 accolé à une feuille de PET ou de PEN ou bien • un film à base de PVDF F1 accolé à une feuille de PET ou de PEN elle-même accolée à un film à base de PVDF F2, le film F1 et/ou F2 comprenant (dans l'ordre en partant de la feuille de PET ou de PEN) : • éventuellement une couche de composition B comprenant de 5 à 40 parties d'au moins un PVDF, de 60 à 95 parties d'au moins un PMMA et de 0 à 5 parties d'au moins un absorbeur UV, le total faisant 100 parties ; • une couche de composition A, comprenant de 50 à 100 parties d'au moins un PVDF, de 0 à 50 parties d'au moins un PMMA, de 0 à 30 parties d'au moins une charge minérale et de 0 à 3 parties d'au moins un agent dispersant, le total faisant 100 parties ; • éventuellement une couche de composition C comprenant de 80 à 100 parties d'au moins un PVDF, de 0 à 20 parties d'au moins un PMMA, de 0 à 30 parties d'au moins une charge minérale et de 0 à 3 parties d'au moins un agent dispersant, le total faisant 100 parties ; tel : • qu'une couche adhésive est disposée entre la feuille de PET ou de PEN et le film F1 et/ou F2 ; • cette couche adhésive étant optionnelle si la couche de composition B est présente et ne comprenant aucune une polyoléfine fonctionnalisée par un acide carboxylique ou un anhydride insaturé ou bien un homo- ou copolymère comprenant comme monomère(s) l'acide acrylique, les acrylates et acrylates d'alkyle éventuellement modifié par un acide ou anhydride insaturé ; • que les composition A et/ou B ne contiennent aucun élastomère acrylique ni aucune particule noyau-écorce.

Description

FILM FLEXIBLE A BASE DE POLYMERE FLUORE
[Domaine de l'invention]
La présente invention concerne un film à base de PVDF pour la protection de substrats et les substrats recouverts par ce film. Elle concerne aussi une structure multicouche associant une feuille de PET ou de PEN et le film à base de PVDF. Enfin, l'invention concerne les utilisations du film à base de PVDF ou du film multicouche, notamment pour la protection des modules photovoltaïques.
[Le problème technique]
Le PVDF (polyfluorure de vinylidène) en raison de sa très bonne résistance aux intempéries, au rayonnement et aux produits chimiques est un polymère utile pour protéger les objets et matériaux. Il est aussi apprécié pour son aspect brillant et sa résistance aux graffitis. On est donc amené à revêtir toutes sortes d'objets avec un film de PVDF. Cependant, il est nécessaire que le film présente une bonne adhérence sur le substrat à protéger, présente une très bonne résistance thermique que demandent les applications extérieures soumises à des conditions climatiques sévères ou les procédés de transformation réalisés à haute température. Il est nécessaire aussi que le film présente une bonne flexibilité et une bonne résistance à la rupture de façon à résister aux sollicitations mécaniques lors de la pose du film sur l'objet ou une fois le film posé sur l'objet lorsque ce dernier est mis en forme, par exemple par emboutissage. Un test applicatif utilisé consiste à déchirer un film qui a subi un vieillissement en étuve et à voir si la déchirure se propage facilement ou pas.
La Demanderesse a mis au point un film à base de PVDF qui présente une bonne flexibilité et une bonne résistance à la rupture, qui est utilisablecertaines applications. Elle a aussi mis au point une structure multicouche associant le film à base de PVDF à une feuille de PET ou de PEN. [L'art antérieur]
La demande EP 1382640 décrit un film à deux ou trois couches à base d'un PVDF homo- ou copolymère. Le PVDF copolymère comprend de 0 à 50% de comonomère. Les exemples décrivent l'utilisation de PVDF homopolymère.
La demande EP 1566408 décrit un film à deux ou trois couches à base de PVDF homo- ou copolymère. Le PVDF copolymère comprend de 0 à 50% de comonomère, avantageusement de 0 à 25% et de préférence de 0 à 15%. Le film ne contient aucune charge.
La demande EP 172864 décrit une cellule photovoltaïque protégée par un film PVDF / PET. Il n'y a pas de couche adhésive entre le PVDF et le PET.
La demande internationale WO 2005/081859 décrit des films multicouches à base de polymère fluoré et de polymère acrylique.
Le brevet US 6555190 décrit une structure multicouche associant dans l'ordre une couche de PEN, une couche adhésive et une couche d'un polymère fluoré (PCTFE, PVDF, ...). La couche adhésive comprend une polyoléfine fonctionnalisée par un acide carboxylique ou un anhydride insaturé ou bien un homo- ou copolymère comprenant comme monomère(s) l'acide acrylique, les acrylates et acrylates d'alkyle éventuellement modifié par un acide ou anhydride insaturé.
La demande US 2005/0268961 décrit un module photovoltaïque protégé par un film comprenant deux couches de polymère fluoré, l'une ayant une température de fusion supérieure à 1350C, l'autre ayant une température de fusion inférieure à 1350C.
La demande US 2005/0172997 ou le brevet US 6369316 décrivent un module photovoltaïque protégé par un film en poly(fluorure de vinyle) (film TEDLAR). [Figures]
La figure 1 représente un ensemble 1 comprenant un module photovoltaïque 2 protégé par 3.
La figure 2 représente de façon schématique un ensemble 4 comprenant un module photovoltaïque 2 protégé par le film 3. Le module 2 comprend une couche 6 constituée de cellules photovoltaïques enrobées dans une résine thermoplastique (par ex. en EVA). Le module 2 comprend aussi une plaque de verre 5 servant de support avant du module 2. La protection est assurée par une structure multicouche 3 comprenant une feuille de PET 8 disposée entre deux films à base de PVDF, référencés 7 et 7'.
La figure 3 représente une pièce emboutie 9 (sous la forme schématique d'un godet) constituée d'une tôle en acier 10 protégé par un film à base de PVDF, référencé 11.
[Brève description de l'invention]
L'invention est relative à une structure multicouche utilisant un film à base de PVDF telle que définie à la revendication 1. L'invention est relative aussi aux utilisations deladite structure et au procédé de fabrication d'un film à base de PVDF.
La demande française FR 06.00695 dont la priorité du 25 janvier 2006 est revendiquée est intégralement incorporée à la présente demande.
[Description détaillée]
S'agissant du PVDF, on désigne ainsi les PVDF, homopolymères du fluorure de vinylidène (VDF, CH2=CF2) et les copolymères du VDF contenant de préférence au moins 50 % en poids de VDF et au moins un autre monomère fluoré copolymérisable avec le VDF. De préférence, le PVDF contient, en poids, au moins 50% de VDF, plus préférentiellement au moins 75% et mieux encore au moins 85%. De préférence, afin de favoriser la flexibilité du film, on pourra utiliser pour l'une quelconque des couches du film, un PVDF comprenant avantageusement en poids de 5 à 20%, avantageusement de 7 à 13% d'au moins un comonomère fluoré pour 80 à 95% de VDF, avantageusement pour 87 à 93% de VDF (on désigne par la suite ce type de PVDF par « PVDF flexible »). De préférence, on utilise le PVDF flexible pour les compositions A et B.
Avantageusement, le comonomère fluoré copolymérisable avec le VDF est choisi par exemple parmi le fluorure de vinyle; le trifluoroéthylène (VF3); le chlorotrifluoroethylène (CTFE); le 1 ,2-difluoroéthylène; le tetrafluoroéthylène
(TFE); l'hexafluoropropylène (HFP); les perfluoro(alkyl vinyl) éthers tels que le perfluoro(méthyl vinyl)éther (PMVE), le perfluoro(éthyl vinyl) éther (PEVE) et le perfluoro(propyl vinyl) éther (PPVE); le perfluoro(1 ,3-dioxole); le perfluoro(2,2- diméthyl-1 ,3-dioxole) (PDD).
De préférence le comonomère fluoré est choisi parmi le chlorotrifluoroethylène (CTFE), l'hexafluoropropylène (HFP), le trifluoroéthylène (VF3) et le tetrafluoroéthylène (TFE). Le comonomère est avantageusement I1HFP car il copolymérise bien avec le VDF et permet d'apporter de bonnes propriétés thermomécaniques. De préférence, le copolymère ne comprend que du VDF et de l'HFP.
Avantageusement, le PVDF a une viscosité allant de 100 Pa.s à 2000 Pa.s, la viscosité étant mesurée à 23O0C, à un gradient de cisaillement de 100 s"1 à l'aide d'un rhéomètre capillaire. En effet, ce type de PVDF est bien adapté à l'extrusion. De préférence, le PVDF a une viscosité allant de 300 Pa.s à 1200 Pa.s, la viscosité étant mesurée à 23O0C, à un gradient de cisaillement de 100 s"1 à l'aide d'un rhéomètre capillaire. S'agissant du PMMA, on désigne ainsi les homopolymères du méthacrylate de méthyle (MMA) et les copolymères contenant au moins 50% en poids de MMA et au moins un autre monomère copolymérisable avec le MMA.
A titre d'exemple de comonomère copolymérisable avec le MMA, on peut citer par exemple les (méth)acrylates d'alkyle, l'acrylonitrile, le butadiène, le styrène, l'isoprène. Des exemples de (méth)acrylates d'alkyle sont décrits dans KIRK- OTHMER, Encyclopedia of chemical technology, 4eme édition dans le Vol. 1 pages 292-293 et dans le Vol. 16 pages 475-478.
Avantageusement, le PMMA comprend en poids de 0 à 20% et de préférence 5 à 15% d'un (méth)acrylate d'alkyle en CrC8, qui est de préférence l'acrylate de méthyle et/ou l'acrylate d'éthyle. Le PMMA peut être fonctionnalisé c'est-à-dire qu'il contient par exemple des fonctions acide, chlorure d'acide, alcool, anhydride. Ces fonctions peuvent être introduites par greffage ou par copolymérisation. Avantageusement, c'est une fonction acide apportée par le comonomère acide acrylique. Deux fonctions acide acrylique voisines peuvent se déshydrater pour former un anhydride. La proportion de fonctions peut être de 0 à 15% en poids du PMMA comprenant les fonctions éventuelles.
Le PMMA peut comprendre éventuellement au moins un élastomère acrylique mais il est préférable d'éviter d'utiliser un tel PMMA car l'élastomère acrylique peut induire un blanchiment du film. Il existe des qualités commerciales de PMMA dites « choc » qui contiennent un élastomère acrylique sous forme de particules multicouches. L'élastomère acrylique est alors présent dans le PMMA tel qu'il est commercialisé (c'est-à-dire introduit dans la résine au cours du procédé de fabrication) mais il peut aussi être ajouté lors de la fabrication du film. La proportion d'élastomère acrylique varie de 0 à 30 parts pour 70 à 100 parts de PMMA, le total faisant 100 parts. Les particules multicouches, appelées aussi couramment core-shell (noyau-écorce), peuvent être utilisées comme élastomère acrylique, elles comprennent au moins une couche élastomérique (ou molle), c'est-à-dire une couche formée d'un polymère ayant une température de transition vitreuse (T9) inférieure à -50C et au moins une couche rigide (ou dure), c'est-à-dire formée d'un polymère ayant une T9 supérieure à 250C. La taille des particules est en général inférieure au μm et avantageusement comprise entre 50 et 300 nm. On trouvera des exemples de particules multicouches de type core-shell dans les documents suivants : EP 1061100 A1, US 2004/0030046 A1, FR-A-2446296 ou US 2005/0124761 A1. On préférera des particules ayant au moins 80% en poids de phase élastomérique molle. L'élastomère acrylique a pour fonction d'améliorer la résistance en traction du PMMA (modifiant choc) et de favoriser la souplesse du PMMA.
Le MVI (melt volume index ou indice de fluidité en volume à l'état fondu) du PMMA peut être compris entre 2 et 15 cm3/10 min mesuré à 23O0C sous une charge de 3,8 kg.
S'agissant de la couche adhésive, celle-ci permet de faire adhérer le film sur le substrat et est constituée de tout type d'adhésif permettant de faire adhérer le film sur le substrat. On peut utiliser pour la couche adhésive les colles uréthanes (colle PU), époxydes, acryliques ou polyesters qu'elles soient sous forme thermoplastique ou thermodurcissable. Avantageusement, on pourra utiliser une colle PU.
S'agissant de l'absorbeur UV, il peut s'agir par exemple des additifs cités dans le brevet US 5256472. On utilise avantageusement les composés de type benzotriazoles, benzophénones, benzylidène malonates ou quinazolines. A titre d'exemple on peut utiliser les TINUVIN® 213 ou TINUVIN® 109 et de façon préférable le TINUVIN ® 234 de la société Ciba Speciality Chemicals.
S'agissant de l'agent dispersant, il a pour fonction d'aider à disperser la charge minérale. Il s'agit de préférence d'un polyalkylène glycol, c'est-à-dire d'un polymère renfermant des motifs oxyde d'alkylène (par ex. oxyde d'éthylène ou de propylène). De préférence, il s'agit du poly(oxyéthylène)glycol appelé communément polyéthylène glycol (PEG). Le polyalkylène glycol a de préférence une masse moyenne en nombre comprise entre 1000 et 10000 g/mol. Le polyalkylène glycol permet d'enrober les particules de la charge minérale et d'éviter un contact direct entre les particules et le PVDF.
Des exemples de PEG sont décrits dans les brevets US 5587429 et US 5015693. Ainsi, on peut citer : le polyéthylène glycol de formule H(OC2H4)nOH où n est un entier proche de 76, compris entre 70 et 80 ; le produit de formule H(OC2H4)d[OCH(CH3)CH2]e(OC2H4)fOH où d, e et f désignent des entiers avec d+f est proche de 108, compris entre 100 et 110, et e proche de 35, entre 30 et 40 ; le CARBOWAX® 3350 ayant une masse moléculaire moyenne en nombre d'environ 3500 g/mol ; le CARBOWAX® 8000 ayant une masse moléculaire moyenne en nombre d'environ 8000 g/mol ; le POLYGLYCOL® 8000 de CLARIANT ayant une masse moléculaire moyenne en nombre comprise entre 7000 et 9000 g/mol.
S'agissant de la charge minérale, il peut s'agir d'un oxyde métallique comme par exemple le dioxyde de titane (TiO2), la silice, le quartz, l'alumine, d'un carbonate comme par exemple le carbonate de calcium, le talc, le mica, la dolominte (CaCO 3 »MgCO3), la montmorillonite (aluminosilicate), BaSO4, ZrSiO4, Fe3O4.
La charge minérale a une fonction d'opacifiant dans le domaine de l'UV/visible. L'action protectrice de la charge est complémentaire de celle de l'absorbeur UV. De plus, à la différence de l'absorbeur UV qui est une molécule organique, la charge minérale opacifiante conserve une action protectrice plus longtemps (elle n'est pas dégradée). Une charge de TiO2 est tout particulièrement préférée de ce point de vue-là.
La charge minérale peut avoir une autre fonction. Par exemple, il peut s'agir d'une charge ignifugeante, comme par exemple l'oxyde d'antimoine (Sb2O3, Sb2O5), AI(OH)3, Mg(OH)2, la huntite (3MgCO3-CaCO3), l'hydromagnésite (3MgCO3* Mg(OH)2 #3H2O). Il peut s'agir aussi d'une charge conductrice de l'électricité (par exemple, du noir de carbone ou bien des nanotubes de carbone).
La charge a une taille généralement comprise entre 0,05 μm et 1 mm. De préférence, la teneur en charge minérale dans la composition A ou C est comprise entre 0,1 et 30 parties (pour un total de 100 parties). Avantageusement, la teneur varie entre 10 et 25 parties, de préférence entre 10 et 20 parties. Il est préférable que la teneur en charge minérale soit d'au moins 10 parties pour observer une bonne efficacité de la charge opacifiante (et éventuellement ignifugeante). Il est préférable aussi que cette teneur ne dépasse pas 25 parties, voire 20 parties, pour ne pas dégrader les propriétés mécaniques de la couche qui comprend la charge, donc les propriétés mécaniques du film tout entier.
S'agissant du film à base de PVDF, celui-ci se présente sous plusieurs formes.
1ère forme
Selon une 1ere forme, le film à base de PVDF comprend de 50 à 100 parties d'au moins un PVDF, de 0 à 50 parties d'au moins un PMMA, de 0 à 30 parties d'au moins une charge minérale et de 0 à 3 parties d'au moins un agent dispersant, le total faisant 100 parties (composition A). Le film adhère sur le substrat à l'aide d'une couche adhésive, qui peut être par exemple une couche d'une colle polyuréthane (PU). On a donc une structure multicouche comprenant dans l'ordre : le substrat / une couche adhésive / une couche de composition A
best mode
La composition A comprend de 50 à 70 parties d'au moins un PVDF, de 10 à 40 parties d'au moins un PMMA et de 10 à 25 parties d'au moins une charge minérale (de préférence le TiO2), le total faisant 100 parties. Exemple: 60% PVDF flexible + 15% TiO2 + 25% PMMA (voir exemple 1 ). De préférence, le PVDF de la composition A est un PVDF flexible.
2ème forme Selon une 2eme forme, le film à base de PVDF comprend une couche de composition A et une couche de composition B comprenant de 5 à 40 parties d'au moins un PVDF, de 60 à 95 parties d'au moins un PMMA et de 0 à 5 parties d'au moins un absorbeur UV, le total faisant 100 parties. Le film adhère sur le substrat soit à l'aide de la composition B soit à l'aide d'une couche adhésive disposée entre le substrat et la couche de composition B. On a donc une structure multicouche comprenant dans l'ordre : le substrat / éventuellement une couche adhésive / une couche de composition B / une couche de composition A
De préférence, le PVDF de la composition B est un PVDF flexible. De préférence, la composition B ne contient aucun élastomère acrylique ni aucune particule noyau-écorce.
3ème forme Selon une 3eme forme, le film à base de PVDF comprend une couche de composition C comprenant de 80 à 100 parties d'au moins un PVDF, de 0 à 20 parties d'au moins un PMMA, de 0 à 30 parties d'au moins une charge minérale et de 0 à 3 parties d'au moins un agent dispersant, le total faisant 100 parties et une couche de composition A. Le film adhère sur le substrat à l'aide d'une couche adhésive. On a donc une structure multicouche comprenant dans l'ordre : le substrat / une couche adhésive / une couche de composition A / une couche de composition C
best mode
La composition C ne comprend comme polymère que du PVDF. La composition A comprend de 50 à 70 parties d'au moins un PVDF, de 10 à 40 parties d'au moins un PMMA et de 10 à 25 parties d'au moins une charge minérale (de préférence le TiO2), le total faisant 100 parties. Exemple: [60% PVDF flexible + 15% TiO2 + 25% PMMA] / PVDF homopolymère (voir exemple 3).
De préférence, le PVDF de la composition C est un PVDF homopolymère. De préférence, le PVDF de la composition A est un PVDF flexible.
4ème forme
Selon une 4eme forme, le film à base de PVDF comprend une couche de composition C, une couche de composition A et une couche de composition B.
Le film adhère sur le substrat soit à l'aide de la composition B soit à l'aide d'une couche adhésive. On a donc une structure multicouche comprenant dans l'ordre : le substrat / éventuellement une couche adhésive / une couche de composition B / une couche de composition A / une couche de composition C
best mode
La composition C ne comprend comme polymère que le PVDF. La composition B comprend de 5 à 40 parties d'au moins un PVDF, de 60 à 95 parties d'au moins un PMMA et de 0 à 5 parties d'au moins un absorbeur UV, le total faisant 100 parties. La composition A comprend de 50 à 70 parties d'au moins un PVDF, de 10 à 40 parties d'au moins un PMMA et de 10 à 25 parties d'au moins une charge minérale (de préférence le TiO2), le total faisant 100 parties.
De préférence, le PVDF de la composition C est un PVDF homopolymère. De préférence, le PVDF de la composition A et/ou B est un PVDF flexible.
Dans les 3eme et 4eme formes, la couche de composition C, qui est disposée contre la couche de composition A, est donc la couche la plus « externe ». Pour toutes les formes, la composition A et/ou B ne contient de préférence aucun élastomère acrylique ni aucune particule noyau-écorce. En effet, ceci peut induire un blanchiment du film lorsque ce dernier est soumis à une déformation importante, ce qui est le cas par exemple lors de la fabrication du film soit lors de la mise en place du film sur le substrat (par exemple lors de l'emboutissage d'une feuille de métal protégée par le film).
Le film à base de PVDF qui protège le substrat comprend donc dans l'ordre à partir du substrat une couche de composition B éventuelle, une couche de composition A, une couche de composition C éventuelle, le film adhérant sur le substrat par une couche adhésive et si la couche de composition B est présente, la couche adhésive est optionnelle. Pour chacune des formes de l'invention, l'épaisseur de la couche de composition A est de préférence comprise entre 5 et 50 μm, de préférence entre 5 et 15 μm. L'épaisseur de la couche de composition B est de préférence comprise entre 5 et 45 μm, de préférence entre 5 et 15 μm. L'épaisseur de la couche de composition C est de préférence comprise entre 2 et 30 μm, de préférence entre 2 et 15 μm.
Fabrication des films à base de PVDF
Le film à base de PVDF est de préférence fabriqué par la technique de coextrusion, mais il est également possible d'utiliser une technique de mise en œuvre par voie solvant ou bien en utilisant la technique de plaxage.
Le film à base de PVDF peut aussi être fabriqué par coextrusion-soufflage de gaine (« blown film » en Anglais). Cette technique consiste à extruder, généralement de bas en haut, un polymère thermoplastique à travers une filière annulaire, l'extrudat est simultanément tiré longitudinalement par un dispositif de tirage, habituellement en rouleaux, et gonflé par un volume d'air constant emprisonné entre la filière, le système de tirage et la paroi de la gaine. La gaine gonflée, encore appelée « bulle », est refroidie généralement par un anneau de soufflage d'air à la sortie de la filière. La bulle mise à plat est enroulée, soit sous forme de gaine, soit après découpe en deux films séparés. Dans EP 0278804 A1 , on coextrude un polymère fluide semi-cristallin avec une résine thermoplastique qui est incompatible de façon telle qu'après refroidissement et mise à plat de la bulle, on récupère séparément les deux films extrudés par des moyens classiques, tel que par enroulement distinct des films séparés. Dans l'exemple unique, une bulle est constituée d'un film de 25 μm de PVDF coextrudé avec un film de 60 μm de polyéthylène (PE). Dans la description, il est précisé que l'épaisseur du film de PE doit être de préférence 1 à 5 fois l'épaisseur du film de polymère semi-cristallin. Il est écrit aussi qu'il n'est pas exclu de pouvoir coextruder plus de deux films, mais rien n'est précisé sur la nature exacte des films en question. La demande internationale WO 03/039840 décrit un procédé de fabrication d'un film fluoré qui utilise aussi un polymère incompatible, qui peut être un PE, un polystyrène choc, un PVC plastifié et de préférence, un PE basse densité.
Le procédé de fabrication du film par le procédé de coextrusion-soufflage à base de PVDF consiste à coextruder : a) les différentes couches du film à base de PVDF (de composition A, B, C) ; b) une couche L1 d'une polyoléfine adjacente à la couche composition A ou à la couche de composition C ; c) éventuellement une autre couche L2 d'une polyoléfine adjacente à l'ensemble des couches extrudées en a) et b), du côté opposé à la couche extrudée en b), et après refroidissement du coextrudat, à récupérer, par séparation de la (ou des) couche(s) de polyoléfine, le film à base de PVDF.
La polyoléfine (appelée aussi « liner ») utilisée en b) peut être identique ou différente de celle utilisée en c).
[Utilisations du film]
On décrit maintenant plus en détails les utilisations du film à base de PVDF.
comme film protecteur pour module photovoltaïque Les modules photovoltaïques peuvent être protégés à l'arrière par le film à base de PVDF. Un module photovoltaïque permet de convertir l'énergie lumineuse en courant électrique. Généralement, un module photovoltaïque comprend des cellules photovoltaïques montées en série et reliées entres elles par des moyens de connection électrique. Les cellules photovoltaïques sont généralement mono jonction fabriquées à base de silicium multi-cristallin dopé "P" avec du bore lors de la fusion du silicium et dopées "N" avec du phosphore sur leur surface éclairée. Ces cellules sont mises en place dans un empilage laminé. L'empilage laminé peut être constitué d'EVA (copolymère éthylène- acétate de vinyle) enrobant les cellules photovoltaïques pour protéger le silicium de l'oxydation et de l'humidité. L'empilage est imbriqué entre une plaque de verre qui sert de support d'un côté et il est protégé par un film de l'autre côté. Le module photovoltaïque est ainsi protégé contre le vieillissement (UV, brouillard salin,...), contre les rayures, l'humidité ou la vapeur d'eau
Le module est généralement protégé par une structure multicouche commercialisée sous la marque AKASOL® ou ICOSOLAR® qui est une association d'un film de TEDLAR® (polyfluorure de vinyle ou PVF) et d'une feuille de PET (polyéthylène téréphtalate). La Demanderesse a constaté qu'il est possible d'utiliser avantageusement un film à base de PVDF tel que défini précédemment à la place du film de TEDLAR®. Un avantage est notamment que le PVDF présente une meilleure résistance mécanique et une température de fusion plus élevée (tenue thermique plus élevée) que le PVF. La structure multicouche comprend donc une feuille de PET accolée à au moins un film à base de PVDF tel que défini précédemment et se présente sous la forme : un film à base de PVDF F1 / une feuille de PET ou sous la forme : un film à base de PVDF F1 / une feuille de PET / un film à base de PVDF F2 Sous cette 2eme forme, les deux films F1 et F2 sont tels que définis précédemment. Ils peuvent être identiques ou différents, c'est-à-dire être indépendamment l'un de l'autre selon l'une des 4 formes de l'invention décrites précédemment. Chacun des deux films F1 ou F2 adhère sur la feuille de PET à l'aide d'une couche de composition B ou bien à l'aide d'une couche adhésive.
La structure multicouche comprend : • un film à base de PVDF F1 accolé à une feuille de PET ou de PEN ou bien
• un film à base de PVDF F1 accolé à une feuille de PET ou de PEN elle-même accolée à un film à base de PVDF F2, le film F1 et/ou F2 comprenant (dans l'ordre en partant de la feuille de PET ou de PEN) :
• éventuellement une couche de composition B comprenant de 5 à 40 parties d'au moins un PVDF, de 60 à 95 parties d'au moins un PMMA et de 0 à 5 parties d'au moins un absorbeur UV, le total faisant 100 parties ; • une couche de composition A, comprenant de 50 à 100 parties d'au moins un PVDF, de 0 à 50 parties d'au moins un PMMA, de 0 à 30 parties d'au moins une charge minérale et de 0 à 3 parties d'au moins un agent dispersant, le total faisant 100 parties ;
• éventuellement une couche de composition C comprenant de 80 à 100 parties d'au moins un PVDF, de 0 à 20 parties d'au moins un PMMA, de 0 à 30 parties d'au moins une charge minérale et de 0 à 3 parties d'au moins un agent dispersant, le total faisant 100 parties ; tel :
• qu'une couche adhésive est disposée entre la feuille de PET ou de PEN et le film F1 et/ou F2 ;
• cette couche adhésive étant optionnelle si la couche de composition B est présente.
De préférence, la couche adhésive ne comprend aucune une polyoléfine fonctionnalisée par un acide carboxylique ou un anhydride insaturé ou bien un homo- ou copolymère comprenant comme monomère(s) l'acide acrylique, les acrylates et acrylates d'alkyle éventuellement modifié par un acide ou anhydride insaturé. De préférence aussi, les compositions A et/ou B ne contiennent aucun élastomère acrylique ni aucune particule noyau-écorce.
On a donc dans l'ordre les successions suivantes : comp. C évent. / comp. A / comp. B évent. / couche adhésive / PET ou comp. C évent. / comp. A / comp. B évent. / couche adhésive / PET / couche adhésive / comp. B évent. / comp. A / comp. C évent. La couche adhésive est optionnelle si la couche de composition B est présente. Si on utilise une couche adhésive, une colle PU est préférée.
La structure multicouche peut être fabriquée par compression à chaud des différents éléments (c'est-à-dire la feuille de PET, le film(s) à base de PVDF, ...). On peut aussi utiliser la technique de lamination qui consiste à laminer en continu le(s) film(s) à base de PVDF (préalablement sous forme de bobine) avec la feuille de PET sur laquelle on a déposé éventuellement l'adhésif. Un exemple de procédé de lamination sous vide permettant d'appliquer une structure de type AKASOL® ou ICOSOLAR® sur un module photovoltaïque est décrit dans US 5593532 et peut s'appliquer à la structure multicouche de l'invention. Généralement, la structure est donc fabriquée en associant le(s) film(s) à base de PVDF déjà formé(s) avec la feuille de PET. C'est pourquoi on préfère utiliser un adhésif que l'on dépose à l'état liquide du type thermodurcissable plutôt qu'un thermoplastique qui nécessite d'avoir recours à la coextrusion. C'est pourquoi on exclut que la couche adhésive comprenne une polyoléfine fonctionnalisée par un acide carboxylique ou un anhydride insaturé ou bien un homo- ou copolymère comprenant comme monomère(s) l'acide acrylique, les acrylates et acrylates d'alkyle éventuellement modifié par un acide ou anhydride insaturé.
On peut aussi utiliser à la place du PET du PEN (polyéthylène naphtalate) qui présente l'avantage d'avoir une Tg plus élevée que celle du PET. Le PEN possède une excellente résistance UV mais les films de PEN sont cassants (brittle) et ne sont pas barrière à l'humidité. Les figures 1 et 2 représentent schématiquement des exemples d'un module photovoltaïque 2 protégé. La référence 3 sur la figure 1 représente soit un film à base de PVDF soit une structure multicouche associant une feuille de PET ou de PEN à un ou deux films à base de PVDF.
L'invention se rapporte aussi au module photovoltaïque protégé par le film à base de PVDF ou bien par la structure multicouche. Dans le cas du film à base de PVDF, on a donc l'ordre suivant : (le module) / couche adhésive / comp. B évent. / comp. A / comp. C évent., la couche adhésive étant optionnelle si la couche de composition B est présente.
et dans le cas de la structure multicouche, on a l'ordre suivant :
(le module) / comp. C évent. / comp. A / comp. B évent. / couche adhésive / PET ou (le module) / comp. C évent. / comp. A / comp. B évent. / couche adhésive /
PET / couche adhésive / comp. B évent. / comp. A / comp. C évent. la couche adhésive étant optionnelle si la couche de composition B est présente.
L'invention n'est cependant pas limitée au module photovoltaïque tel qu'il a été décrit plus haut ou sur la figure 2. On trouvera ainsi d'autres exemples de modules photovoltaïques dans FR 2863775 A1 (voir notamment la figure 1 ), US 6369316 B1, US 2004/0229394 A1 , US 2005/0172997 A1 , US 2005/0268961 A1.
comme film protecteur de substrats souples
Le film à base de PVDF peut servir à protéger un substrat souple comme par exemple un textile technique qui peut être tissé ou non tissé. Il peut s'agir d'un tissu en PVC, en polyester ou en polyamide, un tissu de verre, un mat de verre, un tissu en aramide ou en Kevlar,.... Une bâche en PVC constitue un exemple de substrat souple en PVC. Le film de l'invention peut être par exemple appliqué sur le tissu technique à l'aide de la technique de lamination ou par enduction.
L'invention se rapporte aussi au textile technique protégé par le film à base de PVDF. On a donc la succession suivante : (le textile technique) / couche adhésive / comp. B évent. / comp. A / comp. C évent., la couche adhésive étant optionnelle si la couche de composition B est présente.
comme film protecteur d'une feuille de métal Le film à base de PVDF peut être colaminé sur un substrat en métal qui peut être par exemple l'acier, le cuivre ou l'aluminium. De préférence, il s'agit d'une feuille métallique, de préférence en acier. De préférence, l'acier est galvanisé, et est revêtu ou non d'un primaire. L'acier peut par exemple être traité par le Zincrox ou revêtu par le primaire B1236 acrylique/vinylique, le primaire B710 époxy ou le primaire polyester mélamine CN4118. Le film à base de PVDF est suffisamment flexible pour que l'ensemble acier / film puisse ensuite subir une déformation importante. Par exemple, l'ensemble peut être embouti.
La figure 3 représente un exemple de pièce en acier 10 protégée par le film à base de PVDF, référencé 10. La pièce représente un godet métallique (par exemple en acier) obtenu par emboutissage d'une feuille de métal sur laquelle a été colaminé le film.
L'invention se rapporte aussi au substrat en métal protégé par le film à base de PVDF. On a donc la succession suivante : (le métal) / primaire évent. / couche adhésive / comp. B évent. / comp. A / comp. C évent., la couche adhésive étant optionnelle si la couche de composition B est présente. [Exemples]
Produits utilisés
PVDF-1 : copolymère VDF/HFP sous forme de granulés (10% HFP en poids) de MVI 1 ,1 cm3/10 min (23O0C, 5 kg), ayant une viscosité de 2500 mPa s à 23O0C, 100 s"1 et une température de fusion d'environ 1450C.
ALTUGLAS® BS 580 (auparavant vendu sous le nom OROGLAS® BS8) : PMMA de la société ALTUGLAS INTERNATIONAL (anciennement ATOGLAS) de MVI 4,5 cm3/10 min (23O0C, 3,8 kg) sous forme de perle contenant un comonomère, l'acrylate de méthyle à hauteur de 6% en poids. Ce PMMA ne contient pas d'additif choc ni aucun élastomère acrylique.
PVDF-2 : PVDF homopolymère sous forme de granulés de MVI 1 ,1 cm3/10 min (23O0C, 5 kg).
PVDF-3 : copolymère VDF/HFP sous forme de granulés (17%poids HFP) de MVI 10 cm3/10 min (23O0C, 5 kg), ayant une viscosité de 900 mPa s à 23O0C, 100 s-1.
DESMODUR® N-100 : isocyanate aliphatique de CAS N° 28182-81-2 commercialisé par LANXESS.
FLUORAD® FC-430 : tensioactif fluoré de la société 3M.
TONE® 201 : poly(caprolactone) diol commercialisé par Union Carbide (masse moléculaire environ 830 g/mol).
Exemple 1 (selon l'invention. 1ere forme)
[60% PVDF flexible + 15% TiO2 + 25% PMMA]COUcheA / colle PU / PET
Un film monocouche constitué en poids de 60% de PVDF-1 , de 15% de TiÛ2 de référence R960 et de 25 % d'ALTUGLAS® BS 580 est extrudé sous forme d'un film d'épaisseur 15 μm et de largeur 2000 mm à l'aide d'une extrudeuse film à une température de 2450C.
Un substrat polyester (PET) sur lequel a été déposé préalablement un adhésif de la famille des uréthanes, obtenu en faisant réagir 100 parts de TONE® 201 , 0,5 part de DBTL (dibutyle ter dilaurate) à 1% dans le xylol, 60 parts d'acétate de propylène glycol méthyle éther, 0,6 parts de FC-430 à 10% (tensioactif fluoré) et de 74 parts de DESMODUR N-100 est passé dans un four pendant 5 minutes à 12O0C.
Le film monocouche est ensuite laminé à 13O0C sur le substrat polyester (on obtient donc une structure PET / colle PU / film monocouche). L'adhésion obtenue est supérieure à 40 N/cm. Après un passage de 8 heures à l'étuve à 950C l'adhésion est conservée, la structure peut être pliée facilement sans pour autant générer de fissure au niveau du film fluoré.
Exemple 2 (selon l'invention. 3eme forme)
[PVDF homopolymère]couche c / [60% PVDF flexible + 15% TiO2 + 25%
PMMA]couche A / colle PU / PET
Un film à deux couches est constitué :
• d'une couche de 15 μm d'épaisseur contenant en poids 60% de PVDF-1 , 15% de TiO2 de référence R960 et 25% de PMMA d'ALTUGLAS® BS 580, et
• d'une couche de 10 μm d'épaisseur contenant du PVDF-2 (100%) et de largeur 2000 mm est réalisé sur une extrudeuse film à une température de 2450C.
Un substrat polyester (PET) sur lequel a été déposé préalablement un adhésif de la famille des uréthanes, obtenu en faisant réagir 100 parts de TONE® 201 , 0,5 part de DBTL (dibutyle ter dilaurate) à 1% dans le xylol, 60 parts d'acétate de propylène glycol méthyle éther, 0,6 parts de FC-430 à 10% en poids (tensioactif fluoré) et de 74 parts de DESMODUR N-100 est passé dans un four pendant 5 minutes à 12O0C. Le film bicouche est ensuite laminé à 15O0C sur le substrat polyester (on obtient donc une structure PET / colle PU / couche comprenant le PVDF-1 / couche comprenant le PVDF-2). L'adhésion obtenue est supérieure à 60 N/cm. Après un passage de 8 heures à l'étuve à 950C, l'adhésion est conservée, la structure peut être pliée facilement sans pour autant générer de fissure au niveau du film fluoré.
Exemple 3 (selon l'invention. 1ere forme)
[83% PVDF flexible + 15% Sb2O3 + 2% PEG]COuche A / colle PU / PET
Un film monocouche constitué en poids de 83% de PVDF-3, de 15% de SD2O3 et de 2% d'un PEG de masse 1500 g/mol de la société CLARIANT, est extrudé sous forme d'un film d'épaisseur 15 μm et de largeur 2000 mm à l'aide d'une extrudeuse film à une température de 2450C.
Un substrat polyester (PET) sur lequel a été déposé préalablement un adhésif de la famille des uréthanes, obtenu en faisant réagir 100 parts de TONE® 201 , 0,5 part de DBTL (dibutyle ter dilaurate) à 1% dans le xylol, 60 parts d'acétate de propylène glycol méthyle éther, 0,6 parts de FC-430 à 10% (tensioactif fluoré) et de 74 parts de DESMODUR N-100 est passé dans un four pendant 5 minutes à 12O0C.
Le film monocouche est ensuite laminé à 13O0C sur le substrat polyester (on obtient donc une structure PET / colle PU / film monocouche). L'adhésion obtenue est supérieure à 40 N/cm. Après un passage de 8 heures à l'étuve à 950C, l'adhésion est conservée, la structure peut être pliée facilement sans pour autant générer de fissure au niveau du film fluoré. Ce film présente de plus une excellente résistance au feu.
Exemple 4 (selon l'invention. 1ere forme)
Cet exemple illustre la préparation d'un film monocouche à base de PVDF par la technique de coextrusion-soufflage. Une structure à deux couches est constituée : • d'une couche de 15 μm d'épaisseur constituée en poids de 83% de
PVDF-3, de 15% de Sb2O3 et de 2% d'un PEG de masse 1500 g/mol de la société CLARIANT et
• d'une couche de 50 μm d'épaisseur d'un polyéthylène LACQTENE 1003FE23 (MFI=0,3 g/10 min selon ISO 1133et de densité
0,923 selon ISO 1183) commercialisé par TOTAL
PETROCHEMICALS et est réalisée sur une extrudeuse blown film KIEFEL à une température de 2450C. Aucune adhésion n'est générée entre les deux couches. La couche de PE est la couche L1 décrite précédemment (« liner »).
Un substrat polyester (PET) sur lequel a été déposé préalablement un adhésif de la famille des uréthanes, obtenu en faisant réagir 100 parts de TONE® 201 , 0,5 part de DBTL (dibutyle ter dilaurate) à 1% dans le xylol, 60 parts d'acétate de propylène glycol méthyle éther, 0,6 parts de FC-430 à 10% (tensioactif fluoré) et de 74 parts de DESMODUR N-100 est passé dans un four pendant 5 minutes à 12O0C.
La structure à deux couches est ensuite laminée à 13O0C sur le substrat polyester, la couche en contact avec la colle PU étant celle contenant le PVDF- 3. Pendant et après la phase de lamination, on obtient ainsi un complexe PET/colle PU/ film monocouche contenant le PVDF-3, et protégée par la couche de PE qui peut ensuite être retirée simplement avant l'utilisation du complexe.
L'adhésion obtenue entre le PET et le film à base de PVDF est supérieure à 40 N/cm. Après un passage de 8 heures à l'étuve à 950C, l'adhésion est conservée, la structure peut être pliée facilement sans pour autant générer de fissure au niveau du film fluoré. Ce film présente de plus une excellente résistance au feu.

Claims

Revendications
1. Structure multicouche comprenant • un film à base de PVDF F1 accolé à une feuille de PET ou de PEN ou bien
• un film à base de PVDF F1 accolé à une feuille de PET ou de PEN elle-même accolée à un film à base de PVDF F2, le film F1 et/ou F2 comprenant (dans l'ordre en partant de la feuille de PET ou de PEN) :
• éventuellement une couche de composition B comprenant de 5 à 40 parties d'au moins un PVDF, de 60 à 95 parties d'au moins un PMMA et de 0 à 5 parties d'au moins un absorbeur UV, le total faisant 100 parties ; • une couche de composition A, comprenant de 50 à 100 parties d'au moins un PVDF, de 0 à 50 parties d'au moins un PMMA, de 0 à 30 parties d'au moins une charge minérale et de 0 à 3 parties d'au moins un agent dispersant, le total faisant 100 parties ;
• éventuellement une couche de composition C comprenant de 80 à 100 parties d'au moins un PVDF, de 0 à 20 parties d'au moins un PMMA, de 0 à 30 parties d'au moins une charge minérale et de 0 à 3 parties d'au moins un agent dispersant, le total faisant 100 parties ; tel :
• qu'une couche adhésive est disposée entre la feuille de PET ou de PEN et le film F1 et/ou F2 ;
• cette couche adhésive étant optionnelle si la couche de composition B est présente et ne comprenant aucune une polyoléfine fonctionnalisée par un acide carboxylique ou un anhydride insaturé ou bien un homo- ou copolymère comprenant comme monomère(s) l'acide acrylique, les acrylates et acrylates d'alkyle éventuellement modifié par un acide ou anhydride insaturé ; • que les compositions A et/ou B ne contiennent aucun élastomère acrylique ni aucune particule noyau-écorce.
2. Structure selon la revendication 1 caractérisée en ce que le PVDF est un PVDF flexible comprenant en poids de 5 à 20%, avantageusement de 7 à 13% d'un comonomère fluoré pour 80 à 95%, avantageusement pour 87 à 93% de VDF.
3. Structure selon la revendication 1 caractérisée en ce que le PVDF de la composition A et/ou de la composition B comprend en poids de 5 à 20%, avantageusement de 7 à 13% d'un comonomère fluoré pour 80 à 95%, avantageusement pour 87 à 93% de VDF.
4. Structure selon l'une des revendications 1 à 3 caractérisée en ce que le PVDF de la composition C est un PVDF homopolymère.
5. Structure selon l'une des revendications 2 ou 3 caractérisée en ce que le comonomère fluoré est choisi parmi le fluorure de vinyle, le trifluoroéthylène (VF3), le chlorotrifluoroethylène (CTFE), le 1 ,2-difluoroéthylène, le tetrafluoroéthylène (TFE); l'hexafluoropropylène (HFP), les perfluoro(alkyl vinyl) éthers tels que le perfluoro(méthyl vinyl)éther (PMVE), le perfluoro(éthyl vinyl) éther (PEVE) et le perfluoro(propyl vinyl) éther (PPVE); le perfluoro(1 ,3- dioxole); le perfluoro(2,2-diméthyl-1 ,3-dioxole) (PDD).
6. Structure selon l'une quelconque des revendications précédentes caractérisée en ce que le PMMA comprend en poids de 0 à 20% et de préférence 5 à 15% d'un (méth)acrylate d'alkyle en Ci-Ce, qui est de préférence l'acrylate de méthyle et/ou l'acrylate d'éthyle.
7. Structure selon l'une quelconque des revendications précédentes caractérisée en ce que la couche adhésive éventuelle est constituée d'une colle uréthane, époxyde, acrylique ou polyester.
8. Structure selon l'une quelconque des revendications précédentes caractérisée en ce que l'absorbeur UV est du type benzotriazole, benzophénone, benzylidène malonate ou quinazoline.
9. Structure selon l'une quelconque des revendications précédentes caractérisée en ce que l'agent dispersant est un polyalkylène glycol, de préférence un polyéthylène glycol.
10. Structure selon l'une quelconque des revendications précédentes caractérisée en ce que le polyalkylène glycol a une masse moyenne en nombre comprise entre 1000 et 10000 g/mol.
11. Structure selon l'une quelconque des revendications précédentes caractérisée en ce que la charge minérale est d'un oxyde métallique comme par exemple le dioxyde de titane (TiO2), la silice, le quartz, l'alumine, d'un carbonate comme par exemple le carbonate de calcium, le talc, le mica, la dolominte (CaCO 3 #MgCO3), la montmorillonite (aluminosilicate), BaSO4, ZrSiO4, Fe3 O4, l'oxyde d'antimoine (Sb2O3, Sb2O5), AI(OH)3, Mg(OH)2, la huntite (3MgCO3-CaCO3), l'hydromagnésite (3MgCO3* Mg(OH)2 «3H 2O). Il peut s'agir aussi d'une charge conductrice de l'électricité (par exemple, du noir de carbone ou bien des nanotubes de carbone).
12. Utilisation d'une structure multicouche telle que définie à l'une quelconque des revendications précédentes pour protéger un module photovoltaïque, la structure multicouche étant disposée sur le module par le film à base de PVDF F1.
13. Utilisation d'un film à base de PVDF pour protéger un substrat qui peut être :
• un module photovoltaïque,
• un textile technique, • un métal. le film à base de PVDF comprenant (dans l'ordre en partant du substrat) :
• éventuellement une couche de composition B comprenant de 5 à 40 parties d'au moins un PVDF, de 60 à 95 parties d'au moins un PMMA et de 0 à 5 parties d'au moins un absorbeur UV, le total faisant 100 parties ;
• une couche de composition A, comprenant de 50 à 100 parties d'au moins un PVDF, de 0 à 50 parties d'au moins un PMMA, de 0 à 30 parties d'au moins une charge minérale et de 0 à 3 parties d'au moins un agent dispersant, le total faisant 100 parties ;
• éventuellement une couche de composition C comprenant de 80 à 100 parties d'au moins un PVDF, de 0 à 20 parties d'au moins un PMMA, de 0 à 30 parties d'au moins une charge minérale et de 0 à 3 parties d'au moins un agent dispersant, le total faisant 100 parties ; et tel qu'une couche adhésive est disposée entre le substrat et le film à base de PVDF, cette couche adhésive étant optionnelle si la couche de composition B est présente.
14. Utilisation selon la revendication 13 caractérisée en ce que la composition A comprend de 50 à 70 parties d'au moins un PVDF, de 10 à 40 parties d'au moins un PMMA et de 10 à 25 parties d'au moins une charge minérale, le total faisant 100 parties.
15. Utilisation selon la revendication 14 caractérisée en ce que les compositions A, B et C sont telles que définies à l'une quelconque des revendications 2 à 11.
16. Utilisation selon l'une des revendications 13 à 15 caractérisée en ce que le textile technique un tissé ou un non-tissé.
17. Utilisation selon l'une quelconque des revendications 13 à 16 caractérisée en ce que le tissu est en PVC, en polyester ou en polyamide, un tissu de verre, un mat de verre, un tissu en aramide ou en Kevlar
18. Module photovoltaïque protégé en surface par un film à base de PVDF tel que défini à l'une quelconque des revendications 1 à 11 ou par une structure multicouche selon l'une quelconque des revendications 1 à 11.
19. Textile technique tel que défini à l'une des revendications 16 ou 17 protégé par un film à base de PVDF tel que défini à l'une quelconque des revendications 1 à 11.
20. Procédé de fabrication d'un film à base de PVDF tel que défini à l'une quelconque des revendications 1 à 11 consistant à coextruder : a) les différentes couches du film à base de PVDF (de composition A, B,
C) ; b) une couche L1 d'une polyoléfine adjacente à la couche composition A ou à la couche de composition C, c) éventuellement une autre couche L2 d'une polyoléfine adjacente à l'ensemble des couches extrudées en a) et b), du côté opposé à la couche extrudée en b), et après refroidissement du coextrudat, à récupérer, par séparation de la (ou des) couche(s) de polyoléfine, le film à base de PVDF.
EP07731521A 2006-01-25 2007-01-25 Film flexible a base de polymere fluore Withdrawn EP1979162A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11177003A EP2412523A1 (fr) 2006-01-25 2007-01-25 Film flexible à base de polymere fluoré

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0600695A FR2896445B1 (fr) 2006-01-25 2006-01-25 Film flexible a base de polymere fluore
PCT/FR2007/050693 WO2007085769A2 (fr) 2006-01-25 2007-01-25 Film flexible a base de polymere fluore

Publications (1)

Publication Number Publication Date
EP1979162A2 true EP1979162A2 (fr) 2008-10-15

Family

ID=37102975

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11177003A Withdrawn EP2412523A1 (fr) 2006-01-25 2007-01-25 Film flexible à base de polymere fluoré
EP07731521A Withdrawn EP1979162A2 (fr) 2006-01-25 2007-01-25 Film flexible a base de polymere fluore

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP11177003A Withdrawn EP2412523A1 (fr) 2006-01-25 2007-01-25 Film flexible à base de polymere fluoré

Country Status (7)

Country Link
US (1) US20090275251A1 (fr)
EP (2) EP2412523A1 (fr)
JP (3) JP5270373B2 (fr)
KR (3) KR101016933B1 (fr)
CN (3) CN101518972B (fr)
FR (1) FR2896445B1 (fr)
WO (1) WO2007085769A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101431108A (zh) * 2008-12-09 2009-05-13 上海海优威电子技术有限公司 新型太阳能电池背板
US11905093B2 (en) 2015-12-02 2024-02-20 Berry Plastics Corporation Peelable film for container lid

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2896445B1 (fr) * 2006-01-25 2010-08-20 Arkema Film flexible a base de polymere fluore
CN101681946B (zh) * 2007-06-15 2012-10-24 阿科玛股份有限公司 具有聚偏二氟乙烯背板的光伏打模块
FR2918067B1 (fr) * 2007-06-27 2011-07-01 Arkema France Materiau composite comprenant des nanotubes disperses dans une matrice polymerique fluroree.
JP5619615B2 (ja) 2007-11-21 2014-11-05 アーケマ・インコーポレイテッド Pvdfベースの可撓性グレージングフィルムを使用する光電池モジュール
FR2927016B1 (fr) * 2008-02-06 2012-10-19 Arkema France Film tricouche pour cellule photovoltaique
US20090255571A1 (en) * 2008-04-14 2009-10-15 Bp Corporation North America Inc. Thermal Conducting Materials for Solar Panel Components
FR2941238B1 (fr) * 2009-01-22 2012-06-08 Arkema France Utilisation d'une composition transparente pour photobioreacteurs.
WO2010092942A1 (fr) * 2009-02-13 2010-08-19 電気化学工業株式会社 Film de résine à base de fluorure de vinylidène
WO2010101811A1 (fr) * 2009-03-03 2010-09-10 Arkema France Feuille de fond acrylique pour module photovoltaïque
BE1018516A3 (nl) * 2009-03-30 2011-02-01 Tekni Plex Europ Nv Nv Werkwijze voor het vervaardigen van een meerlagige filmstructuur op basis van fluorpolymeren, en filmstructuur op deze wijze vervaardigd, alsook haar gebruik in de fotovolta¤sche toepassingen.
CN102395624B (zh) * 2009-04-20 2014-11-12 株式会社吴羽 聚1,1-二氟乙烯树脂组合物、白色树脂膜和太阳能电池模块用背板
CN102802942B (zh) * 2009-06-10 2016-08-10 阿科玛股份有限公司 耐气候的聚偏二氟乙烯涂覆的基片
FR2947821B1 (fr) * 2009-07-09 2011-09-09 Commissariat Energie Atomique Procede d'amelioration de l'adhesion d'un materiau reticulable par uv sur un substrat
FR2948036B1 (fr) * 2009-07-17 2013-01-25 Arkema France Utilisation d'une composition transparente pour photoreacteurs
KR101350517B1 (ko) * 2009-07-24 2014-01-14 주식회사 엘지화학 태양전지 백시트 및 이의 제조방법
FR2948943B1 (fr) * 2009-08-05 2012-03-16 Arkema France Film a base de polymere fluore et d'oxyde de zinc sans odeur acrylique pour application photovoltaique
CN102039664B (zh) * 2009-10-10 2013-11-27 E.I.内穆尔杜邦公司 多层膜的叠合方法和用该方法制成的太阳能电池背板
US8362357B2 (en) 2009-11-24 2013-01-29 Nesbitt Jeffrey E Environmentally-friendly coatings and environmentally-friendly systems and methods for generating energy
KR101360867B1 (ko) * 2010-04-23 2014-02-13 코오롱인더스트리 주식회사 태양광모듈용 백 시트 및 이의 제조방법
KR101275850B1 (ko) * 2010-04-27 2013-06-14 에스케이씨 주식회사 단층 PVdF 필름 및 이의 제조방법
NO20100785A1 (no) * 2010-05-31 2011-12-01 Innotech Solar Asa Mekanisk styrking av solceller
CN102336992A (zh) * 2010-07-19 2012-02-01 刘波 一种含氟塑料薄膜专用料的制备方法
DE102010038292A1 (de) * 2010-07-22 2012-01-26 Evonik Röhm Gmbh Witterungsbeständige Rückseitenfolien
EP2422976B1 (fr) * 2010-07-30 2017-03-08 Ems-Patent Ag Feuille arrière multicouche pour module photovoltaïque ainsi que sa fabrication et son utilisation dans la production de modules photovoltaïques
FR2966158B1 (fr) * 2010-10-13 2012-10-19 Arkema France Film a base de polymere fluore pour application photovoltaique
KR101227552B1 (ko) * 2011-01-25 2013-01-31 에스케이씨 주식회사 단층 PVdF 연신 필름 및 이를 이용한 태양전지 백시트
ITPD20110116A1 (it) * 2011-04-13 2012-10-14 M G Lavorazione Materie Plastiche S P A Film multistrato polimerico incapsulante per celle per moduli fotovoltaici, e foglio protettivo integrato, tipo 'backsheet' o 'frontsheet' comprendente tale film
FR2974535A1 (fr) * 2011-04-27 2012-11-02 Arkema France Utilisations d'une structure multicouche pvc/polymere fluore pour la protection arriere des panneaux solaires
JP5695965B2 (ja) * 2011-04-28 2015-04-08 電気化学工業株式会社 フッ化ビニリデン系樹脂フィルム、太陽電池用バックシート及び太陽電池モジュール
EP2722362A4 (fr) * 2011-06-15 2014-12-10 Kureha Corp Film de résine de fluorure de polyvinylidène, film multicouche, feuille de fond pour module de cellule solaire, et procédé de fabrication de film
WO2013040179A1 (fr) * 2011-09-15 2013-03-21 First Solar, Inc. Couche intermédiaire de module photovoltaïque
KR102050603B1 (ko) * 2011-11-10 2019-11-29 덴카 주식회사 불소계 수지 필름 및 태양전지 모듈
FR2982796A1 (fr) * 2011-11-23 2013-05-24 Arkema France Procede de fabrication d'un film fluore mat
CN103158312B (zh) * 2011-12-16 2016-04-06 苏州尚善新材料科技有限公司 一种太阳能电池组件背板及其制造方法
KR101448343B1 (ko) * 2012-04-09 2014-10-08 (주)엘지하우시스 태양전지 밀봉재용 eva시트 및 그의 제조방법
CN102774105B (zh) * 2012-07-26 2015-03-18 浙江歌瑞新材料有限公司 一种耐候氟合金膜
US20150255653A1 (en) * 2012-10-12 2015-09-10 E.I. Du Pont De Nemours And Company Solar cell module with a nanofilled encapsulant layer
KR101399422B1 (ko) * 2012-12-26 2014-05-30 에스케이씨 주식회사 단층 PVdF 필름 및 이의 제조방법
CN103450608A (zh) * 2013-09-11 2013-12-18 张李忠 一种高耐候阻燃自洁膜的组配方法
FR3011504B1 (fr) * 2013-10-04 2015-10-23 Arkema France Article textile en pvdf
JP6348383B2 (ja) * 2014-09-11 2018-06-27 デンカ株式会社 農業用フッ素含有多層フィルム、その製造方法及び農業用被覆資材
CN104553209B (zh) * 2014-12-19 2016-09-14 苏州佳亿达电器有限公司 一种太阳能光伏板保护膜
KR101658184B1 (ko) 2015-04-23 2016-09-30 에스케이씨 주식회사 폴리머 필름, 태양 전지 패널 보호 필름 및 이를 포함하는 태양광 발전 장치
CN105291499A (zh) * 2015-10-15 2016-02-03 浙江歌瑞新材料有限公司 一种pe或pvc基材装饰膜
CN106696416A (zh) * 2015-11-16 2017-05-24 美国圣戈班性能塑料公司 复合安全膜
KR101762337B1 (ko) 2016-08-26 2017-07-27 에스케이씨 주식회사 폴리머 필름, 태양 전지 패널 보호 필름 및 이를 포함하는 태양광 발전 장치
EP3531465A4 (fr) * 2016-12-26 2019-12-04 LG Chem, Ltd. Élément de batterie cylindrique ayant un tube thermorétractable comprenant un absorbeur d'ultraviolets
WO2018124673A2 (fr) * 2016-12-26 2018-07-05 주식회사 엘지화학 Élément de batterie cylindrique ayant un tube thermorétractable comprenant un absorbeur d'ultraviolets
WO2018124674A2 (fr) * 2016-12-26 2018-07-05 주식회사 엘지화학 Cellule de batterie cylindrique ayant un tube thermorétractable comprenant un stabilisateur d'ultraviolets
CN110036500B (zh) 2016-12-26 2022-03-11 株式会社Lg化学 具有含紫外线稳定剂的热收缩管的圆柱形电池单元
KR102287227B1 (ko) 2017-04-28 2021-08-06 에스케이씨 주식회사 태양전지 백시트용 폴리에스테르 필름 및 이를 포함하는 태양전지 모듈
KR102037422B1 (ko) 2017-05-04 2019-10-28 에스케이씨 주식회사 태양전지 백시트용 폴리에스테르 필름 및 이를 포함하는 태양전지 모듈
US11731405B2 (en) * 2017-11-16 2023-08-22 Argotec, LLC Polyvinylidene fluoride-acrylate and thermoplastic polyurethane multilayer protective film
KR102293742B1 (ko) * 2018-05-31 2021-08-26 주식회사 숨비 태양전지용 보호필름 및 이의 제조방법
KR102174324B1 (ko) * 2018-06-20 2020-11-04 에스케이씨에코솔루션즈(주) 라미네이트 강판, 이의 제조 방법 및 이에 사용되는 시트
CN112514025A (zh) 2018-07-31 2021-03-16 株式会社村田制作所 导电板以及电池装置
CN110117400B (zh) * 2019-04-15 2021-06-22 武汉高正新材料科技有限公司 高韧性pvdf薄膜材料及其制备方法、tpt背膜、tpe背膜及太阳能电池板
WO2021004595A1 (fr) * 2019-07-11 2021-01-14 Danapak Flexibles A/S Procédés de stratification et produits stratifiés
ES1235931Y (es) * 2019-08-09 2020-01-09 Povedano Gonzalez Vicens Recubrimiento protector para exteriores.
CN112721255A (zh) * 2020-12-15 2021-04-30 广东正一包装股份有限公司 一种高阻隔镀铝双向拉伸聚丙烯薄膜的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10190023A (ja) 1996-12-24 1998-07-21 Kureha Chem Ind Co Ltd 太陽電池用透光材
JP2004352966A (ja) 2003-05-28 2004-12-16 Dengiken:Kk 電気・電子絶縁シート

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR600695A (fr) 1925-07-11 1926-02-12 Récipient distributeur de moutarde ou d'autres produits semi-consistants
DE2523147A1 (de) * 1975-05-24 1976-12-09 Messer Griesheim Gmbh Abdeckung fuer sonnenenergiekollektoren
IT1073477B (it) * 1976-04-06 1985-04-17 Ugine Kuhlmann Procedimento per il trattamento del polifluoruro di vinilidene per au mentarne l aderenza ad un altro polimero
US4310596A (en) * 1978-09-25 1982-01-12 E. I. Du Pont De Nemours And Company Solar selective surfaces
GB2039496B (en) 1979-01-12 1982-11-10 Du Pont Cored acrylic polymers
FR2477463A1 (fr) * 1980-03-07 1981-09-11 Ugine Kuhlmann Procede de fabrication d'un composite polyfluorure de vinylidene et polymere non compatible par coextrusion-moulage
JPS57142359A (en) * 1981-02-28 1982-09-03 Kureha Chemical Ind Co Ltd Extruded laminate
JPS5943226B2 (ja) * 1982-01-26 1984-10-20 ピ−ピ−ジ−・インダストリ−ズ・インコ−ポレ−テツド フルオロカ−ボン樹脂を被覆した基体およびその製法
WO1985003680A1 (fr) 1984-02-15 1985-08-29 The Secretary Of State For Defence In Her Britanni Assemblage a pivot scelle
JPS62169622A (ja) * 1986-01-23 1987-07-25 Sumitomo Bakelite Co Ltd フイルムの製造方法
FR2609663B1 (fr) 1987-01-21 1989-05-05 Atochem Procede de fabrication de films a partir de polymeres fluides semi-cristallins, par coextrusion et soufflage de gaine
JP2618431B2 (ja) * 1988-04-13 1997-06-11 電気化学工業株式会社 フツ素樹脂系耐候フイルム
US5015693A (en) 1988-04-15 1991-05-14 Minnesota Mining And Manufacturing Company Extrudable thermoplastic hydrocarbon polymer composition
US5256472A (en) 1988-12-05 1993-10-26 Denki Kagaku Kogyo Kabushiki Kaisha Fluorine resin type weather-resistant film
JP2739976B2 (ja) * 1988-12-05 1998-04-15 電気化学工業株式会社 フツ素樹脂系フイルム積層体
FR2659085B1 (fr) * 1990-03-02 1992-05-15 Atochem Composition coextrudable avec le polyfluorure de vinylidene permettant l'adhesion de ce dernier avec une resine polymerique non compatible - composite obtenu avec cette composition.
US5593532A (en) 1993-06-11 1997-01-14 Isovolta Osterreichische Isolierstoffwerke Aktiengesellschaft Process for manufacturing photovoltaic modules
FR2731943B1 (fr) * 1995-03-24 1997-07-18 Atochem Elf Sa Materiau complexe a proprietes ameliorees constitue de polyfluorure de vinylidene et d'un thermoplastique non compatible
US5587429A (en) 1995-04-04 1996-12-24 E. I. Dupont De Nemours And Company Processing aid system for polyolefins
US5750234A (en) * 1996-06-07 1998-05-12 Avery Dennison Corporation Interior automotive laminate with thermoplastic low gloss coating
JPH10219063A (ja) * 1997-02-03 1998-08-18 Central Glass Co Ltd フッ化ビニリデン系樹脂組成物およびそれを用いた積層体
US6555190B1 (en) * 1997-11-06 2003-04-29 Honeywell International Inc. Films with UV blocking characteristics
US6294604B1 (en) * 1998-03-06 2001-09-25 Dyneon Llc Polymer processing additive having improved stability
DE19814652A1 (de) * 1998-04-01 1999-10-07 Bayer Ag Photovoltaik-Module mit Verbundfolien
EP0969521A1 (fr) 1998-07-03 2000-01-05 ISOVOLTAÖsterreichische IsolierstoffwerkeAktiengesellschaft Module photovoltaique et procédé de fabrication
US6335479B1 (en) * 1998-10-13 2002-01-01 Dai Nippon Printing Co., Ltd. Protective sheet for solar battery module, method of fabricating the same and solar battery module
CA2254415C (fr) * 1998-11-18 2000-03-21 Douglas F. Mantegna Pellicule de lamination textile
KR20010007235A (ko) 1999-06-17 2001-01-26 마크 에스. 아들러 내후성, 감소된 광택 및 고충격을 제공하는 캡스톡 조성물및 그 제조방법
AU6704600A (en) * 1999-08-24 2001-03-19 Fritta, S.L. Photovoltaic energy generator coating
EP1172864A1 (fr) * 2000-07-11 2002-01-16 SANYO ELECTRIC Co., Ltd. Module de cellules de solaires
DE10043868A1 (de) 2000-09-04 2002-04-04 Roehm Gmbh PMMA Formmassen mit verbesserter Schlagzähigkeit
JP2002264249A (ja) * 2001-03-13 2002-09-18 Denki Kagaku Kogyo Kk 防水シート
CA2463844A1 (fr) 2001-10-19 2003-05-15 Atofina Procede de fabrication de films par coextrusion soufflage de gaine
DE10236240A1 (de) 2002-02-06 2003-08-14 Roehm Gmbh Silicon-Pfropfcopolymerisate mit Kern-Hülle-Struktur, schlagzähmodifizierte Formmassen und Formkörper sowie Verfahren zu deren Herstellung
FR2842530B1 (fr) * 2002-07-17 2004-09-03 Atofina Composition coextrudable avec le pvdf
JP4888855B2 (ja) * 2003-01-23 2012-02-29 電気化学工業株式会社 樹脂積層体
JP4300215B2 (ja) * 2003-05-14 2009-07-22 三菱樹脂株式会社 フッ素系積層フィルム及びその製造方法
CN1220801C (zh) * 2003-08-29 2005-09-28 江门市新会区工业胶丝厂有限公司 高粘度聚酯单丝及其制造方法和应用
FR2863775B1 (fr) 2003-12-15 2006-04-21 Photowatt Internat Sa Module photovoltaique avec un dispositif electronique dans l'empilage lamine.
US20050172997A1 (en) * 2004-02-06 2005-08-11 Johannes Meier Back contact and back reflector for thin film silicon solar cells
US7867604B2 (en) * 2004-02-20 2011-01-11 Arkema France Composition coextrudable with PVDF and having no stress-whitening effect
FR2866652B1 (fr) * 2004-02-20 2007-08-17 Arkema Composition coextrudable avec le pvdf et sans effet de blanchiment sous contrainte
EP1722972A4 (fr) 2004-02-20 2010-12-22 Saint Gobain Performance Plast Films multicouche resistant a l'ecoulement pulse
US20050268961A1 (en) * 2004-06-04 2005-12-08 Saint-Gobain Performance Plastics Coporation Photovoltaic device and method for manufacturing same
US7553540B2 (en) * 2005-12-30 2009-06-30 E. I. Du Pont De Nemours And Company Fluoropolymer coated films useful for photovoltaic modules
FR2896445B1 (fr) * 2006-01-25 2010-08-20 Arkema Film flexible a base de polymere fluore

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10190023A (ja) 1996-12-24 1998-07-21 Kureha Chem Ind Co Ltd 太陽電池用透光材
JP2004352966A (ja) 2003-05-28 2004-12-16 Dengiken:Kk 電気・電子絶縁シート

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101431108A (zh) * 2008-12-09 2009-05-13 上海海优威电子技术有限公司 新型太阳能电池背板
US11905093B2 (en) 2015-12-02 2024-02-20 Berry Plastics Corporation Peelable film for container lid

Also Published As

Publication number Publication date
EP2412523A1 (fr) 2012-02-01
CN102862359A (zh) 2013-01-09
JP5274994B2 (ja) 2013-08-28
CN101518972B (zh) 2013-04-17
KR20110118736A (ko) 2011-10-31
CN101518972A (zh) 2009-09-02
KR20080089662A (ko) 2008-10-07
KR101016933B1 (ko) 2011-02-25
JP2013056547A (ja) 2013-03-28
WO2007085769A2 (fr) 2007-08-02
KR20090126331A (ko) 2009-12-08
FR2896445A1 (fr) 2007-07-27
CN102862359B (zh) 2016-06-01
JP5611303B2 (ja) 2014-10-22
JP2009524537A (ja) 2009-07-02
FR2896445B1 (fr) 2010-08-20
WO2007085769A3 (fr) 2007-09-13
CN101410249A (zh) 2009-04-15
US20090275251A1 (en) 2009-11-05
CN101410249B (zh) 2012-09-05
JP2009078559A (ja) 2009-04-16
JP5270373B2 (ja) 2013-08-21

Similar Documents

Publication Publication Date Title
EP1979162A2 (fr) Film flexible a base de polymere fluore
EP2237950B1 (fr) Film tricouche pour cellule photovoltaïque
EP2524405A1 (fr) Film resistant a l'humidite a base de polymere fluore et d'oxyde inorganique pour application photovoltaïque
WO2015052416A1 (fr) Composition fluoree contenant un absorbeur uv et son utilisation en tant que couche protectrice transparente
KR20140021537A (ko) 신규 태양광 집광 장치
EP2673809B1 (fr) Film bi-couches d'un module photovoltaïque
WO2011015785A1 (fr) Film à base de polymère fluoré et d'oxyde de zinc sans odeur acrylique pour application photovoltaïque
WO2012049397A1 (fr) Film a base de polymere fluore pour application photovoltaïque
WO2015092282A1 (fr) Film pvdf résistant a la déchirure a basse température et ininflammable
US11441007B2 (en) Fluoropolymer composition for multilayer assemblies
EP2552189A1 (fr) Films fluores multicouche
FR2982796A1 (fr) Procede de fabrication d'un film fluore mat
EP2523993A1 (fr) Film a base de polymere fluore sans odeur acrylique pour application photovoltaïque

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080722

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BONNET, ANTHONY

Inventor name: LAFFARGUE, JOHANN

Inventor name: DUC, SANDRINE

Inventor name: MATHIEU, CYRILLE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LAFFARGUE, JOHANN

Inventor name: MATHIEU, CYRILLE

Inventor name: BONNET, ANTHONY

Inventor name: DUC, SANDRINE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARKEMA FRANCE

17Q First examination report despatched

Effective date: 20090810

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160126