EP1913123A1 - Verwendung von grenzflächenaktiven, nicht-enzymatischen proteinen für die textilwäsche - Google Patents
Verwendung von grenzflächenaktiven, nicht-enzymatischen proteinen für die textilwäscheInfo
- Publication number
- EP1913123A1 EP1913123A1 EP06792583A EP06792583A EP1913123A1 EP 1913123 A1 EP1913123 A1 EP 1913123A1 EP 06792583 A EP06792583 A EP 06792583A EP 06792583 A EP06792583 A EP 06792583A EP 1913123 A1 EP1913123 A1 EP 1913123A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- yaad
- hydrophobin
- proteins
- protein
- detergent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 142
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 120
- 238000005406 washing Methods 0.000 title claims abstract description 63
- 230000002255 enzymatic effect Effects 0.000 title claims abstract description 39
- 239000004753 textile Substances 0.000 title claims abstract description 36
- 239000003599 detergent Substances 0.000 claims abstract description 60
- 238000000034 method Methods 0.000 claims abstract description 41
- 101710091977 Hydrophobin Proteins 0.000 claims description 70
- 230000004927 fusion Effects 0.000 claims description 50
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 29
- 150000001413 amino acids Chemical class 0.000 claims description 26
- 239000011521 glass Substances 0.000 claims description 17
- 230000000694 effects Effects 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 16
- 239000004094 surface-active agent Substances 0.000 claims description 16
- -1 fatty alcohol sulfates Chemical class 0.000 claims description 15
- 239000003945 anionic surfactant Substances 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 10
- 239000002736 nonionic surfactant Substances 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 9
- 239000000654 additive Substances 0.000 claims description 7
- 125000000217 alkyl group Chemical group 0.000 claims description 7
- 238000010936 aqueous wash Methods 0.000 claims description 7
- 125000000129 anionic group Chemical group 0.000 claims description 6
- 238000009472 formulation Methods 0.000 claims description 5
- 238000011049 filling Methods 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 230000009471 action Effects 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 2
- 235000018102 proteins Nutrition 0.000 description 96
- 239000013598 vector Substances 0.000 description 27
- 238000012360 testing method Methods 0.000 description 25
- 230000014509 gene expression Effects 0.000 description 23
- 239000012634 fragment Substances 0.000 description 21
- 150000007523 nucleic acids Chemical group 0.000 description 20
- 235000001014 amino acid Nutrition 0.000 description 19
- 238000010367 cloning Methods 0.000 description 19
- 108020001507 fusion proteins Proteins 0.000 description 19
- 239000013612 plasmid Substances 0.000 description 19
- 102000037865 fusion proteins Human genes 0.000 description 18
- 108020004414 DNA Proteins 0.000 description 17
- 238000007792 addition Methods 0.000 description 16
- 230000001105 regulatory effect Effects 0.000 description 16
- 239000000243 solution Substances 0.000 description 16
- 210000004027 cell Anatomy 0.000 description 15
- 239000004744 fabric Substances 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 13
- 108020004707 nucleic acids Proteins 0.000 description 13
- 102000039446 nucleic acids Human genes 0.000 description 13
- 108090000765 processed proteins & peptides Proteins 0.000 description 13
- 238000002474 experimental method Methods 0.000 description 12
- 238000000746 purification Methods 0.000 description 12
- 108091026890 Coding region Proteins 0.000 description 11
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 11
- 108091034117 Oligonucleotide Proteins 0.000 description 11
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 11
- 239000002253 acid Substances 0.000 description 11
- 238000003776 cleavage reaction Methods 0.000 description 11
- 235000018417 cysteine Nutrition 0.000 description 11
- 230000007017 scission Effects 0.000 description 11
- 239000007787 solid Substances 0.000 description 11
- 230000008859 change Effects 0.000 description 10
- 108091028043 Nucleic acid sequence Proteins 0.000 description 9
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 244000005700 microbiome Species 0.000 description 9
- 238000001694 spray drying Methods 0.000 description 9
- 241000894006 Bacteria Species 0.000 description 8
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 8
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 108091008146 restriction endonucleases Proteins 0.000 description 8
- 229920000742 Cotton Polymers 0.000 description 7
- 102000004190 Enzymes Human genes 0.000 description 7
- 108090000790 Enzymes Proteins 0.000 description 7
- 229940088598 enzyme Drugs 0.000 description 7
- 239000011777 magnesium Substances 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 229920001184 polypeptide Polymers 0.000 description 7
- 102000004196 processed proteins & peptides Human genes 0.000 description 7
- 241000588724 Escherichia coli Species 0.000 description 6
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 6
- 238000004587 chromatography analysis Methods 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 6
- 230000002209 hydrophobic effect Effects 0.000 description 6
- 210000003000 inclusion body Anatomy 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 5
- 108091005804 Peptidases Proteins 0.000 description 5
- 239000004365 Protease Substances 0.000 description 5
- 150000007513 acids Chemical class 0.000 description 5
- 150000001298 alcohols Chemical class 0.000 description 5
- 150000001945 cysteines Chemical class 0.000 description 5
- 238000001502 gel electrophoresis Methods 0.000 description 5
- 230000006801 homologous recombination Effects 0.000 description 5
- 238000002744 homologous recombination Methods 0.000 description 5
- 235000006109 methionine Nutrition 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 4
- 244000063299 Bacillus subtilis Species 0.000 description 4
- 108020004705 Codon Proteins 0.000 description 4
- 241000233866 Fungi Species 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 4
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 4
- 239000013543 active substance Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 150000003863 ammonium salts Chemical class 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 229930182817 methionine Natural products 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 150000004760 silicates Chemical class 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 229910000029 sodium carbonate Inorganic materials 0.000 description 4
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 3
- 235000014469 Bacillus subtilis Nutrition 0.000 description 3
- 101100387133 Emericella nidulans (strain FGSC A4 / ATCC 38163 / CBS 112.46 / NRRL 194 / M139) dewA gene Proteins 0.000 description 3
- 108010074860 Factor Xa Proteins 0.000 description 3
- 101150105462 HIS6 gene Proteins 0.000 description 3
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 3
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 3
- 108090001060 Lipase Proteins 0.000 description 3
- 102000004882 Lipase Human genes 0.000 description 3
- 239000004367 Lipase Substances 0.000 description 3
- 101100395023 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) his-7 gene Proteins 0.000 description 3
- 102000035195 Peptidases Human genes 0.000 description 3
- 229920002684 Sepharose Polymers 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 3
- 235000004279 alanine Nutrition 0.000 description 3
- 150000004996 alkyl benzenes Chemical class 0.000 description 3
- 125000002947 alkylene group Chemical group 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 239000007844 bleaching agent Substances 0.000 description 3
- 210000004899 c-terminal region Anatomy 0.000 description 3
- 150000001735 carboxylic acids Chemical class 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000003623 enhancer Substances 0.000 description 3
- 150000002191 fatty alcohols Chemical class 0.000 description 3
- 238000000855 fermentation Methods 0.000 description 3
- 230000004151 fermentation Effects 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000010353 genetic engineering Methods 0.000 description 3
- 235000019421 lipase Nutrition 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 235000004400 serine Nutrition 0.000 description 3
- 239000012064 sodium phosphate buffer Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 235000008521 threonine Nutrition 0.000 description 3
- 239000010457 zeolite Substances 0.000 description 3
- HZLCGUXUOFWCCN-UHFFFAOYSA-N 2-hydroxynonadecane-1,2,3-tricarboxylic acid Chemical compound CCCCCCCCCCCCCCCCC(C(O)=O)C(O)(C(O)=O)CC(O)=O HZLCGUXUOFWCCN-UHFFFAOYSA-N 0.000 description 2
- 241000589158 Agrobacterium Species 0.000 description 2
- 241000351920 Aspergillus nidulans Species 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 108010084185 Cellulases Proteins 0.000 description 2
- 102000005575 Cellulases Human genes 0.000 description 2
- 108700010070 Codon Usage Proteins 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 108010013369 Enteropeptidase Proteins 0.000 description 2
- 102100029727 Enteropeptidase Human genes 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- 239000004435 Oxo alcohol Substances 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- 241000589516 Pseudomonas Species 0.000 description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 241000187747 Streptomyces Species 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 108090000190 Thrombin Proteins 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 2
- 229960000723 ampicillin Drugs 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 229910001424 calcium ion Inorganic materials 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- 239000012043 crude product Substances 0.000 description 2
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical compound BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 210000004209 hair Anatomy 0.000 description 2
- LPTIRUACFKQDHZ-UHFFFAOYSA-N hexadecyl sulfate;hydron Chemical compound CCCCCCCCCCCCCCCCOS(O)(=O)=O LPTIRUACFKQDHZ-UHFFFAOYSA-N 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 229910001425 magnesium ion Inorganic materials 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000008488 polyadenylation Effects 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000003752 polymerase chain reaction Methods 0.000 description 2
- 235000019419 proteases Nutrition 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 229960004072 thrombin Drugs 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- JSPLKZUTYZBBKA-UHFFFAOYSA-N trioxidane Chemical compound OOO JSPLKZUTYZBBKA-UHFFFAOYSA-N 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- GGAUUQHSCNMCAU-ZXZARUISSA-N (2s,3r)-butane-1,2,3,4-tetracarboxylic acid Chemical compound OC(=O)C[C@H](C(O)=O)[C@H](C(O)=O)CC(O)=O GGAUUQHSCNMCAU-ZXZARUISSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- CEGRHPCDLKAHJD-UHFFFAOYSA-N 1,1,1-propanetricarboxylic acid Chemical compound CCC(C(O)=O)(C(O)=O)C(O)=O CEGRHPCDLKAHJD-UHFFFAOYSA-N 0.000 description 1
- XFRVVPUIAFSTFO-UHFFFAOYSA-N 1-Tridecanol Chemical compound CCCCCCCCCCCCCO XFRVVPUIAFSTFO-UHFFFAOYSA-N 0.000 description 1
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical compound C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 1
- CFPOJWPDQWJEMO-UHFFFAOYSA-N 2-(1,2-dicarboxyethoxy)butanedioic acid Chemical compound OC(=O)CC(C(O)=O)OC(C(O)=O)CC(O)=O CFPOJWPDQWJEMO-UHFFFAOYSA-N 0.000 description 1
- QIVYTYXBBRAXNG-UHFFFAOYSA-N 2-(2-hydroxyethylimino)acetic acid Chemical compound OCCN=CC(O)=O QIVYTYXBBRAXNG-UHFFFAOYSA-N 0.000 description 1
- RRBZUCWNYQUCTR-UHFFFAOYSA-N 2-(aminoazaniumyl)acetate Chemical class NNCC(O)=O RRBZUCWNYQUCTR-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- ODAKQJVOEZMLOD-UHFFFAOYSA-N 3-[bis(carboxymethyl)amino]-2-hydroxypropanoic acid Chemical compound OC(=O)C(O)CN(CC(O)=O)CC(O)=O ODAKQJVOEZMLOD-UHFFFAOYSA-N 0.000 description 1
- UWRBFYBQPCJRRL-UHFFFAOYSA-N 3-[bis(carboxymethyl)amino]propanoic acid Chemical compound OC(=O)CCN(CC(O)=O)CC(O)=O UWRBFYBQPCJRRL-UHFFFAOYSA-N 0.000 description 1
- KRFXUBMJBAXOOZ-UHFFFAOYSA-N 4-ethenyl-1-oxidopyridin-1-ium Chemical compound [O-][N+]1=CC=C(C=C)C=C1 KRFXUBMJBAXOOZ-UHFFFAOYSA-N 0.000 description 1
- KFDVPJUYSDEJTH-UHFFFAOYSA-N 4-ethenylpyridine Chemical compound C=CC1=CC=NC=C1 KFDVPJUYSDEJTH-UHFFFAOYSA-N 0.000 description 1
- XSVSPKKXQGNHMD-UHFFFAOYSA-N 5-bromo-3-methyl-1,2-thiazole Chemical compound CC=1C=C(Br)SN=1 XSVSPKKXQGNHMD-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 241000203069 Archaea Species 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 241000228245 Aspergillus niger Species 0.000 description 1
- 101100215658 Aspergillus parasiticus (strain ATCC 56775 / NRRL 5862 / SRRC 143 / SU-1) aflY gene Proteins 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 241000194107 Bacillus megaterium Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 101100232322 Bradyrhizobium diazoefficiens (strain JCM 10833 / BCRC 13528 / IAM 13628 / NBRC 14792 / USDA 110) hypA2 gene Proteins 0.000 description 1
- 101000583086 Bunodosoma granuliferum Delta-actitoxin-Bgr2b Proteins 0.000 description 1
- 241001453380 Burkholderia Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 108010059892 Cellulase Proteins 0.000 description 1
- 101100059802 Chlamydophila caviae (strain ATCC VR-813 / DSM 19441 / GPIC) groEL1 gene Proteins 0.000 description 1
- 108020004638 Circular DNA Proteins 0.000 description 1
- 101100365080 Clostridium perfringens (strain 13 / Type A) scpB gene Proteins 0.000 description 1
- 241000186216 Corynebacterium Species 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical class CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 229920005682 EO-PO block copolymer Polymers 0.000 description 1
- 241000588921 Enterobacteriaceae Species 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- 101100502848 Escherichia coli (strain K12) fkpB gene Proteins 0.000 description 1
- 101100287343 Escherichia coli (strain K12) ispH gene Proteins 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 210000000712 G cell Anatomy 0.000 description 1
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 241001074968 Halobacteria Species 0.000 description 1
- 108010093488 His-His-His-His-His-His Proteins 0.000 description 1
- 108010042653 IgA receptor Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- 241000186660 Lactobacillus Species 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- 239000005913 Maltodextrin Substances 0.000 description 1
- 229920002774 Maltodextrin Polymers 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 241001074893 Methanococci Species 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 241000187654 Nocardia Species 0.000 description 1
- 241001655308 Nocardiaceae Species 0.000 description 1
- 241000320412 Ogataea angusta Species 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108700020962 Peroxidase Proteins 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 102100034014 Prolyl 3-hydroxylase 3 Human genes 0.000 description 1
- 241000947836 Pseudomonadaceae Species 0.000 description 1
- 101100502849 Pseudomonas fluorescens yaaD gene Proteins 0.000 description 1
- 239000012614 Q-Sepharose Substances 0.000 description 1
- 241001633102 Rhizobiaceae Species 0.000 description 1
- 241000316848 Rhodococcus <scale insect> Species 0.000 description 1
- 101100434411 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) ADH1 gene Proteins 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 241000222481 Schizophyllum commune Species 0.000 description 1
- 108010034546 Serratia marcescens nuclease Proteins 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 241000204060 Streptomycetaceae Species 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- HVWGGPRWKSHASF-UHFFFAOYSA-N Sulfuric acid, monooctadecyl ester Chemical compound CCCCCCCCCCCCCCCCCCOS(O)(=O)=O HVWGGPRWKSHASF-UHFFFAOYSA-N 0.000 description 1
- 101100232321 Synechocystis sp. (strain PCC 6803 / Kazusa) hypA1 gene Proteins 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- BGRWYDHXPHLNKA-UHFFFAOYSA-N Tetraacetylethylenediamine Chemical compound CC(=O)N(C(C)=O)CCN(C(C)=O)C(C)=O BGRWYDHXPHLNKA-UHFFFAOYSA-N 0.000 description 1
- 102000002933 Thioredoxin Human genes 0.000 description 1
- 241000499912 Trichoderma reesei Species 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical class OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- SWLWZVHQLWXZTQ-UHFFFAOYSA-N acetonitrile;4-methylmorpholin-4-ium;methyl sulfate Chemical compound CC#N.COS([O-])(=O)=O.C[NH+]1CCOCC1 SWLWZVHQLWXZTQ-UHFFFAOYSA-N 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 101150102866 adc1 gene Proteins 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 description 1
- 150000001295 alanines Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 229940025131 amylases Drugs 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229940106157 cellulase Drugs 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229940080284 cetyl sulfate Drugs 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- JBTHDAVBDKKSRW-UHFFFAOYSA-N chembl1552233 Chemical compound CC1=CC(C)=CC=C1N=NC1=C(O)C=CC2=CC=CC=C12 JBTHDAVBDKKSRW-UHFFFAOYSA-N 0.000 description 1
- 238000010382 chemical cross-linking Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- FOCAUTSVDIKZOP-UHFFFAOYSA-N chloroacetic acid Chemical compound OC(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-N 0.000 description 1
- 229940106681 chloroacetic acid Drugs 0.000 description 1
- 238000011097 chromatography purification Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000012411 cloning technique Methods 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000004064 cosurfactant Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 239000000287 crude extract Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- STZIXLPVKZUAMV-UHFFFAOYSA-N cyclopentane-1,1,2,2-tetracarboxylic acid Chemical compound OC(=O)C1(C(O)=O)CCCC1(C(O)=O)C(O)=O STZIXLPVKZUAMV-UHFFFAOYSA-N 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- MOTZDAYCYVMXPC-UHFFFAOYSA-N dodecyl hydrogen sulfate Chemical compound CCCCCCCCCCCCOS(O)(=O)=O MOTZDAYCYVMXPC-UHFFFAOYSA-N 0.000 description 1
- 229940043264 dodecyl sulfate Drugs 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000834 fixative Substances 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 125000004395 glucoside group Chemical group 0.000 description 1
- 229960000587 glutaral Drugs 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 150000002333 glycines Chemical class 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 101150077981 groEL gene Proteins 0.000 description 1
- 101150006844 groES gene Proteins 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000005661 hydrophobic surface Effects 0.000 description 1
- 101150081485 hypA gene Proteins 0.000 description 1
- 101150019385 hypB gene Proteins 0.000 description 1
- 150000004693 imidazolium salts Chemical class 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 238000004900 laundering Methods 0.000 description 1
- 230000002366 lipolytic effect Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 230000002101 lytic effect Effects 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 229940035034 maltodextrin Drugs 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002742 methionines Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 101150001852 mrdB gene Proteins 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 125000001477 organic nitrogen group Chemical group 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 101150054557 pdxS gene Proteins 0.000 description 1
- 101150111339 pdxT gene Proteins 0.000 description 1
- HWGNBUXHKFFFIH-UHFFFAOYSA-I pentasodium;[oxido(phosphonatooxy)phosphoryl] phosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O HWGNBUXHKFFFIH-UHFFFAOYSA-I 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229910052615 phyllosilicate Inorganic materials 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- YLQLIQIAXYRMDL-UHFFFAOYSA-N propylheptyl alcohol Chemical compound CCCCCC(CO)CCC YLQLIQIAXYRMDL-UHFFFAOYSA-N 0.000 description 1
- 238000000164 protein isolation Methods 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 101150042737 rodA gene Proteins 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 150000003355 serines Chemical class 0.000 description 1
- 239000002453 shampoo Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 235000019795 sodium metasilicate Nutrition 0.000 description 1
- URLJMZWTXZTZRR-UHFFFAOYSA-N sodium myristyl sulfate Chemical compound CCCCCCCCCCCCCCOS(O)(=O)=O URLJMZWTXZTZRR-UHFFFAOYSA-N 0.000 description 1
- 229950005425 sodium myristyl sulfate Drugs 0.000 description 1
- 239000012418 sodium perborate tetrahydrate Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- IBDSNZLUHYKHQP-UHFFFAOYSA-N sodium;3-oxidodioxaborirane;tetrahydrate Chemical compound O.O.O.O.[Na+].[O-]B1OO1 IBDSNZLUHYKHQP-UHFFFAOYSA-N 0.000 description 1
- KVSYNOOPFSVLNF-UHFFFAOYSA-M sodium;4-nonanoyloxybenzenesulfonate Chemical compound [Na+].CCCCCCCCC(=O)OC1=CC=C(S([O-])(=O)=O)C=C1 KVSYNOOPFSVLNF-UHFFFAOYSA-M 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229940073450 sudan red Drugs 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 108060008226 thioredoxin Proteins 0.000 description 1
- 229940094937 thioredoxin Drugs 0.000 description 1
- 150000003588 threonines Chemical class 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 238000003151 transfection method Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D11/00—Special methods for preparing compositions containing mixtures of detergents
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/0005—Other compounding ingredients characterised by their effect
- C11D3/0036—Soil deposition preventing compositions; Antiredeposition agents
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D2111/00—Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
- C11D2111/10—Objects to be cleaned
- C11D2111/12—Soft surfaces, e.g. textile
Definitions
- the present invention relates to the use of surface-active, non-enzymatic proteins for textile washing. It further relates to laundry detergents containing surfactant non-enzymatic proteins and to a process for washing using such proteins.
- WO 98/00500 discloses for this purpose the use of cellulases, cellulase derivatives or cellulase-like proteins
- WO 01/46357 discloses for this purpose a fusion protein having a binding site for cellulose as well as a binding site for other compounds.
- Hydrophobins have a strong affinity for interfaces and are therefore suitable for coating surfaces, for example Teflon can be hydrophilized by exposing the Teflon surface to hydrophobins coated.
- Hydrophobins are small proteins of about 100 to 150 amino acids, which are characteristic of filamentous fungi, for example Schizophyllum commune. They usually have 8 cysteine units. Hydrophobins can be isolated on the one hand from natural sources. But they can also be obtained by genetic engineering. Our earlier application PCT / EP2006 / 050719 discloses such a production process for hydrophobins.
- WO 96/41882 proposes the use of hydrophobins as emulsifiers, thickeners, surface-active substances, for hydrophilicizing hydrophobic surfaces, for improving the water resistance of hydrophilic substrates, for producing oil-in-water emulsions or for water-in-oil emulsions. Furthermore, pharmaceutical applications such as the production of ointments or creams and cosmetic applications such as skin protection or the production of hair shampoos or hair rinses are proposed.
- EP 1 252 516 discloses the coating of windows, contact lenses, biosensors, medical devices, containers for carrying out experiments or for storage, hull fumes, solid particles or frame or body of passenger cars with a solution containing hydrophobins at a temperature of 30 to 80 0 C. ,
- WO 03/53383 discloses the use of hydrophobin for treating keratin materials in cosmetic applications.
- WO 03/10331 discloses a hydrophobin-coated sensor, for example a measuring electrode, to which non-kova nt further substances, e.g. electroactive substances, antibodies or enzymes are bound.
- the object of the invention was to provide improved detergents and improved processes for washing textiles. They should be distinguished in particular by an improved washing performance when washing at low temperatures.
- laundry detergents comprising surfactant non-enzymatic proteins have been discovered.
- a method of washing using a wash liquor comprising surface active non-enzymatic proteins is carried out at a temperature of not more than 60 0 C.
- the surface-active, non-enzymatic proteins are each hydrophobins.
- non-enzymatic proteins are used.
- non-enzymatic is intended to mean that the proteins preferably have no or at least no significant enzymatic action.
- the term "surface-active" is intended to mean that the protein used has the ability to affect the properties of interfaces.
- the interfaces to be considered may be solid-solid, solid-liquid, solid-gaseous, liquid-liquid or In particular, they may be solid-liquid or liquid-liquid interfaces.
- the property may be the hydrophilicity or hydrophobicity of the solid surface, which changes under the influence of the protein used. The change in hydrophilicity or hydrophobicity can be measured in a known manner by measuring the contact angle of a water droplet on the coated and uncoated surface.
- Another interface property is the change in surface tension of a liquid, which can be measured by known methods.
- proteins which are surface-active even at low concentrations are preferred. Particularly suitable are those proteins which have significant surface-active properties even in concentrations of 0.05 to 50 ppm in aqueous solution.
- those proteins are used which are characterized by the property of increasing the contact angle of a water droplet (5 ⁇ l) at least 20 ° after application to a glass surface at room temperature compared to the contact angle of an equal size Drop the water with the uncoated glass surface. Preference is given to using proteins in which the contact angle enlargement is at least 25 °, particularly preferably at least 30 °.
- the implementation of contact angle measurements is known in principle to the person skilled in the art. The exact experimental conditions for an exemplary method for measuring the contact angle are shown in the experimental part.
- the proteins used are hydrophobins.
- hydrophobins are to be understood as meaning polypeptides of the general structural formula (I)
- X is selected for each of the 20 naturally occurring amino acids (Phe, Leu, Ser, Tyr, Cys, Trp, Pro, His, GIn, Arg, Ne Met, Thr, Asn, Lys, VaI, Ala, Asp, Glu, GIy) can stand.
- the radicals X may be the same or different.
- the indices standing at X each represent the number of amino acids in the respective subsequence X
- C stands for cysteine, alanine, serine, glycine, methionine or threonine, at least four of the radicals named C being cysteine
- the indices n and m independently represent natural numbers between 0 and 500, preferably between 15 and 300.
- the polypetides according to the formula (I) are further characterized by the property that at room temperature after coating a glass surface, they increase the contact angle of a water droplet of at least 20 °, preferably at least 25 ° and particularly preferably 30 °, in each case compared with the contact angle an equally large drop of water with the uncoated glass surface.
- the amino acids designated C 1 to C 8 are preferably cysteines; but they can also be replaced by other amino acids of similar space filling, preferably by alanine, serine, threonine, methionine or glycine. However, at least four, preferably at least 5, more preferably at least 6 and in particular at least 7, of the positions C 1 to C 8 should consist of cysteines. Cysteines can either be reduced in the proteins according to the invention or can form disulfide bridges with one another. Particularly preferred is the intramolecular formation of CC bridges, in particular those with at least one, preferably 2, more preferably 3 and most preferably 4 intramolecular disulfide bridges. In the exchange of cysteines described above by amino acids of similar space filling, it is advantageous to exchange in pairs those C positions which are capable of forming intramolecular disulfide bridges with one another.
- cysteines, serines, alanines, glycines, methionines or threonines are also used in the positions indicated by X, the numbering of the individual C positions in the general formulas may change accordingly.
- X, C and the indices standing at X and C have the above meaning
- the indices n and m are numbers between 0 and 350, preferably 15 to 300
- the proteins further by the above-mentioned Distinguish contact angle change and it is still at least 6 of the radicals named C is cysteine.
- C is cysteine.
- all C radicals are cysteine.
- the proteins continue to be distinguished by the abovementioned contact angle change, and at least at least 6 of the residues named C are cysteine. Most preferably, all of the C radicals are cysteine.
- radicals X n and X m may it be peptide sequences that are growing naturally, also linked to a hydrophobin. However, one or both of the residues may be peptide sequences that are not naturally linked to a hydrophobin. Including such radicals X N and / or X are m to understand, in which a naturally occurring in a hydrophobin peptide sequence is extended by a non-naturally occurring in a hydrophobin peptide sequence.
- X n and / or X m are naturally non-hydrophobic linked peptide sequences
- such sequences are generally at least 20, preferably at least 35 and more preferably at least 50 amino acids and for example at least 100 amino acids long. They may, for example, be sequences from 20 to 500, preferably 30 to 400 and particularly preferably 35 to 100 amino acids.
- Such a residue, which is not naturally linked to a hydrophobin will also be referred to below as a fusion partner. This is to say that the proteins may consist of at least one hydrophobin part and one fusion partner part which in nature do not coexist in this form.
- the fusion partner portion can be selected from a variety of proteins. Only a single fusion partner can be linked to the hydrophobin moiety, or several fusion partners can also be linked to a hydrophobin moiety, for example at the amino terminus (X n ) and at the carboxy terminus (X m ) of the hydrophobic moiety. However, it is also possible, for example, to link two fusion partners with a position (X n or X m ) of the protein according to the invention.
- fusion partners are proteins that occur naturally in microorganisms, in particular in E. coli or Bacillus subtilis.
- fusion partners are the sequences yaad (SEQ ID NO: 15 and 16), yaae (SEQ ID NO: 17 and 18), and thioredoxin.
- fragments or derivatives of said sequences which comprise only a part, for example 70 to 99%, preferably 5 to 50%, and particularly preferably 10 to 40% of said sequences, or in which individual amino acids or nucleotides are opposite the said sequence are changed, wherein the percentages in each case refers to the number of amino acids.
- the fusion hydrophobin has, in addition to the fusion partner mentioned, one of the groups X n or X m or, as the terminal constituent of such a group, a so-called affinity domain (affin ity tag / affine ity tail).
- affinity domains include (His) k, (Arg) k, (Asp) k, (Phe) k or (Cys) k groups, where k is generally a natural number from 1 to 10. It may preferably be a (His) k group, where k is 4 to 6.
- the group X can be N and / or X m exclusively of such an affinity domain consist or a naturally or non-naturally linked to a hydrophobin radical X n and Xm is Gert extended for a terminal affinity domain.
- proteins used according to the invention as hydrophobins or derivatives thereof may also be modified in their polypeptide sequence, for example by glycosylation, acetylation or else by chemical crosslinking, for example with glutaric dialdehyde.
- a characteristic of the hydrophobins or their derivatives used according to the invention is the change of surface properties when the surfaces are coated with the proteins.
- the change in surface properties can be determined experimentally, for example, by measuring the contact angle of a water drop before and after coating the surface with the protein and determining the difference between the two measurements.
- contact angle measurements is known in principle to the person skilled in the art.
- the measurements refer to room temperature and water drops of 5 ⁇ l and the use of glass slides as substrate.
- the exact experimental conditions for an exemplary method for measuring the contact angle are shown in the experimental part.
- the fusion proteins used according to the invention have the property of increasing the contact angle by at least 20 °, preferably at least 25 °, particularly preferably at least 30 °, in each case compared with the contact angle of a water droplet of the same size with the uncoated glass surface.
- hydrophobins for practicing the present invention are the dewA, rodA, hypA, hypB, sc3, basfi, basf2 hydrophobins which are structurally characterized in the Sequence Listing below. It may also be just parts or derivatives thereof. It is also possible to link together a plurality of hydrophobin moieties, preferably 2 or 3, of the same or different structure and to link them to a corresponding suitable polypeptide sequence which is not naturally associated with a hydrophobin.
- fusion proteins yaad-XadewA-his (SEQ ID NO: 20), yaad-Xa-rodA-his (SEQ ID NO: 22) or yaad-Xa-basf 1-his (SEQ ID NO: 24) with the polypeptide sequences given in parentheses and the nucleic acid sequences coding therefor, in particular the sequences according to SEQ ID NO: 19, 21, 23.
- yaad-Xa-dewA-his proteins which, starting from the amino acid sequences shown in SEQ ID NO.
- the biological property of the proteins is hereby understood as the change in the contact angle already described by at least 20 °.
- Particularly suitable derivatives for carrying out the invention are yaad-Xa-dewA-his (SEQ ID NO: 20), yaad-Xa-rodA-his (SEQ ID NO: 22) or yaad-Xa-basf 1 -his
- yaad residues residues derived by truncation of the yaad fusion partner.
- the truncated residue should comprise at least 20, preferably at least 35, amino acids.
- a truncated radical having 20 to 293, preferably 25 to 250, particularly preferably 35 to 150 and for example 35 to 100 amino acids can be used.
- An example of such a protein is yaad40-Xa-dewA-his (SEQ ID NO: 26) which has a 40 amino acid truncated yaad residue.
- a cleavage site between the hydrophobin and the fusion partner or the fusion partners can be used to release the pure hydrophobin in underivatized form (for example, by BrCN cleavage on methionine, factor Xa, enterokinase, thrombin, TEV cleavage, etc.).
- fusion proteins from one fusion partner, for example yaad or yaae, and several hydrophobins, also of different sequence, for example DewA-RodA or Sc3-DewA, Sc3-RodA, in succession.
- hydrophobin fragments for example N- or C-terminal truncations
- muteins having up to 70% homology can be used. The selection of the optimal constructs is made with respect to the particular use, i. the liquid phases to be separated.
- hydrophobins used for textile washing according to the invention can be prepared chemically by known methods of peptide synthesis, such as by Merrifield solid phase synthesis.
- Naturally occurring hydrophobins can be isolated from natural sources by suitable methods. As an example, let Wösten et. al., Eur. J Cell Bio. 63, 122-129 (1994) or WO 96/41882.
- fusion proteins can preferably be effected by genetic engineering processes in which a nucleic acid sequence coding for the fusion partner and a hydrophobin part, in particular DNA sequence, are combined in such a way that the desired protein is produced in a host organism by gene expression of the combined nucleic acid sequence ,
- a manufacturing method is disclosed, for example, in PCT / EP2006 / 050719.
- Suitable host organisms (production organisms) for said production process may be prokaryotes (including archaea) or eukaryotes, especially bacteria including halobacteria and methanococci, fungi, insect cells, plant cells and mammalian cells, more preferably Escherichia coli, Bacillus subtilis, Bacillus megaterium, Aspergillus oryzea, Aspergillus nidulans, Aspergillus niger, Pichia pastoris, Pseudomonas spec, Lactobacilli, Hansenula polymorpha, Trichoderma reesei, SF9 (or related cells) and others.
- prokaryotes including archaea
- eukaryotes especially bacteria including halobacteria and methanococci, fungi, insect cells, plant cells and mammalian cells, more preferably Escherichia coli, Bacillus subtilis, Bacillus megaterium, Asperg
- the invention furthermore relates to the use of expression constructs containing, under the genetic control of regulatory nucleic acid sequences, a nucleic acid sequence coding for a polypeptide used according to the invention, as well as vectors comprising at least one of these expression constructs.
- constructs employed include a promoter 5'-upstream of the respective coding sequence and a terminator sequence 3'-downstream, and optionally other common regulatory elements, each operatively linked to the coding sequence.
- an "operative linkage" is understood to mean the sequential arrangement of promoter, coding sequence, terminator and, if appropriate, further regulatory elements such that each of the regulatory elements can fulfill its function in the expression of the coding sequence as intended.
- operably linked sequences are targeting sequences as well as enhancers, polyadenylation signals and the like.
- Other regulatory elements include selectable markers, amplification signals, origins of replication, and the like. Suitable regulatory sequences are for. As described in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990).
- the natural regulation of these sequences may still be present before the actual structural genes and may have been genetically altered so that the natural regulation has been eliminated and the expression of the genes has been increased.
- a preferred nucleic acid construct advantageously also contains one or more so-called “enhancer” sequences, functionally linked to the promoter, which allow increased expression of the nucleic acid sequence. Additional advantageous sequences can also be inserted at the 3 'end of the DNA sequences, such as further regulatory elements or terminators.
- the nucleic acids may be contained in one or more copies in the construct.
- the construct may also contain further markers such as antibiotic resistance or auxotrophic complementing genes, optionally for selection on the construct.
- Advantageous regulatory sequences for the preparation are, for example, in promoters such as cos, tac, trp, tet, trp tet, Ipp, lac, Ipp-lac, Iaclq-T7, T5, T3, gal , trc, ara, rhaP (rhaPBAD) SP6, lambda PR or imlambda P promoter, which are advantageously used in gram-negative bacteria.
- Further advantageous regulatory sequences are contained, for example, in the gram-positive promoters amy and SP02, in the yeast or fungal promoters ADC1, MFalpha, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH.
- the nucleic acid construct, for expression in a host organism is advantageously inserted into a vector, such as a plasmid or a phage, which allows for optimal expression of the genes in the host.
- a vector such as a plasmid or a phage
- all other vectors known to the person skilled in the art ie, z.
- viruses such as SV40, CMV, baculovirus and adenovirus, transposon JS elements, phasmids, cosmids, and linear or circular DNA, as well as the Agrobacterium system.
- vectors can be autonomously replicated in the host organism or replicated chromosomally.
- Suitable plasmids are described, for example, in E. coli pLG338, pACYC184, pBR322, pUC18, pUC19, pKC30, pRep4, pHS1, pKK223-3, pDHE19.2, pHS2, pPLc236, pMBL24, pLG200, pUR290, pIII-III "3-B1, tgt11 or pBdCI, in Streptomyces plJ101, pIJ364, pIJ702 or pIJ361, in Bacillus pUB110, pC194 or pBD214, in Cory- nebacterium pSA77 or pAJ667, in fungi pALS1, plL2 or pBB116, in yeasts 2alpha, pAG-1, YEp6, YEp13 or p
- the plasmids mentioned represent a small selection of the possible plasmids. Further plasmids are known to the person skilled in the art and can be found, for example, in the book Cloning Vectors (Eds. Pouwels PH et al., Elsevier, Amsterdam-New York-Oxford, 1985, ISBN 0 444 904018).
- nucleic acid construct for expression of the further genes contained additionally 3'- and / or 5'-terminal regulatory sequences for increasing expression, which are selected depending on the selected host organism and gene or genes for optimal expression.
- genes and protein expression are intended to allow the targeted expression of genes and protein expression. Depending on the host organism, this may mean, for example, that the gene is only expressed or overexpressed after induction, or that it is expressed and / or overexpressed immediately.
- the regulatory sequences or factors can thereby preferably influence the gene expression of the introduced genes positively and thereby increase.
- enhancement of the regulatory elements can advantageously be done at the transcriptional level by using strong transcription signals such as promoters and / or enhancers.
- an enhancement of the translation is possible by, for example, the stability of the mRNA is improved.
- the vector containing the nucleic acid construct or the nucleic acid can also advantageously be introduced into the microorganisms in the form of a linear DNA and integrated into the genome of the host organism via heterologous or homologous recombination.
- This linear DNA can consist of a linearized vector such as a plasmid or only of the nucleic acid construct or the nucleic acid.
- an expression cassette is carried out by fusion of a suitable promoter with a suitable coding nucleotide sequence and a terminator or polyadenylation signal.
- a suitable promoter for this purpose, common recombination and cloning techniques are used, as described, for example, in T. Maniatis, E.Fritsch and J.
- the recombinant nucleic acid construct or gene construct is inserted for expression in a suitable host organism, advantageously into a host-specific vector which enables optimal expression of the genes in the host.
- Vectors are well known to those skilled in the art and can be found, for example, in "Cloning Vectors" (Pouwels P.H. et al., Eds. Elsevier, Amsterdam-New York-Oxford, 1985).
- recombinant microorganisms can be produced, which are transformed, for example, with at least one vector and can be used to produce the hydrophobins or derivatives thereof used in the invention.
- the recombinant constructs described above are introduced into a suitable host system and expressed.
- Homologously recombined microorganisms can also be produced.
- a vector is prepared which contains at least a portion of a gene or a coding sequence to be used, wherein optionally at least one amino acid deletion, addition or substitution has been introduced to alter the sequence, e.g. B. functionally disrupted ("knockout" - vector).
- the introduced sequence can, for. Also be a homologue from a related microorganism or be derived from a mammalian, yeast or insect source.
- the vector used for homologous recombination may be such that the endogenous gene is mutated or otherwise altered upon homologous recombination, but still encodes the functional protein (eg, the upstream regulatory region may be altered such that expression the endogenous protein is changed).
- the altered portion of the gene used according to the invention is in the homologous recombination vector.
- suitable vectors for homologous recombination is e.g. As described in Thomas, K.R. and Capecchi, M.R. (1987) Cell 51: 503.
- the host organ used is microorganisms such as bacteria, fungi or yeasts.
- gram-positive or gram-negative bacteria preferably bacteria of the families Enterobacteriaceae, Pseudomonadaceae, Rhizobiaceae, Streptomycetaceae or Nocardiaceae, more preferably bacteria of the genera Escherichia, Pseudomonas, Streptomyces, Nocardia, Burkholderia, Salmonella, Agrobacterium or Rhodococcus are used.
- the organisms used in the production process for fusion proteins just described are attracted or cultivated, depending on the host organism, in a manner known to the person skilled in the art.
- Microorganisms are usually in a liquid medium containing a carbon source usually in the form of sugars, a nitrogen source usually in the form of organic nitrogen sources such as yeast extract or salts such as ammonium sulfate, trace elements such as iron, manganese and magnesium salts and optionally vitamins, at temperatures between 0 and 100 0 C, preferably be- see 10 attracted to 60 0 C while passing in oxygen.
- the pH of the nutrient fluid can be kept at a fixed value, that is, regulated during the cultivation or not.
- the cultivation can be done batchwise, semi-batchwise or continuously. Nutrients can be presented at the beginning of the fermentation or fed in semi-continuously or continuously.
- the enzymes may be isolated from the organisms by the method described in the Examples or used as crude extract for the reaction.
- the hydrophobins or functional, biologically active fragments thereof used according to the invention can be prepared by means of a process for recombinant production, wherein a polypeptide-producing microorganism is cultivated, if appropriate, the expression of the proteins is induced and these are isolated from the culture.
- the proteins can thus also be produced on an industrial scale, if desired.
- the recombinant microorganism can be cultured and fermented by known methods. Bacteria can be propagated, for example, in TB or LB medium and at a temperature of 20 to 40 0 C and a pH of 6 to 9. Specifically, suitable culturing conditions are described, for example, in T. Maniatis, EF Fritsch and J. Sambrook, Molecular Cloning: A Laboratory Manual, Colard Spring Harbor Laboratory, ColD Spring Harbor, NY (1989).
- the fusion partners greatly facilitate the production of hydrophobins. Fusion hydrophobins are produced with significantly better yields than hydrophobins without fusion partners.
- the cells are disrupted and the product is recovered from the lysate by known protein isolation techniques.
- the cells can optionally by high-frequency ultrasound, by high pressure, such as. B. in a French pressure cell, by osmolysis, by a Effect of detergents, lytic enzymes or organic solvents, be homogenized by homogenizers or by combining several of the listed methods.
- Purification of the proteins can be achieved by known chromatographic methods, such as molecular sieve chromatography (gel filtration), such as Q-Sepharose chromatography, ion exchange chromatography and hydrophobic chromatography, as well as other conventional methods, such as ultrafiltration, crystallization, salting out, dialysis and native gel electrophoresis. Suitable methods are described, for example, in Cooper, F.G., Biochemische Harvey Methoden, Verlag Water de Gruyer, Berlin, New York or in Scopes, R., Protein Purification, Springer Verlag, New York, Heidelberg, Berlin.
- the fusion hydrophobins with special anchor groups to facilitate isolation and purification, which can bind to corresponding complementary groups on solid supports, in particular suitable polymers.
- Such solid carriers can be used, for example, as a filling for chromatography columns, and in this way the efficiency of the separation can generally be increased significantly.
- separation methods are also known as affinity chromatography.
- anchor groups can be used in the production of proteins vector systems or oligonucleotides that extend the cDNA to certain nucleotide sequences and thus encode altered proteins or fusion proteins. Proteins modified for ease of purification include so-called "tags" acting as anchors, such as the modification known as hexa-histidine anchors.
- fusion hydrophobins modified with histidine anchors can be chromatographically purified using columnar nickel-Sepharose.
- the fusion hydrophobin can then be eluted from the column by suitable means for elution, such as an imidazole solution.
- the cells are first separated by means of a suitable method from the Fermetationsbrühe, for example by microfiltration or by centrifugation. Subsequently, the cells can be digested by means of suitable methods, for example by means of the methods already mentioned above, and the cell debris can be separated from the inclusion bodies. The latter can be done advantageously by centrifuging. Finally, the inclusion bodies can be disrupted in a manner known in principle in order to liberate the fusion hydrophobins. This can be done for example by acids, bases and / or detergents.
- the inclusion bodies with the fusion hydrophobins used according to the invention can generally be completely dissolved within about 1 h already using 0.1 M NaOH.
- the purity of the after The fusion hydrophobin obtained in this simplified process is generally from 60 to 80% by weight, based on the amount of all proteins.
- the solutions obtained by the described, simplified purification process can be used without further purification to carry out this invention.
- the fusion hydrophobins can also be isolated from the solutions as a solid. This can be done, for example, in a manner known in principle by freeze-drying or spray-drying.
- the isolation can be carried out by spray drying.
- the spray drying can be carried out with the solution purified by chromatography, but it is also possible with preference to use the solutions obtained by the purification process of the inclusion bodies (inclusion bodies).
- the solutions can optionally be neutralized.
- a pH range of 7 to 9 has been found to be particularly advantageous.
- the solution can be spray-dried in a manner known in principle. Suitable apparatus for spray-drying are commercially available. The optimum spray drying conditions vary with device type and desired throughput. Inlet temperatures from 130 to 180 0 C and
- hydrophobin solutions Starting temperatures of 50 to 80 0 C have been found in hydrophobin solutions as favorable.
- spray-drying auxiliaries such as sugar, mannitol, dextran or maltodextrin can be used.
- An amount of from 0 to 30% by weight, preferably from 5 to 20% by weight, of such auxiliaries with respect to the hydrophobin has proven useful.
- hydrophobins prepared as described can be used as "pure" hydrophobins both directly as fusion proteins and after cleavage and separation of the fusion partner.
- a potential cleavage site (specific recognition site for proteases) in the fusion protein between the hydrophobin part and the fusion partner part.
- Suitable cleavage sites are, in particular, those peptide sequences which otherwise do not occur either in the hydrophobin part or in the fusion partner part, which can be easily determined with bioinformatic tools.
- BrCN cleavage is particularly suitable Methionine, or protease-mediated cleavage with factor Xa, enterokinase, thrombin or TEV cleavage (Tobacca etch virus protease).
- the surface-active, non-enzymatic proteins can, on the one hand, be used as a component of a detergent and be added in this form to the wash liquor.
- the separate addition may be by the addition of the protein in solid form, as a solution or as a suitable formulation. Of course, both methods of addition can also be combined.
- the amount of surface-active, non-enzymatic protein in the wash liquor is determined by the skilled person depending on the desired effect. As a rule, an amount of 0.05 to 50 ppm, preferably 0.1 to 30 ppm, more preferably 0.2 to 20 ppm, very particularly preferably 0.5 to 10 ppm and for example 1 to 6 ppm, has proven useful.
- the detergents according to the invention comprise at least one washing-active substance and at least one surface-active, non-enzymatic protein.
- the at least one surface-active, non-enzymatic protein is preferably a protein which causes the above-mentioned change in the contact angle, more preferably at least one hydrophobin.
- a protein which causes the above-mentioned change in the contact angle more preferably at least one hydrophobin.
- mixtures of different proteins can also be used.
- hydrophobins are used, they can be used as "pure" hydrophobin or else in the form of the abovementioned fusion proteins.
- fusion proteins of the type yaad-Xa-dewA-his SEQ ID NO: 20
- yaad-Xa-rodA-his SEQ ID NO: 22 yaad-Xa-basf1-his
- SEQ ID NO: 24 Especially useful has been yaad-Xa-dewA-his (SEQ ID NO: 20) with complete yaad Fusion partner or else with truncated fusion partner, such as yaad40-Xa-dewA-his (SEQ ID NO: 26).
- Detergent for textile washing is self-explanatory and restrictive at the same time
- Detergents for washing textiles are used, for example, in the form of powders, granules, beads, pastes, tablets, gels or liquids, usually in aqueous solution (wash liquor)
- Detergents comprise at least one, but as a rule a plurality of different, washing-active substances which co-operate to form an optimum washing result. and builders, co-builders, bleach systems, and detergent enzymes.
- typical additives such as fragrances, corrosion inhibitors, color transfer inhibitors, foam inhibitors or optical brighteners can be used as components of detergents.
- Surfactants may be anionic, nonionic, cationic or amphorous surfactants.
- Suitable nonionic surfactants are, in particular:
- Alkoxylated C 8 -C 22 -alcohols such as fatty alcohol alkoxylates, oxo alcohol alkoxylates and Guerbet alcohol ethoxylates:
- the alkoxylation can be carried out with ethylene oxide, propylene oxide and / or butylene oxide.
- Preferred alkylene oxide is ethylene oxide.
- the alcohols preferably have 10 to 18 carbon atoms.
- Alkylphenolalkoxylate in particular alkylphenol ethoxylates containing C6-Ci4-alkyl chains and 5 to 30 moles of alkylene oxide / mol.
- N-alkylglucamides fatty acid amide alkoxylates, fatty acid alkanolamide alkoxylates and block copolymers of ethylene oxide, propylene oxide and / or butylene oxide.
- Suitable anionic surfactants are, for example:
- Sulfated alkoxylated Ce-C22-alcohols (alkyl ether sulfates): Compounds of this type are prepared, for example, by first obtaining a C8-C22, preferably a Cio-C16-alcohol, e.g. a fatty alcohol or an oxo alcohol, alkoxylated and then the alkoxylation product sulfated.
- a C8-C22 preferably a Cio-C16-alcohol, e.g. a fatty alcohol or an oxo alcohol
- alkoxylation product sulfated For the alkoxylation is preferably used ethylene oxide.
- Linear C8 -C2o alkyl benzene sulfonates LAS
- LAS linear C 9 -C 3 alkyl benzene sulfonates and Cg-Cis-alkyltoluene.
- Alkanesulfonates in particular C8-C24-, preferably Cio-Ci8-alkanesulfonates.
- Soaps such as the Na and K salts of Ce-C24 carboxylic acids.
- the anionic surfactants are preferably added to the detergent in the form of salts.
- Suitable salts are e.g. Alka Ii metal salts such as sodium, potassium and lithium salts, and ammonium salts such as hydroxyethylammonium, di (hydroxyethyl) ammonium and tri (hydroxyethyl) ammonium salts.
- cationic surfactants may be mentioned:
- Imidazolinquats in particular 1-Alkylimidazoliniumsalze of the formulas II or IM
- R 3 Ci-C 2 H 5 alkyl or C 2 -C 5 2-alkenyl;
- R 4 is C 1 -C 4 -alkyl or hydroxy-C 1 -C 4 -alkyl;
- R 5 is C 1 -C 4 -alkyl, hydroxy-C 1 -C 4 -alkyl or a radical R 1 - (CO) -X- (CH 2 ) m - (X: -O- or -NH-; m: 2 or 3)
- R 3 is C 7 -C 22 alkyl
- Suitable amphoteric surfactants are, for example, alkylbetaines, alkylamidbetaines, aminoproparates, aminoglycinates and amphoteric imidazolium compounds.
- Builders (builders, also referred to as heterogeneous inorganic builders, HABs) function in the washing process to soften the water. They support the washing action by their Alka Ii tat as well as the dissolution of Ca and Mg ions from dirt or fiber bridges and promote the dispersion of pigment dirt in the wash liquor.
- Suitable inorganic builders are, in particular:
- Crystalline and amorphous aluminosilicates with ion-exchanging properties in particular zeolites:
- zeolites Various types are suitable, in particular the zeolites A, X, B, P, MAP and HS in their Na form or in forms in which Na partially opposes other cations such as Li, K, Ca, Mg or ammonium are exchanged.
- Crystalline silicates in particular disilicates and phyllosilicates, e.g. ⁇ - and ß-Na2Si2 ⁇ 5.
- the silicates may be in the form of their alkali metal, alkaline earth metal or
- Ammonium salts are used, preferred are the Na, Li and Mg silicates.
- Amorphous silicates such as sodium metasilicate and amorphous disilicate.
- Carbonates and bicarbonates can be used in the form of their alkali metal, alkaline earth metal or ammonium salts. Preference is given to Na, Li and Mg carbonates and hydrogen carbonates, in particular sodium carbonate and / or sodium bicarbonate.
- Polyphosphates such as pentasodium triphosphate.
- cobuilders work in concert with the buildem by, for example, storing Ca- or Mg-ions faster than the builders, and then passing them on to the builders. In addition, they can prevent their growth by adsorption on crystal germs.
- organic cobuilders are particularly suitable:
- Low molecular weight carboxylic acids such as citric acid, hydrophobically modified citric acid, e.g. G., Agaricic acid, malic acid, tartaric acid, gluconic acid, glutaric acid, succinic acid, imidodibemic acid, oxydisuccinic acid, propanetricarboxylic acid, butanetetracarboxylic acid, cyclopentanetetracarboxylic acid, alkyl- and alkenylsuccinic acids and aminopolycarboxylic acids, eg nitrilotriacetic acid, .beta.-alaninediacetic acid, ethylenediaminetetraacetic acid, serinediacetic acid, isoserine-diacetic acid, N- (2-hydroxyethyl) iminoacetic acid, ethylenediamine dibasic acid and methyl and ethylglycinediacetic acid.
- G. Agaricic acid, malic acid
- Oligomeric and polymeric carboxylic acids such as homopolymers of acrylic acid and aspartic acid, oligomaleic acids, copolymers of maleic acid with acrylic acid, methacrylic acid or C 2 -C 22 -olefins, for example isobutene or long-chain ⁇ -olefins, vinyl-C 1 -C 6 -alkyl ethers, vinyl acetate, vinyl propionate, (Meth) acrylic esters of C 1 -C 6 -alcohols and styrene.
- Preferred are the homopolymers of acrylic acid and copolymers of acrylic acid with maleic acid.
- the oligomeric and polymeric carboxylic acids are used in acid form or as the sodium salt.
- Suitable bleaching agents are, for example, adducts of hydrogen peroxide with inorganic salts, such as sodium perborate monohydrate, sodium perborate tetrahydrate and sodium carbonate perhydrate, and percarboxylic acids, such as phthalimidopercaproic acid.
- Suitable bleach activators are e.g. N.N.N'.N'-tetraacetylethylenediamine (TAED), sodium p-nonanoyloxybenzenesulfonate and N-methylmorpholinium acetonitrile methylsulfate.
- TAED N.N.N'.N'-tetraacetylethylenediamine
- Enzymes preferably used in detergents are proteases, lipases, amylases, cellulases, oxidases and peroxidases.
- Suitable color transfer inhibitors are, for example, homo-, co- and graft polymers of 1-vinylpyrrolidone, 1-vinylimidazole, 4-vinylpyridine-N-oxide, or homo- and copolymers of 4-vinylpyridine reacted with chloroacetic acid.
- the type and amount of components used will be determined by one skilled in the art depending on the desired use of the detergent.
- bleaches are commonly used in heavy duty detergents, but not in colored laundry detergents. Further details on the composition of detergents and components of detergents are described, for example, in “Detergents” in Rompp Chemie-Lexikon, Online Edition, Version 2.6, Georg-Thieme-Verlag, Stuttgart, New York, Feb. 2005 or in "Detergents” in Ullmann's Encyclopedia of Industrial Chemistry, 6 th Edt., 2000, Electronic Release, Wiley-VCH-Verlag, Weinheim, 2000.
- Preferred surfactants for carrying out the present invention are anionic surfactants and / or nonionic surfactants.
- the surface-active, non-enzymatic proteins, in particular hydrophobins, used according to the invention can be used particularly advantageously with a combination of linear alkylbenzenesulfonates or fatty alcohol sulfates with alkyl ether sulfates or alkyl alkoxylates.
- alkoxy radicals are preferably those which essentially comprise ethylene oxide units and / or propylene oxide units, preferably ethylene oxide units. They may, for example, be radicals of from 1 to 25 ethylene oxide units, preferably from 3 to 20 and particularly preferably from 5 to 15 units or groups comprising ethylene oxide and propylene oxide units, the latter in each case based on at least 50 mol%, preferably 60 mol% ethylene oxide units should include the total number of all alkoxy units.
- surfactants examples include alkoxylated Ce-Cie alcohols, such as Fettalkoho- lalkoxylate, Oxoalkoholalkoxylate, Guerbetalkoholalkoxylate, sulfates of C 8 -C 8 alcohols, sulfated alkoxylated C 8 -C 8 alcohols (alkyl ether sulfates) or linear
- C 8 -C 8 alkyl benzene sulfonates LAS
- LAS preferably linear C 9 -C alkyl benzene sulfonates and Cg-Cis-3-alkyltoluene.
- the amount of surface-active, non-enzymatic proteins in the detergent is measured by the skilled person according to the desired properties of the detergent.
- the amount is chosen so that when properly dosing the detergent, the above-mentioned concentrations of the surface-active, non-enzymatic protein are obtained.
- an amount of from 0.002 to 2.5% by weight of the surface-active, non-enzymatic proteins, based on the total amount of all components of the detergent, has proven useful.
- the amount is 0.01 to 1, 5 wt.%, Particularly preferably 0.025 to 1, 0 wt.%, Very particularly preferably 0.05 to 0.5 wt.% And for example 0.1 to 0.3 wt. %.
- the detergents according to the invention comprise
- surfactants preferably anionic and / or nonionic surfactants
- component (c) lipases and / or amphophilic polymers, for example ethylene oxide-propylene oxide block copolymers can be used.
- the detergents according to the invention can be prepared by methods known in principle to those skilled in the art. Details of preparation processes for detergents are shown, for example, in the cited references "Römpp Chemie-Lexikon” or “Ullmann's”.
- the surface-active, non-enzymatic proteins can be used to prepare the detergent as a solution or as a solid. Solid proteins can be obtained starting from solutions of the proteins by methods known to those skilled in the art, such as, for example, spray-drying or freeze-drying.
- the temperature load on the surface-active, non-enzymatic proteins is not too high.
- the limit depends of course on the type of protein. In the case of the use of hydrophobins, it has been proven not to exceed a product temperature of 120 0 C.
- the process temperature for example, the temperature of the gas stream in a spray dryer, of course, can also be higher, provided that the product temperature does not exceed the critical limit.
- the preparation of pulverulent detergents can be carried out, for example, by preparing in a first step from aqueous slurries of the thermally stable components of the detergent by spray drying a crude product and mixing this crude product in a second step under mild conditions with the thermally sensitive components. It is generally advisable to introduce the surface-active, non-enzymatic proteins used according to the invention in this second step, without the invention being restricted thereto.
- the process according to the invention for washing textile materials comprises at least the steps:
- the washing device used may be all types of washing machines.
- the term is also intended to include vessels that are typically used in hand washing, such as washtub or sink.
- the washing device is first filled with the textiles and an aqueous wash liquor, whereby the order does not matter.
- the wash liquor comprises, in a manner known in principle, at least one wash-active substance.
- the aqueous wash liquor further comprises min. at least one surfactant, nonenzymatic protein.
- Preferred proteins have already been mentioned.
- the addition of surfactant non-enzymatic proteins can be done via the detergent, or it can be done separately. It preferably takes place at the beginning of the wash cycle, but it can of course also be carried out at a later time.
- the washing process is supported in process step (b) in a known manner by the action of mechanical energy on the mixture of textile materials and wash liquor.
- Mechanical energy can be introduced by washing machines, e.g. by rotating drums, or in the case of hand washing by hands and / or other aids.
- the temperature in the course of the washing process is selected by the skilled person depending on the circumstances.
- the temperature may be 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 100 ° C.
- the particular advantages of the invention are particularly significant in laundry at medium or low temperatures.
- the washing process is carried out at a temperature of not more than 60 ° C., in particular not more than 50 ° C.
- a particularly advantageous temperature range for carrying out the washing process according to the invention is 5 to 45 ° C, very particularly preferably 15 to 35 ° C and for example 20 to 30 0 C.
- concentration of surface-active, non-enzymatic proteins in the course of the washing process is selected by the person skilled in the art. Preferred concentration ranges have already been mentioned above.
- the detergents according to the invention are usually very particularly preferred in an amount of 0.05 to 25 g / l, preferably 0.25 to 15 g / l, particularly preferably 0.5 to 10 g / l 1 to 6 g / l and for example 1, 5 to 4 g / l, in each case based on the wash liquor used.
- the wash liquor is removed in a manner known in principle.
- the textile materials are then rinsed by one or more rinsing operations and finally dried (process steps (d) and (e)).
- rinsing softener can be used as an additive.
- the inventive method is suitable for cleaning all types of textile materials.
- textile materials may be textile fibers, semi-finished and semi-finished textile products and finished goods made from them.
- This may be conventional textiles for clothing, but also home textiles such as carpets, curtains, tablecloths and technical purposes serving textile structures.
- This also includes unshaped structures such as flakes, linear formations such as twine, threads, yarn, linen, cords, ropes, threads and body structures such as felts, fabrics, knitted fabrics, nonwovens and wadding.
- Textile materials can be made of materials of natural origin, such as cotton, wool or flax or of synthetic materials such as polyacrylonitrile, polyamide, or polyester. Of course, it may also be mixed fabrics, such as cotton / polyester or cotton / polyamide.
- oligonucleotides Hal570 and Hal571 (HaI 572 / HaI 573) a polymerase chain reaction was carried out.
- the PCR fragment obtained contained the coding sequence of the gene yaaD / yaaE from Bacillus subtilis, and at the ends in each case an NcoI or BglII restriction cleavage site.
- the PCR fragment was purified and cut with the restriction endonucleases NcoI and BglII.
- This DNA fragment was used as an insert and cloned into the vector pQE60 from Qiagen, previously linearized with the restriction endonucleases NcoI and BglI.
- the resulting vectors pQE60YAAD # 2 / pQE60YaaE # 5 can be used for the expression of proteins consisting of, YAAD :: HIS6 or YAAE :: H
- Hal570 gcgcgcccatggctcaaacaggtactga
- Hal571 gcagatctccagccgcgttcttgcatac
- Hal572 ggccatgggattaacaataggtgtactagg
- Hal573 gcagatcttacaagtgccttttgcttatattcc
- the oligonucleotides KaM 416 and KaM 417 a polymerase chain reaction was carried out.
- the template DNA used was genomic DNA of the mold Aspergillus nidulans.
- the resulting PCR fragment contained the coding sequence of the hydrophobin gene dewA and an N-terminal factor Xa proteinase cleavage site.
- the PCR fragment was purified and cut with the restriction endonuclease BamHI. This DNA fragment was used as an insert and cloned into the vector pQE60YAAD # 2 previously linearized with the restriction endonuclease BgIII.
- the resulting vector # 508 can be used to express a fusion protein consisting of, YAAD :: Xa :: dewA :: HIS6.
- KaM416 GCAGCCCATCAGGGATCCCTCAGCCTTGGTACCAGCGC
- KaM417 CCCGTAGCTAGTGGATCCATTGAAGGCCGCATGAAGTTCTCCGTCTCCGC
- plasmid # 513 The cloning of plasmid # 513 was carried out analogously to plasmid # 508 using the oligonucleotides KaM 434 and KaM 435.
- KaM434 GCTAAGCGGATCCATTGAAGGCCGCATGAAGTTCTCCATTGCTGC KaM435: CCAATGGGGATCCGAGGATGGAGCCAAGGG
- the template DNA used was the plasmid HypA in pCR2.1, manufactured by Nadicom.
- the fragment obtained contained the coding sequence of the hydrophobin HypA gene without start and stop codon.
- the PCR fragment was purified by gel electrophoresis and cut with the restriction endonucleases NcoI and BamHI. This fragment was used as an insert and ligated into the pQE60 vector cut previously with NcoI and BglII.
- KaM449 GTTACCCCATGGCGATCTCTCGCGTCCTTGTCGCT
- KaM450 GCCTGAGGATCCGAGGTTGACATTGACAGGAGAGC
- PCR was performed.
- the template DNA used was the plasmid HypA in pCR2.1, manufactured by Nadicom.
- the fragment obtained contained the coding sequence of the hydrophobin HypA gene without start and stop codon.
- the PCR fragment was purified by gel electrophoresis and cut with the restriction endonucleases BglII and BamHI. This fragment was used as an insert and ligated into the previously cut with Bgl II vector pQE60 + YAAD.
- KaM451 CGTAGTAGATCTATGATCTCTCGCGTCCTTGTCGCTGC
- KaM452 CGACTAGGATCCGAGGTTGACATTGACAGGAGAGC
- PCR was performed.
- the template DNA used was the plasmid HypB in puC19, manufactured by Nadicom.
- the fragment obtained contained the coding sequence of the hydrophobin HypB gene without start and stop codon.
- the PCR fragment was purified by gel electrophoresis and cut with the restriction endonucleases Ncol and BamHI. This fragment was used as an insert and ligated into the pQE60 vector cut previously with NcoI and BglII.
- KaM453 GCTTATCCATGGCGGTCAGCACGTTCATCACTGTCG
- KaM454 GCTATAGGATCCCACATTGGCATTAATGGGAGTGC
- KaM455 / KaM456 a PCR was performed.
- the template DNA used was the plasmid HypB in puC19, manufactured by Nadicom.
- the fragment obtained contained the coding sequence of the hydrophobin HypB gene without start and stop codon.
- the PCR fragment was purified by gel electrophoresis and cut with the restriction endonucleases BglII and BamHI. This fragment was used as an insert and ligated into the previously cut with Bgl II vector pQE60 + YAAD.
- KaM456 CTATGAGGATCCCACATTGGCATTAATGGGAGTGC
- plasmid # 507 The cloning of plasmid # 507 was carried out analogously to plasmid # 508 using the oligonucleotides KaM 417 and KaM 418.
- KaM417 CCCGTAGCTAGTGGATCCATTGAAGGCCGCATGAAGTTCTCCGTCTCCGC
- Plasmid # 506 The cloning of plasmid # 506 was carried out analogously to plasmid # 508 using the oligonucleotides KaM 417 and KaM 418.
- the template DNA was an artificially synthesized DNA sequence - hydrophobin
- KaM417 CCCGTAGCTAGTGGATCCATTGAAGGCCGCAT-
- Plasmid # 526 was analogous to plasmid # 508 using the oligonucleotides KaM464 and KaM465.
- the template DNA used was Schyzophyllum commune cDNA (see Appendix).
- KaM464 CGTTAAGGATCCGAGGATGTTGATGGGGGTGC
- KaM465 GCTAACAGATCTATGTTCGCCCGTCTCCCCGTCGT
- 100 g cell pellet (100-500 mg hydrophobin) are made up to 200 ml total volume with 50 mM sodium phosphate buffer, pH 7.5 and resuspended.
- the suspension is treated with an Ultraturrax type T25 (Janke and Kunkel, IKA-Labortechnik) for 10 minutes and then for 1 hour at room temperature with 500 units of benzonase (Merck, Darmstadt, Order No. 1.01697.0001) to break down the nucleic acids incubated.
- filter with a glass cartridge P1.
- two homogenizer runs are carried out at 1500 bar (Microfluidizer M-110EH, Microfluidics Corp.).
- the homogenate is centrifuged (Sorvall RC-5B, GSA rotor, 250 ml centrifuge beaker, 60 minutes, 4 ° C, 12,000 rpm, 23,000 g), the supernatant placed on ice and the pellet resuspended in 100 ml sodium phosphate buffer, pH 7.5 , Centrifugation and resuspension are repeated 3 times with the sodium phosphate buffer containing 1% SDS at the third repetition. After resuspension, an hour a final centrifugation (Sorvall RC-5B, GSA rotor, 250 ml centrifuge beaker, 60 minutes, 4 ° C, 12,000 rpm, 23,000 g).
- the hydrophobin is contained in the supernatant after the final centrifugation ( Figure 1).
- the experiments show that the hydrophobin is probably contained in the form of inclusion bodies in the corresponding E. coli cells.
- 50 ml of the hydrophobin-containing supernatant are applied to a 50 ml nickel-Sepharose High Performance 17-5268-02 column (Amersham) which has been equilibrated with 50 mM Tris-Cl pH 8.0 buffer.
- the column is washed with 50 mM Tris-Cl pH 8.0 buffer and the hydrophobin is then eluted with 50 mM Tris-Cl pH 8.0 buffer containing 200 mM imidazole.
- the solution is dialyzed against 50 mM Tris-Cl pH 8.0 buffer.
- Figure 1 shows the purification of the prepared hydrophobin
- Lanes 3 - 5 OD 280 maxima of the elution fractions
- the hydrophobin of Figure 1 has a molecular weight of about 53 kD.
- the smaller bands partially represent degradation products of the hydrophobin.
- Example 10 The fusion hydrophobin of Example 10 was used.
- Hydrophobin concentration 100 ⁇ g / mL in aqueous solution; Additive: 50 mM Na-acetate pH 4 + 0.1% polyoxyethylene (20) -sorbitanmonolaureat (Tween ® 20).
- the samples are air-dried and the contact angle (in degrees) of a drop of 5 ⁇ l of water at room temperature is determined.
- the contact angle measurement was performed on a device Dataphysics Contact Angle System OCA 15+, Software SCA 20.2.0. (November 2002). The measurement was carried out according to the manufacturer's instructions.
- test fabrics mentioned was cut into pieces of 30 ⁇ 30 mm and sewn onto knitted undyed bleached cotton.
- the fabric was rinsed in 250 ml of tap water for 5 minutes and then dried.
- the evaluation of the washing effect was carried out by remission measurements at 420 nm before and after the wash.
- IE hereby means in each case the remission of the test tissue after, U the remission before the test wash. 0 denotes the comparative experiment without inventive addition of proteins. Leiss marks the remission of pure tissue without staining.
- Amount of wash liquor 250 ml per can be any amount of wash liquor 250 ml per.
- Amount of wash liquor 250 ml per can be any amount of wash liquor 250 ml per.
- Protein used hydrophobin fusion protein yaad40-Xa-dew A-his (SEQ ID NO: 26)
- anionic surfactant 400 ppm Na-Ci2 / i4 "fatty alcohol nonionic co-sulfate respectively 30 ppm of a C13 / 15-Oxoalkoholethoxylates
- Amount of wash liquor 250 ml per can be any amount of wash liquor 250 ml per.
- Amount of wash liquor 250 ml per can be any amount of wash liquor 250 ml per.
- EO ethylene oxide
- PO propylene oxide
- the fusion hydrophobin with a truncated yaad fusion partner (B) (40 amino acids) achieved better results than the fusion hydrophobin (A) with a complete yaad fusion partner (294 amino acids).
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Detergent Compositions (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005036586 | 2005-08-01 | ||
PCT/EP2006/064720 WO2007014897A1 (de) | 2005-08-01 | 2006-07-27 | Verwendung von grenzflächenaktiven, nicht-enzymatischen proteinen für die textilwäsche |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1913123A1 true EP1913123A1 (de) | 2008-04-23 |
EP1913123B1 EP1913123B1 (de) | 2010-10-20 |
Family
ID=37118364
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06792583A Not-in-force EP1913123B1 (de) | 2005-08-01 | 2006-07-27 | Verwendung von grenzflächenaktiven, nicht-enzymatischen proteinen für die textilwäsche |
Country Status (14)
Country | Link |
---|---|
US (1) | US20090101167A1 (de) |
EP (1) | EP1913123B1 (de) |
JP (1) | JP5105441B2 (de) |
KR (1) | KR20080041228A (de) |
CN (1) | CN101233220B (de) |
AT (1) | ATE485359T1 (de) |
AU (1) | AU2006274836B2 (de) |
BR (1) | BRPI0614703A2 (de) |
CA (1) | CA2617092A1 (de) |
DE (1) | DE502006008140D1 (de) |
ES (1) | ES2352970T3 (de) |
MX (1) | MX2008001056A (de) |
WO (1) | WO2007014897A1 (de) |
ZA (1) | ZA200801881B (de) |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7892788B2 (en) | 2005-02-07 | 2011-02-22 | Basf Se | Hydrophobin fusion products, production and use thereof |
KR20080004555A (ko) * | 2005-03-31 | 2008-01-09 | 바스프 악티엔게젤샤프트 | 접착 촉진제로서의 폴리펩티드의 용도 |
CN101228249B (zh) | 2005-04-01 | 2011-11-30 | 巴斯福股份公司 | 含疏水蛋白的钻井液 |
CA2603374C (en) | 2005-04-01 | 2013-05-28 | Basf Aktiengesellschaft | Use of hydrophobin as a phase stabiliser |
DE102005027139A1 (de) | 2005-06-10 | 2006-12-28 | Basf Ag | Neue Cystein-verarmte Hydrophobinfusionsproteine, deren Herstellung und Verwendung |
DE102005033002A1 (de) * | 2005-07-14 | 2007-01-18 | Basf Ag | Wässrige Monomeremulsionen enthaltend Hydrophobin |
DE102005048720A1 (de) | 2005-10-12 | 2007-04-19 | Basf Ag | Verwendung von Proteinen als Antischaum-Komponente in Kraftstoffen |
ES2374320T3 (es) * | 2006-08-15 | 2012-02-15 | Basf Se | Procedimiento para la producción de preparaciones de hidrofobina secas de flujo libre. |
CN101627076B (zh) * | 2007-03-06 | 2012-05-23 | 巴斯夫欧洲公司 | 用疏水蛋白改性的开孔泡沫 |
EP2134901B1 (de) * | 2007-03-12 | 2016-01-06 | B.R.A.I.N. Biotechnology Research and Information Network AG | Verfahren zur behandlung zellulosischer materialien mit hydrophobinen |
KR20100022482A (ko) * | 2007-05-24 | 2010-03-02 | 바스프 에스이 | 고체의 결정화에서 보조제로서의 히드로포빈의 용도 |
RU2491096C9 (ru) * | 2007-09-13 | 2014-02-10 | Басф Се | Применение гидрофобин-полипептидов в качестве усилителя пенетрации |
EP2042155A1 (de) * | 2007-09-28 | 2009-04-01 | Basf Se | Verfahren zum Entfernen von wasserunlöslichen Substanzen von Substratoberflächen |
WO2009101017A1 (de) | 2008-02-14 | 2009-08-20 | Basf Se | Verwendung von hydrophobinen zur verhinderung der eisbildung auf oberflächen |
WO2010092088A2 (de) | 2009-02-10 | 2010-08-19 | Basf Se | Verwendung von hydrophobin als spreitmittel |
JP2012519767A (ja) * | 2009-03-09 | 2012-08-30 | ビーエーエスエフ ソシエタス・ヨーロピア | 水相増粘用の水溶性ポリマーとハイドロフォビンの相乗性混合物の利用 |
WO2011101457A1 (en) * | 2010-02-18 | 2011-08-25 | B.R.A.I.N. Biotechnology Research And Information Network Ag | Chimeric surface active proteins |
WO2011157497A1 (en) * | 2010-06-17 | 2011-12-22 | Unilever Plc | Oral care compositions |
WO2012004255A1 (de) * | 2010-07-07 | 2012-01-12 | Basf Se | Zusammensetzung enthaltend ein hydrophobin und verfahren zum reinigen von hydrophoben oberflächen |
CN103003972A (zh) | 2010-07-30 | 2013-03-27 | 巴斯夫欧洲公司 | 印刷电子器件中的两亲性蛋白质 |
WO2012049250A2 (de) | 2010-10-13 | 2012-04-19 | Basf Se | Verfahren zum immobilisieren kationischer wirkstoffe auf oberflächen |
CN103502265A (zh) * | 2011-04-08 | 2014-01-08 | 丹尼斯科美国公司 | 组合物 |
AR085845A1 (es) | 2011-04-08 | 2013-10-30 | Danisco Us Inc | Composiciones |
WO2013149801A1 (en) * | 2012-04-05 | 2013-10-10 | Basf Plant Science Company Gmbh | Fungal resistant plants expressing hydrophobin |
WO2014063097A1 (en) | 2012-10-19 | 2014-04-24 | Danisco Us Inc. | Stabilization of biomimetic membranes |
EP2821473B1 (de) * | 2013-07-01 | 2018-03-28 | Becker, Bernhard | Verfahren zur Reinigung einer Oberfläche und Reinigungskonzentrat zur Verwendung dafür |
EP3083936B1 (de) | 2013-12-19 | 2018-07-04 | Danisco US Inc. | Verwendung von hydrophobinen zur erhöhung des gastransfers in einem aeroben fermentationsprozess |
EP3243894A1 (de) * | 2016-05-10 | 2017-11-15 | The Procter and Gamble Company | Reinigungszusammensetzung |
WO2019094913A2 (en) | 2017-11-13 | 2019-05-16 | The Procter & Gamble Company | Personal care composition |
EP3483246A1 (de) | 2017-11-13 | 2019-05-15 | The Procter & Gamble Company | Reinigungszusammensetzung |
CN109400907A (zh) * | 2018-10-27 | 2019-03-01 | 嘉兴珠韵服装有限公司 | 糖基化蟹壳蛋白的制备及在棉织物防皱整理中的应用 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19942539A1 (de) * | 1999-09-07 | 2001-03-08 | Cognis Deutschland Gmbh | Waschmittel |
DE19956802A1 (de) * | 1999-11-25 | 2001-06-13 | Cognis Deutschland Gmbh | Waschmitteltabletten |
GB0002663D0 (en) * | 2000-02-04 | 2000-03-29 | Biomade B V | Method of stabalizing a hydrophobin-containing solution and a method of coating a surface with a hydrophobin |
DE10061280A1 (de) * | 2000-12-08 | 2002-06-13 | Novaprot Gmbh | Reinigungswirksame, grenzflächenaktive Kombination aus nachwachsenden Rohstoffen mit hoher Fettlösekraft |
FR2833490B1 (fr) * | 2001-12-14 | 2004-12-10 | Oreal | Utilisition cosmetique d'au moins une hydrophobine pour le traitement des matieres keratiniques et compositions mises en oeuvre |
DE10342794A1 (de) * | 2003-09-16 | 2005-04-21 | Basf Ag | Sekretion von Proteinen aus Hefen |
CN1909979A (zh) * | 2004-01-16 | 2007-02-07 | 应用超微系统股份有限公司 | 在低温下用疏水蛋白涂覆物体的方法 |
US7241734B2 (en) * | 2004-08-18 | 2007-07-10 | E. I. Du Pont De Nemours And Company | Thermophilic hydrophobin proteins and applications for surface modification |
WO2006082253A2 (de) * | 2005-02-07 | 2006-08-10 | Basf Aktiengesellschaft | Verfahren zum beschichten von oberflächen mit hydrophobinen |
MX2007012023A (es) * | 2005-03-30 | 2007-11-16 | Basf Ag | Uso de hidrofobina para tratamiento repelente a suciedad de superficies duras. |
ES2345627T3 (es) * | 2005-03-30 | 2010-09-28 | Basf Se | Uso de hidrofinas para el tratamiento superficial de materiales minerales de construccion endurecidos, piedra natural, piedra artificial y ceramicas. |
-
2006
- 2006-07-27 DE DE502006008140T patent/DE502006008140D1/de active Active
- 2006-07-27 EP EP06792583A patent/EP1913123B1/de not_active Not-in-force
- 2006-07-27 CN CN200680028317XA patent/CN101233220B/zh not_active Expired - Fee Related
- 2006-07-27 WO PCT/EP2006/064720 patent/WO2007014897A1/de active Application Filing
- 2006-07-27 BR BRPI0614703-8A patent/BRPI0614703A2/pt not_active IP Right Cessation
- 2006-07-27 AU AU2006274836A patent/AU2006274836B2/en not_active Ceased
- 2006-07-27 JP JP2008524490A patent/JP5105441B2/ja not_active Expired - Fee Related
- 2006-07-27 CA CA002617092A patent/CA2617092A1/en not_active Abandoned
- 2006-07-27 AT AT06792583T patent/ATE485359T1/de active
- 2006-07-27 MX MX2008001056A patent/MX2008001056A/es active IP Right Grant
- 2006-07-27 KR KR1020087005090A patent/KR20080041228A/ko active IP Right Grant
- 2006-07-27 ES ES06792583T patent/ES2352970T3/es active Active
- 2006-07-27 US US11/989,746 patent/US20090101167A1/en not_active Abandoned
-
2008
- 2008-02-28 ZA ZA200801881A patent/ZA200801881B/xx unknown
Non-Patent Citations (1)
Title |
---|
See references of WO2007014897A1 * |
Also Published As
Publication number | Publication date |
---|---|
BRPI0614703A2 (pt) | 2011-08-23 |
CN101233220B (zh) | 2012-11-21 |
JP2009503280A (ja) | 2009-01-29 |
JP5105441B2 (ja) | 2012-12-26 |
KR20080041228A (ko) | 2008-05-09 |
ZA200801881B (en) | 2009-08-26 |
WO2007014897A1 (de) | 2007-02-08 |
CN101233220A (zh) | 2008-07-30 |
US20090101167A1 (en) | 2009-04-23 |
CA2617092A1 (en) | 2007-02-08 |
ES2352970T3 (es) | 2011-02-24 |
MX2008001056A (es) | 2008-03-19 |
AU2006274836A1 (en) | 2007-02-08 |
EP1913123B1 (de) | 2010-10-20 |
ATE485359T1 (de) | 2010-11-15 |
DE502006008140D1 (de) | 2010-12-02 |
AU2006274836B2 (en) | 2012-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1913123B1 (de) | Verwendung von grenzflächenaktiven, nicht-enzymatischen proteinen für die textilwäsche | |
EP1866401B1 (de) | Verwendung von hydrophobinen zur schmutzabweisenden behandlung von harten oberflächen | |
WO2006131478A2 (de) | Verfahren zur beschichtung von oberflächen von faserigen substraten | |
EP3638780A1 (de) | Microbulbifer thermotolerans lipase und ihre verwendung | |
EP1848734A2 (de) | Verfahren zum beschichten von oberflächen mit hydrophobinen | |
WO2019243071A1 (de) | Xylosecarbamate als schmutzablösevermögende wirkstoffe | |
WO2019243108A1 (de) | Chitosanderivate als schmutzablösevermögende wirkstoffe | |
EP3810740A1 (de) | Pullulanderivate als schmutzablösende wirkstoffe | |
EP3049508A1 (de) | Cellulosecarbamate als schmutzablösevermögende wirkstoffe | |
EP2836580A1 (de) | Mikrofibrilläre cellulose als schmutzablösevermögender wirkstoff | |
EP3673035A1 (de) | Verbesserte pflegeeigenschaften von polyester textilien ii | |
DE69722647T2 (de) | Farbaufhellungsmethoden | |
EP3083918B1 (de) | Siloxangruppen-haltige copolymere als schmutzablösevermögende wirkstoffe | |
DE102005030786A1 (de) | Verfahren zur Beschichtung von Oberflächen von faserigen Substraten | |
DE102005026143A1 (de) | Verfahren zur Beschichtung von Oberflächen von faserigen Substraten | |
EP2977506B1 (de) | Siloxangruppen-haltige copolymere als hydrophobierende wirkstoffe zur ausrüstung von texilier materlialien und waschzusammensetzung enthaltend das selbe | |
DE102022200882A1 (de) | Polymere schmutzablösevermögende Wirkstoffe | |
DE102019218831A1 (de) | Verwendung von Copolymeren als elastizitätsverbessernde Wirkstoffe | |
WO2016146429A1 (de) | Polymere ester aromatischer dicarbonsäuren als schmutzablösevermögende wirkstoffe | |
WO2015155194A1 (de) | Glycerinesterderivate als schmutzablösevermögende wirkstoffe | |
DE102005014844A1 (de) | Verwendung von Hydrophobinen zur schmutzabweisenden Behandlung von harten Oberflächen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080303 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20080728 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 502006008140 Country of ref document: DE Date of ref document: 20101202 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Effective date: 20110214 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20101020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101020 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110220 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101020 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101020 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110221 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101020 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101020 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101020 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101020 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101020 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101020 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101020 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101020 |
|
26N | No opposition filed |
Effective date: 20110721 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20110801 Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502006008140 Country of ref document: DE Effective date: 20110721 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110731 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20120731 Year of fee payment: 7 Ref country code: SE Payment date: 20120731 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20120814 Year of fee payment: 7 Ref country code: BE Payment date: 20120831 Year of fee payment: 7 Ref country code: IT Payment date: 20120725 Year of fee payment: 7 Ref country code: ES Payment date: 20120829 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20120727 Year of fee payment: 7 Ref country code: DE Payment date: 20121001 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20120726 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20101020 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110727 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101020 |
|
BERE | Be: lapsed |
Owner name: BASF SE Effective date: 20130731 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20140201 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 485359 Country of ref document: AT Kind code of ref document: T Effective date: 20130727 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20130727 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140201 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140201 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130731 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130727 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130731 Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130728 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502006008140 Country of ref document: DE Effective date: 20140201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130731 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130727 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130727 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20140909 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130728 |