EP1888823A1 - Fils, filaments et fibres polyamide a proprietes ameliorees - Google Patents

Fils, filaments et fibres polyamide a proprietes ameliorees

Info

Publication number
EP1888823A1
EP1888823A1 EP06778588A EP06778588A EP1888823A1 EP 1888823 A1 EP1888823 A1 EP 1888823A1 EP 06778588 A EP06778588 A EP 06778588A EP 06778588 A EP06778588 A EP 06778588A EP 1888823 A1 EP1888823 A1 EP 1888823A1
Authority
EP
European Patent Office
Prior art keywords
fibers
weight
filaments
polyamide
yarns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06778588A
Other languages
German (de)
English (en)
Inventor
Gilles Robert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhodia Chimie SAS
Original Assignee
Rhodia Chimie SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Chimie SAS filed Critical Rhodia Chimie SAS
Publication of EP1888823A1 publication Critical patent/EP1888823A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23907Pile or nap type surface or component
    • Y10T428/23921With particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2927Rod, strand, filament or fiber including structurally defined particulate matter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/10Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/50FELT FABRIC

Definitions

  • the present invention relates to filaments, fibers, and synthetic son, in particular based on polyamide, having improved mechanical properties, and in particular improved elongation resistance and crush stress (transverse plasticity).
  • the present invention also relates to the spinning process of said filaments, and the use of said filaments, fibers and yarns in various fields, especially in processes involving filtration, pressing or spinning operations. .
  • a particularly appropriate use is that of paper felt.
  • Japanese Patent Application JP-B2-2716810 teaches that polyamide filaments containing from 0.05 to 30 parts by weight of silicates, for example of a multilayered clay, have excellent mechanical properties, such as toughness , elongation, rigidity, stretching, and others.
  • a first object of the present invention is to provide filaments, fibers, and polyamide son having a high rate of elongation at break.
  • a second objective of the present invention is defined by filaments, fibers, and polyamide son having a high rate of elongation at break, and a high transverse plasticity threshold stress.
  • Another object of the present invention is to provide filaments, fibers, and polyamide yarns having a high degree of elongation at break, as well as a constraint at the threshold of high transverse plasticity, and having a relatively low level of nanoscale particles.
  • Another object of the present invention is to provide filaments, fibers, and polyamide son having a high rate of elongation at break, a stress at the threshold of high transverse plasticity, while having only one rate relatively small nanoscale particles and having, for a given elongation rate, a higher stress than the filaments, fibers or son, known in the prior art. Still other objects will appear in the following description of the invention.
  • the present invention relates to filaments, fibers, and yarns comprising a polyamide matrix in which are dispersed between 0.01% and 5% by weight, preferably between 0.02% and 3% by weight.
  • nanometric particles more preferably between 0.05% and 2% by weight of nanometric particles and having a transverse plasticity threshold stress of between 40 and 150 MPa, preferably between 45 and 95 MPa, with a degree of elongation at break included between 20% and 140%, advantageously between 40% and 100%, for a relative humidity of 50%, at 23 ° C.
  • the polyamide matrix from which are manufactured son, fibers and filaments of the invention comprises. any type of polyamide known per se, and in particular any polyamide usually used in the field of textile articles or yarns, fibers, etc. with technical applications.
  • the matrix of son, fibers and filaments is a polyamide or a copolyamide or a mixture of polyamides whose weight average molecular weight is between 25000 g / mol and 100000 g / mol, preferably between 30000 g / mol and 90000 g / mol, advantageously between 40000 g / mol and 85000 g / mol.
  • the polyamides that can be used in the present invention include PA 6.6, PA 6, PA 6 / 6.6 copolymer, semi-aromatic polyamides, such as polyamide.
  • polystyrene resin 6T
  • Amodel ® marketed by Amoco
  • HTN ® marketed by DuPont
  • other polyamides 11, 12, 4-6, and the like and mixtures thereof in all proportions.
  • the polyamides may be of linear or branched structure, such as star polyamide marketed by Rhodia under the trademark Technylstar ® .
  • PA 6.6 or PA 6 or alternatively the PA 6 / 6.6 copolymer, alone or in mixtures in all proportions of two or more of them.
  • the son, fibers and filaments according to the invention are obtained by melt spinning a charged composition, as explained further in the present description. Furthermore, any step, conventional in the field of the manufacture of son, fibers and filaments, intended for example to dimensionally stabilize said son, fibers and filaments (thermofixation) or to give them volume through a compression box (crimping), can be applied. Any other method of manufacturing yarns, fibers and filaments is also suitable.
  • the son, fibers and filaments used in the present invention may have sections of any shape, whether round, flat, serrated or fluted, or in the form of beans, but also multilobed, in particular trilobed or pentalobées , X-shaped, ribbon, hollow, square, triangular, elliptical and others.
  • the yarns, fibers and filaments used in the present invention may be of constant diameter and / or section or have variations.
  • son, fibers and polyamide filaments according to the invention it must be understood the spun articles in general, for example also son, fibers and multi-component filaments (for example of the "heart-skin” type). ) at least one of the components is a polyamide as defined above.
  • wire is meant a monofilament, a continuous multi-filament yarn, a spun yarn, obtained from a single type of fiber or several types of fibers in intimate mixture.
  • the continuous wire can also be obtained by assembling q
  • fiber is meant a filament or a set of cut, cracked or converted filaments.
  • the yarns, fibers and filaments of the present invention are characterized by their strand titer which is generally greater than 1, 9 decitex (i.e., 1.9 g / 10,000 meters). and less than or equal to 130 decitex (dtex), advantageously less than 100 dtex.
  • the titre of the yarns, fibers and filaments of the invention will be between 1.9 and 100 dtex, and even more preferably between 1, 9 and 66 dtex.
  • nanometric particles means fillers with a form factor equal to or greater than 3, preferably between 4 and 1000 inclusive, and more preferably between 5 and 500 inclusive. At least one of the dimensions of the nanoscale particles in the sense of the present invention is of the order of a nanometer to a few tens of nanometers.
  • the nanometric particles may be in individual form or in the form of agglomerates.
  • the nanometric particles dispersed in the polyamide matrix have a form factor of between 4 and 1000 inclusive, and the smallest particle size is less than or equal to 100 nm, preferably less than or equal to 75 nm, advantageously less than or equal to 50 nm.
  • the minimum value of the smallest dimension is not important in itself.
  • a minimum value of the smallest dimension below one nanometer is, however, inappropriate.
  • the amount of nanometric particles present in the son, fibers and filaments according to the present invention is generally between 0.01% by weight and 5% by weight, preferably between 0.02% by weight and 3% by weight. more preferably between 0.05% and 2% by weight.
  • Suitable nanoscale particles in the context of the present invention are reinforcing fillers, preferably in lamellar form, of any type known per se and are advantageously chosen from those commonly used in the field of fiber reinforcement, filaments. or polyamide thread.
  • any mineral particle having the particularity of being in the form of lamellar particles is usable in the context of the present invention, and as such, there may be mentioned in particular certain oxides, sulfides or phosphates of metals or of non-metals. metals, such as titanium, cerium, silicon, zirconium, cadmium, zinc, and preferably zirconium phosphate.
  • the inorganic particles may be used as such or in "interleaved" form, that is to say after having been subjected to the action of at least one intercalation agent, mineral and / or organic.
  • said particles may be mineral particles, such as phyllosilicates of the mica type, comprising in particular clays, smectite clays, swelling smectite clays, including in particular:
  • variable equidistance dioctahedral smectite clays such as Montmorillonites (including askanite, confolensite, erinite, galapectite, malthacite and other synonyms of the term Montmorillonite, corresponding, among other things, to minor substitutions of structural cations), the Glasgowllites (including chromiumbidellite, ferribeidellite, ferromontmorillonite, glaserite, nontronite, protonontronite, volkonskoite and other clays with a name synonymous with the generic term 8, and their corresponding ones bearing a trade name, in particular and in a non-specific manner exhaustive, Amargosites, Cloisites, Bentonites, Otaylites, etc. ;
  • trioctahedral smectite clays with variable equidistances such as stevensites (including ghassulite), hectorites (including the corresponding synthetic clay, laponite), saponites (including bowlingites, sauconites, griffithites and synonyms of these terms, corresponding inter alia to minor replacements of structural cations such as ferrisaponites, lembergites, and other cardenites), Vermiculites (including batavite, and other clay synonyms of the family Vermiculites such as culsageeite, kerrite, lennilite, phallite, philadelphite, vaalite, maconite, etc.), as well as their correspondents bearing a commercial name.
  • stevensites including ghassulite
  • hectorites including the corresponding synthetic clay, laponite
  • saponites including bowlingites, sauconites, griffithites and synonyms of these terms, corresponding inter alia to
  • These clays all have the distinction of being materials with compact agglomerations of lamellar particles more or less stacked on each other.
  • the nanoscale particles are advantageously lamellar particles which can be considered as sheets stacked on each other forming compact stacks, called tactoids.
  • These tactoids may or may not be intercalated, optionally partially or completely exfoliated (or swollen) according to conventional techniques known to those skilled in the art, in particular by means of swelling agents, inorganic or organic, for example mineral bases, such as as sodium hydroxide, or organic, such as hexamethylenediamine, or alternatively caprolactam.
  • the nanoscale particles are zirconium phosphate particles, alone or in combination with other fillers; for example such as those mentioned above.
  • the zirconium phosphate may be in different crystalline forms, especially in crystalline form "alpha” or crystalline form “gamma”, denoted “ ⁇ -ZrP” and “ ⁇ -ZrP” respectively in the remainder of this disclosure.
  • the zirconium phosphate and its various crystalline forms that can be used in the context of the present invention are for example described in patent applications WO-A-2003/070818 and WO-A-2004/096903, the contents of which are incorporated herein by reference.
  • the yarns, fibers and filaments according to the present invention comprise a polyamide matrix in which are dispersed between 0.01% and 1% by weight, preferably between 0.01% and 0.5% by weight, nanoparticles of zirconium phosphate, preferably in crystalline form ⁇ (" ⁇ -ZrP"), as described in patent application WO-A-2002/16264.
  • the spun yarns, yarns, fibers and filaments according to the present invention have quite interesting mechanical characteristics and in particular a transverse plasticity threshold stress quite interesting greater than 40 MPa. Stress at the threshold of transverse plasticity means the transverse compressive strength, as indicated in the illustrative examples of the present invention appearing after this disclosure.
  • the yarns, fibers and filaments of the present invention have a high tenacity, generally between 30 and 85 cN / tex, more particularly between 35 to 75 cN / tex.
  • the remarkable properties of the son, filaments and fibers described above are obtained in particular by a particular spinning method defined below and which represents another object of the present invention.
  • the present invention also relates to the process for preparing yarns, fibers and filaments, by melt spinning a filled composition comprising at least one polyamide matrix in which are dispersed between 0.01% and 5% by weight. , preferably between 0.02% and 3% by weight, more preferably between 0.05% and 2% by weight of nanometric particles, said method being characterized in that the ratio of call rate / extrusion rate is included between 20 and 300, preferably between 30 and 200, more preferably between 40 and 180, for example between 50 and 90.
  • the polyamide used is as defined above in the present description.
  • the nanoscale particles are also as defined above.
  • the nanometric particles may be incorporated into the matrix by introduction into the polymerization medium, that is to say in the monomer or monomers, before the polymerization reaction, or else incorporated into the polymer matrix by introduction into the molten polymer, for example by masterbatch.
  • melt spinning of a composition in charge corresponds to the melt spinning technique known to those skilled in the art where a polymer composition, here the polyamide matrix loaded nanoscale particles, is melted and then extruded through a die for forming yarns, fibers and filaments, with a controlled extrusion speed.
  • the son, fibers and filaments are optionally cooled, according to conventional techniques (air or water), and called on a call roller at a speed called calling speed.
  • the calling speed is generally between 150 m / min and 2000 m / min, preferably between 200 m / min and 1500 m / minute.
  • the extrusion rate is generally between 5 and 25 m / minute.
  • the extrusion speed is between 5 and 25 m / minute and the speed of call, between 300 and 1500 m / minute, while maintaining the ratio call speed / extrusion speed defined above.
  • the method of the invention can be implemented with a call speed set at 800 m / minute for an extrusion speed of 10, 12 or 15 m. /minute.
  • the son, fibers and filaments are then stretched again, hot or cold, for example by a factor of up to 3, see up to 5.
  • the spun articles, son, fibers or filaments are made according to the usual spinning techniques that can be performed immediately after the polymerization of the matrix, the latter being in molten form. It can be made from a granule comprising the composition.
  • the spun articles according to the invention may be subjected to all the treatments that may be performed in subsequent steps in the spinning step. They can in particular be stretched, textured, curled, heated, twisted, dyed, sized, cut, etc. These additional operations can be carried out continuously and be integrated after the spinning device or be carried out in a discontinuous manner. The list of operations subsequent to spinning has no limiting effect.
  • the spun articles, yarns, fibers and filaments obtained according to the process of the present invention and having the previously defined characteristics are found a use in many fields of application thanks to their good physical properties.
  • the spun articles, yarns, fibers and filaments of the invention have remarkable physical properties, in view of the small amount of reinforcing fillers that they comprise, and in particular good values of stress at the threshold of transverse plasticity. .
  • the invention also relates to articles comprising yarns, fibers and / or filaments as described above.
  • the yarns, fibers, filaments according to the invention can be used in woven, knitted or non-woven form.
  • Many applications are conceivable for the spun articles, threads, fibers and filaments according to the invention, and mention may be made of for example uses in the fields of filtration, pressing, screen printing, but also for the manufacture of carpets, rugs, mats, etc.
  • the fibers according to the invention are in particular suitable for the manufacture of felt for paper machines ("paper felt”), and in particular for the nonwovens of paper machine felts used in the paper industry.
  • the spun articles, yarns, fibers, filaments according to the invention can also be used as carpet yarns. They can also be used, in particular monofilaments, for obtaining fabrics in the field of screen printing for printing transfers, or in the field of filtration.
  • the spun articles, yarns, fibers, filaments of the invention, and especially the multifilers may also be used in the manufacture of ropes, in particular climbing ropes, or belts, in particular conveyor belts.
  • son of the invention can be used for the manufacture of nets, especially fishing nets. .
  • the precipitate is washed by centrifugation at 4500 rpm, with 1200 ml of phosphoric acid (HsPO 4 at 20 g / l), and then with deionized water, until reach a conductivity of 6.5 mS (supernatant).
  • a cake of the precipitate based on zirconium phosphate is obtained.
  • the cake is then dispersed in 1 L of 10 M aqueous phosphoric acid solution.
  • the dispersion thus obtained is transferred to a 2 L reactor and then heated to 115 ° C. This temperature is maintained for 5 hours.
  • the dispersion obtained is washed by centrifugation with deionized water to a conductivity of less than 1 mS (supernatant).
  • the cake from the last centrifugation is redispersed so as to obtain a solids content of 20%, the pH of the dispersion is between 1 and 2.
  • a dispersion of a crystallized compound based on sodium phosphate is obtained.
  • zirconium of lamellar structure (electron microscopy with TEM transmission), whose lamellae are in hexagonal form with a size between 200 and 500 nm.
  • the particles consist of a stack of substantially parallel plates, the thickness of the stacks in the direction perpendicular to the wafers being about 200 nm.
  • X-ray diffraction analysis (XRD) demonstrates the crystallized phase Zr (HPO 4 ) 2 , 1H 2 O, with a solids content of 18.9% by weight. , a pH of 1.8 and a conductivity of 8 mS.
  • the particles are neutralized by addition of hexamethylenediamine (HMD). 5 To this dispersion was added an aqueous solution of HMD at 70% until a pH of 5. The dispersion thus obtained is homogenized using an Ultraturrax ®. The final dry extract is adjusted by addition of deionized water (dry extract: 15% by weight).
  • HMD hexamethylenediamine
  • EXAMPLE 2 Polyamide Compositions Containing Nanometric Particles Based on Zirconium Phosphate ⁇ -ZrP Treated by Hexamethylenediamine
  • a polyamide 6 is synthesized from caprolactam according to a conventional method, by introducing into the polymerization medium a dispersion The proportion of the zirconium phosphate compound introduced is 2% by weight.
  • a polymer containing no nanometric particles (comparative example) is also synthesized. After polymerization, the polymer is shaped into granules. These. are washed for removal of residual caprolactam: for this, the granules are immersed in an excess of water at 90 0 C for a few hours.
  • the granules are then dried under primary vacuum ( ⁇ 0.5 mbar) for 16 hours at 110 ° C. Traction tests are carried out on extruded rods and conditioned for 30 days at 50% relative humidity and at 23 ° C. 0 C. The diameter of the rods is between 0.5 mm and 1 mm.
  • An INSTRON ® 1185 pulling machine is used with a force sensor of 100 N capacity at a traverse speed of 50 mm / minute.
  • the nominal stress (ratio of the measured force to the measured section s by Palmer diameter measurement) is plotted as a function of the relative strain applied. The results are reported in Table 1.
  • a polyamide-based composition is obtained whose elongation at break is greater than that of a polyamide which does not comprise the mineral compound, and whose modulus is improved.
  • TEM transmission electron microscope
  • Example 3 Mechanical properties of the yarns obtained according to the process of the invention.
  • transverse modulus and transverse plastic threshold stress are two types in compression: transverse modulus and transverse plastic threshold stress [0073]
  • the transverse filament compression test is a small-scale transposition of a conventional mechanical engineering test, the principle of which is the following: a fiber diameter D, or a single filament extracted from a wire, is placed between two surfaces. The axes of said fiber and said surfaces are parallel. One of the two surfaces is movable and compresses the fiber over a length L with a force F.
  • the result of the test is a conventional force / displacement type curve.
  • Figure 1 shows an example of such a curve. This curve is used to determine on the one hand the transverse modulus (E) and on the other hand the transverse threshold of plasticity (R y ).
  • the module is determined from the initial linear zone. An assumption of calculation must be made: the Poisson's ratio is fixed at 0.4, whereas it can vary from 0.3 to 0.5. The impact on the calculation of the module is very small.
  • the equation used for the calculation is as follows:

Abstract

La présente invention concerne des filaments et des fils, fibres et filaments de polyamide dans lesquels sont dispersés des particules nanométriques, le procédé de préparation desdits fils, fibres et filaments et leurs utilisations.

Description

FILS, FILAMENTS ET FIBRES POLYAMIDE A PROPRIÉTÉS AMELIOREES
[0001] La présente invention concerne des filaments, fibres, et fils synthétiques, en particulier à base de polyamide, possédant des propriétés mécaniques améliorées, et notamment une résistance à l'allongement et une contrainte à l'écrasement (plasticité transverse) améliorées.
[0002] La présente invention concerne également le procédé de filage des desdits filaments, ainsi que l'utilisation desdits filaments, fibres et fils dans divers domaines, notamment dans les procédés faisant appel à des opérations de filtration, de pressage ou encore d'essorage. Une utilisation particulièrement appropriée est celle des feutres pour machine à papier (paper felt).
[0003] Des fibres de polyamide à propriétés mécaniques améliorées sont déjà largement connues. En particulier, la demande de brevet WO 99/60057 divulgue des matrices à base de polyamide dans lesquelles sont dispersées des nanoparticules de silicates délaminées. De même la demande internationale WO 01/12678 décrit un procédé de préparation de polyamide comportant des silicates dissociés.
[0004] La demande de brevet japonais JP-B2-2716810 enseigne que des filaments de polyamide contenant de 0,05 à 30 parties en poids de silicates, par exemple d'une argile multicouche, possèdent d'excellentes propriétés mécaniques, telles que ténacité, allongement, rigidité, étirage, et autres.
[0005] II existe cependant toujours un besoin pour des fibres, fils ou filaments de polyamide possédant des propriétés encore améliorées. [0006] Ainsi, un premier objectif de la présente invention consiste à fournir des filaments, fibres, et fils de polyamide présentant un taux élevé d'allongement à la rupture.
[0007] Un deuxième objectif de la présente invention est défini par des filaments, fibres, et fils de polyamide présentant un taux élevé d'allongement à la rupture, ainsi qu'une contrainte au seuil de plasticité transverse élevée.
[0008] Un autre objectif de la présente invention consiste à fournir des filaments, fibres, et fils de polyamide présentant un taux élevé d'allongement à la rupture, ainsi qu'une contrainte au seuil de plasticité transverse élevée, et ne comportant qu'un taux relativement faible de particules nanométriques.
[0009] Un autre objectif de la présente invention est de proposer des filaments, fibres, et fils de polyamide présentant un taux élevé d'allongement à la rupture, une contrainte au seuil de plasticité transverse élevée, tout en ne comportant qu'un taux relativement faible de particules nanométriques et présentant, pour un taux d'allongement déterminé, une contrainte plus élevée que les filaments, fibres ou fils, connus dans l'art antérieur. [0010] D'autres objectifs encore apparaîtront dans l'exposé de l'invention qui suit. [0011] Selon un premier aspect, la présente invention concerne des filaments, fibres, et fils comportant une matrice polyamide dans laquelle sont dispersées entre 0,01% et 5% en poids, de préférence entre 0,02% et 3% en poids, plus préférentiellement entre 0,05% et 2% en poids de particules nanométriques et présentant une contrainte au seuil de plasticité transverse comprise entre 40 et 150 MPa, de préférence entre 45 et 95 MPa, avec un taux d'allongement à la rupture compris entre 20% et 140%, avantageusement entre 40% et 100%, pour un taux d'humidité relative égal à 50%, à 230C.
[0012] La matrice polyamide à partir de laquelle sont fabriqués les fils, fibres et filaments de l'invention, comprend. tout type de polyamide connu en soi, et en particulier tout polyamide utilisé habituellement dans le domaine des articles textiles ou des fils, fibres, etc. à applications techniques.
[0013] Bien que cela ne constitue pas une limite à la présente invention, la matrice des fils, fibres et filaments est un polyamide ou un copolyamide ou encore un mélange de polyamides dont la masse molaire moléculaire moyenne en poids est comprise entre 25000 g/mol et 100000 g/mol, de préférence entre 30000 g/mol et 90000 g/mol, avantageusement entre 40000 g/mol et 85000 g/mol. [0014] À titre d'exemple et de manière non limitative, les polyamides qui peuvent être utilisés dans la présente invention comprennent le PA 6.6, le PA 6, le copolymère PA 6/6.6, les polyamides semi-aromatiques, tels que le polyamide 6T, l'Amodel® (commercialisé par la société Amoco), l'HTN® (commercialisé par la société DuPont), et les autres polyamides 11 , 12, 4-6, et autres, ainsi que leurs mélanges en toutes proportions. [0015] Les polyamides peuvent être de structure linaire ou ramifiée, comme par exemple le polyamide étoile commercialisé par la société Rhodia sous la marque Technylstar®.
[0016] Pour les besoins de l'invention, on préfère utiliser le PA 6.6 ou le PA 6, ou encore le copolymère PA 6/6.6, seuls ou en mélanges en toutes proportions de deux ou plusieurs d'entre eux.
[0017] Les fils, fibres et filaments selon l'invention sont obtenus par filage en fondu d'une composition chargée, comme explicité plus loin dans la présente description. [0018] Par ailleurs, toute étape, classique dans le domaine de la fabrication des fils, fibres et filaments, destinée par exemple à stabiliser dimensionnellement lesdits fils, fibres et filaments (thermofixation) ou bien à leur donner du volume au travers d'une boîte à compression (frisage), peut être appliquée. Tout autre procédé de fabrication de fils, fibres et filaments convient également. [0019] Les fils, fibres et filaments utilisables dans la présente invention peuvent présenter des sections de toutes formes, qu'elles soient rondes, plates, dentelées ou cannelées, ou encore en forme de haricot, mais aussi multilobées, en particulier trilobées ou pentalobées, en forme de X, de ruban, creuses, carrées, triangulaires, elliptiques et autres. [0020] Leur forme de section n'est toutefois pas une caractéristique essentielle de l'invention. Toutes les formes de section résultant du procédé de fabrication desdits fils, fibres et filaments sont acceptables. De même, les fils, fibres et filaments utilisés dans la présente invention peuvent être de diamètre et/ou de section constante ou présenter des variations. [0021] Enfin, par fils, fibres et filaments de polyamide selon l'invention, il doit être compris les articles filés en général, par exemple également les fils, fibres et filaments multi-composants (par exemple de type "cœur-peau") dont un au moins des composants est un polyamide tel que défini précédemment. [0022] Par fil, on entend un mono-filament, un fil multi-filamentaire continu, un filé de fibres, obtenu à partir d'un unique type de fibres ou de plusieurs types de fibres en mélange intime. Le fil continu peut être également obtenu par assemblage de q
plusieurs fils multi-filamentaires. Par fibre, on entend un filament ou un ensemble de filaments coupés, craqués ou convertis.
[0023] De manière générale, les fils, fibres et filaments de la présente invention sont caractérisées par leur titre au brin qui est généralement supérieur à 1 ,9 décitex (c'est-à-dire à 1,9 g/10000 mètres) et inférieur ou égal à 130 décitex (dtex), avantageusement inférieur à 100 dtex. De manière préférée, le titre des fils, fibres et filaments de l'invention sera compris entre 1,9 et 100 dtex, et plus préférentiellement encore entre 1 ,9 et 66 dtex.
[0024] Par "particules nanométriques" au sens de la présente invention, on entend des charges à facteur de forme égal ou supérieur à 3, de préférence compris entre 4 et 1000, bornes incluses, de préférence encore entre 5 et 500 bornes incluses. Au moins une des dimensions des particules nanométriques au sens de la présente invention est de l'ordre du nanomètre à quelques dizaines de nanomètres.
Les particules nanométriques peuvent se présenter sous forme individualisée ou sous forme d'agglomérats.
[0025] Selon une variante avantageuse de la présente invention, les particules nanométriques dispersées dans la matrice polyamide possèdent un facteur de forme compris entre 4 et 1000, bornes incluses, et la plus petite dimension de particule est inférieure ou égale à 100 nm, de préférence inférieure ou égale à 75 nm, avantageusement inférieure ou égale à 50 nm.
[0026] La valeur minimale de la plus petite dimension n'est pas importante en soi.
Une valeur minimale de la plus petite dimension inférieure au nanomètre est cependant peu appropriée.
[0027] La quantité de particules nanométriques présente dans les fils, fibres et filaments selon la présente invention est généralement comprise entre 0,01% en poids et 5% en poids, de préférence entre 0,02% en poids et 3% en poids, plus préférentiellement entre 0,05% et 2% en poids.
[0028] Les particules nanométriques convenables dans le cadre de la présente invention sont des charges de renfort, de préférence sous forme de lamelles, de tout type connu en soi et sont avantageusement choisies parmi celles couramment utilisées dans le domaine du renfort de fibres, filaments ou fils polyamide. [0029] En particulier, toute particule minérale possédant la particularité de se présenter sous forme de particules lamellaires est utilisable dans le cadre de la présente invention, et à ce titre, on peut citer notamment certains oxydes, sulfures ou phosphates de métaux ou de non métaux, tels que titane, cérium, silicium, zirconium, cadmium, zinc, et de préférence le phosphate de zirconium.
[0030] Les particules minérales peuvent être utilisées telles quelles ou encore sous forme « intercalée », c'est-à-dire après avoir été soumises à l'action d'au moins un agent d'intercalation, minéral et/ou organique.
[0031] II doit être entendu que des mélanges des différentes particules ou charges listées ci-dessus peuvent être utilisés en toute proportion.
[0032] À titre d'exemple, lesdites particules peuvent être des particules minérales, telles que les phyllosilicates de type mica, comprenant en particulier les argiles, les argiles smectites, les argiles smectites gonflantes, dont notamment :
• les argiles smectites dioctaédriques à équidistance variable comme les Montmorillonites (comprenant l'askanite, la confolensite, l'érinite, la galapectite, la malthacite et autres synonymes du terme Montmorillonite, correspondant entre autres à des remplacements mineurs de cations structuraux), les Beidellites (comprenant la chromebeidellite, la ferribeidellite, la ferromontmorillonite, la glasérite, la nontronite, la protonontronite, la volkonskoïte et autres argiles portant un nom synonyme du terme générique Beidellite), ainsi que leurs correspondantes portant une dénomination commerciale dont en particulier et de façon non exhaustive, les Amargosites, les Cloisites, les Bentonites, les Otaylites, etc. ;
• les argiles smectites trioctaédriques à équidistances variables comme les Stévensites (y compris la ghassoulite), les Hectorites (y compris l'argile correspondante de synthèse, à savoir la laponite), les Saponites (comprenant les bowlingites, les sauconites, les griffithites et les synonymes de ces termes, correspondant entre autres à des remplacements mineurs de cations structuraux tels que les ferrisaponites, les lembergites, et autres cardénites), les Vermiculites (y compris la batavite, et autres synonymes d'argile de la famille des Vermiculites tels que la culsageeite, la kerrite, la lennilite, Phallite, la philadelphite, la vaalite, la maconite, etc.), ainsi enfin que leurs correspondantes portant une dénomination commerciale.
[0033] On peut également citer les illites, les sépiollites, les palygorskites, les muscovites, les allevardites, les amesites, les talcs, les fluorohectorites, les stevensites, les micas, les fluoromicas, les vermicullites, les fluorovermicullites et les halloysites.
[0034] Ces argiles possèdent toutes la particularité d'être des matériaux comportant des agglomérations compactes de particules lamellaires plus ou moins empilées les unes sur les autres. [0035] Les particules nanométriques sont avantageusement des particules lamellaires qui peuvent être considérées comme des feuillets empilés les uns sur les autres formant des empilements compacts, dénommés tactoïdes. Ces tactoïdes peuvent être intercalés ou non, puis éventuellement partiellement ou totalement exfoliés (ou gonflés) selon des techniques classiques connues de l'homme du métier, notamment au moyen d'agents de gonflement, minéraux ou organiques, par exemple des bases minérales, telles que l'hydroxyde de sodium, ou organiques, telles que l'hexaméthylènediamine, ou encore le caprolactame.
[0036] Selon un mode de réalisation de la présente invention, les particules nanométriques sont des particules de phosphate de zirconium, seul ou en association avec d'autres charges; par exemple telles que celles mentionnées ci- dessus. Le phosphate de zirconium peut se présenter sous différentes formes cristallines, notamment sous forme cristalline « alpha » ou sous forme cristalline « gamma », notées « α-ZrP » et « γ-ZrP » respectivement dans la suite du présent exposé. Le phosphate de zirconium et ses diverses formes cristallines utilisables dans le cadre de la présente invention sont par exemple décrit dans les demandes de brevets WO-A-2003/070818 et WO-A-2004/096903 dont les contenus sont incorporées ici par référence.
[0037] On préfère plus particulièrement la forme cristalline « alpha » de phosphate de zirconium, intercalé ou non, de préférence intercalé, comme décrit par exemple dans la demande de brevet WO-A-2002/16264, dont le contenu est également incorporé ici par référence. y
[0038] Selon un mode de réalisation tout à fait préféré, les fils, fibres et filaments selon la présente invention comportent une matrice polyamide dans laquelle sont dispersées entre 0,01% et 1% en poids, de préférence entre 0,01% et 0,5% en poids, de particules nanométriques de phosphate de zirconium, de préférence sous forme cristalline α (« α-ZrP »), comme décrit dans la demande de brevet WO-A-2002/16264. [0039] Les articles filés, fils, fibres et filaments selon la présente invention présentent des caractéristiques mécaniques tout à fait intéressantes et notamment une contrainte au seuil de plasticité transverse tout à fait intéressante supérieure à 40 MPa. Par contrainte au seuil de plasticité transverse, on entend la résistance à la compression transverse, comme indiqué dans les exemples d'illustration de la présente invention figurant à la suite de cet exposé.
[0040] En outre, les fils, fibres et filaments de la présente invention possèdent une ténacité élevée, généralement comprise entre 30 et 85 cN/tex, plus particulièrement comprise entre 35 à 75 cN/tex. [0041] Les remarquables propriétés des fils, filaments et fibres décrites ci-dessus sont notamment obtenues grâce à un procédé de filage particulier défini ci-dessous et qui représente un autre objet de la présente invention.
[0042] Ainsi, la présente invention concerne également le procédé de préparation de fils, fibres et filaments, par filage en fondu d'une composition chargée comprenant au moins une matrice polyamide dans laquelle sont dispersées entre 0,01% et 5% en poids, de préférence entre 0,02% et 3% en poids, plus préférentiellement entre 0,05% et 2% en poids de particules nanométriques, ledit procédé étant caractérisé en ce que le rapport vitesse d'appel / vitesse d'extrusion est compris entre 20 et 300, de préférence entre 30 et 200, de préférence encore entre 40 et 180, par exemple entre 50 et 90.
[0043] Le polyamide utilisé est tel que défini plus haut dans la présente description. Les particules nanométriques sont également telles que définies précédemment. Les particules nanométriques peuvent être incorporées à la matrice par introduction dans le milieu de polymérisation, c'est-à-dire dans le ou les monomères, avant la réaction de polymérisation, ou encore incorporées à la matrice polymère par introduction dans le polymère fondu, par exemple par mélange maître. [0044] Le terme filage en fondu d'une composition en charge correspond à la technique de filage en fondu connue de l'homme du métier où une composition polymère, ici la matrice polyamide chargée des particules nanométriques, est fondue puis extrudée au travers d'une filière pour former des fils, fibres et filaments, avec une vitesse d'extrusion contrôlée. À l'issue de la filière, les fils, fibres et filaments sont éventuellement refroidis, selon des techniques classiques (air ou eau), et appelés sur un rouleau d'appel à une vitesse dénommée vitesse d'appel. [0046] La vitesse d'appel est généralement comprise entre 150 m/minute et 2000 m/minute, de préférence entre 200 m/minute et 1500 m/minute. La vitesse d'extrusion est généralement comprise entre 5 et 25 m/minute.
[0046] Selon un mode de réalisation du procédé de la présente invention, la vitesse d'extrusion est comprise entre 5 et 25 m/minute et la vitesse d'appel, comprise entre 300 et 1500 m/minute, tout en conservant le rapport vitesse d'appel / vitesse d'extrusion défini plus haut. [0047] À titre d'exemple et de manière non limitative, le procédé de l'invention peut être mis en œuvre avec une vitesse d'appel réglée à 800 m/minute pour une vitesse d'extrusion de 10, 12 ou 15 m/minute.
[0048] Généralement, les fils, fibres et filaments sont ensuite être étirés à nouveau, à chaud ou à froid, par exemple selon un facteur allant jusqu'à 3, voir jusqu'à 5.
[0049] Les articles filés, fils, fibres ou filaments sont réalisés selon les techniques usuelles de filage qui peut être réalisé immédiatement après la polymérisation de la matrice, celle-ci étant sous forme fondue. Il peut être réalisé à partir d'un granulé comportant la composition. [0050] Les articles filés selon l'invention peuvent être soumis à tous les traitements pouvant être effectués dans des étapes ultérieures à l'étape de filage. Ils peuvent en particulier être étirés, textures, frisés, chauffés, retordus, teints, ensimés, coupés... Ces opérations complémentaires peuvent être réalisées de façon continue et être intégrées après le dispositif de filage ou être réalisées de façon discontinue. La liste des opérations ultérieures au filage n'a aucun effet limitatif.
[0051] Les articles filés, fils, fibres et filaments obtenus selon le procédé de la présente invention et possédant les caractéristiques précédemment définies trouvent une utilisation dans de très nombreux domaines d'application grâce à leurs bonnes propriétés physiques.
[0052] Les articles filés, fils, fibres et filaments de l'invention possèdent des propriétés physiques remarquables, eu égard à la faible quantité de charges de renfort qu'ils comprennent, et en particulier de bonnes valeurs de contrainte au seuil de plasticité transverse.
[0053] L'invention concerne également des articles comprenant des fils, fibres et/ou filaments tels que décrits ci-dessus. Les fils, fibres, filaments selon l'invention, peuvent être utilisés sous forme tissée, tricotée ou non tissée, [0054] De nombreuses applications sont envisageables pour les articles filés, fils, fibres et filaments selon l'invention, et on peut citer par exemple les utilisations dans les domaines de la filtration, du pressage, de la sérigraphie, mais aussi pour la fabrication de tapis, moquettes, paillassons, etc. Les fibres selon l'invention sont en particulier adaptées pour la fabrication de feutres pour machines à papier ("paper felt"), et notamment pour les non-tissés des feutres pour machines à papier utilisés dans l'industrie papetière.
[0055] Les articles filés, fils, fibres, filaments selon l'invention peuvent être utilisés également comme fils pour moquettes. Ils peuvent aussi être utilisés, notamment les mono-filaments, pour l'obtention de tissus dans le domaine de la sérigraphie pour les transferts d'impression, ou dans le domaine de la filtration.
[0056] Les articles filés, fils, fibres, filaments de l'invention, et notamment les multifils, peuvent également être utilisés dans la fabrication de cordes, en particulier des cordes d'escalade, ou de courroies, notamment les courroies de convoyage. [0057] Enfin les fils de l'invention peuvent être utilisés pour la fabrication de filets, en particulier les filets de pêche. .
[0058] D'autres détails ou avantages de l'invention apparaîtront plus clairement au vu des exemples qui suivent et qui ne présentent aucun caractère limitatif pour la présente invention. Exemples
Exemple 1 : Préparation des particules nanométriques de α-ZrP [0059] On utilise du phosphate de zirconium α-ZrP, tel que préparé dans l'exemple 4 de la demande de brevet WO-A-02/16264, à partir d'une solution aqueuse d'oxychlorure de zirconium (sous forme de poudre à 32,8% en ZrÛ2) à 2,1 mol/L en ZrO2.
[0060] Dans un réacteur de 1 L et sous agitation, on introduit 50 mL d'acide chlorhydrique (Prolabo® 36%, d = 1 ,19), 50 mL d'acide phosphorique (Prolabo® 85%, d = 1 ,695) et 150 mL d'eau désionïsée. Après agitation du mélange, on ajoute, de façon continue avec un débit de 5,7 mL/min, 140 mL de la solution aqueuse d'oxychlorure de zirconium à 2,1 M. L'agitation est maintenue pendant une heure après la fin d'ajout de la solution d'oxychlorure de zirconium. [0061] Après élimination des eaux-mères, on lave le précipité par centrifugation à 4500 t/min, avec 1200 mL d'acide phosphorique (HsPO4 à 20 g/L), puis avec de l'eau désionisée, jusqu'à atteindre une conductivité de 6,5 mS (surnageant). On obtient un gâteau du précipité à base de phosphate de zirconium. [0062] Le gâteau est alors dispersé dans 1 L de solution aqueuse d'acide phosphorique 10 M. La dispersion ainsi obtenue est transférée dans un réacteur de 2 L, puis chauffée à 1150C. Cette température est maintenue pendant 5 heures. [0063] La dispersion obtenue est lavée par centrifugation avec de l'eau désionisée jusqu'à une conductivité inférieure à 1 mS (surnageant). Le gâteau issu de la dernière centrifugation est redispersé de façon à obtenir un extrait sec voisin de 20%, le pH de la dispersion est compris entre 1 et 2. [0064] On obtient une dispersion d'un composé cristallisé à base de phosphate de zirconium de structure lamellaire (analyse au Microscope Électronique à Transmission MET), dont les lamelles se présentent sous forme hexagonale avec une taille comprise entre 200 et 500 nm. Les particules sont constituées d'un empilement de plaquettes sensiblement parallèles, l'épaisseur des empilements selon la direction perpendiculaire aux plaquettes étant d'environ 200 nm. [0065] L'analyse par diffraction de rayons X (DRX) met en évidence l'obtention de la phase cristallisée Zr(HPO4)2, 1 H2O, avec un taux d'extrait sec de 18,9% en poids, un pH de 1,8 et une conductivité de 8 mS.
[0066] Les particules sont neutralisées par ajout d'hexaméthylène diamine (HMD). 5 À cette dispersion, on ajoute une solution aqueuse de HMD à 70% jusqu'à obtention d'un pH de 5. La dispersion ainsi obtenue est homogénéisée à l'aide d'un Ultraturax®. L'extrait sec final est ajusté par ajout d'eau désionisée (extrait sec : 15% en poids).
Exemple 2 : Compositions polyamide chargées en particules nanométriques à o base de phosphate de zirconium α-ZrP traitées par l'hexaméthylènediamine [0067] On synthétise un polyamide 6 à partir de caprolactame selon un procédé classique, en introduisant dans le milieu de polymérisation une dispersion aqueuse de particules de α-ZrP obtenue dans l'exemple 1. La proportion du composé à base de phosphate de zirconium introduite est de 2% en poids. On synthétise également 5 un polymère ne comportant pas de particules nanométriques (exemple comparatif). [0068] Après polymérisation, le polymère est mis en forme de granulés. Ceux-ci . sont lavés pour élimination du caprolactame résiduel : pour cela, les granulés sont immergés dans un excès d'eau à 900C pendant quelques heures. Les granulés sont ensuite séchés sou vide primaire (< 0,5 mbar) pendant 16 heures à 1100C. 0 [0069] On réalise des essais de traction sur des joncs extrudés et conditionnés 30 jours sous humidité relative de 50% et à 230C. Le diamètre des joncs est compris entre 0,5 mm et 1 mm. On utilise une machine de traction INSTRON ® 1185 avec un capteur de force de capacité 100 N à une vitesse de traverse de 50 mm/minute. On reporte la contrainte nominale (rapport de la force mesurée sur la section évaluée s par mesure de diamètre de Palmer) en fonction de la déformation relative appliquée. Les résultats sont reportés au Tableau 1.
-- Tableau 1 --
I O
[0070] On obtient une composition à base de polyamide dont l'allongement à la rupture est supérieur à celui d'un polyamide ne comprenant pas le composé minéral, et dont le module est amélioré. s [0071] On obsJ CNerve au microscope électronique en transmission (MET) des compositions obtenues comme ci-dessus comprenant du PA 6 et 2% en poids de composé à base de phosphate de zirconium, sur des coupes d'épaisseur moyenne 0,1 μm. On observe la présence de très nombreuses lamelles minérales dispersées, d'épaisseur nanométrique et de largeur 50 à 100 nm. 0
Exemple 3 : Propriétés mécaniques des fils obtenus selon le procédé de l'invention.
1) En traction : allongement et contrainte à la rupture
[0072] Des essais de filage ont été menés avec un polyamide 6 chargé en particules de α-ZrP intercalées HMD, tel que préparé à l'exemple 2 ci-dessus, de manière à obtenir des fils constitués de 10 filaments. Les vitesses d'extrusion sont fixées à 12 m. min"1. Les vitesses d'appel varient de 650 m. min"1 à 1100 m. min"1. Un post étirage à 14O0C est appliqué. Le taux d'étirage appliqué entre rouleaux chauffés pour chaque fil testé est indiqué dans le tableau 2 suivant. Les propriétés en traction sont indiquées sur le tableau 3. Ces propriétés sont mesurées avec une cellule de force de capacité 10 N, pour une longueur de jauge de 200 mm, à 200 mm/min, à 230C et RH 50%.
-- Tableau 2 -- Caractéristiques des fils
Taux Titre au Vitesse d'appel Taux de charge d'étirage brin (dtex) (m/min ) lamellaire (%)
Fil 1 2 2,,1 166 9,7 800 0
Fil 2 2, ,55 8,4 800 0,2
Fil 3 2 2,,0 044 10,3 800 0,5 - Tableau 3 -.- Propriétés mécaniques des fils
Allongement à rupture (%) Contrainte à rupture (230C, 50% HR) (cN/tex)
Fil 1 79 ,6 ± 8,3 29,7 + 2,2
Fil 2 83, 7 + 11 ,5 28,3 + 2,7
Fil 3 73 ,7 ± 7,4 32,3 ± 2,0
2) En compression : Module transverse et contrainte au seuil de plasticité transverse [0073] L'essai de compression transverse sur filaments est une transposition à faible échelle d'un essai mécanique classique en génie civil, dont le principe est le suivant : une fibre de diamètre D, ou un filament unique extrait d'un fil, est posée entre deux surfaces. Les axes de ladite fibre et desdites surfaces sont parallèles. Une des deux surfaces est mobile et vient comprimer la fibre sur une longueur L avec une force F. Le résultat de l'essai est une courbe classique de type force/déplacement. La figure 1 présente un exemple d'une telle courbe. Cette courbe est exploitée pour déterminer d'une part le module transverse (E) et d'autre part le seuil transverse de plasticité (Ry).
[0074] Le module est déterminé à partir de la zone linéaire initiale. Une hypothèse de calcul doit être réalisée : le coefficient de Poisson est fixé à 0,4, alors qu'il peut varier de 0,3 à 0,5. L'impact sur le calcul du module est très faible. L'équation employée pour le calcul est la suivante :
2F (3 + v)
F _ LD ' π
ΔD '
D dans laquelle F représente la force ΔD est le déplacement mesuré, et v représente le coefficient de Poisson. [0075] L'autre grandeur déterminée est la contrainte au seuil de plasticité transverse Ry. Cette grandeur est déterminée au centre de la fibre. À cet endroit des contraintes coexistent dans deux directions orthogonales. On utilise donc un critère de plasticité, le critère de Von Mises, pour évaluer la contrainte au seuil de plasticité. Compte tenu de l'état de contrainte, le seuil Ry est exprimé par l'équation suivante :
[0076] Cet essai est d'un intérêt certain pour la compréhension du comportement des fibres dans un certain nombre d'application : tapis et moquettes, et feutres utilisés en papeterie notamment.
[0077] Les variations du seuil de plasticité transverse des fils sont présentées au Tableau 4, en fonction du taux d'étirage et du taux de charges lamellaires. Les propriétés sont globalement améliorées en présence d1 α-ZrP.
-- Tableau 4 --
Propriétés mécaniques en compression transverse d'un filament extrait du fit
Contrainte au Taux de seuil de Module _ Vitesse laux αe plasticité transverse '*"* d'appel . c ,?? transverse Ry E (MPa) d etιra^ (m/min 1) ?"*
(MPa)
FiH 35,4 ± 2,7 500 ± 30 2,16 800 0
Fil 2 48,4 ± 6,0 480 ± 80 2,5 800 0,2
FH 3 49,1 ± 1 ,8 650 ± 30 2,04 800 0,5

Claims

REVENDICATIONS
1. Fil, fibre ou filament comportant une matrice polyamide dans laquelle sont dispersées entre 0,01% et 5% en poids, de préférence entre 0,02% et 3% en poids, plus préférentiellement entre 0,05% et 2% en poids de particules nanométriques, et présentant une contrainte au seuil de plasticité transverse comprise entre 40 et 150 MPa, de préférence entre 45 et 95 MPa, avec un taux d'allongement à la rupture compris entre 20% et 140%, avantageusement entre 40% et 100%.
2. Fil, fibre ou filament selon la revendication 1 , dans lesquels la matrice est un polyamide choisi parmi le polyamide 6 (PA 6), le polyamide 6.6 (PA 6.6), le copolymère PA 6/6.6, seuls ou en mélanges en toutes proportions de deux ou plusieurs d'entre eux.
3. Fil, fibre ou filament selon la revendication 1 ou la revendication 2, présentant un titre au brin compris entre 1 ,9 et 130 dtex, de préférence entre 1 ,9 et 100 dtex, plus préférentiellement entre 1 ,9 et 66 dtex.
4. Fil, fibre ou filament selon l'une quelconque des revendications 1 à 3, dans lesquels les particules nanométriques sont des charges lamellaires à facteur de forme égal ou supérieur à 3, de préférence compris entre 4 et 1000, bornes incluses, de préférence encore entre 5 et 500 bornes incluses.
5. Fil, fibre ou filament selon l'une quelconque des revendications 1 à 4, dans lesquels, la plus petite dimension de particule est de l'ordre du nanomètre à quelques dizaines de nanomètres.
6. Fil, fibre ou filament selon l'une quelconque des revendications 1 à 4, dans lesquels les particules nanométriques dispersées dans la matrice polyamide possèdent un facteur de forme compris entre 4 et 1000, bornes incluses, et la plus petite dimension de particule est inférieure ou égale à 100 nm, de préférence inférieure ou égale à 75 nm, avantageusement inférieure ou égale à 50 nm.
7. Fils, fibres et filaments selon l'une quelconque des revendications précédentes, dans lesquels les particules nanométriques sont choisies parmi les phyllosilicates de type mica et les oxydes, sulfures ou phosphates exfoliables de métaux ou de non métaux.
8. Fils, fibres et filaments selon l'une quelconque des revendications précédentes, dans lesquels les particules nanométriques sont choisies parmi les argiles et le phosphate de zirconium, avantageusement sous sa forme cristalline alpha ("α-ZrP").
9. Fils, fibres et filaments selon l'une quelconque des revendications précédentes, comportant une matrice polyamide dans laquelle sont dispersées entre 0,01 % et 1 % en poids, de préférence entre 0,01% et 0,5% en poids, de particules nanométriques de phosphate de zirconium sous forme cristalline α ("α-ZrP").
10. Procédé de préparation de fils, fibres ou filaments par filage en fondu d'une composition chargée comprenant au moins une matrice polyamide dans laquelle sont dispersées entre 0,01 % et 5% en poids, de préférence entre 0,02% et 3% en poids, plus préférentiellement entre 0,05% et 2% en poids de particules nanométriques, ledit procédé étant caractérisé en ce que le rapport vitesse d'appel / vitesse d'extrusion est compris entre 20 et 300, de préférence entre 30 et 200, de préférence encore entre 40 et 180, par exemple entre 50 et 90.
11. Procédé selon la revendication 10, caractérisé en ce que la vitesse d'appel est comprise entre 150 m/minute et 2000 m/minute, de préférence entre 200 m/minute et 1500 m/minute.
12. Procédé selon la revendication 10 ou la revendication 11, caractérisé en ce que la vitesse d'extrusion est comprise entre 5 et 25 m/minute.
13. Procédé selon l'une quelconque des revendications 10 à 12, caractérisé en ce qu'il est mis en œuvre avec une vitesse d'appel réglée à
800 m/minute pour une vitesse d'extrusion de 10, 12 ou 15 m/minute.
14. Article comprenant des fils, fibres et/ou filaments selon l'une quelconque des revendications 1 à 9, ou obtenus selon le procédé de l'une quelconque des revendications 10 à 13.
15. Article selon la revendication 14, caractérisé en ce qu'il s'agit d'un feutre pour machine à papier.
16. Article selon la revendication 14, caractérisé en ce qu'il s'agit d'un tapis, d'un paillasson ou d'une moquette.
17. Article selon la revendication 14, caractérisé en ce qu'il s'agit d'une corde ou d'une courroie.
18. Article selon la revendication 14, caractérisé en ce qu'il s'agit d'un tissu pour transfert d'impression ou pour filtration.
19. Article selon la revendication 14, caractérisé en ce qu'il s'agit d'un filet.
EP06778588A 2005-06-10 2006-06-09 Fils, filaments et fibres polyamide a proprietes ameliorees Withdrawn EP1888823A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0505915A FR2886949B1 (fr) 2005-06-10 2005-06-10 Fils, filaments et fibres polyamide a proprietes ameliorees
PCT/FR2006/001309 WO2006131658A1 (fr) 2005-06-10 2006-06-09 Fils, filaments et fibres polyamide a proprietes ameliorees

Publications (1)

Publication Number Publication Date
EP1888823A1 true EP1888823A1 (fr) 2008-02-20

Family

ID=35695665

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06778588A Withdrawn EP1888823A1 (fr) 2005-06-10 2006-06-09 Fils, filaments et fibres polyamide a proprietes ameliorees

Country Status (14)

Country Link
US (1) US20100021679A1 (fr)
EP (1) EP1888823A1 (fr)
JP (1) JP2008542576A (fr)
KR (1) KR100947195B1 (fr)
CN (1) CN101228302A (fr)
BR (1) BRPI0613318A2 (fr)
FR (1) FR2886949B1 (fr)
IL (1) IL187965A (fr)
MX (1) MX2007015404A (fr)
RU (1) RU2372422C2 (fr)
SG (1) SG162746A1 (fr)
TW (1) TWI323269B (fr)
UA (1) UA90312C2 (fr)
WO (1) WO2006131658A1 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1584371A1 (fr) * 2004-04-07 2005-10-12 Urea Casale S.A. Procede et dispositif de granulation en lit fluidise
US20100154146A1 (en) * 2008-07-02 2010-06-24 S.C. Johnson & Son, Inc. Carpet decor and setting solution compositions
AU2006255106A1 (en) * 2005-06-07 2006-12-14 S. C. Johnson & Son, Inc. Composition for application to a surface
US7776108B2 (en) * 2005-06-07 2010-08-17 S.C. Johnson & Son, Inc. Composition for application to a surface
US8846154B2 (en) 2005-06-07 2014-09-30 S.C. Johnson & Son, Inc. Carpet décor and setting solution compositions
US8557758B2 (en) * 2005-06-07 2013-10-15 S.C. Johnson & Son, Inc. Devices for applying a colorant to a surface
CN102459726A (zh) * 2009-05-11 2012-05-16 英威达技术有限公司 具有漂白剂抗性的尼龙毯纤维
DE102009050593A1 (de) * 2009-10-24 2011-04-28 Andreas Stihl Ag & Co. Kg Mähfaden für einen Freischneider und Verfahren zur Herstellung eines solchen Mähfadens
KR101294135B1 (ko) 2010-04-13 2013-08-07 성안합섬주식회사 나노 필라멘트를 이용한 수처리용 여과재
LV14446B (lv) * 2011-07-29 2012-04-20 Jlu Technologies, Sia Dzintara kompozītpavedieni
IL218082A0 (en) 2012-02-13 2012-03-29 Nilit Ltd Cooling polyamide yarn
TWI613338B (zh) * 2012-08-02 2018-02-01 東麗股份有限公司 使用扁平多葉形斷面纖維之織物、及使用其之縫製品
US10137617B2 (en) 2015-04-17 2018-11-27 Ut-Battelle, Llc Low shear process for producing polymer composite fibers
JP6584908B2 (ja) * 2015-10-15 2019-10-02 旭化成株式会社 柔軟性を有するスパンボンド不織布
RU2633957C1 (ru) * 2016-07-14 2017-10-19 Закрытое Акционерное Общество "Танис" Синтетический шнур и способ его производства
CN108178923B (zh) * 2018-02-01 2020-12-08 南方科技大学 一种改性的尼龙纤维母粒及使用其制备的改性尼龙纤维
EP4324964A1 (fr) * 2022-08-18 2024-02-21 Daniele Fiorenza Fil textile

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1047986B (de) * 1952-10-21 1958-12-31 Degussa Verfahren zur Herstellung von kuenstlichen Faserstoffen
US4547546A (en) * 1983-06-27 1985-10-15 Allied Corporation Additive dispersions and process for their incorporation with fiber-forming polymer
FR2796086B1 (fr) * 1999-07-06 2002-03-15 Rhodianyl Articles files resistant a l'abrasion
FR2813300B1 (fr) * 2000-08-23 2002-10-25 Rhodianyl Procede de preparation de composes mineraux, composes obtenus, et leur utilisation dans les materiaux thermoplastiques
JP2003166155A (ja) * 2001-11-29 2003-06-13 Toray Ind Inc 不織布
TWI347300B (en) * 2003-01-20 2011-08-21 Toagosei Co Ltd Antibacterial composition and ant1bacterial products

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006131658A1 *

Also Published As

Publication number Publication date
KR100947195B1 (ko) 2010-03-11
FR2886949A1 (fr) 2006-12-15
IL187965A (en) 2011-08-31
TWI323269B (en) 2010-04-11
TW200708543A (en) 2007-03-01
JP2008542576A (ja) 2008-11-27
KR20080010457A (ko) 2008-01-30
BRPI0613318A2 (pt) 2010-12-28
IL187965A0 (en) 2008-03-20
SG162746A1 (en) 2010-07-29
MX2007015404A (es) 2008-03-04
RU2372422C2 (ru) 2009-11-10
WO2006131658A1 (fr) 2006-12-14
US20100021679A1 (en) 2010-01-28
UA90312C2 (ru) 2010-04-26
CN101228302A (zh) 2008-07-23
FR2886949B1 (fr) 2007-08-03
RU2008100053A (ru) 2009-07-20

Similar Documents

Publication Publication Date Title
EP1888823A1 (fr) Fils, filaments et fibres polyamide a proprietes ameliorees
CA2568433A1 (fr) Fibre polymerique chargee, son procede de fabrication, son utilisation et composition comprenant de telles fibres
EP1119655A1 (fr) Articles files resistant a l&#39;abrasion
EP2063016B1 (fr) Revêtement d&#39;adhérisage ou film RFL comportant des nanotubes de carbone et fil comportant un tel revêtement
EP2307490B1 (fr) Procede de fabrication de matrice polymerique thermoplastique
FR2710348A1 (fr) Etoffe non tissée formée de fibres de polymères alliés et enveloppe de stérilisation.
FR2946177A1 (fr) Procede de fabrication de fibres composites conductrices a haute teneur en nanotubes.
EP0925101B1 (fr) Dispositif de filtration et procede pour sa realisation
WO2010136720A1 (fr) Procede de fabrication d&#39;une fibre conductrice multicouche par enduction-coagulation
FR3003266B1 (fr) Ruban d&#39;enroulement pour cables pour le carter moteur d&#39;une automobile.
WO2008060830A2 (fr) Fibres multicomposants contenant des polyamides à longueur de chaîne élevée
FR2813300A1 (fr) Procede de preparation de composes mineraux, composes obtenus, et leur utilisation dans les materiaux thermoplastiques
EP1730333B1 (fr) Procede de fabrication d&#39;une bobine avec un monofilament de polypropylene
WO2005097880A1 (fr) Procede de fabrication de matrice polymerique thermoplastique.
FR2615533A1 (fr) Matieres fibreuses a base de fibres de verre en melange intime avec d&#39;autres fibres
WO2004065714A1 (fr) Fibre de renforcement en polyolefine, utilisation et produits comprenant la fibre.
EP0530119B1 (fr) Fibres à base de mélanges pvc/pvc chloré possèdant des propriétés mécaniques améliorées et files de fibres de ténacité améliorée obtenus à partir de ces fibres
JP3461926B2 (ja) ポリアミド系捲縮加工糸および製造方法
WO2003024882A2 (fr) Materiau comprenant une matrice inorganique telle que ciment, mortier, platre ou beton, renforcee par des microfibres
BE527117A (fr)
BE628003A (fr)
FR2857017A1 (fr) Utilisation de sulfure de zinc pour ameliorer la matite des compositions polymeres thermoplastiques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: ROBERT, GILLES

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120718