WO2004065714A1 - Fibre de renforcement en polyolefine, utilisation et produits comprenant la fibre. - Google Patents

Fibre de renforcement en polyolefine, utilisation et produits comprenant la fibre. Download PDF

Info

Publication number
WO2004065714A1
WO2004065714A1 PCT/FR2003/003717 FR0303717W WO2004065714A1 WO 2004065714 A1 WO2004065714 A1 WO 2004065714A1 FR 0303717 W FR0303717 W FR 0303717W WO 2004065714 A1 WO2004065714 A1 WO 2004065714A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
fibers
polyolefin
polyolefin fiber
mass
Prior art date
Application number
PCT/FR2003/003717
Other languages
English (en)
Inventor
Eric Dallies
Richard Morlat
Pousse, (Epouse Le Goff) Christelle
Gaël CADORET
Original Assignee
Saint-Gobain Materiaux De Construction S.A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Materiaux De Construction S.A.S. filed Critical Saint-Gobain Materiaux De Construction S.A.S.
Priority to AU2003300605A priority Critical patent/AU2003300605A1/en
Priority to US10/539,803 priority patent/US20060234048A1/en
Publication of WO2004065714A1 publication Critical patent/WO2004065714A1/fr

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/184Carboxylic acids; Anhydrides, halides or salts thereof
    • D06M13/207Substituted carboxylic acids, e.g. by hydroxy or keto groups; Anhydrides, halides or salts thereof
    • D06M13/217Polyoxyalkyleneglycol ethers with a terminal carboxyl group; Anhydrides, halides or salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0616Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0625Polyalkenes, e.g. polyethylene
    • C04B16/0633Polypropylene
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/006Aspects relating to the mixing step of the mortar preparation involving the elimination of excess water from the mixture
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/244Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus
    • D06M13/282Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus with compounds containing phosphorus
    • D06M13/292Mono-, di- or triesters of phosphoric or phosphorous acids; Salts thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/53Polyethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M7/00Treating fibres, threads, yarns, fabrics, or fibrous goods made of other substances with subsequent freeing of the treated goods from the treating medium, e.g. swelling, e.g. polyolefins
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/06Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres reinforced
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/20Polyalkenes, polymers or copolymers of compounds with alkenyl groups bonded to aromatic groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/40Reduced friction resistance, lubricant properties; Sizing compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber

Definitions

  • the present invention relates to the field of materials with hydraulic setting, and more particularly products based on hydraulic binder and fibers.
  • These products can be in particular in the form of articles shaped into plates such as flat or corrugated plates for roofing or building elements, such as roofing or facade plates, but also in other forms, in particular hollow or tubular. .
  • Such articles can be manufactured by a technique of filtration of an aqueous suspension comprising a binder with hydraulic setting, reinforcing fibers and optionally fillers.
  • a commonly used process based on this technique is known as the Hatschek process: a very dilute aqueous suspension is contained in a tank equipped with means for ensuring a homogeneous distribution of the constituents in the volume of the tank; a filter drum submerges partially in the tank, and its rotation results in the deposition on its surface of a thin film of materials (fibers and hydrated binder); this film is entrained by a felt towards a format cylinder on which it is continuously wound; when the film has reached the desired thickness, it is cut so as to unwind from the cylinder an individual sheet of material with hydraulic setting. The sheet can then be formed into a shaped product and acquires its final characteristics by hardening the binder.
  • a product of greater thickness can be obtained by superimposing an appropriate number of sheets, and pressing them to ensure the cohesion of the whole.
  • asbestos As fibers used to form the framework of the filtered film, asbestos has long been used, the fibers of which have the property of dispersing in the aqueous suspension without forming agglomerates harmful to the regularity of the process, and are even able to "open up" in the aqueous medium so constitute a very entangled filter network on the surface of the drum capable of retaining particles of hydraulic binder, including fines, with very good filtration efficiency.
  • the asbestos fibers also have good mechanical resistance properties in traction which contribute to the mechanical properties of the final product mainly stressed in bending. Asbestos fibers therefore have a double function of reinforcement (in the sense of forming a filtering network) and reinforcement (which contribute to the final mechanical properties). Asbestos is also a very competitive material from the point of view of cost.
  • Cellulose fibers appear to be suitable for constituting a filtration framework for particles of mineral binder, but prove to be insufficient from the point of view of mechanical reinforcement.
  • Glass fibers have an intrinsic mechanical resistance, but are generally sensitive to attack by the alkaline medium of the hydrated mineral matrix, which requires modifying the matrix with additives intended to protect the glass and / or to use alkali-resistant glasses adapted to these aggressive environments. But these solutions involve a significant additional cost.
  • the fibers of poly (vinyl alcohol) PVA or of polyacrylonitrile PAN are also envisaged as reinforcing fibers, in addition to possible filtration fibers, but they also have an economic disadvantage linked to the cost of the raw material.
  • Polypropylene fibers would be good candidates as reinforcing fibers, because they are inexpensive and have a high mechanical strength. However, they show a rather poor reinforcing effect in a matrix of mineral binder with hydraulic setting, because of a low affinity of the lipophilic olefinic material for hydrophilic hydrated matrices.
  • the present invention proposes to provide a reinforcing fiber for products with hydraulic setting, which has good reinforcing properties while remaining inexpensive.
  • the invention is based on the fact that a simple modification of the exposed surface of the fibers by a sizing makes it possible to effectively and durably improve the interaction between the fibers and the matrix.
  • the amount of material provided by the size being minimal relative to the weight of fibers, this modification is done without increasing the cost of the fibrous material substantially.
  • the subject of the invention is a fiber according to claim 1.
  • the surface properties of the filaments constituting the polyolefin fiber are modified by one or more sizing agents providing a triple function, assistance in fiberizing, wettability by the composition based on hydraulic binder, and promoter d adhesion to the matrix with hydraulic setting.
  • the term “fiberizing” generally designates the manufacture of the polyolefin fiber, from the spinning of the molten material, passing through drawing, until the cutting of cut son.
  • the fiber-drawing assistance function consists in facilitating the constitution of the polyolefin fiber from polyolefin filaments at at least one stage of fiberizing: it is in particular a question of lubricating the filaments to improve their setting. charge by the yarn transport and assembly members at different stages of the manufacture of the fibers, to minimize the electrostatic charges carried by the filaments in order to allow their gathering into a yarn, or to ensure cohesion or integrity of the wire constituted by the gathering of the filaments.
  • the wettability function of the composition based on hydraulic binder consists in facilitating the dispersion of the polyolefin fibers in the matrix, resulting from the good dispersion of the fibrous material in the initial mixture of binder and water from which the product is made. .
  • This function mainly uses the surface polarity of the fibrous material to make it hydrophilic.
  • the function of promoting adhesion to the matrix with hydraulic setting consists in reinforcing the interaction between the fibrous reinforcement and the matrix of the hardened product. This latter function also calls for the presence of polar functional groups at the surface of the fibers.
  • These functions can be provided by one or more agents chosen from lubricants, antistatic agents, surfactants, fatty chain compounds and polymers with polar functions, in which a lubricant can be a fatty chain compound, likewise that a surfactant can be a fatty chain compound or that an antistatic can be a polymer with polar functions.
  • agents or mixtures in particular lubricants or antistatic or surfactants, which one could naturally intend for use as spinning agents of textile materials which are not necessarily synthetic, make it possible to confer on olefinic fibers reinforcement properties of products based on hydraulic binder quite considerable.
  • the size may include polyalkylene glycols with lubricating properties, in particular polyethylene glycol or polypropylene glycol.
  • nonionic or ionic, anionic or cationic surfactants are considered.
  • the size advantageously comprises amino or polyamine, phosphoric or polyphosphoric, phosphates or polyphosphates compounds with antistatic properties, where the amino or phosphoric function can have an adhesion promoting effect by ion complexation. mass calcium with hydraulic setting, tending to create a strong interaction between the fiber and the matrix.
  • the fatty chain compounds are typically compounds comprising an optionally substituted hydrocarbon chain of at least 9 carbon atoms, in particular from 10 to 24 carbon atoms, which can in particular be derived from natural oils, such as coconut, palm ... They can be based on fatty alcohols, ethers of fatty alcohols, fatty acids, esters of fatty acids, amides of fatty acids, where the fatty chain is preferably C ⁇ o-C 2 . They are optionally (poly) alkoxylated, in particular (poly) ethoxylated or (poly) propoxylated, or derivatives of glycerol.
  • These compounds have the advantage of having a hydrocarbon part having a good affinity with the polyolefinic material of the fiber, while another part of the compound can be functionalized to provide a required function.
  • the size can include a polyfunctional agent which is a product of combination of functional radicals (in particular lubricants or anti-static above) with fatty chain residues, derived in particular from natural oil, to jointly provide several of the functions referred to in the invention .
  • These residues may be based on fatty alcohols, fatty alcohol ethers, fatty acids, fatty acid esters, where the fatty chain is preferably C ⁇ o-C 2 .
  • Polyethoxylated amides are also envisaged, whether or not based on fatty acids.
  • the sizing agent (s) can also be chosen from polymers with polar functions, in particular water-dispersible or in emulsion, of olefinic type modified by polar groups by copolymerization or by grafting after synthesis.
  • a halogenated polymer in particular a polyolefin
  • chlorinated polypropylene or a polyolefin grafted by a polar group, in particular of the epoxide type, such as polypropylene grafted with glycidylmethacrylate.
  • the polyolefin fibers are preferably made of polyethylene or polypropylene, more particularly polypropylene.
  • the polyolefin does not need to be modified by organic or mineral additives in order to make it compatible with the matrix with hydraulic setting, this function being ensured by the size.
  • additives or modifying fillers in particular hydrophilic additives, into the matrix.
  • all the additives or fillers commonly used for fiberizing the polyolefin, in particular those intended to facilitate spinning, can be contained.
  • a particularly advantageous reinforcing effect has been observed with polyolefin fibers of relatively small section, expressed by a titer of the order of 0.5 to 10 dtex, more advantageously of 0.5 to 2 dtex.
  • the fiber section is not necessarily circular and may have an irregular or multilobal shape.
  • the polyolefin fiber has a high tenacity, of at least 4 cN / dtex, preferably of at least 5 cN / dtex, very preferably of at least 7 cN / dtex, and in particular from 8 to 9 cN / dtex.
  • This range of toughness can be achieved by adjusting the polyolefin spinning and drawing process appropriately.
  • a basic polyolefin material can be specifically chosen with an appropriate molecular weight distribution.
  • the fibers are generally in the form of wire cut to a length of the order of 2 to 20 mm, in particular from 5 to 10 mm.
  • the total quantity of sizing agent (s) present on the fiber is generally of the order of 0.05 to 5% by weight of dry matter relative to the weight of polyolefin, in particular of the order of 0.1 to 2% by weight.
  • the sizing agent (s) may be applied to the polyolefin fiber in one or more installments during the spinning process of the fiber, at the outlet of the die, during its transport, during drawing, cutting and / or in recovery on unwound fiber from a reel of polyolefin yarn.
  • the or each size can be applied in the form of a pure liquid or from an aqueous solution, dispersion or emulsion or based on another suitable vehicle, in particular aqueous based with an organic co-solvent, preferably polar , by spraying or passing through a bath.
  • aqueous based with an organic co-solvent preferably polar
  • the concentration of the composition is advantageously of the order of
  • the concentration will advantageously be low when the sizing is applied by spraying.
  • the present invention also relates to the use of a fiber as described above as a reinforcing fiber in a product based on fibers and a mass with hydraulic setting, as well as a product thus constituted.
  • the mass with hydraulic setting consists of a binder with hydraulic setting, chosen mainly from the various existing cements, possibly additive with inert or active fillers.
  • rheology additives dispersants, plasticizers, superplasticizers, flocculants
  • mineral fillers sica, fly ash, dairy, pozzolans, carbonates
  • support or reinforcing fibers for filtration or draining processes natural fibers, especially cellulose, or synthetic.
  • the fibers according to the invention are effective as reinforcement in proportions which do not have to be increased compared to more expensive fibers, that is to say of the order of 0.2 to 5% by weight of reinforcing fibers relative to the total dry weight of the initial mixture.
  • This product can have various shapes, preferably a flat or corrugated plate shape.
  • the invention also relates to a method of manufacturing such a product. According to this process, an initial mixture based on hydraulic binder, water and fibers is prepared, the mixture is filtered on a fixed or moving support to form a wet elementary sheet, a plurality of elementary sheets is optionally superimposed a wet intermediate and the sheet or wet intermediate is dried
  • compositions for material with hydraulic setting comprising a hydraulic binder and fibers as described above.
  • These compositions can be cement preparations to be suspended for the draining process, or cement preparations for mortars comprising particles including sand for other shaping processes.
  • a polypropylene fiber of 0.75 dtex of title is manufactured, by applying to the filaments a size containing a mixture of products of the SILASTOL brand sold by the company SCHILL & SEILACHER and which are emulsions.
  • the size contains:
  • the size is applied to the spinning on the polypropylene filaments at the outlet of the die, at a rate of 0.3% by weight of dry extract relative to the dry weight of polypropylene.
  • the yarn consisting of the polypropylene filaments collected is transported by known means of the textile fiber manufacturing processes, then stretched, before being cut into sections of 6.6 mm.
  • This fiber has a toughness greater than 9 cN / dtex.
  • the adhesion of this fiber to a cement matrix has been qualified by a laboratory test in which a fiber is coated with a mortar leaving the ends of the fiber free, the mortar is subjected to a cure and then the ends of the fiber by measuring the traction force and the displacement of the traction point (s).
  • the maximum force before loosening of the fiber makes it possible to determine the adhesion stress, while the slope of the curve giving the force as a function of the displacement at the point corresponding to the loosening of the fiber makes it possible to determine the slip stress which is characteristic of the adhesion between the fibers and the matrix.
  • the same tensile test is carried out on a polypropylene fiber of 1 dtex and 8 mm in length, of medium tenacity (about 5 cN / dtex), obtained by a spinning-stretching process in one step and containing a spinning sizing SYNTHESIN 7292 marketed by the company Dr. BOEHME, at a rate of 0.4% by weight of dry matter relative to the weight of polyolefin.
  • the sizing composition comprises polyethylene glycol ester of fatty acid and phosphoric acid ester based on natural oil.
  • a cement composition is prepared on the basis of the following cement matrix:
  • This laboratory material undergoes a cure of 6 days at 40 ° C. in a sealed bag, before being cut into a test tube 20 mm wide and longer than 200 mm, which test tubes are placed in cold water for 24 hours to be mechanically stressed in traction.
  • This example uses the same medium tenacity fiber as in Example 2.
  • This example uses the same high tenacity fiber as in Example 1, except for a higher titer, which amounts to 1 dtex.
  • EXAMPLE 5 This example uses a high tenacity fiber similar to that of the example
  • This post-sizing is based on a lubricant and antistatic mixture sold under the reference KB 144/2 by the company COGNIS. It is applied at a rate of 0.9% by weight of dry matter relative to the weight of polypropylene.
  • This example uses a high tenacity fiber similar to that of the example
  • post-sizing is based on a chlorinated polypropylene sold by the company Eastman. It is applied at a rate of 0.6% by weight of dry matter relative to the weight of polypropylene.
  • This example uses a high tenacity fiber similar to that of Example 5 except that the post-sizing is based on a polypropylene grafted with glycidyl methacrylate. It is applied at a rate of 1% by weight of dry matter relative to the weight of polypropylene.
  • This example uses a high tenacity fiber similar to that of Example 7 with another polypropylene grafted with glycidyl methacrylate.
  • This example uses a high tenacity fiber similar to that of Example 4 except that it is obtained with a spinning size based on a polyethylene glycol ester derived from fatty acid marketed under the reference STANTEX S6077 by COGNIS company, applied at a rate of 0.5% by weight of dry matter relative to the weight of polypropylene. It also includes a post-sizing is based on a chlorinated polypropylene, which is applied at a rate of 1.2% by weight of dry matter relative to the weight of polypropylene.
  • This example uses a high tenacity fiber similar to that of Example 9 except that the post-sizing is based on the polypropylene grafted with glycidyl methacrylate from Example 7. It is applied in an amount of 1% by weight of dry matter relative to the weight of polypropylene.
  • EXAMPLE 11 This example uses a high tenacity fiber similar to that of Example 10 with a post-sizing based on polypropylene grafted with glycidyl methacrylate from Example 8.
  • This example uses a high tenacity fiber similar to that of Example 4 except that it is obtained with a spinning size based on nonionic surfactants and esterquats marketed under the reference STANTEX S6087 / 4 by the company COGNIS, applied at a rate of 0.5% by weight of dry matter relative to the weight of polypropylene. It also includes a post-sizing identical to the spinning sizing, which is applied at a rate of 1% by weight of dry matter relative to the weight of polypropylene.
  • This example uses a high tenacity fiber similar to that of Example 12 except that it is obtained with the application of a spinning sizing and a post-sizing based on the same commercial product sold under the reference SYNTHESIN. 7292 by the company Dr BOEHME used previously in Example 2.
  • This example uses a high tenacity fiber similar to that of Example 12 except that it is obtained with the application of a spinning sizing and a post-sizing based on the same product under the reference KB 144 / 2 by the company COGNIS used previously in Example 5.
  • Comparative Example 1 For comparison purposes, the PP fiber used in Comparative Example 1 was used for mechanical testing in laboratory products.
  • the tensile tests were carried out by installing the test pieces between the jaws of a traction machine with a distance between jaws of 200 mm.
  • the tensile test is carried out at a separation speed of 1.2 mm / min.
  • the force - displacement curve is plotted which has a typical appearance of the results observed with products obtained by the Hatschek technique.
  • the force increases rapidly, then there is a plateau where the force evolves slowly corresponding to the multifissuring of the test tube until the appearance of a macrocrack, after which the force drops by sliding effect during the opening of the macrocrack.
  • the length of the multi-cracking plate reflects the strengthening effect of the plate by all of the fibers.
  • the slope of the force-displacement curve in this last part of the test makes it possible to determine the sliding stress which is characteristic of the adhesion between each fiber and the cement matrix.
  • the slip stress was calculated by applying a fiber orientation correction factor at random of 0.64.
  • Examples 4 and 5 much better than with the Crackstop fiber of Comparative Example 3.
  • Examples 3 and 6 to 14 give adhesion performance to the matrix of the same order or even better than with PVA with a base material (polypropylene) much less expensive.
  • Example 15 uses the same high tenacity fiber as in Example 4.
  • Example 16 uses the same fiber as in Example 3
  • aqueous suspension is prepared on the basis of the same matrix as in Examples 3 to 14. This suspension is introduced into the tank of a Hatschek machine, for the formation of a film and winding on a cylinder format of a sheet of material. hydrated cement approximately 1 mm thick. After cutting, sheets of hydrated material are superimposed on a form to form flat or corrugated plates having a thickness of 6 mm.
  • the plates are subjected to mechanical tests after 28 days of curing in the ambient atmosphere.
  • Test pieces of the same dimensions as in Examples 3 to 14 are subjected to the tensile tests under the same conditions.
  • the force - displacement curves are similar in appearance with a multi-cracking plateau and a decrease after loosening.

Abstract

L'invention a pour objet une fibre de polyoléfine pour le renforcement de produits à base de fibres et d'une masse à prise hydraulique, caractérisée en ce qu'elle comporte un ensimage porteur d'une fonction d'assistance au fibrage, d'une fonction de mouillabilité de la fibre par la composition de la masse à prise hydraulique, et d'une fonction de promoteur d'adhésion à la masse à prise hydraulique. La fibre est utilisée en tant que fibre de renforcement dans un produit à base de fibres et d'une masse à prise hydraulique.

Description

FIBRE DE RENFORCEMENT EN POLYOLEFINE, UTILISATION ET PRODUITS COMPRENANT LA FIBRE.
La présente invention se rapporte au domaine des matériaux à prise hydraulique, et plus particulièrement des produits à base de liant hydraulique et de fibres.
Ces produits peuvent se présenter notamment sous la forme d'articles façonnés en plaques tels que des plaques planes ou ondulées pour élément de couverture ou de construction, comme des plaques de toiture ou de façade, mais aussi sous d'autres formes notamment creuses ou tubulaires.
De tels articles peuvent être fabriqués par une technique de filtration d'une suspension aqueuse comprenant un liant à prise hydraulique, des fibres d'armature et éventuellement de charges. Un procédé couramment utilisé reposant sur cette technique est connu sous le nom de procédé Hatschek : une suspension aqueuse très diluée est contenue dans une cuve équipée de moyens pour assurer une distribution homogène des constituants dans le volume de la cuve ; un tambour filtrant plonge partiellement dans la cuve, et sa rotation entraîne le dépôt à sa surface d'une fine pellicule de matières (fibres et liant hydraté) ; cette pellicule est entraînée par un feutre vers un cylindre format sur lequel elle s'enroule continûment ; lorsque la pellicule a atteint l'épaisseur souhaitée, on la coupe de façon à dérouler du cylindre une feuille individuelle de matériau à prise hydraulique. La feuille peut alors être mise sous la forme d'un produit façonné et acquiert ses caractéristiques définitives par durcissement du liant. Un produit d'épaisseur supérieure peut être obtenu en superposant un nombre approprié de feuilles, et en les pressant pour assurer la cohésion de l'ensemble.
En tant que fibres utilisées pour former l'armature de la pellicule filtrée, on a longtemps utilisé l'amiante dont les fibres ont la propriété de se disperser dans la suspension aqueuse sans former d'agglomérats nuisibles à la régularité du procédé, et sont même capables de « s'ouvrir » dans le milieu aqueux pour ainsi constituer à la surface du tambour un réseau filtrant très enchevêtré capable de retenir les particules de liant hydraulique, y compris les fines, avec un très bon rendement de filtration. Les fibres d'amiante ont en outre de bonnes propriétés de résistance mécanique en traction qui participent aux propriétés mécaniques du produit final principalement sollicité en flexion. Les fibres d'amiante ont donc une double fonction d'armature (au sens de la formation d'un réseau filtrant) et de renforcement (qui contribuent aux propriétés mécaniques finales). L'amiante est en outre un matériau très compétitif du point de vue du coût.
Toutefois, ce matériau tend à être écarté de la fabrication d'une grande variété de produits de consommation courante et du domaine de la construction pour des raisons tenant à la santé publique.
C'est pourquoi il existe une demande pour un matériau de substitution ne présentant pas les inconvénients de l'amiante.
Or, à ce jour, il n'a pas été possible de trouver un matériau fibreux naturel ou synthétique capable de jouer le même rôle que l'amiante, c'est-à-dire alliant l'aptitude à la filtration, des propriétés mécaniques et la résistance au milieu alcalin des masses à prise hydraulique.
Les fibres de cellulose se révèlent adaptées pour constituer une armature de filtration des particules de liant minéral, mais se montrent insuffisantes du point de vue du renfort mécanique.
Les fibres de verre ont une résistance mécanique intrinsèque, mais sont généralement sensibles à l'attaque par le milieu alcalin de la matrice minérale hydratée, ce qui impose de modifier la matrice par des additifs destinés à protéger le verre et/ou d'utiliser des verres alcali-résistants adaptés à ces environnements agressifs. Mais ces solutions impliquent un surcoût non négligeable.
Les fibres de poly(alcool vinylique) PVA ou de polyacrylonitrile PAN sont également envisagées comme fibres de renforcement, en complément d'éventuelles fibres de filtration, mais présentent elles aussi un inconvénient économique lié au coût de la matière première.
Les fibres de polypropylène seraient de bonnes candidates en tant que fibres de renforcement, car elles sont peu onéreuses et douées d'une résistance mécanique importante. Cependant, elles manifestent un effet de renforcement assez médiocre dans une matrice de liant minéral à prise hydraulique, à cause d'une faible affinité du matériau oléfinique lipophile pour les matrices hydratées hydrophiles.
De nombreuses tentatives ont été effectuées pour améliorer cette interaction.
Ainsi, on a cherché à modifier le polypropylène au moyen d'additifs organiques ou minéraux introduits dans la masse du polymère.
Cette modification se traduit inévitablement par une élévation du coût de la matière première fibreuse, et a une influence non négligeable sur les propriétés intrinsèques des fibres, notamment un affaiblissement des caractéristiques mécaniques.
Une autre voie de modification consiste en des traitements de surface tels que texturation, sablage, effet corona... Ces solutions compliquent considérablement le procédé de fabrication des fibres et ne sont généralement pas intéressantes sur le plan économique.
La présente invention se propose de fournir une fibre de renforcement pour des produits à prise hydraulique, qui a de bonnes propriétés de renforcement tout en restant peu onéreuse.
L'invention repose sur le fait qu'une simple modification de la surface exposée des fibres par un ensimage permet d'améliorer efficacement et durablement l'interaction entre les fibres et la matrice. La quantité de matière apportée par l'ensimage étant minime par rapport au poids de fibres, cette modification se fait sans augmenter le coût du matériau fibreux de manière substantielle.
A cet égard, l'invention a pour objet une fibre selon la revendication 1.
Selon l'invention les propriétés superficielles des filaments constituant la fibre de polyoléfine sont modifiées par un ou plusieurs agents d'ensimage apportant une triple fonction, d'assistance au fibrage, de mouillabilité par la composition à base de liant hydraulique, et de promoteur d'adhésion à la matrice à prise hydraulique.
Dans la présente demande, le terme « fibrage » désigne de manière générale la fabrication de la fibre de polyoléfine, à partir du filage de la matière fondue, en passant par l'étirage, jusqu'à la coupe de fils coupés.
La fonction d'assistance au fibrage consiste à faciliter la constitution de la fibre de polyoléfine à partir de filaments de polyoléfine à au moins un stade du fibrage : il s'agit notamment de lubrifier les filaments pour améliorer leur prise en charge par les organes de transport et d'assemblage du fil à différents stades de la fabrication des fibres, de minimiser les charges électrostatiques portées par les filaments en vue de permettre leur rassemblement en un fil, ou d'assurer la cohésion ou l'intégrité du fil constitué par le rassemblement des filaments.
La fonction de mouillabilité par la composition à base de liant hydraulique consiste à faciliter la dispersion des fibres de polyoléfine dans la matrice, découlant de la bonne dispersion du matériau fibreux dans le mélange initial de liant et d'eau à partir duquel est fabriqué le produit. Cette fonction fait principalement appel à la polarité de surface du matériau fibreux pour le rendre hydrophile.
La fonction de promotion d'adhésion à la matrice à prise hydraulique consiste à renforcer l'interaction entre le renfort fibreux et la matrice du produit durci. Cette dernière fonction fait également appel à la présence de groupes fonctionnels polaires en surface des fibres.
Ces fonctions peuvent être apportées par un ou plusieurs agents choisi(s) parmi des lubrifiants, des antistatiques, des tensioactifs, des composés à chaîne grasse et des polymères à fonctions polaires, dans lesquels un lubrifiant peut être un composé à chaîne grasse, de même qu'un tensioactif peut être un composé à chaîne grasse ou qu'un antistatique peut être un polymère à fonctions polaires.
Il a ainsi été constaté de manière tout à fait inattendue que des agents ou des mélanges notamment lubrifiants ou antistatiques ou tensioactifs, que l'on pourrait destiner naturellement à une utilisation comme agents de filage de matières textiles non nécessairement synthétiques, permettent de conférer à des fibres oléfiniques des propriétés de renfort de produits à base de liant hydraulique tout à fait considérables.
L'ensimage peut comprendre des polyalkylène-glycols aux propriétés lubrifiantes, en particulier polyéthylène glycol ou polypropylène glycol.
Au titre des tensioactifs, on considère des tensioactifs non ioniques ou ioniques, anioniques ou cationiques.
L'ensimage comprend avantageusement des composés aminés ou polyaminés, phosphoriques ou polyphosphoriques, phosphates ou polyphosphates aux propriétés antistatiques, où la fonction aminé ou phosphorique peut avoir un effet promoteur d'adhésion par complexation des ions calcium de la masse à prise hydraulique, tendant à créer une interaction forte entre la fibre et la matrice.
Les composés à chaîne grasse sont typiquement des composés comportant une chaîne hydrocarbonée éventuellement substituée d'au moins 9 atomes de carbone, notamment de 10 à 24 atomes de carbone, qui peut en particulier être dérivée d'huiles naturelles, telle que l'huile de coco, de palme... Ils peuvent être à base d'alcools gras, d'éthers d'alcools gras, d'acides gras, d'esters d'acides gras, d'amides d'acides gras, où la chaîne grasse est de préférence en Cιo-C2 . Ils sont le cas échéant (poly)alkoxylés, notamment (poly)éthoxylés ou (poly)propoxylés, ou dérivés du glycérol.
Ces composés ont l'avantage d'avoir une partie hydrocarbonée ayant une bonne affinité avec la matière polyoléfinique de la fibre, alors qu'une autre partie du composé peut être fonctionnalisée pour apporter une fonction requise.
Ainsi l'ensimage peut comprendre un agent polyfonctionnel qui est un produit de combinaison de radicaux fonctionnels ( notamment lubrifiants ou antistatiques précités ) avec des résidus à chaîne grasse, dérivée notamment d'huile naturelle, pour apporter conjointement plusieurs des fonctions visées dans l'invention. Ces résidus peuvent être à base d'alcools gras, d'éthers d'alcools gras, d'acides gras, d'esters d'acides gras, où la chaîne grasse est de préférence en Cιo-C2 .
Ainsi, on envisage en particulier des polyalkylène glycols dérivés d'acides gras, où la chaîne grasse est avantageusement issue ou dérivée d'une huile naturelle. On envisage également des aminés grasses, des esters d'acide phosphorique sur base de chaîne grasse, des esters d'acides gras à fonction ammonium quaternaire ( esterquats dérivés d'acides gras et de triéthanolamine ) où la chaîne grasse est avantageusement issue ou dérivée d'huile naturelle.
On envisage également des amides polyéthoxylés, sur base ou non d'acides gras.
Le ou les agents d'ensimage peuvent également être choisis parmi les polymères à fonctions polaires, notamment hydrodispersibles ou en émulsion, de type oléfinique modifié par des groupements polaires par copolymerisation ou par greffage après synthèse. A titre d'exemple on peut citer un polymère (en particulier une polyoléfine) halogéné(e), tel que du polypropylène chloré, ou une polyoléfine greffée par un groupement polaire notamment de type époxyde, telle que du polypropylène greffé avec du glycidylméthacrylate. Les fibres de polyoléfine sont de préférence en polyéthylène ou en polypropylène, plus particulièrement en polypropylène.
La polyoléfine n'a pas besoin d'être modifiée par des additifs organiques ou minéraux en vue de la rendre compatible avec la matrice à prise hydraulique, cette fonction étant assurée par l'ensimage. Néanmoins, pour des applications particulières, il peut être envisagé d'incorporer des additifs ou des charges modificatrices, notamment des additifs hydrophiles, dans la matrice. En outre, tous les additifs ou charges utilisés couramment pour le fibrage de la polyoléfine, en particulier ceux destinés à faciliter le filage, peuvent être contenus.
Un effet de renforcement particulièrement avantageux a été constaté avec des fibres de polyoléfine de relativement faible section, exprimée par un titre de l'ordre de 0,5 à 10 dtex, plus avantageusement de 0,5 à 2 dtex.
La section des fibres est non nécessairement circulaire et peut affecter une forme irrégulière ou multilobale.
Dans un mode de réalisation particulièrement avantageux, la fibre de polyoléfine a une ténacité élevée, d'au moins 4 cN/dtex, de préférence d'au moins 5 cN/dtex, très préférentiellement d'au moins 7 cN/dtex, et en particulier de 8 à 9 cN/dtex. Cette gamme de ténacité peut être atteinte en réglant le procédé de filage et d'étirage de la polyoléfine de manière appropriée. Une matière polyoléfinique de base peut être spécifiquement choisie avec une distribution des masses moléculaires adaptée.
Les fibres se présentent généralement sous forme de fil coupé à une longueur de l'ordre de 2 à 20 mm, en particulier de 5 à 10 mm.
La quantité totale d'agent(s) d'ensimage présent(s) sur la fibre est généralement de l'ordre de 0,05 à 5 % en poids de matière sèche par rapport au poids de polyoléfine, notamment de l'ordre de 0,1 à 2 % en poids.
Le ou les agents d'ensimage peuvent être appliqués sur la fibre de polyoléfine en une ou plusieurs fois au cours du procédé de filage de la fibre, en sortie de filière, pendant son transport, à l'étirage, à la coupe et/ou en reprise sur de la fibre déroulée d'une bobine de fil de polyoléfine.
Le ou chaque ensimage peut être appliqué sous forme d'un liquide pur ou à partir d'une solution, dispersion ou émulsion aqueuse ou à base d'un autre véhicule adapté, notamment à base aqueuse avec un co-solvant organique, de préférence polaire, par aspersion ou passage dans un bain. Dans le cas de l'utilisation d'une composition aqueuse ou à base d'un autre véhicule, la concentration de la composition est avantageusement de l'ordre de
0,5 à 50 % de matières sèche par rapport au poids total de la composition. La concentration sera avantageusement faible lorsque l'ensimage est appliqué par pulvérisation.
La présente invention a également pour objet l'utilisation d'une fibre telle que décrite précédemment en tant que fibre de renforcement dans un produit à base de fibres et d'une masse à prise hydraulique, ainsi qu'un produit ainsi constitué.
La masse à prise hydraulique est constitué à partir d'un liant à prise hydraulique, choisi principalement parmi les différents ciments existants, éventuellement additivés de charges inertes ou actives.
Parmi les charges et additifs, on peut mentionner des additifs de rhéologie (dispersants, plastifiants, superplastifiants, flocculants), des charges minérales (silice, cendres volantes, laitiers, pouzzolanes, carbonates), ainsi que des fibres de support ou d'armature pour des procédés de filtration ou d'égouttage (fibres naturelles, notamment de cellulose, ou synthétiques).
Les fibres selon l'invention sont efficaces en tant que renforcement en des proportions qui n'ont pas à être augmentées par rapport à des fibres plus chères, c'est-à-dire de l'ordre de 0,2 à 5 % en poids de fibres de renforcement par rapport au poids total sec de mélange initial.
Ce produit peut avoir des formes variées, de préférence une forme de plaque plane ou ondulée.
L'invention a également pour objet un procédé de fabrication d'un tel produit. Suivant ce procédé, on prépare un mélange initial à base de liant hydraulique, d'eau et de fibres, on filtre le mélange sur un support fixe ou en mouvement pour former une feuille élémentaire humide, on superpose éventuellement une pluralité de feuilles élémentaires pour former un produit intermédiaire humide et on fait sécher la feuille ou le produit intermédiaire humide
L'invention a enfin pour objet une composition pour matériau à prise hydraulique comprenant un liant hydraulique et des fibres telles que décrites précédemment. Ces compositions peuvent être des préparations cimentaires à mettre en suspension pour procédé d'égouttage, ou des préparations cimentaires pour mortiers comprenant des particules dont du sable pour autres procédés de mise en forme. L'invention va maintenant être décrite de façon non limitative dans les exemples suivants.
EXEMPLE 1
On fabrique une fibre de polypropylène de 0,75 dtex de titre, en appliquant sur les filaments un ensimage contenant un mélange de produits de marque SILASTOL vendus par la société SCHILL&SEILACHER et qui sont des émulsions.
L'ensimage contient :
- 80% en poids du produit ayant la référence Cut5A et qui est à base d'ester de polyglycol dérivé d'acide gras
- 20 % en poids du produit ayant la référence Cut5B et qui est à base de phosphate d'alcool gras.
L'ensimage est appliqué au filage sur les filaments de polypropylène en sortie de filière, à raison de 0,3% en poids d'extrait sec par rapport au poids sec de polypropylène.
Le fil constitué par les filaments de polypropylène rassemblés, est transporté par les moyens connus des procédés de fabrication de fibre textile, puis étiré, avant d'être coupé en tronçons de 6,6 mm.
Cette fibre possède une ténacité supérieure à 9 cN/dtex.
L'adhésion de cette fibre à une matrice cimentaire a été qualifiée par un essai de laboratoire dans lequel une fibre est enrobée par un mortier en laissant les extrémités de la fibre libres, le mortier est soumis à une cure puis on tire sur les extrémités de la fibre en mesurant la force de traction et le déplacement du/de(s) point(s) de traction. La force maximum avant déchaussement de la fibre permet de déterminer la contrainte d'adhésion, tandis que la pente de la courbe donnant la force en fonction du déplacement au point correspondant au déchaussement de la fibre permet de déterminer la contrainte de glissement qui est caractéristique de l'adhésion entre les fibres et la matrice.
Les détails de préparation sont les suivants :
On prépare un mortier contenant 500 g de ciment CPA 52.5, 500 g de sable fin (D50=254μm selon ASTM E.11/70), 98 g de carbonate de calcium et 250 g d'eau.
On met en place une fibre tendue sur un moule parallélépipédique, en centrant bien la fibre, et on moule le mortier autour de la fibre sans casser la fibre. On place le moule dans un sac étanche. La cure est conduite pendant 48 h à 20 °C et 95% d'humidité relative dans une enceinte de mûrissement pour la prise du mortier. On démoule ensuite le contenu des moules et on les place avec un peu d'eau dans un sac thermo-scellé maintenu à 40°C. On procède aux mesures le 7Θme jour, c'est-à-dire après 5 jours à 40°C.
Les résultats sont consignés dans le Tableau 1 suivant.
EXEMPLE COMPARATIF 1
A titre de comparaison, on réalise le même essai de traction sur fibre, avec une fibre de polypropylène de 2,7 dtex commercialisée en tant qu'anti-fissurant du béton, commercialisée sous la marque CRACKSTOP par la société SIKA. Ces fibres n'assurent pas un renforcement structurel du béton, elles limitent les fissurations au retrait et augmentent la résistance aux chocs et l'imperméabilité du matériau durci.
Les résultats sont consignés dans le Tableau 1 suivant.
EXEMPLE 2
On réalise le même test de traction sur une fibre de polypropylène de 1 dtex et de 8 mm de longueur, de moyenne ténacité (environ 5 cN/dtex), obtenue par un procédé de filage-étirage en une étape et contenant un ensimage de filage de référence SYNTHESIN 7292 commercialisé par la société Dr. BOEHME, à raison de 0,4 % en poids de matière sèche par rapport au poids de polyoléfine.
L'ensimage comprend des composés ester de polyéthlène glycol d'acide gras et ester d'acide phosphorique sur base d'huile naturelle.
Les résultats sont consignés dans le Tableau 1 suivant
Figure imgf000010_0001
Tableau 1
Ces résultats montrent une meilleure adhésion à la matrice des fibres des exemple 1 et 2, avec en outre une amélioration de la contrainte de glissement pour la fibre de l'exemple 2.
Des comparaisons avec d'autres fibres commerciales pour béton telles que les fibres DIMAPOS de ISTROCHEM, SIRIOFIBRE de PROIND, ISOCRETE, FIBERLOCK de ETRURIA, DAIWABO POLYPRO de DAIWABO, MERAKLON, montrent des résultats du même ordre que ceux de l'exemple comparatif 1.
EXEMPLES 3 à 14
Ces exemples illustrent l'application de différentes fibres de polypropylène selon l'invention à la fabrication d'un produit cimentaire par filtration. Les produits ont été fabriqués par une méthode de laboratoire reproduisant assez fidèlement les caractéristiques principales des produits obtenus par des méthodes industrielles telles que la technique Hatschek.
On prépare une composition cimentaire sur la base de la matrice cimentaire suivante :
Figure imgf000011_0001
mise en suspension avec un large excès d'eau.
On la filtre à travers une grille métallique pour former une couche unitaire d'environ 1 mm d'épaisseur. Six couches unitaires sont superposées et soumises à un cycle de pressage pour obtenir un matériau contenant avant prise environ 50% d'eau en poids par rapport au poids de ciment, et une épaisseur d'environ 6 mm.
Ce matériau de laboratoire subit une cure de 6 jours à 40°C dans un sac étanche, avant d'être découpé en eprouvette de 20 mm de large et de longueur supérieure à 200 mm, lesquelles éprouvettes sont mises dans l'eau froide pendant 24 heures pour être sollicitées mécaniquement en traction.
Les fibres testées ont les caractéristiques suivantes :
EXEMPLE 3
Cet exemple utilise la même fibre de moyenne ténacité qu'à l'exemple 2.
EXEMPLE 4
Cet exemple utilise la même fibre de haute ténacité qu'à l'exemple 1 , à l'exception d'un titre supérieur, qui s'élève à 1 dtex.
EXEMPLE 5 Cet exemple utilise une fibre de haute ténacité similaire à celle de l'exemple
4 à ceci près qu'elle est obtenue par application d'un post-ensimage, en sortie d'étirage avant la coupe. Ce post-ensimage est à base d'un mélange lubrifiant et antistatique commercialisé sous la référence KB 144/2 par la société COGNIS. Il est appliqué à raison de 0,9% en poids de matière sèche par rapport au poids de polypropylène.
EXEMPLE 6
Cet exemple utilise une fibre de haute ténacité similaire à celle de l'exemple
5 à ceci près que le post-ensimage est à base d'un polypropylène chloré commercialisé par la société Eastman. Il est appliqué à raison de 0,6% en poids de matière sèche par rapport au poids de polypropylène.
EXEMPLE 7
Cet exemple utilise une fibre de haute ténacité similaire à celle de l'exemple 5 à ceci près que le post-ensimage est à base d'un polypropylène greffé au glycidyl méthacrylate. Il est appliqué à raison de 1% en poids de matière sèche par rapport au poids de polypropylène.
EXEMPLE 8
Cet exemple utilise une fibre de haute ténacité similaire à celle de l'exemple 7 avec un autre polypropylène greffé au glycidyl méthacrylate.
EXEMPLE 9
Cet exemple utilise une fibre de haute ténacité similaire à celle de l'exemple 4 à ceci près qu'elle est obtenue avec un ensimage de filage à base d'un ester de polyethyleneglycol dérivé d'acide gras commercialisé sous la référence STANTEX S6077 par la société COGNIS, appliqué à raison de 0,5% en poids de matière sèche par rapport au poids de polypropylène. Elle comporte aussi un post- ensimage est à base d'un polypropylène chloré, qui est appliqué à raison de 1 ,2% en poids de matière sèche par rapport au poids de polypropylène.
EXEMPLE 10
Cet exemple utilise une fibre de haute ténacité similaire à celle de l'exemple 9 à ceci près que le post-ensimage est à base du polypropylène greffé au glycidyl méthacrylate de l'exemple 7. Il est appliqué à raison de 1% en poids de matière sèche par rapport au poids de polypropylène.
EXEMPLE 11 Cet exemple utilise une fibre de haute ténacité similaire à celle de l'exemple 10 avec un post-ensimage à base du polypropylène greffé au glycidyl méthacrylate de l'exemple 8.
EXEMPLE 12
Cet exemple utilise une fibre de haute ténacité similaire à celle de l'exemple 4 à ceci près qu'elle est obtenue avec un ensimage de filage à base de surfactants non ioniques et d'esterquats commercialisé sous la référence STANTEX S6087/4 par la société COGNIS, appliqué à raison de 0,5% en poids de matière sèche par rapport au poids de polypropylène. Elle comporte aussi un post-ensimage identique à l'ensimage de filage, qui est appliqué à raison de 1% en poids de matière sèche par rapport au poids de polypropylène.
EXEMPLE 13
Cet exemple utilise une fibre de haute ténacité similaire à celle de l'exemple 12 à ceci près qu'elle est obtenue avec application d'un ensimage de filage et d'un post-ensimage à base du même produit commercial vendu sous la référence SYNTHESIN 7292 par la société Dr BOEHME utilisé précédemment dans l'exemple 2 .
EXEMPLE 14
Cet exemple utilise une fibre de haute ténacité similaire à celle de l'exemple 12 à ceci près qu'elle est obtenue avec application d'un ensimage de filage et d'un post-ensimage à base du même produit sous la référence KB 144/2 par la société COGNIS utilisé précédemment dans l'exemple 5.
EXEMPLE COMPARATIF 2
A des fins de comparaison, on réalise les mêmes essais mécaniques avec des produits de laboratoire où les fibres de polypropylène sont remplacées par une fibre de PVA de 2,2 dtex et de 6 mm de longueur, avec une ténacité de 12 cN/dtex, commercialisée par Sichuam.
EXEMPLE COMPARATIF 3
A des fins de comparaison, la fibre de PP utilisée dans l'exemple comparatif 1 a été utilisée pour des essais mécaniques dans les produits de laboratoire.
Les tests de traction ont été effectués en installant les éprouvettes entre les mors d'une machine de traction avec une distance entre mors de 200 mm. Le test de traction est réalisé à une vitesse d'écartement de 1 ,2 mm/min. On trace la courbe force - déplacement qui a une allure typique des résultats observés avec des produits obtenus par la technique de Hatschek.
Au début du déplacement la force augmente rapidement, puis on observe un plateau où la force évolue lentement correspondant à la multifissuration de l'éprouvette jusqu'à l'apparition d'une macrofissure, après quoi la force chute par effet de glissement pendant l'ouverture de la macrofissure.
La longueur du plateau de multifissuration reflète l'effet de renforcement de la plaque par l'ensemble des fibres. La pente de la courbe force - déplacement dans cette dernière partie du test permet de déterminer la contrainte de glissement qui est caractéristique de l'adhésion entre chaque fibre et la matrice cimentaire. La contrainte de glissement a été calculée en appliquant un facteur de correction de l'orientation des fibres de manière aléatoire de 0,64.
Les résultas des essais sont regroupés dans le Tableau 2 suivant.
Figure imgf000014_0001
Tableau 2
Il ressort de ces résultats que l'on obtient avec les exemples 4 et 5 bien meilleures qu'avec la fibre Crackstop de l'exemple comparatif 3. On obtient selon les exemples 3 et 6 à 14 des performances d'adhésion à la matrice du même ordre ou même meilleures qu'avec le PVA avec une matière de base (polypropylène) bien moins onéreuse.
EXEMPLES 15 et 16
Ces exemples illustrent l'application des fibres de polypropylène selon l'invention à la fabrication d'un produit cimentaire par le procédé Hatschek.
L'exemple 15 utilise la même fibre de haute ténacité qu'à l'exemple 4.
L'exemple 16 utilise la même fibre qu'à l'exemple 3
On prépare une suspension aqueuse sur la base de la même matrice qu'aux exemples 3 à 14. Cette suspension est introduite dans la cuve d'une machine Hatschek, pour formation d'une pellicule et enroulement sur cylindre format d'une feuille de matériau cimentaire hydraté d'environ 1 mm d'épaisseur. Après découpe, des feuilles de matériau hydraté sont superposées sur une forme pour former des plaques planes ou ondulées possédant une épaisseur de 6 mm.
Les plaques sont soumises à des essais mécaniques après 28 jours de cure à l'atmosphère ambiante.
Des éprouvettes de mêmes dimensions qu'aux exemples 3 à 14 sont soumises aux tests de traction dans les mêmes conditions. Les courbes force - déplacement sont d'allure similaire avec un plateau de multifissuration et une décroissance après déchaussement.
Les valeurs absolues des contraintes de glissement mesurées sont un peu plus faibles que dans les essais 3 et 4, pour des raisons dues à l'orientation des fibres et à la méthode de calcul des contraintes. On observe cependant dans l'exemple 16 une amélioration par rapport à l'exemple 15, avec une contrainte de glissement multipliée par plus de 3, comme on l'avait observé dans les essais de laboratoire des exemples 3 et 4.

Claims

REVENDICATIONS
1. Fibre de polyoléfine pour le renforcement de produits à base de fibres et d'une 5 masse à prise hydraulique, caractérisée en ce qu'elle comporte un ensimage porteur d'une fonction d'assistance au fibrage, d'une fonction de mouillabilité de la fibre par la composition de la masse à prise hydraulique, et d'une fonction de promoteur d'adhésion à la masse à prise hydraulique.
2. Fibre de polyoléfine selon la revendication 1 , caractérisée en ce que 0 l'ensimage comprend un ou plusieurs agents choisi(s) parmi des lubrifiants, des antistatiques, des tensioactifs, des composés à chaîne grasse et des polymères à fonctions polaires.
3. Fibre de polyoléfine selon la revendication 2, caractérisée en ce que l'ensimage comprend un polyalkylène glycol ou un dérivé, notamment un ester
5 de polyalkylène glycol dérivé d'acide gras.
4. Fibre de polyoléfine selon l'une des revendications précédentes, caractérisée en ce que l'ensimage comprend un composé aminé ou polyaminé, phosphorique ou polyphosphorique, notamment un ester d'acide phosphorique sur base de chaîne grasse.
:0 5. Fibre de polyoléfine selon l'une des revendications 2 à 4, caractérisée en ce que l'ensimage comprend un polymère halogène.
6. Fibre de polyoléfine selon l'une des revendications 1 à 5, caractérisée en ce que l'ensimage comprend au moins un produit choisi parmi les produits de marque SILASTOL Cut A et Cut 5B de SCHILL&SEILACHER, SYNTHESIN
5 7292 de Dr. BOEHME, KB 144/2 de COGNIS, STANTEX S6077 de COGNIS et STANTEX S6087/4 de COGNIS
7. Fibre de polyoléfine selon l'une des revendications précédentes, caractérisée en ce que la polyoléfine est du polypropylène.
8. Fibre de polyoléfine selon l'une des revendications précédentes, caractérisée 0 en ce que le titre de la fibre de polyoléfine est compris entre 0.5 et 10 dtex.
9. Fibre de polyoléfine selon l'une des revendications précédentes, caractérisée en ce que la fibre de polyoléfine a une ténacité d'au moins 4 cN/dtex, de préférence d'au moins 5 cN/dtex.
10. Fibre de polyoléfine selon l'une des revendications précédentes, caractérisée en ce que l'ensimage est présent sur la fibre à raison de 0.05 à 5 % en poids de matière sèche par rapport au poids sec de fibre.
11. Fibre de polyoléfine selon l'une des revendications précédentes, caractérisée en ce que l'ensimage est appliqué pur ou à partir d'une solution, dispersion ou émulsion aqueuse ou à base d'un autre véhicule liquide adapté.
12. Utilisation d'une fibre selon l'une des revendications précédentes en tant que fibre de renforcement dans un produit à base de fibres et d'une masse à prise hydraulique.
13. Produit à base de fibres et d'une masse à prise hydraulique caractérisé en ce qu'il comprend des fibres de polyoléfine selon l'une des revendications 1 à 11.
14. Produit selon la revendication 13, caractérisé en ce qu'il comprend de 0.2 à
5% en poids de fibres de renforcement par rapport au poids total sec de mélange initial.
15. Produit selon la revendication 13 ou 14, caractérisé en ce qu'il a la forme d'une plaque plane ou ondulée.
16. Procédé de fabrication d'un produit à base de fibres et d'une masse à prise hydraulique selon l'une des revendications 13 à 15, caractérisé en ce que l'on prépare un mélange initial à base de liant hydraulique, d'eau et de fibres, en ce que l'on filtre le mélange sur un support fixe ou en mouvement pour former une feuille élémentaire humide, en ce que l'on superpose une pluralité de feuilles élémentaires pour former un produit intermédiaire humide et en ce que l'on fait sécher le produit intermédiaire humide.
17. Composition pour matériau à prise hydraulique, notamment pour mortier, comprenant un liant hydraulique et des fibres selon l'une des revendications 1 à 11.
PCT/FR2003/003717 2002-12-20 2003-12-15 Fibre de renforcement en polyolefine, utilisation et produits comprenant la fibre. WO2004065714A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003300605A AU2003300605A1 (en) 2002-12-20 2003-12-15 Polyolefin reinforcing fibre, use thereof and products comprising same
US10/539,803 US20060234048A1 (en) 2002-12-20 2003-12-15 Polyolefin reinforcing fibre, use thereof and products comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0216438A FR2849064B1 (fr) 2002-12-20 2002-12-20 Fibre de renforcement en polyolefine, utilisation et produits comprenant la fibre
FR02/16438 2002-12-20

Publications (1)

Publication Number Publication Date
WO2004065714A1 true WO2004065714A1 (fr) 2004-08-05

Family

ID=32406336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/003717 WO2004065714A1 (fr) 2002-12-20 2003-12-15 Fibre de renforcement en polyolefine, utilisation et produits comprenant la fibre.

Country Status (7)

Country Link
US (1) US20060234048A1 (fr)
AR (1) AR042557A1 (fr)
AU (1) AU2003300605A1 (fr)
BR (1) BR0300611A (fr)
CO (1) CO5570712A2 (fr)
FR (1) FR2849064B1 (fr)
WO (1) WO2004065714A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2893037B1 (fr) * 2005-11-10 2012-11-09 Saint Gobain Vetrotex Procede de fonctionnalisation d'une portion de surface d'une fibre polymerique
BR102012010783A2 (pt) * 2012-05-07 2014-03-25 Braskem Sa Processo de granulação de poliolefina, resina de poliolefina, fibra de poliolefina, uso da fibra de poliolefina e compósito cimentício
US10717673B2 (en) 2015-12-30 2020-07-21 Exxonmobil Research And Engineering Company Polymer fibers for concrete reinforcement
US10131579B2 (en) 2015-12-30 2018-11-20 Exxonmobil Research And Engineering Company Polarity-enhanced ductile polymer fibers for concrete micro-reinforcement

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0225036A1 (fr) * 1985-10-23 1987-06-10 MTA Természettudományi Kutato Laboratoriumai Procédé de production de corps renforcés, spécialement d'éléments de construction préfabriqués
EP0310100A1 (fr) * 1987-09-30 1989-04-05 Danaklon A/S Fibres de renforcement et procédé pour les produire
EP0535373A1 (fr) * 1991-10-01 1993-04-07 Daiwaboseki Co., Ltd. Fibre de polypropylène pour le renforcement de ciment
JPH10236855A (ja) * 1997-02-28 1998-09-08 Hagiwara Kogyo Kk セメント強化用ポリプロピレン繊維
EP1044939A1 (fr) * 1999-04-13 2000-10-18 Redco S.A. Produits façonnés en fibres-ciment et fibres de renforcement pour de tels produits et procédé de traitement de telles fibres
JP2001253737A (ja) * 2000-03-10 2001-09-18 Taisei Corp ポリプロピレン繊維を用いたモルタル又はコンクリート構造物の施工方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3592684A (en) * 1968-12-26 1971-07-13 Monsanto Co Nylon and polyester fibers having improved soil resistance
US4072617A (en) * 1976-04-12 1978-02-07 Dow Badische Company Finish for acrylic fiber
DE3305798A1 (de) * 1983-02-19 1984-08-23 Akzo Gmbh, 5600 Wuppertal Verfahren zur herstellung von hydrophilen polyesterfasern
CA2069269C (fr) * 1991-05-28 1998-09-15 Roger W. Johnson Fibre de polypropylene hydrophobe cardable
US5545481A (en) * 1992-02-14 1996-08-13 Hercules Incorporated Polyolefin fiber
BR9506489A (pt) * 1994-01-14 1997-10-07 Danaklon As Fibras de poliofelina hidrofóbicas cardáveis compreendendo acabamentos de fiação catiôicos
US5502160A (en) * 1994-08-03 1996-03-26 Hercules Incorporated Polyolefin-polyarylate alloy fibers and their use in hot-mix compositions for making and repairing geoways
US5441812A (en) * 1994-08-03 1995-08-15 Hercules Incorporated Oleophilic staple fibers useful in pavement for making and repairing geoways
US5846654A (en) * 1995-06-02 1998-12-08 Hercules Incorporated High tenacity, high elongation polypropylene fibers, their manufacture, and use
US5961966A (en) * 1996-12-09 1999-10-05 Croda, Inc. Quaternary fatty diesters of hydroxypropyl diethanol amine
US5747109A (en) * 1997-03-19 1998-05-05 Colgate-Palmolive Co. Method of preparing super-concentrated liquid rinse cycle fabric softening composition
AU2105999A (en) * 1998-01-09 1999-07-26 Witco Corporation Novel quaternary ammonium compounds, compositions containing them, and uses thereof
US6235914B1 (en) * 1999-08-24 2001-05-22 Goldschmidt Chemical Company Amine and quaternary ammonium compounds made from ketones and aldehydes, and compositions containing them
DE10024885A1 (de) * 2000-05-19 2001-11-22 Cognis Deutschland Gmbh Hochgeschwindigkeits-Spinnfaserpräparationen
US6752905B2 (en) * 2002-10-08 2004-06-22 Kimberly-Clark Worldwide, Inc. Tissue products having reduced slough
US6977026B2 (en) * 2002-10-16 2005-12-20 Kimberly-Clark Worldwide, Inc. Method for applying softening compositions to a tissue product
US6861380B2 (en) * 2002-11-06 2005-03-01 Kimberly-Clark Worldwide, Inc. Tissue products having reduced lint and slough
US6808600B2 (en) * 2002-11-08 2004-10-26 Kimberly-Clark Worldwide, Inc. Method for enhancing the softness of paper-based products
DE10305552A1 (de) * 2003-02-10 2004-08-19 Cognis Deutschland Gmbh & Co. Kg Textilausrüstungsmittel
FR2860511B1 (fr) * 2003-10-02 2005-12-02 Saint Gobain Mat Constr Sas Produit cimentaire en plaque et procede de fabrication
US20050148261A1 (en) * 2003-12-30 2005-07-07 Kimberly-Clark Worldwide, Inc. Nonwoven webs having reduced lint and slough
US7776813B2 (en) * 2004-09-15 2010-08-17 The Procter & Gamble Company Fabric care compositions comprising polyol based fabric care materials and deposition agents
US20060094624A1 (en) * 2004-10-28 2006-05-04 Tom Carrothers Hard and soft surface cleaning agents
FR2893037B1 (fr) * 2005-11-10 2012-11-09 Saint Gobain Vetrotex Procede de fonctionnalisation d'une portion de surface d'une fibre polymerique
ATE517970T1 (de) * 2008-02-20 2011-08-15 Ceca Sa Bitumenhaltige zusammensetzungen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0225036A1 (fr) * 1985-10-23 1987-06-10 MTA Természettudományi Kutato Laboratoriumai Procédé de production de corps renforcés, spécialement d'éléments de construction préfabriqués
EP0310100A1 (fr) * 1987-09-30 1989-04-05 Danaklon A/S Fibres de renforcement et procédé pour les produire
EP0535373A1 (fr) * 1991-10-01 1993-04-07 Daiwaboseki Co., Ltd. Fibre de polypropylène pour le renforcement de ciment
JPH10236855A (ja) * 1997-02-28 1998-09-08 Hagiwara Kogyo Kk セメント強化用ポリプロピレン繊維
EP1044939A1 (fr) * 1999-04-13 2000-10-18 Redco S.A. Produits façonnés en fibres-ciment et fibres de renforcement pour de tels produits et procédé de traitement de telles fibres
JP2001253737A (ja) * 2000-03-10 2001-09-18 Taisei Corp ポリプロピレン繊維を用いたモルタル又はコンクリート構造物の施工方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 14 31 December 1998 (1998-12-31) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 26 1 July 2002 (2002-07-01) *

Also Published As

Publication number Publication date
US20060234048A1 (en) 2006-10-19
FR2849064B1 (fr) 2006-11-03
FR2849064A1 (fr) 2004-06-25
AR042557A1 (es) 2005-06-22
CO5570712A2 (es) 2005-10-31
BR0300611A (pt) 2004-09-21
AU2003300605A1 (en) 2004-08-13

Similar Documents

Publication Publication Date Title
EP1769108A1 (fr) Fibre polymerique chargee, son procede de fabrication, son utilisation et composition comprenant de telles fibres
EP1902002B1 (fr) Fils de renforcement et composites ayant une tenue au feu amelioree
FR2895398A1 (fr) Fils de verre revetus d'un ensimage renfermant des nanoparticules.
WO2001002629A1 (fr) Articles files resistant a l'abrasion
FR2886949A1 (fr) Fils, filaments et fibres polyamide a proprietes ameliorees
EP2162406B1 (fr) Structure de fils de verre destinee a renforcer des articles abrasifs agglomeres
EP1047647B1 (fr) Produits faconnes en fibres-ciment et fibres de renforcement pour de tels produits
EP0267092B1 (fr) Papier à base de fibres de verre
EP1042248B1 (fr) Composition d'ensimage pour fils de verre, procede utilisant cette composition et produits resultants
EP1044939B1 (fr) Produits façonnés en fibres-ciment et fibres de renforcement pour de tels produits et procédé de traitement de telles fibres
FR2515167A1 (fr) Piece moulee en materiau mineral faisant prise et dans lequel sont noyees des fibres de renforcement et procede pour sa production
EP0776393B1 (fr) Composition d'ensimage pour fils composites et son utilisation
CA2212921C (fr) Procede de fabrication d'un mat de verre et produit en resultant
EP0100720B1 (fr) Feuille papetière à très fort taux de latex, son procédé de préparation et ses applications notamment comme produit de substitution de voiles de verre imprégnés
FR2763328A1 (fr) Procede de production de fils de verre ensimes et produits resultants
WO2004065714A1 (fr) Fibre de renforcement en polyolefine, utilisation et produits comprenant la fibre.
FR2826359A1 (fr) Fils de verre ensimes, composition d'ensimage et composites comprenant lesdits fils
EP1854770B1 (fr) Compositions de produits en fibres-ciment et produits façonnés obtenus à partir de telles compositions.
WO2004033770A1 (fr) Procede pour produits faconnes a base de ciment et fibres de renforcement pour de tels produits.
WO2003068702A2 (fr) Matériaux composites obtenus à partir de liant hydraulique et de fibres organiques présentant un comportement mécanique amélioré
FR2842190A1 (fr) Materiaux composites renforces comprenant un liant hydraulique ou chimique,des fibres de polyamide ainsi qu'un ou plusieurs additifs pour comportement mecanique ameliore
EP1362937A1 (fr) Procédé pour produits façonnés en fibres-ciment et fibres de renforcement pour de tels produits
WO2023144486A1 (fr) Materiau d'isolation comprenant des fibres thermoplastiques, des fibres de verre et un agent de couplage
CH636831A5 (en) Material based on fibres and cement
WO2003024882A2 (fr) Materiau comprenant une matrice inorganique telle que ciment, mortier, platre ou beton, renforcee par des microfibres

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 05069332

Country of ref document: CO

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 2006234048

Country of ref document: US

Ref document number: 10539803

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10539803

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP