WO2010136720A1 - Procede de fabrication d'une fibre conductrice multicouche par enduction-coagulation - Google Patents

Procede de fabrication d'une fibre conductrice multicouche par enduction-coagulation Download PDF

Info

Publication number
WO2010136720A1
WO2010136720A1 PCT/FR2010/051011 FR2010051011W WO2010136720A1 WO 2010136720 A1 WO2010136720 A1 WO 2010136720A1 FR 2010051011 W FR2010051011 W FR 2010051011W WO 2010136720 A1 WO2010136720 A1 WO 2010136720A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
nanotubes
fibers
multilayer
coagulation
Prior art date
Application number
PCT/FR2010/051011
Other languages
English (en)
Inventor
Patrice Gaillard
Alexander Korzhenko
Nour-Eddine El Bounia
Philippe Poulin
Original Assignee
Arkema France
Centre National De La Recherche Scientifique - Cnrs -
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France, Centre National De La Recherche Scientifique - Cnrs - filed Critical Arkema France
Publication of WO2010136720A1 publication Critical patent/WO2010136720A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/327Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof
    • D06M15/333Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof of vinyl acetate; Polyvinylalcohol
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/08Processes in which the treating agent is applied in powder or granular form

Definitions

  • the present invention relates to two variants of a process for manufacturing, by coating-coagulation, a multilayer conductive fiber, comprising: (a) a core formed of a natural or synthetic fiber, and (b) a bark containing a homo - or copolymer of vinyl alcohol and nanotubes, especially carbon. It also relates to the fiber obtained, as well as its uses. Finally, it relates to a composite material comprising such multilayer composite fibers bonded together by weaving or using a polymeric matrix.
  • Carbon nanotubes are known and possess particular crystalline structures, tubular, hollow and closed, composed of atoms arranged regularly in pentagons, hexagons and / or heptagons, obtained from carbon.
  • CNTs generally consist of one or more graphite sheets wound coaxially.
  • SWNTs single wall nanotubes
  • Multi Wall Nanotubes or MWNTs Multi Wall Nanotubes
  • CNTs are commercially available or can be prepared by known methods. There are several methods of synthesis of CNTs, including electrical discharge, laser ablation and chemical vapor deposition or CVD (Chemical Vapor Deposition) which ensures the production of large quantities of carbon nanotubes and therefore obtaining them at a cost price compatible with their massive use.
  • This process consists precisely in injecting a source of carbon at relatively high temperature over a catalyst which may itself consist of a metal such as iron, cobalt, nickel or molybdenum, supported on an inorganic solid such as alumina, silica or magnesia.
  • Carbon sources may include methane, ethane, ethylene, acetylene, ethanol, methanol or even a mixture of carbon monoxide and hydrogen (HIPCO process).
  • CNTs have many powerful properties, namely electrical, thermal, chemical and mechanical. Among their applications are, in particular, composite materials intended in particular for the automotive, nautical and aeronautical industries, electromechanical actuators, cables, resistant wires, chemical detectors, energy storage and conversion, electron emission displays, electronic components, and functional textiles. In the automotive, aeronautical and electronic fields, conductive loads such as NTCs allow the heat and electrical dissipation of heat and electricity accumulated during friction.
  • the CNTs are in the form of a disorganized powder, consisting of entangled filaments, which makes them difficult to implement.
  • the CNTs be present in large quantities and oriented in a privileged direction.
  • the nanotubes may be incorporated in a matrix such as an organic polymer.
  • a matrix such as an organic polymer.
  • this technique requires a high purity of the CNTs and an elimination of aggregates that these, because of their entangled structure, naturally tend to form. These aggregates are indeed detrimental to the spinning process and frequently lead to breakage of the composite fibers obtained.
  • the conductivity of the composite fibers obtained according to the aforementioned technique is not always satisfactory. Indeed, the electrical properties of CNTs are all the better that they are dispersed homogeneously and randomly, while the spinning processes lead instead to a significant orientation of the CNTs.
  • Still another route for making CNT composite fibers has been to coagulate a dispersion of CNTs in a polymer flow such as polyvinyl alcohol (FR 2 805 179).
  • This coagulation method however does not achieve the high spinning speeds conventionally used today. It is indeed difficult to stabilize the co-flow of the dispersion of CNT and the coagulant solution, due to the change from a laminar regime to a turbulent regime at high speed, and also the fragility, in a viscous medium, of newly coagulated fibers.
  • the method described by Xue includes an acetylation step.
  • the crosslinking step limits the electrical conductivity of the fibers obtained.
  • the Applicant believes that the crosslinked PVA between the nanotubes creates mechanically stable insulating barriers, which prevent the nanotubes from getting closer to each other to carry the electric current.
  • the cross-linked PVA has a lower improvement in its conductivity at high temperature than other conductive fibers.
  • the present invention thus provides, in a first aspect, a method of manufacturing a multilayer conductive fiber, comprising:
  • the present invention relates to a method of manufacturing a multilayer conductive fiber, comprising:
  • a bark containing a homo- or copolymer of vinyl alcohol and nanotubes of at least one chemical element chosen from the elements of the columns IHa, IVa and Va of the periodic table characterized in that said method comprises the following steps: the dispersion of nanotubes in a solvent, optionally in the presence of a dispersing agent, to form a coating composition,
  • the method according to the invention may optionally comprise other preliminary steps, intermediate and / or subsequent to those mentioned above, provided that they do not adversely affect the formation of the conductive fiber.
  • the term "fiber” is intended to mean a solid or hollow structure, optionally porous, consisting of a strand whose diameter is between 100 nm and 300 ⁇ m, preferably between 1 and 100 ⁇ m. ⁇ m, better, between 2 and 50 ⁇ m.
  • a fiber is intended to ensure the holding of a mechanical part, to strengthen, and is thus distinguished from a tube or pipe for transporting a fluid.
  • the method according to the invention therefore relates to a method of manufacturing a multilayer conductive fiber by coating a natural or synthetic fiber and coagulation.
  • natural or synthetic fibers may be chosen from:
  • synthetic polymeric fibers especially based on: (i) polyvinyl alcohol or polyvinyl acetate,
  • polyamide such as polyamide 6 (PA-6), polyamide 11 (PA-II), polyamide 12 (PA-12), polyamide 6.6 (PA-6.6), polyamide 4.6 (PA-4.6 ), polyamide 6.10 (PA-6.10), polyamide 6.12 (PA-6.12), aromatic polyamides, in particular polyphthalamides (especially poly (para-phenylene terephthalamide or Kevlar®) and aramid, and copolymers blocks, in particular polyamide / polyether, (i ⁇ ) polyolefins such as high density polyethylene, polypropylene and copolymers of ethylene and / or propylene, which may be functionalized,
  • polyester such as polyhydroxyalkanoates
  • PAEK polyaryletherketone
  • PEEK polyetheretherketone
  • PEKK polyetherketoneketone
  • fluorinated polymer especially chosen from: (a) those comprising at least 50 mol% of at least one monomer of formula (I):
  • X 1 , X 2 and X 3 independently denote a hydrogen or halogen atom (in particular fluorine or chlorine), such as polyvinylidene fluoride (PVDF), preferably in ⁇ form, poly (trifluoroethylene) (PVF3), polytetrafluoroethylene (PTFE), copolymers of vinylidene fluoride with either Hexafluoropropylene (HFP), either trifluoroethylene (VF3), tetrafluoroethylene (TFE) or chlorotrifluoroethylene (CTFE), fluoroethylene / propylene copolymers (FEP), copolymers of ethylene with either fluoroethylene / propylene (FEP) ), either tetrafluoroethylene (TFE) or chlorotrifluoroethylene (CTFE);
  • PVDF polyvinylidene fluoride
  • PVDF polyvinylidene fluoride
  • PVDF polyvinylidene fluoride
  • PVDF polyviny
  • thermoplastic polyurethane (TPU) thermoplastic polyurethane
  • glass fibers in particular of the E, R or S2 type; - boron fibers;
  • the aforementioned synthetic fibers can be made by any method of forming fibers known to those skilled in the art, especially by melt spinning (generally by extrusion) or in solution, or by coagulation as described in documents FR 2 805 179 and FR 2 921 075.
  • These fibers are subjected to a coating-coagulation process, possibly carried out continuously at the exit of the spinning system of these fibers, intended to coat them with a layer of homo- or copolymer of vinyl alcohol containing nanotubes of at least one chemical element selected from the elements of columns IHa, IVa and Va of the periodic table.
  • These nanotubes by their nature and their quantity, must be capable of providing thermal and / or electrical conduction. They may be based on carbon, boron, phosphorus and / or nitrogen (borides, nitrides, carbides, phosphides) and for example consisting of carbon nitride, boron nitride, boron carbide, boron, phosphorus nitride or carbon boronitride. Carbon nanotubes (hereinafter, CNTs) are preferred for use in the present invention.
  • the nanotubes that can be used according to the invention can be single-walled, double-walled or multi-walled.
  • the double-walled nanotubes can in particular be prepared as described by FLAHAUT et al in Chem. Com. (2003), 1442.
  • the multi-walled nanotubes may themselves be prepared as described in WO 03/02456.
  • the nanotubes usually have a mean diameter ranging from 0.1 to 200 nm, preferably from 0.1 to 100 nm, more preferably from 0.4 to 50 nm and better still from 1 to 30 nm and advantageously a length of from 0 to 100 nm. , 1 to 10 ⁇ m. Their length / diameter ratio is preferably greater than 10 and most often greater than 100.
  • the multiwall nanotubes may for example comprise from 5 to 15 sheets (or walls) and more preferably from 7 to 10 sheets. These nanotubes may or may not be processed.
  • crude carbon nanotubes is especially commercially available from Arkema under the trade name Graphistrength® ® C100.
  • nanotubes can be purified and / or treated
  • oxidized and / or ground before their implementation in the process according to the invention. They may alternatively or additionally be functionalized, in particular to improve their adhesion to the natural or synthetic fiber.
  • the grinding of the nanotubes may in particular be carried out cold or hot and be carried out according to known techniques used in devices such as ball mills, hammers, grinders, knives, gas jet or any other system. Grinding capable of reducing the size of the entangled network of nanotubes. It is preferred that this grinding step be performed by a gas jet grinding technique, and in particular in an air jet mill, or in a ball mill.
  • the purification of the crude or milled nanotubes can be carried out by washing with a sulfuric acid solution, so as to rid them of any residual mineral and metallic impurities originating from their preparation process.
  • the weight ratio of the nanotubes to the sulfuric acid may especially be between 1: 2 and 1: 3.
  • the purification operation may also be carried out at a temperature ranging from 90 to 120 ° C., for example for a period of 5 to 10 hours. This operation may advantageously be followed by rinsing steps with water and drying the purified nanotubes.
  • the nanotubes may alternatively be purified by high temperature heat treatment, typically greater than 1000 0 C.
  • the oxidation of the nanotubes is advantageously carried out by putting them in contact with a solution of sodium hypochlorite containing from 0.5 to 15% by weight of NaOCl and preferably from 1 to 10% by weight of NaOCl, for example in a weight ratio of nanotubes to sodium hypochlorite ranging from 1: 0.1 to 1: 1.
  • the oxidation is advantageously carried out at a temperature below 60 ° C. and preferably at room temperature, for a duration ranging from a few minutes to 24 hours.
  • This oxidation operation may advantageously be followed by filtration and / or centrifugation, washing and drying steps of the oxidized nanotubes.
  • Crude nanotubes are preferably used in the present invention, that is to say nanotubes which are neither oxidized nor purified nor functionalized and have undergone no other chemical and / or thermal treatment.
  • the nanotubes may represent from 0.1 to 70% by weight, preferably from 1 to 50% by weight, and more preferably from 2 to 30% by weight, relative to the weight of the bark.
  • nanotubes are dispersed, in the first step of the process according to the invention, in a solvent, to form a coating composition.
  • the solvent is preferably selected from water, dimethylsulfoxide (DMSO), glycerin, ethylene glycol, diethylene glycol, triethylene glycol, diethylene triamine, ethylene diamine, phenol, dimethylformamide (DMF) , dimethylacetamide, N-methylpyrrolidone and mixtures thereof.
  • DMSO dimethylsulfoxide
  • glycerin ethylene glycol, diethylene glycol, triethylene glycol, diethylene triamine, ethylene diamine, phenol, dimethylformamide (DMF) , dimethylacetamide, N-methylpyrrolidone and mixtures thereof.
  • DMF dimethylformamide
  • the solvent is chosen from water, DMSO and mixtures thereof in all proportions.
  • the pH of the aqueous dispersion can be maintained preferably between 3 and 5 by adding one or more acids, which can be chosen from inorganic acids, such as sulfuric acid, nitric acid and hydrochloric acid, organic acids such as acetic acid, tartaric acid and oxalic acid and mixtures of organic acid and organic acid salt such as citric acid and sodium citrate, acetic acid and sodium acetate, tartaric acid and potassium tartrate, tartaric acid and sodium citrate.
  • inorganic acids such as sulfuric acid, nitric acid and hydrochloric acid
  • organic acids such as acetic acid, tartaric acid and oxalic acid and mixtures of organic acid and organic acid salt such as citric acid and sodium citrate, acetic acid and sodium acetate, tartaric acid and potassium tartrate, tartaric acid and sodium citrate.
  • the dispersion of the nanotubes in the solvent can be carried out at ambient temperature, or at a temperature of, for example, between 40 and 120 ° C.
  • the dispersion of the nanotubes in the solvent is carried out or improved by means of ultrasound or a rotor-stator system or a ball mill.
  • a rotor-stator system is in particular marketed by SILVERSON under the trade name Silverson L4RT.
  • Another type of rotor-stator system is marketed by IKA-WERKE under the trade name Ultra-Turrax.
  • Other rotor-stator systems still consist of colloid mills, deflocculating turbines and high-shear mixers of the rotor-stator type, such as the apparatus marketed by the company IKA-WERKE or the company ADMIX.
  • the natural or synthetic fibers used are not only coated with nanotubes, but also with a homo- or copolymer of vinyl alcohol which is preferably polyvinyl alcohol. It will be designated later, for simplicity, by "PVA” it being understood that this name also includes vinyl alcohol copolymers.
  • PVA can be included in the coating composition or in the coagulation solution.
  • the PVA is included in the coating composition.
  • the coating composition then contains at least one stabilizer.
  • the term "stabilizing agent” is intended to mean a compound that allows the nanotubes to be homogeneously dispersed in the solution, which protects the nanotubes from coagulation in the presence of the homo- or copolymer of vinyl alcohol, but which does not interfere with the coagulation of the homo- or copolymer of vinyl alcohol in a coagulation solution.
  • the stabilizing agent (s) according to the invention are bonded to the nanotubes either covalently or non-covalently.
  • the stabilizing agent is non-covalently bonded to the nanotubes, it may be chosen from essentially nonionic surfactants.
  • the term "essentially nonionic surfactant” is intended to mean a nonionic amphiphilic compound, cited for example in McCutcheon 's 2008 "Emulsifiers and Detergents", and preferably having a HLB (hydrophilic-lipophilic balance) of 10 to 16, more preferably 13 to 16, as well as block copolymers containing hydrophilic blocks and lipophilic blocks and having a low ionicity, for example 0% to 10% by weight. weight of ionic monomer and 90% to 100% of nonionic monomer.
  • HLB hydrophilic-lipophilic balance
  • the stabilizing agent (s) (s) linked to the nanotubes non-covalently can be chosen from: (i) the esters of polyols, in particular: the esters fatty acid and sorbitan, optionally polyethoxylated,
  • esters of fatty acids and of glycerol esters of fatty acids and of sucrose
  • block copolymers as described in particular in the application WO 2005/108485, that is to say comprising at least one block 1 carrying ionic or ionizable functions, resulting from the polymerization of a monomer M 1 representing less than 10% by weight of the block 1 (such as (meth) acrylic acid or maleic anhydride) and at least one monomer M2 (such as a (meth) acrylate or a styrene derivative), and optionally at least one block 2 compatible with the polyvinyl alcohol, if the block 1 is not.
  • the stabilizing agent is covalently bonded to the nanotubes, it is preferably a hydrophilic group, preferably a polyethylene glycol group grafted on the nanotubes.
  • the grafting of reactive units such as polyethylene glycol groups on the surface of the nanotubes can be carried out according to any method known to those skilled in the art.
  • those skilled in the art will be able to refer to the publication of B. Zhao et al. (Synthesis and Characterization of Soluble Single Walled Carbon Nanotube Graft Copolymers, J. Am Chem Soc (2005) Vol 127 No 22).
  • the nanotubes are dispersed in dimethylformamide (DMF) and are contacted with oxalyl chloride.
  • DMF dimethylformamide
  • PEG polyethylene glycol
  • the nanotubes thus grafted are generally purified.
  • the PVA may be included in the coagulation solution.
  • the coating composition then comprises the nanotubes in a solvent such as those described above, and preferably also at least one dispersing agent, intended to promote the dispersion of the nanotubes in the solvent and which may especially be chosen from: homopolymers and copolymers of vinylpyrrolidone, copolymers containing at least one hydrophilic anionic monomer and at least one hydrophobic monomer, such as copolymers described in document FR-2 766 106; surfactants; and their mixtures.
  • a solvent such as those described above, and preferably also at least one dispersing agent, intended to promote the dispersion of the nanotubes in the solvent and which may especially be chosen from: homopolymers and copolymers of vinylpyrrolidone, copolymers containing at least one hydrophilic anionic monomer and at least one hydrophobic monomer, such as copolymers described in document FR-2 766 106; surfactants; and their mixtures.
  • the coating composition containing the nanotubes, the solvent, and optionally the PVA, the stabilizer and / or the dispersant may be applied to the natural or synthetic fibers used, in the second step of the process according to the invention, by any means known to those skilled in the art, in particular by passing the fibers in an impregnating bath consisting of the coating composition, or by spraying the coating composition on the fibers.
  • the fibers can also be used as such, in the form of monofilaments, or in the form of cut fibers or woven or nonwoven structures, consisting of a two- or three-way network of fibers, or in the form of knitted structures. .
  • the third step of the process according to the invention consists of passing the composite pre-fiber obtained at the end of the coating step into a formaldehyde-free coagulation solution, comprising at least one coagulation agent, for to form a multilayer pre-fiber.
  • coagulation solution means a solution, in the form of a static bath or flow, which causes the solidification of the bark layer containing the nanotubes.
  • the coagulation solution comprises a solvent chosen from water, an alcohol, a polyol, a ketone and their mixtures, more preferably a solvent chosen from water, methanol, ethanol, butanol, propanol, isopropanol, a glycol, acetone, methyl ethyl ketone, methyl isobutyl ketone, benzene, toluene and mixtures thereof, and even more preferably a solvent chosen from water, methanol, ethanol, a glycol, acetone and mixtures thereof.
  • the temperature of the coagulation solution is advantageously between 10 and 80 ° C. If the solvent of the coagulation solution is essentially organic, such as methanol the coagulation solution advantageously has a temperature between -30 and 10 ° C.
  • the coagulation agent may be chosen from the salts allowing the coagulation of PVA, such as the alkaline and / or desiccant salts, in especially ammonium sulfate, potassium sulfate, sodium sulfate, sodium carbonate, and mixtures thereof.
  • the coagulation agent is PVA itself.
  • the introduction of the composite pre-fiber obtained at the end of the second step of the process according to the invention into the coagulation solution can be done in a analogous to the techniques known to those skilled in the art for forming fibers by coagulation.
  • wet spinning refer for example to US Patents 3,850,901, US Pat. No. 3,852,402 and US Pat. US 4,612,157
  • dry-jet wet spinning see, for example, US Patent Nos. 4,603,083, 4,698,194, US 4,971,861, US 5,312,157 and US Pat. 208,104 and US 7,026,049).
  • Those skilled in the art can therefore draw inspiration from these techniques to implement the present invention.
  • the coating composition and / or the coagulation solution may further contain one or more compounds intended to improve the mechanical properties (especially the drawing capacity). and / or the resistance to water or temperature of the manufactured multilayer fibers and / or to facilitate their coagulation or spinning.
  • compounds include boric acid and its salts (especially alkalis), strong bases such as sodium or potassium hydroxide, and mixtures thereof.
  • the multilayer pre-fiber obtained at the end of the third step of the process according to the invention is then extracted, continuously or not, and then optionally washed one or more times.
  • the wash tank preferably includes water.
  • the washing step may make it possible to remove a portion of the peripheral polymer from the pre-fiber and thus enrich the composition of the conductive layer coated on the fiber with nanotubes (up to 70% by weight).
  • the washing bath may comprise agents which make it possible to modify the composition of this conductive layer or which chemically interact with it.
  • chemical or physical crosslinking agents, in particular borate salts may be added to the bath in order to reinforce the conductive layer.
  • the washing step may also make it possible to eliminate the agents (in particular the surfactants) potentially prejudicial to the mechanical or electrical properties of the fiber.
  • a drying step is also included in the process according to the invention. This step can take place either directly after extraction or after washing. In particular, if it is desired to obtain a polymer-enriched fiber, it is desirable to dry the pre-fiber directly after the extraction.
  • the drying is preferably carried out in an oven which will dry the pre-fiber through a gas, circulating or not in an inner duct of the oven.
  • the drying can also be carried out by infrared radiation.
  • the method according to the invention may also comprise a winding step, and optionally a hot stretching step performed between the drying step and the winding step.
  • the multilayer conductive fiber Before winding, the multilayer conductive fiber may be further subjected to a sizing step intended to functionalize it on the surface, in order to increase its compatibility with the polymer matrix from which it must be impregnated.
  • the present invention also relates to such a fiber.
  • These multilayer conductive fibers may be used for the manufacture of nose, wings or cockles of rockets or airplanes; off-shore flexible armor; automotive bodywork components, engine chassis or automobile support parts; automotive seat coverings; structural elements in the field of buildings or bridges and roadways; packaging and antistatic textiles, in particular antistatic curtains, antistatic clothing (for example, safety or clean room) or materials for the protection of silos or the packaging and / or transport of powders or granular materials; furnishing items, including clean room furniture; filters; electromagnetic shielding devices, in particular for the protection of electronic components; heated textiles; conductive cables; of sensors, in particular deformation sensors or constraints mechanical; electrodes; hydrogen storage devices; or biomedical devices such as sutures, prostheses or catheters.
  • the manufacture of these composite parts can be carried out according to various processes, generally involving a step of impregnating the fibers with a polymeric composition containing at least one thermoplastic, elastomeric or thermosetting material.
  • This impregnation stage may itself be carried out according to various techniques, depending in particular on the physical form of the composition used (pulverulent or more or less liquid).
  • the impregnation of the fibers is preferably carried out according to a fluidized bed impregnation process, in which the polymeric composition is in the form of powder.
  • the polymeric impregnating matrix comprises at least one of the thermoplastic materials used for the manufacture of the multilayer conductive fibers according to the invention.
  • a film from the impregnating composition in particular by means of an extrusion or calendering process, said film having for example a thickness of about 100 ⁇ m, then of placed between two mats of fibers according to the invention, the assembly then being pressed hot to allow 1 impregnation of the fibers and the manufacture of the composite.
  • the multilayer fibers according to the invention can be woven or knitted, alone or with other fibers, or used, alone or in combination with other fibers, for the manufacture of felts or nonwoven materials .
  • materials constituting these other fibers may be selected from those mentioned above as materials constituting the natural or synthetic fiber.
  • the invention therefore also relates to a composite material comprising multilayer composite fibers as described above, bonded together by weaving or using a polymeric matrix.
  • FIG. 1 represents an optical microscope photograph of a fiber coated with CNT according to this invention
  • FIG. 2 represents an optical microscope photograph of a fiber coated with CNT according to the prior art.
  • Carbon nanotubes (Graphistrength "ClOO from ARKEMA) were dispersed at a rate of 1% by weight in water using 1% of a nonionic surfactant, polyoxyethylene stearyl ether (20 EO). ) (Brij ® 78). The assembly was sonicated for 2 hours. The resulting dispersion was stable and homogeneous. It was then mixed with an aqueous solution of polyvinyl alcohol (PVA) containing 2 wt% of PVA The coating composition obtained was deposited on a polyamide fiber having a diameter of 100 ⁇ m, and the coated fiber was then passed through a coagulation bath consisting of an aqueous solution of Na 2 SO 4 (300 g / cm 2). 1).
  • PVA polyvinyl alcohol
  • the fiber was homogeneous and conductive over its entire length.
  • the measured surface conductivity value was 30 ohm. square.
  • Carbon nanotubes (Graphistrength "ClOO from ARKEMA) were dispersed at a rate of 1% by weight in water using 1% of anionic surfactant, the sodium dodecyl sulfate. The whole was sonicated for 2 hours. The resulting dispersion was stable and homogeneous.
  • the coating composition obtained was deposited on a polyamide fiber having a diameter of 100 microns. The coated fiber was then passed through a coagulation bath consisting of an aqueous solution of polyvinyl alcohol.
  • the fiber was homogeneous and conductive over its entire length.
  • the measured surface conductivity value was 2 ohm. square.
  • Carbon nanotubes (Graphistrength "ClOO from ARKEMA) were dispersed at a rate of 1% by weight in an aqueous solution of polyvinyl alcohol (PVA) containing 1% by weight of PVA, all of which was sonicated for After this treatment, the dispersion is not stable and agglomerates of nanotubes are visible to the naked eye.
  • PVA polyvinyl alcohol
  • This coating composition has been applied to a polyamide fiber having a diameter of 100 ⁇ m. obtained was very inhomogeneous.
  • some parts of the fiber, where the CNT agglomerates are present, are conductive, while other parts lacking CNTs are insulating.
  • the system is generally not conductive because the insulating parts prevent the flow of current along the fiber.

Abstract

La présente invention concerne deux variantes d'un procédé de fabrication, par enduction-coagulation, d'une fibre conductrice multicouche, comprenant : (a) un coeur formé d'une fibre naturelle ou synthétique, et (b) une écorce renfermant un homo- ou copolymère d'alcool vinylique et des nanotubes, notamment de carbone. Elle concerne également la fibre obtenue, ainsi que ses utilisations. Elle concerne enfin un matériau composite comprenant les fibres composites multicouches précitées, liées entre elles par tissage ou à l'aide d'une matrice polymérique.

Description

Procédé de fabrication d' une fibre conductrice multicouche par enduction-coagulation
La présente invention concerne deux variantes d'un procédé de fabrication, par enduction-coagulation, d'une fibre conductrice multicouche, comprenant : (a) un coeur formé d'une fibre naturelle ou synthétique, et (b) une écorce renfermant un homo- ou copolymère d'alcool vinylique et des nanotubes, notamment de carbone. Elle concerne également la fibre obtenue, ainsi que ses utilisations. Elle concerne enfin un matériau composite comprenant de telles fibres composites multicouches, liées entre elles par tissage ou à l'aide d'une matrice polymérique.
Les nanotubes de carbone (ou NTC) sont connus et possèdent des structures cristallines particulières, de forme tubulaire, creuses et closes, composées d'atomes disposés régulièrement en pentagones, hexagones et/ou heptagones, obtenues à partir de carbone. Les NTC sont en général constitués d'un ou plusieurs feuillets de graphite enroulés coaxialement . On distingue ainsi les nanotubes monoparois (Single Wall Nanotubes ou SWNT) et les nanotubes multiparois (Multi Wall Nanotubes ou MWNT) .
Les NTC sont disponibles dans le commerce ou peuvent être préparés par des méthodes connues. Il existe plusieurs procédés de synthèse de NTC, notamment la décharge électrique, l'ablation laser et le dépôt chimique en phase vapeur ou CVD (Chemical Vapour Déposition) qui permet d'assurer la fabrication en grande quantité de nanotubes de carbone et donc leur obtention à un prix de revient compatible avec leur utilisation massive. Ce procédé consiste précisément à injecter une source de carbone à relativement haute température sur un catalyseur qui peut lui-même être constitué d'un métal tel que le fer, le cobalt, le nickel ou le molybdène, supporté sur un solide inorganique tel que l'alumine, la silice ou la magnésie. Les sources de carbone peuvent comprendre le méthane, l'éthane, l'éthylène, l'acétylène, l'éthanol, le méthanol, voire un mélange de monoxyde de carbone et d'hydrogène (procédé HIPCO).
Les NTC possèdent de nombreuses propriétés performantes, à savoir électriques, thermiques, chimiques et mécaniques. Parmi leurs applications, on peut citer, notamment, les matériaux composites destinés en particulier à l'industrie automobile, nautique et aéronautique, les actionneurs électromécaniques, les câbles, les fils résistants, les détecteurs chimiques, le stockage et la conversion d'énergie, les afficheurs à émission d'électrons, les composants électroniques, et les textiles fonctionnels. Dans les domaines automobile, aéronautique et électronique, les charges conductrices telles que les NTC permettent la dissipation thermique et électrique de la chaleur et de l'électricité accumulées lors de frottements.
Généralement, lorsqu'ils sont synthétisés, les NTC sont sous la forme d'une poudre désorganisée, constituée de filaments enchevêtrés, ce qui les rend difficile à mettre en œuvre. Notamment, pour exploiter leurs propriétés mécaniques et/ou électriques à l'échelle macroscopique, il est nécessaire que les NTC soient présents en grandes quantités et orientés dans une direction privilégiée.
L'une des solutions pour pallier ce problème consiste à élaborer des fibres composites. Pour cela, les nanotubes peuvent être incorporés dans une matrice telle qu'un polymère organique. On peut alors procéder au filage, selon des technologies traditionnelles telles que décrites notamment dans EP-I 181 331, qui permet par des étirements et/ou des cisaillements d'orienter les NTC selon l'axe de la fibre et d'obtenir ainsi les propriétés mécaniques et/ou électriques recherchées. Toutefois, cette technique nécessite une grande pureté des NTC et une élimination des agrégats que ceux-ci, en raison de leur structure enchevêtrée, ont naturellement tendance à former. Ces agrégats sont en effet néfastes au procédé de filage et conduisent fréquemment à une casse des fibres composites obtenues.
Par ailleurs, la conductivité des fibres composites obtenues selon la technique précitée n'est pas toujours satisfaisante. En effet, les propriétés électriques des NTC sont d'autant meilleures que ceux-ci sont dispersés de façon homogène et aléatoire, alors que les procédés de filage conduisent au contraire à une orientation importante des NTC.
Une autre approche pour fabriquer des fibres composites conductrices a consisté à déposer des NTC par voie solvant sur une fibre préformée. Toutefois, lorsque ces fibres composites sont utilisées pour fabriquer des tissus, eux-mêmes empilés en plusieurs couches pour former des pièces de structure ou des disques de freins utilisés dans le domaine de l'aérospatiale ou dans le domaine automobile, par exemple, le frottement de ces pièces dans l'air ou sur le sol provoque une usure des fibres. Il en résulte une perte de NTC dans l'atmosphère, dont l'impact environnemental peut s'avérer problématique, et une réduction possible des propriétés mécaniques de la pièce.
Une autre voie encore pour fabriquer des fibres composites à base de NTC a consisté à faire coaguler une dispersion de NTC dans un écoulement de polymère tel que le poly(alcool vinylique) (FR 2 805 179) . Ce procédé de coagulation ne permet toutefois pas d'atteindre les hautes vitesses de filage classiquement utilisées aujourd'hui. Il est en effet difficile de stabiliser le co-écoulement de la dispersion de NTC et de la solution coagulante, en raison du passage d'un régime laminaire à un régime turbulent à grande vitesse, et également de la fragilité, en milieu visqueux, des fibres nouvellement coagulées.
Enfin, la publication de Xue dans Composite Structures, n° 78, 271-277 (2007) divulgue un procédé d'enduction de fibres naturelles ou synthétiques comprenant une première étape d' imprégnation des fibres à l'aide d'une composition renfermant du poly (alcool vinylique) ou PVA et des NTC, suivie d'une étape de séchage des fibres puis d' acétylation du PVA par passage de la pré-fibre imprégnée dans un bain contenant du formaldéhyde dans une solution aqueuse de sels inorganiques. Ce procédé ne comprend pas d'étape de coagulation, de sorte que les NTC sont mal fixés sur les fibres et forment ainsi un dépôt inhomogène et peu robuste qui rend les fibres enrobées difficiles à manipuler et à sécher.
Pour surmonter cet inconvénient, le procédé décrit par Xue inclut une étape d' acétylation . Celle-ci conduit à une réticulation du PVA qui devient insoluble et plus rigide, mais aussi plus cassant et moins déformable, ce qui constitue un inconvénient dans le cas où les fibres obtenues doivent être utilisées dans la fabrication de textiles, par exemple. En outre, en bloquant les chaînes de PVA, l'étape de réticulation limite la conductivité électrique des fibres obtenues. Sans vouloir être liée par une quelconque théorie, la Demanderesse pense que le PVA réticulé entre les nanotubes crée des barrières isolantes stables mécaniquement, qui empêchent les nanotubes de se rapprocher les uns des autres pour transporter le courant électrique. Par ailleurs, le PVA réticulé présente une moindre amélioration de sa conductivité à haute température que d'autres fibres conductrices.
Enfin, l'économie du procédé décrit par Xue est affectée négativement par l'étape de séchage intermédiaire des fibres, ainsi que par l'emploi indispensable de formaldéhyde qui requiert des équipements adaptés à la toxicité de ce composé.
Il a déjà été suggéré dans le document FR 1 261 926 de faire coaguler une fibre à base de PVA en la faisant passer dans un bain renfermant par exemple des sels d'acide borique, avant de soumettre cette fibre à un traitement d' acétalisation . Toutefois, ce document vise à améliorer la résistance à l'eau chaude des fibres et ne divulgue pas de fibres conductrices, a fortiori de fibres renfermant des NTC.
Pour toutes les raisons évoquées ci-dessus, il subsiste le besoin de disposer d'une fibre composite présentant de bonnes propriétés mécaniques, notamment un module de traction sous contrainte et une ténacité élevés, ainsi éventuellement que de bonnes propriétés de résistance thermique et/ou chimique, tout en ayant une conductivité suffisante pour lui permettre de dissiper des charges électrostatiques, même à faible taux de nanotubes. Il subsiste également le besoin de disposer d'un procédé de fabrication stable et économique de cette fibre, éventuellement à grande vitesse, qui soit peu influencé par la présence d'agrégats de nanotubes.
La Demanderesse a découvert que ce besoin pouvait être satisfait en utilisant un procédé d'enduction- coagulation particulier.
La présente invention a ainsi pour objet, selon un premier aspect, un procédé de fabrication d'une fibre conductrice multicouche, comprenant :
- un coeur formé d'une fibre naturelle ou synthétique, - une écorce renfermant un homo- ou copolymère d'alcool vinylique et des nanotubes d'au moins un élément chimique choisi parmi les éléments des colonnes IHa, IVa et Va du tableau périodique, caractérisé en ce que ledit procédé comprend les étapes suivantes :
1- la dispersion de nanotubes dans un solvant, en présence d'un agent stabilisant lié de façon covalente ou non covalente aux nanotubes et dudit homo- ou copolymère d'alcool vinylique, pour former une composition d' enduction,
2- l' enduction de ladite fibre naturelle ou synthétique par ladite composition d' enduction, pour former une pré-fibre composite,
3- le passage de ladite pré-fibre composite dans une solution de coagulation exempte de formaldéhyde, comprenant au moins un agent de coagulation, pour former une pré-fibre multicouche, 4- l'extraction, le lavage éventuel et le séchage de ladite pré-fibre multicouche pour obtenir une fibre multicouche .
Selon un second aspect, la présente invention concerne un procédé de fabrication d'une fibre conductrice multicouche, comprenant :
- un coeur formé d'une fibre naturelle ou synthétique,
- une écorce renfermant un homo- ou copolymère d'alcool vinylique et des nanotubes d'au moins un élément chimique choisi parmi les éléments des colonnes IHa, IVa et Va du tableau périodique, caractérisé en ce que ledit procédé comprend les étapes suivantes : 1- la dispersion de nanotubes dans un solvant, éventuellement en présence d'un agent dispersant, pour former une composition d' enduction,
2- l' enduction de ladite fibre naturelle ou synthétique par ladite composition d' enduction, pour former une pré-fibre composite,
3- le passage de ladite pré-fibre composite dans une solution de coagulation exempte de formaldéhyde, comprenant au moins un agent de coagulation comprenant ledit homo- ou copolymère d'alcool vinylique, pour former une pré-fibre multicouche,
4- l'extraction, le lavage éventuel et le séchage de ladite pré-fibre multicouche pour obtenir une fibre multicouche.
Il est bien entendu que le procédé selon l'invention peut éventuellement comprendre d'autres étapes préliminaires, intermédiaires et/ou subséquentes à celles mentionnées ci-dessus, pour autant que celles-ci n'affectent pas négativement la formation de la fibre conductrice .
En préambule, il est précisé que dans l'ensemble de cette description, l'expression "compris (e) entre" doit être interprétée comme incluant les bornes citées.
En outre, par "fibre", on entend, au sens de la présente invention, une structure pleine ou creuse, éventuellement poreuse, constituée d'un brin dont le diamètre est compris entre 100 nm et 300 μm, de préférence entre 1 et 100 μm, mieux, entre 2 et 50 μm. Sur le plan de son utilisation, une fibre est destinée à assurer la tenue d'une pièce mécanique, à la renforcer, et se distingue ainsi d'un tube ou canalisation destiné à transporter un fluide.
Le procédé selon 1 ' invention porte donc sur un procédé de fabrication d'une fibre conductrice multicouche par enduction d'une fibre naturelle ou synthétique puis coagulation. Des exemples de fibres naturelles ou synthétiques peuvent être choisis parmi :
- les fibres polymériques synthétiques, à base notamment : (i) de poly (alcool vinylique) ou de poly (acétate de vinyle) ,
(ii) de polyamide tel que le polyamide 6 (PA-6) , le polyamide 11 (PA-Il), le polyamide 12 (PA-12), le polyamide 6.6 (PA-6.6), le polyamide 4.6 (PA-4.6), le polyamide 6.10 (PA-6.10), le polyamide 6.12 (PA-6.12), les polyamides aromatiques, en particulier les polyphtalamides (notamment le poly (téréphtalamide de para-phénylène ou Kevlar®) et l'aramide, et les copolymères blocs, notamment polyamide/polyéther, (iϋ) de polyoléfines telles que le polyéthylène haute densité, le polypropylène et les copolymères d'éthylène et/ou de propylène éventuellement fonctionnalisés,
(iv) de polyester tel que les polyhydroxyalcanoates, (v) de polyaryléther cétone (PAEK) telle que la polyétheréther cétone (PEEK) et la polyéthercétone cétone (PEKK) ,
(vi) de polymère fluoré, notamment choisi parmi : (a) ceux comprenant au moins 50% molaire d'au moins un monomère de formule (I) :
CFX1=CX2X3 (D
où Xi, X2 et X3 désignent indépendamment un atome d'hydrogène ou d'halogène (en particulier de fluor ou de chlore), tels que le poly (fluorure de vinylidène) (PVDF), de préférence sous forme α, le poly (trifluoroéthylène) (PVF3), le polytétrafluoroéthylène (PTFE), les copolymères de fluorure de vinylidène avec soit 1 ' hexafluoropropylène (HFP), soit le trifluoroéthylène (VF3), soit le tétrafluoroéthylène (TFE), soit le chlorotrifluoroéthylène (CTFE) , les copolymères fluoroéthylène / propylène (FEP) , les copolymères d'éthylène avec soit le fluoroéthylène/propylène (FEP), soit le tétrafluoroéthylène (TFE) , soit le chlorotrifluoroéthylène (CTFE) ;
(b) ceux comprenant au moins 50% molaire d'au moins un monomère de formule (II) : R-O-CH-CH2 (II) où R désigne un radical alkyle perhalogéné (en particulier perfluoré) , tels que le perfluoropropyl vinyléther (PPVE), le perfluoroéthyl vinyléther (PEVE) et les copolymères d'éthylène avec le perfluorométhylvinyl éther (PMVE),
(vii) de polyuréthane thermoplastique (TPU) ,
(viii) de polytéréphtalates d'éthylène ou de butylène,
(ix) de polyacrylonitrile (PAN) , (x) de polymères acryliques,
(xi) de poly (chlorure de vinyle) ;
- les fibres de carbone ;
- les fibres de verre, notamment de type E, R ou S2 ; - les fibres de bore ;
- les fibres de silice ;
- les fibres naturelles telles que le lin, le chanvre, le sisal, le coton, la laine ou la soie ; et
- leurs mélanges, tels que les mélanges de fibres de verre, carbone et aramide, ou leurs alliages.
Les fibres synthétiques précitées peuvent être fabriquées selon tout procédé de formation de fibres connu de l'homme du métier, notamment par filage en voie fondue (généralement par extrusion) ou en solution, ou encore par coagulation comme décrit dans les documents FR 2 805 179 et FR 2 921 075.
Ces fibres sont soumises à un procédé d'enduction - coagulation, éventuellement mis en œuvre en continu à la sortie du système de filage de ces fibres, destiné à les enrober d'une couche d'homo- ou copolymère d'alcool vinylique renfermant des nanotubes d'au moins un élément chimique choisi parmi les éléments des colonnes IHa, IVa et Va du tableau périodique.
Ces nanotubes, de par leur nature et leur quantité, doivent être capables d'assurer une conduction thermique et/ou électrique. Ils peuvent être à base de carbone, de bore, de phosphore et/ou d'azote (borures, nitrures, carbures, phosphures) et par exemple constitués de nitrure de carbone, de nitrure de bore, de carbure de bore, de phosphure de bore, de nitrure de phosphore ou de boronitrure de carbone. Les nanotubes de carbone (ci- après, NTC) sont préférés pour une utilisation dans la présente invention.
Les nanotubes utilisables selon l'invention peuvent être du type monoparoi, à double paroi ou à parois multiples. Les nanotubes à double paroi peuvent notamment être préparés comme décrit par FLAHAUT et al dans Chem. Com. (2003), 1442. Les nanotubes à parois multiples peuvent de leur côté être préparés comme décrit dans le document WO 03/02456. Les nanotubes ont habituellement un diamètre moyen allant de 0,1 à 200 nm, de préférence de 0,1 à 100 nm, plus préférentiellement de 0,4 à 50 nm et, mieux, de 1 à 30 nm et avantageusement une longueur de 0,1 à 10 μm. Leur rapport longueur/diamètre est de préférence supérieur à 10 et le plus souvent supérieur à 100. Leur surface spécifique est par exemple comprise entre 100 et 300 m2 /g et leur densité apparente peut notamment être comprise entre 0,05 et 0,5 g/cm3 et plus préférentiellement entre 0,1 et 0,2 g/cm3. Les nanotubes multiparois peuvent par exemple comprendre de 5 à 15 feuillets (ou parois) et plus préférentiellement de 7 à 10 feuillets. Ces nanotubes peuvent ou non être traités.
Un exemple de nanotubes de carbone bruts est notamment disponible dans le commerce auprès de la société ARKEMA sous la dénomination commerciale Graphistrength® C100.
Ces nanotubes peuvent être purifiés et/ou traités
(par exemple oxydés) et/ou broyés, avant leur mise en oeuvre dans le procédé selon l'invention. Ils peuvent en variante ou en plus être fonctionnalisés, notamment pour améliorer leur adhérence à la fibre naturelle ou synthétique.
Le broyage des nanotubes peut être notamment effectué à froid ou à chaud et être réalisé selon les techniques connues mises en oeuvre dans des appareils tels que broyeurs à boulets, à marteaux, à meules, à couteaux, à jet de gaz ou tout autre système de broyage susceptible de réduire la taille du réseau enchevêtré de nanotubes. On préfère que cette étape de broyage soit pratiquée selon une technique de broyage par jet de gaz, et en particulier dans un broyeur à jet d'air, ou dans un broyeur à billes.
La purification des nanotubes bruts ou broyés peut être réalisée par lavage à l'aide d'une solution d'acide sulfurique, de manière à les débarrasser d'éventuelles impuretés minérales et métalliques résiduelles, provenant de leur procédé de préparation. Le rapport pondéral des nanotubes à l'acide sulfurique peut notamment être compris entre 1 :2 et 1 :3. L'opération de purification peut par ailleurs être effectuée à une température allant de 90 à 1200C, par exemple pendant une durée de 5 à 10 heures. Cette opération peut avantageusement être suivie d'étapes de rinçage à l'eau et de séchage des nanotubes purifiés. Les nanotubes peuvent en variante être purifiés par traitement thermique à haute température, typiquement supérieur à 10000C.
L'oxydation des nanotubes est avantageusement réalisée en mettant ceux-ci en contact avec une solution d' hypochlorite de sodium renfermant de 0,5 à 15% en poids de NaOCl et de préférence de 1 à 10% en poids de NaOCl, par exemple dans un rapport pondéral des nanotubes à 1' hypochlorite de sodium allant de 1:0,1 à 1:1. L'oxydation est avantageusement réalisée à une température inférieure à 600C et de préférence à température ambiante, pendant une durée allant de quelques minutes à 24 heures. Cette opération d'oxydation peut avantageusement être suivie d'étapes de filtration et/ou centrifugation, lavage et séchage des nanotubes oxydés . Afin d'éliminer les résidus métalliques de catalyseur, il est également possible de soumettre les nanotubes à un traitement thermique d'au moins 10000C, par exemple de 12000C.
On utilise de préférence dans la présente invention des nanotubes bruts éventuellement broyés, c'est-à-dire des nanotubes qui ne sont ni oxydés ni purifiés ni fonctionnalisés et n'ont subi aucun autre traitement chimique et/ou thermique.
Les nanotubes peuvent représenter de 0,1 à 70% en poids, de préférence de 1 à 50% en poids, et plus préférentiellement de 2 à 30% en poids, par rapport au poids de l'écorce.
Ces nanotubes sont dispersés, dans la première étape du procédé selon l'invention, dans un solvant, pour former une composition d'enduction.
Le solvant est de préférence choisi parmi l'eau, le diméthylsulfoxyde (DMSO), la glycérine, l'éthylène glycol, le diéthylène glycol, le triéthylène glycol, la diéthylène triamine, l'éthylène diamine, le phénol, le diméthylformamide (DMF) , le diméthylacétamide, la N- méthylpyrrolidone et leurs mélanges. De manière préférée, le solvant est choisi parmi l'eau, le DMSO et leurs mélanges en toutes proportions.
S'il s'agit d'une dispersion aqueuse, le pH de la dispersion aqueuse peut être maintenu de préférence entre 3 et 5 par ajout d'un ou de plusieurs acides, pouvant être choisis parmi les acides inorganiques, tels que l'acide sulfurique, l'acide nitrique et l'acide hydrochlorique, les acides organiques tels que l'acide acétique, l'acide tartrique et l'acide oxalique et les mélanges d' acide organique et de sel d' acide organique tels que l'acide citrique et le citrate de sodium, l'acide acétique et l'acétate de sodium, l'acide tartrique et le tartrate de potassium, l'acide tartrique et le citrate de sodium.
La dispersion des nanotubes dans le solvant peut être réalisée à température ambiante, ou bien à une température comprise, par exemple, entre 40 et 1200C.
Selon une forme avantageuse de la présente invention, la dispersion des nanotubes dans le solvant est réalisée ou améliorée au moyen d'ultrasons ou d'un système rotor-stator ou d'un broyeur à billes. Un tel système de rotor-stator est notamment commercialisé par la société SILVERSON sous la dénomination commerciale Silverson L4RT. Un autre type de système rotor-stator est commercialisé par la société IKA-WERKE sous la dénomination commerciale Ultra-Turrax . D' autres systèmes rotor-stator encore sont constitués des moulins colloïdaux, des turbines défloculeuses et des mélangeurs à fort cisaillement de type rotor-stator, tels que les appareils commercialisés par la société IKA-WERKE ou par la société ADMIX.
Dans le procédé d' enduction-coagulation selon l'invention, les fibres naturelles ou synthétiques utilisées sont non seulement enduites de nanotubes, mais également d'un homo- ou copolymère d'alcool vinylique qui est de préférence le poly (alcool vinylique). Il sera donc désigné, par la suite, pour plus de simplicité, par « PVA » étant entendu que cette dénomination inclut également les copolymères d'alcool vinylique.
Le PVA peut être compris dans la composition d'enduction ou dans la solution de coagulation.
Dans une première forme d'exécution de l'invention, le PVA est inclus dans la composition d'enduction. Pour éviter la coagulation prématurée des nanotubes en présence du PVA, la composition d'enduction renferme alors au moins un stabilisant.
Par « agent stabilisant », on entend au sens de la présente invention, un composé permettant une dispersion homogène des nanotubes dans la solution, qui protège les nanotubes de la coagulation en présence de l'homo- ou copolymère d'alcool vinylique, mais qui n'entrave pas la coagulation de l'homo- ou copolymère d'alcool vinylique dans une solution de coagulation.
Le ou les agent (s) stabilisant (s) selon l'invention sont liés aux nanotubes soit de façon covalente, soit de façon non covalente.
Dans le cas où l'agent stabilisant est lié aux nanotubes de façon non covalente, il pourra être choisi parmi les tensioactifs essentiellement non ioniques.
Par « tensioactif essentiellement non ionique » on entend, au sens de la présente invention, un composé amphiphile non ionique, cité par exemple dans l'ouvrage McCUTCHEON' S 2008 « Emulsifiers and Détergents », et ayant de préférence un HLB (balance hydrophile-lipophile) de 10 à 16, plus préférentiellement de 13 à 16, ainsi que les copolymères blocs renfermant des blocs hydrophiles et des blocs lipophiles et présentant une ionicité faible, par exemple 0% à 10% en poids de monomère ionique et 90% à 100% de monomère non ionique.
Par exemple, dans le cadre de la présente invention, le ou les agent (s) stabilisant (s) lié (s) aux nanotubes de façon non covalente peuvent être choisis parmi : (i) les esters de polyols, en particulier : les esters d'acide gras et de sorbitane, éventuellement polyéthoxylés,
- les esters d'acides gras et de glycérol, - les esters d'acides gras et de sucrose,
- les esters d'acides gras et de polyéthylèneglycol, (ii) les polysiloxanes modifiés polyéthers,
(iii) les éthers d'alcools gras et de polyéthylèneglycol, (iv) les alkylpolyglycosides, (v) les copolymères blocs polyéthylène- polyéthylèneglycol,
(vi) les copolymères à blocs tels que décrits notamment dans la demande WO 2005/108485, c'est-à-dire comportant au moins un bloc 1 porteur de fonctions ioniques ou ionisables, issu de la polymérisation d'un monomère Ml représentant au moins 10% en poids du bloc 1 (tel que l'acide (méth) acrylique ou l'anhydride maléique) et d'au moins un monomère M2 (tel qu'un (méth) acrylate ou un dérivé du styrène) , et éventuellement au moins un bloc 2 compatible avec le poly (alcool vinylique) , si le bloc 1 ne l'est pas. Dans le second cas où l'agent stabilisant est lié aux nanotubes de façon covalente, il s'agit de préférence d'un groupement hydrophile, avantageusement d'un groupement polyéthylèneglycol, greffé sur les nanotubes.
Le greffage de motifs réactifs tels que des groupements polyéthylèneglycol à la surface des nanotubes peut être réalisé selon tout procédé connu de l'homme du métier. Par exemple, l'homme du métier pourra se rapporter à la publication de B. Zhao et al. (Synthesis and Characterization of Water Soluble Single-Walled Carbon Nanotube Graft Copolymers, J. Am. Chem. Soc. (2005) Vol 127 No 22) . Selon cette publication, les nanotubes sont dispersés dans du diméthylformamide (DMF) et sont mis en contact de chlorure d'oxalyle. Dans un second temps, la dispersion obtenue est mise en contact avec du polyéthylène glycol (PEG) . Les nanotubes ainsi greffés sont généralement purifiés.
Dans une seconde forme d'exécution de l'invention, comme indiqué précédemment, le PVA peut être inclus dans la solution de coagulation.
Dans cette forme d'exécution, la composition d'enduction comprend alors les nanotubes dans un solvant tel que ceux décrits précédemment, et de préférence également au moins un agent dispersant, destiné à favoriser la dispersion des nanotubes dans le solvant et qui peut notamment être choisi parmi : les homo- et copolymères de vinylpyrrolidone, les copolymères renfermant au moins un monomère hydrophile anionique et au moins un monomère hydrophobe, tels que les copolymères décrits dans le document FR-2 766 106 ; les tensioactifs ; et leurs mélanges.
La composition d'enduction renfermant les nanotubes, le solvant, et éventuellement le PVA, le stabilisant et/ou le dispersant, peut être appliquée sur les fibres naturelles ou synthétiques utilisées, dans la seconde étape du procédé selon l'invention, par tout moyen connu de l'homme du métier, notamment en faisant passer les fibres dans un bain d' imprégnation constitué de la composition d'enduction, ou en pulvérisant la composition d'enduction sur les fibres.
Les fibres peuvent par ailleurs être utilisées telles quelles, sous forme de mono-filaments, ou sous forme de fibres coupées ou de structures tissées ou non tissées, constituées d'un réseau bi- ou tridirectionnel de fibres, ou encore sous forme de structures tricotées.
La troisième étape du procédé selon l'invention consiste à faire passer la pré-fibre composite, obtenue à l'issue de l'étape d'enduction, dans une solution de coagulation exempte de formaldéhyde, comprenant au moins un agent de coagulation, pour former une pré-fibre multicouche.
Par « solution de coagulation », on entend au sens de la présente invention une solution, sous forme de bain statique ou d'écoulement, qui provoque la solidification de la couche d' écorce renfermant les nanotubes.
De telles solutions sont connues de l'homme du métier. Selon une forme d'exécution de la présente invention, la solution de coagulation comprend un solvant choisi parmi l'eau, un alcool, un polyol, une cétone et leurs mélanges, de manière plus préférée un solvant choisi parmi l'eau, le méthanol, l'éthanol, le butanol, le propanol, l' isopropanol, un glycol, l'acétone, le méthyl-éthyl-cétone, le méthyl-isobutyl-cétone, le benzène, le toluène et leurs mélanges, et de manière encore plus préférée un solvant choisi parmi l'eau, le méthanol, l'éthanol, un glycol, l'acétone et leurs mélanges.
Si le solvant de la solution de coagulation est essentiellement de l'eau, la température de la solution de coagulation est de manière avantageuse comprise entre 10 et 800C. Si le solvant de la solution de coagulation est essentiellement organique, tel que le méthanol, la solution de coagulation a de manière avantageuse une température comprise entre -30 et 100C.
Dans la première forme d'exécution décrite précédemment, où le PVA est utilisé dans la composition d'enduction, l'agent de coagulation peut être choisi parmi les sels permettant la coagulation du PVA, tels que les sels alcalins et/ou déshydratants, en particulier le sulfate d'ammonium, le sulfate de potassium, le sulfate de sodium, le carbonate de sodium, et leurs mélanges.
Dans la seconde forme d'exécution, l'agent de coagulation est le PVA lui-même.
L'introduction de la pré-fibre composite obtenue à l'issue de la seconde étape du procédé selon l'invention dans la solution de coagulation peut se faire de manière analogue aux techniques connues de l'homme du métier pour former des fibres par coagulation. De manière générale, les techniques les plus courantes pour la coagulation d'un mono-filament sont le filage au mouillé ou « wet spinning » (terminologie anglo-saxonne ; se référer par exemple aux brevets US 3 850 901, US 3 852 402 et US 4 612 157) et le filage au mouillé à jet sec ou « dry- jet wet spinning » (terminologie anglo-saxonne ; se référer par exemple aux brevets US 4 603 083, US 4 698 194, US 4 971 861, US 5 208 104 et US 7 026 049) . L'homme du métier pourra donc s'inspirer de ces techniques pour mettre en oeuvre la présente invention. Ces techniques peuvent être mises en oeuvre en utilisant une filière présentant un orifice de sortie de la fibre synthétique à enduire et, disposé concentriquement autour de celui-ci, un orifice de sortie de la composition d'enduction. Cette filière se trouve ou non immergée dans la solution de coagulation, selon que le filage se fait en milieu humide ou à jet sec. On comprend donc que cette étape de coagulation peut être effectuée en continu après la seconde étape du procédé selon l'invention.
Quelle que soit la forme d'exécution de l'invention mise en œuvre, la composition d'enduction et/ou la solution de coagulation peut en outre contenir un ou plusieurs composés destinés à améliorer les propriétés mécaniques (notamment la capacité d'étirage) et/ou la résistance à l'eau ou à la température des fibres multicouches fabriquées et/ou à faciliter leur coagulation ou leur filage. Des exemples de tels composés comprennent l'acide borique et ses sels (notamment alcalins), les bases fortes telles que l'hydroxyde de sodium ou de potassium et leurs mélanges.
La pré-fibre multicouche obtenue à l'issue de la troisième étape du procédé selon l'invention est ensuite extraite, de manière continue ou non, puis éventuellement lavée une ou plusieurs fois. Le bac de lavage comprend préférablement de l'eau. L'étape de lavage peut permettre d'éliminer une partie du polymère périphérique de la pré- fibre et ainsi d'enrichir en nanotubes (jusqu'à 70% en poids) la composition de la couche conductrice enduite sur la fibre. En outre, le bain de lavage peut comprendre des agents qui permettent de modifier la composition de cette couche conductrice ou qui interagissent chimiquement avec celle-ci. Notamment, des agents de réticulation chimique ou physique, en particulier des sels de borate, peuvent être ajoutés au bain afin de renforcer la couche conductrice. L'étape de lavage peut aussi permettre d'éliminer les agents (en particulier les tensioactifs) potentiellement préjudiciables aux propriétés mécaniques ou électriques de la fibre.
Une étape de séchage est également comprise dans le procédé selon l'invention. Cette étape peut avoir lieu soit directement après l'extraction, soit consécutivement au lavage. Notamment, si on souhaite obtenir une fibre enrichie en polymère, il est souhaitable de sécher la pré-fibre directement après l'extraction. Le séchage est de préférence réalisé dans un four qui va sécher la pré- fibre grâce à un gaz, circulant ou non dans un conduit intérieur du four. Le séchage peut aussi être réalisé par rayonnement infrarouge. Le procédé selon l'invention peut également comprendre une étape de bobinage, et éventuellement une étape d'étirage à chaud réalisée entre l'étape de séchage et l'étape de bobinage.
Avant bobinage, la fibre conductrice multicouche peut encore être soumise à une étape d'ensimage destinée à la fonctionnaliser en surface, afin d'augmenter sa compatibilité avec la matrice polymère de laquelle elle doit être imprégnée.
A l'issue du procédé décrit précédemment on obtient une fibre conductrice multicouche. La présente invention a également pour objet une telle fibre.
Ces fibres conductrices multicouches peuvent être utilisées pour la fabrication de nez, d'ailes ou de carlingues de fusées ou d'avions ; d'armures de flexible off-shore ; d'éléments de carrosserie automobile, de châssis moteur ou de pièces support pour l'automobile ; de revêtements de sièges automobiles ; d'éléments de charpentes dans le domaine du bâtiment ou des ponts et chaussées ; d'emballages et de textiles antistatiques, notamment de rideaux antistatiques, de vêtements antistatiques (par exemple, de sécurité ou pour salle blanche) ou de matériaux pour la protection de silos ou le conditionnement et/ou le transport de poudres ou de matériaux granulaires ; d'éléments d'ameublement, notamment de mobilier pour salle blanche ; de filtres ; de dispositifs de blindage électromagnétique, notamment pour la protection de composants électroniques ; de textiles chauffants ; de câbles conducteurs; de capteurs, notamment de capteurs de déformation ou de contraintes mécaniques ; d'électrodes ; de dispositifs de stockage d'hydrogène ; ou de dispositifs biomédicaux tels que des fils de suture, des prothèses ou des cathéters.
La fabrication de ces pièces composites peut être réalisée suivant différents procédés, impliquant en général une étape d'imprégnation des fibres par une composition polymérique renfermant au moins un matériau thermoplastique, élastomère ou thermodurcissable . Cette étape d'imprégnation peut elle-même être effectuée suivant différentes techniques, en fonction notamment de la forme physique de la composition utilisée (pulvérulente ou plus ou moins liquide). L'imprégnation des fibres est de préférence réalisée suivant un procédé d'imprégnation en lit fluidisé, dans lequel la composition polymérique se trouve à l'état de poudre. On préfère en outre que la matrice polymérique d'imprégnation comprenne au moins l'un des matériaux thermoplastiques utilisés pour la fabrication des fibres conductrices multicouches selon l'invention.
On obtient ainsi des semi-produits qui sont ensuite utilisés dans la fabrication de la pièce composite recherchée. Différents tissus de fibres pré-imprégnés, de composition identique ou différente, peuvent être empilés pour former une plaque ou un matériau stratifié, ou en variante soumis à un procédé de thermoformage. En variante, les fibres peuvent être associées pour former des rubans qui sont susceptibles d'être utilisés dans un procédé d'enroulement filamentaire permettant l'obtention de pièces creuses de forme quasi-illimitée, par enroulement des rubans sur un mandrin ayant la forme de la pièce à fabriquer. En variante encore, il est possible de préparer un film à partir de la composition d'imprégnation, notamment au moyen d'un procédé d'extrusion ou de calandrage, ledit film ayant par exemple une épaisseur d'environ 100 μm, puis de le placer entre deux mats de fibres selon l'invention, l'ensemble étant alors pressé à chaud pour permettre 1 ' imprégnation des fibres et la fabrication du composite .
Dans ces procédés, les fibres multicouches selon l'invention peuvent être tissées ou tricotées, seules ou avec d'autres fibres, ou être utilisées, seules ou en association avec d'autres fibres, pour la fabrication de feutres ou de matériaux non-tissés. Des exemples de matériaux constitutifs de ces autres fibres peuvent être choisis parmi ceux cités précédemment comme matériaux constituant la fibre naturelle ou synthétique.
L'invention a donc également pour objet un matériau composite comprenant des fibres composites multicouches telles que décrites précédemment, liées entre elles par tissage ou à l'aide d'une matrice polymérique.
L'invention sera mieux comprise à la lumière des exemples non limitatifs et purement illustratifs qui suivent, pris en combinaison avec les Figures annexées dans lesquelles :
- la Figure 1 représente une photographie au microscope optique d'une fibre enduite de NTC selon cette invention, et - la Figure 2 représente une photographie au microscope optique d'une fibre enduite de NTC suivant l'art antérieur.
EXEMPLES
Exemple 1 : Fabrication d'une fibre enduite de NTC (voie 1)
Des nanotubes de carbone (Graphistrength" ClOO d'ARKEMA) ont été dispersés à raison de 1% en poids dans de l'eau à l'aide de 1% d'un tensioactif non ionique, l'éther stéarylique de polyoxyéthylène (20 OE) (Brij® 78) . L'ensemble a été passé aux ultrasons pendant 2 heures. La dispersion résultante était stable et homogène. Elle a ensuite été mélangée à une solution aqueuse d'alcool polyvinylique (PVA) renfermant 2% en poids de PVA. La composition d'enduction obtenue a été déposée sur une fibre de polyamide ayant un diamètre de 100 μm. On a ensuite fait passer la fibre enduite dans un bain de coagulation constitué d'une solution aqueuse de Na2SO4 (300 g/1) .
Comme illustré à la Figure 1, la fibre était homogène et conductrice sur toute sa longueur. La valeur de conductivité surfacique mesurée était de 30 ohm. carré.
Exemple 2 : Fabrication d'une fibre enduite de NTC (voie 2)
Des nanotubes de carbone (Graphistrength" ClOO d'ARKEMA) ont été dispersés à raison de 1% en poids dans de l'eau à l'aide de 1% d'un tensioactif anionique, le dodécyl sulfate de sodium. L'ensemble a été passé aux ultrasons pendant 2 heures. La dispersion résultante était stable et homogène. La composition d'enduction obtenue a été déposée sur une fibre de polyamide ayant un diamètre de 100 μm. On a ensuite fait passer la fibre enduite dans un bain de coagulation constitué d'une solution aqueuse d'alcool polyvinylique .
La fibre était homogène et conductrice sur toute sa longueur. La valeur de conductivité surfacique mesurée était de 2 ohm. carré.
Exemple 3 : Fabrication d'une fibre enduite de NTC (exemple comparatif)
Des nanotubes de carbone (Graphistrength" ClOO d'ARKEMA) ont été dispersés à raison de 1% en poids dans une solution aqueuse d'alcool polyvinylique (PVA) contenant 1% en poids de PVA. L'ensemble a été passé aux ultrasons pendant 2 heures. Même après ce traitement, la dispersion n'est pas stable et des agglomérats de nanotubes sont visibles à l'oeil nu.Ctte composition d'enduction a été appliquée sur une fibre de polyamide présentant un diamètre de 100 μm. Le dépôt obtenu était très inhomogène.
Comme illustré à la Figure 2, certaines parties de la fibre, où les agglomérats de NTC sont présents, sont conductrices, tandis que d'autres parties dépourvues de NTC sont isolantes. Le système n'est globalement pas conducteur car les parties isolantes empêchent le passage du courant le long de la fibre.

Claims

REVENDICATIONS
1. Procédé de fabrication d'une fibre conductrice multicouche, comprenant :
- un coeur formé d'une fibre naturelle ou synthétique,
- une écorce renfermant un homo- ou copolymère d'alcool vinylique et des nanotubes d'au moins un élément chimique choisi parmi les éléments des colonnes IHa, IVa et Va du tableau périodique, caractérisé en ce que ledit procédé comprend les étapes suivantes :
1- la dispersion de nanotubes dans un solvant, en présence d'un agent stabilisant lié de façon covalente ou non covalente aux nanotubes et dudit homo- ou copolymère d'alcool vinylique, pour former une composition d' enduction,
2- l' enduction de ladite fibre naturelle ou synthétique par ladite composition d' enduction, pour former une pré-fibre composite,
3- le passage de ladite pré-fibre composite dans une solution de coagulation exempte de formaldéhyde, comprenant au moins un agent de coagulation, pour former une pré-fibre multicouche,
4- l'extraction, le lavage éventuel et le séchage de ladite pré-fibre multicouche pour obtenir une fibre multicouche .
2. Procédé de fabrication d'une fibre conductrice multicouche, comprenant :
- un coeur formé d'une fibre naturelle ou synthétique, - une écorce renfermant un homo- ou copolymère d'alcool vinylique et des nanotubes d'au moins un élément chimique choisi parmi les éléments des colonnes IHa, IVa et Va du tableau périodique, caractérisé en ce que ledit procédé comprend les étapes suivantes :
1- la dispersion de nanotubes dans un solvant, éventuellement en présence d'un agent dispersant, pour former une composition d'enduction, 2- l'enduction de ladite fibre naturelle ou synthétique par ladite composition d'enduction, pour former une pré-fibre composite,
3- le passage de ladite pré-fibre composite dans une solution de coagulation exempte de formaldéhyde, comprenant au moins un agent de coagulation comprenant ledit homo- ou copolymère d'alcool vinylique, pour former une pré-fibre multicouche,
4- l'extraction, le lavage éventuel et le séchage de ladite pré-fibre multicouche pour obtenir une fibre multicouche.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que les nanotubes sont des nanotubes de carbone .
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ladite fibre est choisie parmi :
- les fibres polymériques synthétiques, à base notamment :
(i) de poly (alcool vinylique) ou de poly (acétate de vinyle) , (ii) de polyamide tel que le polyamide 6 (PA-6) , le polyamide 11 (PA-Il), le polyamide 12 (PA-12), le polyamide 6.6 (PA-6.6), le polyamide 4.6 (PA-4.6), le polyamide 6.10 (PA-6.10), le polyamide 6.12 (PA-6.12), les polyamides aromatiques, en particulier les polyphtalamides et l'aramide, et les copolymères blocs polyamide/polyéther,
(iii) de polyoléfines telles que le polyéthylène haute densité, le polypropylène et les copolymères d'éthylène et de propylène,
(iv) de polyester tel que les polyhydroxyalcanoates, (v) de polyaryléther cétone (PAEK) telle que la polyétheréther cétone (PEEK) et la polyéthercétone cétone (PEKK) , (vi) de polymère fluoré, notamment choisi parmi :
(a) ceux comprenant au moins 50% molaire d'au moins un monomère de formule (I) :
CFX1=CX2X3 (D
où Xi, X2 et X3 désignent indépendamment un atome d'hydrogène ou d'halogène (en particulier de fluor ou de chlore), tels que le poly (fluorure de vinylidène) (PVDF), de préférence sous forme α, le poly (trifluoroéthylène) (PVF3), le polytétrafluoroéthylène (PTFE), les copolymères de fluorure de vinylidène avec soit 1 ' hexafluoropropylène (HFP), soit le trifluoroéthylène (VF3), soit le tétrafluoroéthylène (TFE), soit le chlorotrifluoroéthylène (CTFE) , les copolymères fluoroéthylène / propylène (FEP) , les copolymères d'éthylène avec soit le fluoroéthylène/propylène (FEP), soit le tétrafluoroéthylène (TFE) , soit le chlorotrifluoroéthylène (CTFE) ; (b) ceux comprenant au moins 50% molaire d'au moins un monomère de formule (II) :
R-O-CH-CH2 (II) où R désigne un radical alkyle perhalogéné (en particulier perfluoré) , tels que le perfluoropropyl vinyléther (PPVE) , le perfluoroéthyl vinyléther (PEVE) et les copolymères d'éthylène avec le perfluorométhylvinyl éther (PMVE),
(vii) de polyuréthane thermoplastique (TPU) , (viii) de polytéréphtalates d'éthylène ou de butylène,
(ix) de polyacrylonitrile (PAN), (x) de polymères acryliques, (xi) de poly (chlorure de vinyle) ; - les fibres de carbone ;
- les fibres de verre, notamment de type E, R ou S2 ;
- les fibres de bore ;
- les fibres de silice ; - les fibres naturelles telles que le lin, le chanvre, le sisal, le coton, la laine ou la soie ; et
- leurs mélanges, tels que les mélanges de fibres de verre, carbone et aramide, ou leurs alliages.
5. Procédé selon l'une quelconque des revendications
1 à 4, caractérisé en ce que l'homo- ou copolymère d'alcool vinylique est le poly (alcool vinylique) .
6. Procédé selon la revendication 2, caractérisé en ce que la composition d'enduction renferme au moins un agent dispersant choisi parmi : les homo- et copolymères de vinylpyrrolidone ; les copolymères renfermant au moins un monomère hydrophile anionique et au moins un monomère hydrophobe ; les tensioactifs ; et leurs mélanges.
7. Procédé selon la revendication 1, caractérisé en ce que la composition d'enduction renferme au moins un tensioactif principalement non ionique.
8. Procédé selon la revendication 1 ou 7, caractérisé en ce que l'agent de coagulation renferme au moins un sel tel que le sulfate de sodium, d'ammonium, de potassium ou de zinc.
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la composition d'enduction et/ou la composition de coagulation comprend de l'acide borique ou l'un de ses sels, notamment alcalins, une base forte telle que l'hydroxyde de sodium ou de potassium, ou leurs mélanges.
10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que la dispersion des nanotubes dans la composition d'enduction est réalisée à l'aide d'un système rotor-stator, d'ultrasons ou d'un broyeur à billes.
11. Fibre conductrice multicouche susceptible d'être obtenue suivant le procédé selon l'une quelconque des revendications 1 à 10.
12. Fibre selon la revendication 11, caractérisée en ce que les nanotubes représentent de 0,1 à 70% en poids, et de préférence de 1 à 50% en poids, et plus préférentiellement de 2 à 30% en poids, par rapport au poids de l'écorce.
13. Utilisation de la fibre conductrice multicouche selon la revendication 11 ou 12 pour la fabrication de nez, d'ailes ou de carlingues de fusées ou d'avions ; d'armures de flexible off-shore ; d'éléments de carrosserie automobile, de châssis moteur ou de pièces support pour l'automobile ; de revêtements de sièges automobiles ; d'éléments de charpentes dans le domaine du bâtiment ou des ponts et chaussées ; d'emballages et de textiles antistatiques, notamment de rideaux antistatiques, de vêtements antistatiques (par exemple, de sécurité ou pour salle blanche) ou de matériaux pour la protection de silos ou le conditionnement et/ou le transport de poudres ou de matériaux granulaires ; d'éléments d'ameublement, notamment de mobilier pour salle blanche ; de filtres ; de dispositifs de blindage électromagnétique, notamment pour la protection de composants électroniques ; de textiles chauffants ; de câbles conducteurs; de capteurs, notamment de capteurs de déformation ou de contraintes mécaniques ; d'électrodes ; de dispositifs de stockage d'hydrogène ; ou de dispositifs biomédicaux tels que des fils de suture, des prothèses ou des cathéters.
14. Matériau composite comprenant des fibres composites multicouches selon la revendication 11 ou 12, liées entre elles par tissage ou à l'aide d'une matrice polymérique.
PCT/FR2010/051011 2009-05-27 2010-05-27 Procede de fabrication d'une fibre conductrice multicouche par enduction-coagulation WO2010136720A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0953506A FR2946178A1 (fr) 2009-05-27 2009-05-27 Procede de fabrication d'une fibre conductrice multicouche par enduction-coagulation.
FR0953506 2009-05-27

Publications (1)

Publication Number Publication Date
WO2010136720A1 true WO2010136720A1 (fr) 2010-12-02

Family

ID=41374903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/051011 WO2010136720A1 (fr) 2009-05-27 2010-05-27 Procede de fabrication d'une fibre conductrice multicouche par enduction-coagulation

Country Status (3)

Country Link
FR (1) FR2946178A1 (fr)
TW (1) TW201120274A (fr)
WO (1) WO2010136720A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012120006A1 (fr) 2011-03-07 2012-09-13 Cnr - Consiglio Nazionale Delle Ricerche Matériaux en fibre conductrice
WO2015077262A1 (fr) * 2013-11-19 2015-05-28 Guill Tool & Engineering Entrées d'impression 3d coextrudées, multicouche et multicomposant
WO2015116276A1 (fr) * 2013-12-23 2015-08-06 Cytec Industries Inc. Fibres de carbone et fibres à performance élevée pour des applications composites
WO2016156325A1 (fr) * 2015-03-31 2016-10-06 Airbus Defence And Space Sas Bain d'imprégnation aqueux pour fibres de renfort et ses applications
CN113737512A (zh) * 2021-09-15 2021-12-03 武汉纺织大学 微流体涂层技术制备弹性导电纤维的方法及弹性导电纤维
US11701870B2 (en) * 2015-12-21 2023-07-18 Acc (Beijing) Science And Technology Co., Ltd. Structural and decorative composite material, preparation method therefor, and article containing same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2978170B1 (fr) 2011-07-21 2014-08-08 Arkema France Fibres composites conductrices a base de graphene
CN103556453B (zh) * 2013-11-12 2015-06-17 西南大学 一种碳纳米管导电真丝的制备方法
CN111489858B (zh) * 2019-01-25 2021-12-31 清华大学 耐高温导线及应用该耐高温导线的探测器
CN112899890B (zh) * 2021-01-25 2022-02-18 浙江祥隆科技有限公司 一种纳米SiO2接枝聚丙烯腈防水透气纤维膜及制法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1261926A (fr) 1960-04-11 1961-05-26 Kanegafuchi Spinning Company L Procédé de fabrication de produits fibreux en alcool polyvinylique et ses dérivés
US3850901A (en) 1969-11-25 1974-11-26 T Kimura Polyvinyl alcohol fibers
US3852402A (en) 1969-11-25 1974-12-03 S Tanaka Process for the preparation of polyvinyl alcohol fibers
US4603083A (en) 1983-12-12 1986-07-29 Toray Industries, Inc. Ultra-high-tenacity polyvinyl alcohol fiber and process for producing same
US4612157A (en) 1984-01-31 1986-09-16 Kuraray Company, Limited Method for production of high-tenacity, fine-denier polyvinyl alcohol fiber
US4971861A (en) 1986-12-27 1990-11-20 Unitika Ltd. Polyvinyl alcohol fiber and method of manufacture thereof
US5208104A (en) 1988-02-10 1993-05-04 Toray Industries, Inc. High-tenacity water-soluble polyvinyl alcohol fiber and process for producing the same
FR2766106A1 (fr) 1997-07-18 1999-01-22 Coatex Sa Utilisation d'un copolymere a structure tensio-active comme agent dispersant et/ou d'aide au broyage
FR2805179A1 (fr) 2000-02-23 2001-08-24 Centre Nat Rech Scient Procede d'obtention de fibres et de rubans macroscopiques a partir de particules colloidales, et notamment de nanotubes de carbone
EP1181331A1 (fr) 1999-05-18 2002-02-27 Fina Research S.A. Polymeres renforces
WO2003002456A2 (fr) 2001-06-28 2003-01-09 Institut National Polytechnique De Toulouse Procede de fabrication selective de nanotubes de carbone ordonne en lit fluidise
WO2005108485A2 (fr) 2004-05-11 2005-11-17 Arkema France Materiaux composites bases sur des nanotubes de carbone et des matrices polymeriques, et procedes de production de ces materiaux
US7026049B2 (en) 2004-02-18 2006-04-11 Kuraray Co., Ltd. Conductive polyvinyl alcohol fiber
FR2921075A1 (fr) 2007-09-18 2009-03-20 Arkema France Procede continu d'obtention de fibres composites a base de particules colloidales et dispositif pour sa mise en oeuvre

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1261926A (fr) 1960-04-11 1961-05-26 Kanegafuchi Spinning Company L Procédé de fabrication de produits fibreux en alcool polyvinylique et ses dérivés
US3850901A (en) 1969-11-25 1974-11-26 T Kimura Polyvinyl alcohol fibers
US3852402A (en) 1969-11-25 1974-12-03 S Tanaka Process for the preparation of polyvinyl alcohol fibers
US4603083A (en) 1983-12-12 1986-07-29 Toray Industries, Inc. Ultra-high-tenacity polyvinyl alcohol fiber and process for producing same
US4698194A (en) 1983-12-12 1987-10-06 Toray Industries, Inc. Process for producing ultra-high-tenacity polyvinyl alcohol fiber
US4612157A (en) 1984-01-31 1986-09-16 Kuraray Company, Limited Method for production of high-tenacity, fine-denier polyvinyl alcohol fiber
US4971861A (en) 1986-12-27 1990-11-20 Unitika Ltd. Polyvinyl alcohol fiber and method of manufacture thereof
US5208104A (en) 1988-02-10 1993-05-04 Toray Industries, Inc. High-tenacity water-soluble polyvinyl alcohol fiber and process for producing the same
FR2766106A1 (fr) 1997-07-18 1999-01-22 Coatex Sa Utilisation d'un copolymere a structure tensio-active comme agent dispersant et/ou d'aide au broyage
EP1181331A1 (fr) 1999-05-18 2002-02-27 Fina Research S.A. Polymeres renforces
FR2805179A1 (fr) 2000-02-23 2001-08-24 Centre Nat Rech Scient Procede d'obtention de fibres et de rubans macroscopiques a partir de particules colloidales, et notamment de nanotubes de carbone
WO2003002456A2 (fr) 2001-06-28 2003-01-09 Institut National Polytechnique De Toulouse Procede de fabrication selective de nanotubes de carbone ordonne en lit fluidise
US7026049B2 (en) 2004-02-18 2006-04-11 Kuraray Co., Ltd. Conductive polyvinyl alcohol fiber
WO2005108485A2 (fr) 2004-05-11 2005-11-17 Arkema France Materiaux composites bases sur des nanotubes de carbone et des matrices polymeriques, et procedes de production de ces materiaux
FR2921075A1 (fr) 2007-09-18 2009-03-20 Arkema France Procede continu d'obtention de fibres composites a base de particules colloidales et dispositif pour sa mise en oeuvre

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
B. ZHAO ET AL.: "Synthesis and Characterization of Water Soluble Single-Walled Carbon Nanotube Graft Copolymers", J. AM. CHEM. SOC., vol. 127, no. 22, 2005, XP002426704, DOI: doi:10.1021/ja042924i
F. DU, J.E. FISCHER, K.I. WINEY: "Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites", PHYSICAL REVIEW B, vol. 72, 121404, 2005, pages 1 - 4, XP002559446, DOI: 10.1103/PhysRevB.72.121404 *
FLAHAUT ET AL., CHEM. COM., 2003, pages 1442
XUE DANS COMPOSITE STRUCTURES, 2007, pages 271 - 277
XUE ET AL: "Electrically conductive yarns based on PVA/carbon nanotubes", COMPOSITE STRUCTURE, ELSEVIER SCIENCE LTD, GB, vol. 78, no. 2, 8 December 2006 (2006-12-08), pages 271 - 277, XP005798860, ISSN: 0263-8223 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140093731A1 (en) * 2011-03-07 2014-04-03 Alma Mater Studiorum - Universita` Di Bologna Conductive fiber materials
WO2012120006A1 (fr) 2011-03-07 2012-09-13 Cnr - Consiglio Nazionale Delle Ricerche Matériaux en fibre conductrice
WO2015077262A1 (fr) * 2013-11-19 2015-05-28 Guill Tool & Engineering Entrées d'impression 3d coextrudées, multicouche et multicomposant
US20160297104A1 (en) * 2013-11-19 2016-10-13 Guill Tool & Engineering Coextruded, multilayer and multicomponent 3d printing inputs field
RU2670868C9 (ru) * 2013-12-23 2018-12-11 Сайтек Индастриз Инк. Углеродные волокна и высококачественные волокна для композиционных материалов
WO2015116276A1 (fr) * 2013-12-23 2015-08-06 Cytec Industries Inc. Fibres de carbone et fibres à performance élevée pour des applications composites
TWI646236B (zh) * 2013-12-23 2019-01-01 塞特工業公司 在碳纖維上施加漿料之方法
US9757768B2 (en) * 2013-12-23 2017-09-12 Cytec Industries Inc. Method for manufacturing sized carbon fibers for composite applications
AU2014380135B2 (en) * 2013-12-23 2018-08-02 Cytec Industries Inc. Carbon fibers and high performance fibers for composite applications
RU2670868C2 (ru) * 2013-12-23 2018-10-25 Сайтек Индастриз Инк. Углеродные волокна и высококачественные волокна для композиционных материалов
WO2016156325A1 (fr) * 2015-03-31 2016-10-06 Airbus Defence And Space Sas Bain d'imprégnation aqueux pour fibres de renfort et ses applications
FR3034425A1 (fr) * 2015-03-31 2016-10-07 Airbus Defence & Space Sas Bain d'impregnation aqueux pour fibres de renfort et ses applications
US10323352B2 (en) 2015-03-31 2019-06-18 Arianegroup Sas Aqueous impregnation bath for reinforcement fibres and uses thereof
US11701870B2 (en) * 2015-12-21 2023-07-18 Acc (Beijing) Science And Technology Co., Ltd. Structural and decorative composite material, preparation method therefor, and article containing same
CN113737512A (zh) * 2021-09-15 2021-12-03 武汉纺织大学 微流体涂层技术制备弹性导电纤维的方法及弹性导电纤维
CN113737512B (zh) * 2021-09-15 2023-08-08 武汉纺织大学 微流体涂层技术制备弹性导电纤维的方法及弹性导电纤维

Also Published As

Publication number Publication date
FR2946178A1 (fr) 2010-12-03
TW201120274A (en) 2011-06-16

Similar Documents

Publication Publication Date Title
WO2010136720A1 (fr) Procede de fabrication d'une fibre conductrice multicouche par enduction-coagulation
EP2256236A1 (fr) Procédé de fabrication de fibres composites conductrices à haute teneur en nanotubes
FR2946176A1 (fr) Fibre conductrice multicouche et son procede d'obtention par co-extrusion.
EP2430081B1 (fr) Substrat fibreux, procede de fabrication et utilisations d'un tel substrat fibreux
EP2370619B1 (fr) Fibre composite a base de pekk, son procede de fabrication et ses utilisations
FR2978170A1 (fr) Fibres composites conductrices a base de graphene
EP2160275B1 (fr) Procédé d'imprégnation de fibres continues par une matrice polymérique composite renfermant un polymère fluoré greffé
EP3617254A1 (fr) Materiau fibreux impregne de polymere thermoplastique
WO2009007617A2 (fr) Procede d'impregnation de fibres continues par une matrice polymerique composite renfermant un polymere thermoplastique
WO2009047456A2 (fr) Procede continu d ' obtention de fibres composites a base de particules colloïdales et fibre obtenue par ce procede
WO2018078287A1 (fr) Nouveau procede de fabrication de materiaux hautement carbones et materiau hautement carbone obtenu
EP3172269A1 (fr) Procédé de préparation d'une structure composite stratifiée électriquement conductrice
EP3728711A1 (fr) Procédé de fabrication d'une fibre de carbone à partir de coton recyclé et utilisation de la fibre ainsi obtenue pour la formation d'un article en matériau composite
FR2949791A1 (fr) Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique
CA2644518C (fr) Procede de fabrication de produits extrudes composites polymeres et nanotubes de carbone
WO2012160288A1 (fr) Fibres composites conductrices comprenant des charges conductrices carbonees et un polymere conducteur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10728820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10728820

Country of ref document: EP

Kind code of ref document: A1