EP1854104A1 - Procede de production d'une structure a couche mince - Google Patents

Procede de production d'une structure a couche mince

Info

Publication number
EP1854104A1
EP1854104A1 EP06705966A EP06705966A EP1854104A1 EP 1854104 A1 EP1854104 A1 EP 1854104A1 EP 06705966 A EP06705966 A EP 06705966A EP 06705966 A EP06705966 A EP 06705966A EP 1854104 A1 EP1854104 A1 EP 1854104A1
Authority
EP
European Patent Office
Prior art keywords
support structure
layer
sacrificial layer
pore
structure substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06705966A
Other languages
German (de)
English (en)
Inventor
Volker Lehmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qimonda AG
Original Assignee
Qimonda AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qimonda AG filed Critical Qimonda AG
Publication of EP1854104A1 publication Critical patent/EP1854104A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J5/00Details relating to vessels or to leading-in conductors common to two or more basic types of discharge tubes or lamps
    • H01J5/02Vessels; Containers; Shields associated therewith; Vacuum locks
    • H01J5/18Windows permeable to X-rays, gamma-rays, or particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy

Definitions

  • the invention relates to a method for producing a thin-film structure.
  • Micrometer range is a support structure with very small openings (orders of magnitude: 10 microns) but high porosity necessary.
  • X-ray windows were made of either a low Z (atomic number of atoms of an atom) material such as beryllium, or by laying, i. Applying, e.g. organic film on a support structure (e.g., silicon).
  • a support structure e.g., silicon
  • Beryllium in particular has the considerable disadvantage that it represents hazardous waste and thus can only be disposed of with great inconvenience.
  • the method described in [1] is based on etching in a first region 101 (see FIG. 1) not completely through a silicon wafer 100 extending through pores 103 in the silicon wafer 100 and to coat the walls of the pores with a thin film 104 , Thereafter, the pores 103 are opened from the back side of the silicon wafer 100 by etching so that the thin film 104 is maintained.
  • a second region 102 as shown in Fig.l, pores 103 are provided, which extend into the silicon wafer 100, but not completely through, so that below the pores 103 in the second region 102 substrate material of the silicon wafer 100 is present which increases the stability of the perforated workpiece, ie the machined silicon wafer 100.
  • an X-ray optical component is known that has a semiconductor wafer 200 in which parallel micropores 201 extending in the beam direction with diameters of 0.1 ⁇ m to
  • a thin layer 202 is introduced, which stabilizes the pore walls and pore bottoms of the semiconductor wafer 200.
  • the substrate material of the semiconductor wafer 200 is ground off on its back side (see FIG.2b) so that the thin layer 202 introduced into the micropores 201 is exposed towards the rear side of the semiconductor wafer 200.
  • a disadvantage of the above-mentioned methods is that the window material has to be deposited in very high aspect ratio pores. Therefore, thin films sputtered, vapor deposited or produced by plasma CVD can not be produced with this technology since they have only small penetration depths in cavities. Only SiO 2 thin films and Si 3 N 4 thin films have been successfully deposited in the pores, and thus windows made of these materials could be produced by the methods described.
  • MicroChannel plate which consists of two different types of glass, which are selectively etchable against each other.
  • a method for the production of self-supporting microstructures of thin flat parts or of membranes and the use of microstructures produced by this method as resistance grids in a device for measuring weak gas flows is known.
  • a support frame is first produced, the opening of which is covered on one side flush with an auxiliary layer.
  • the auxiliary layer is removed, for example, by etching.
  • the invention is based on the problem of providing a low-cost, simple yet reliable method for producing a thin-film structure even with a high-aspect ratio pore structure.
  • Support structure substrate is applied a sacrificial layer. Subsequently, the rear side of the support structure substrate is partially removed, so that on the back of the support structure substrate, a region of the sacrificial layer is exposed. On the back surface of the
  • an aspect of the invention can be seen in that in the method for producing a thin-film structure, a sacrificial layer is introduced into the pores or applied to the sidewalls of the pores and the pore bottoms, wherein the sacrificial layer can be made of a different material the thin-film structure to be produced.
  • a sacrificial layer is to be understood as a layer which, for example, is no longer present in the thin-film structure to be produced, i. especially completely or partially removed before completion of the thin-film structure.
  • the sacrificial layer serves illustratively as a temporary carrier object on which the thin-film structure-forming layer can be applied in a simple manner, without the thin-film structure itself having to be deposited in the pores, since the sacrificial layer protrudes at least partially out of the carrier substrate. This makes it possible that even material which could not be used in the pores according to the prior art due to insufficient penetration depth for forming the thin-film structure, can now be used, since this material is only applied to a larger area. Thus, even diamond can be used for such a thin-film structure, which offers great advantages in X-ray windows, as described above.
  • the pores applied according to the prior art are applied in the pores Thin films used as a substrate (sacrificial layer, ie sacrificial layer) for further deposition processes.
  • a method for applying the sacrificial layer in which this is formed by means of thermal oxidation of the pore walls and the pore floors.
  • This method is particularly suitable when using silicon as a substrate material for forming the sacrificial layer, even with pores with a high aspect ratio.
  • the sacrificial layer is applied to the pore walls and pore bottoms of the support structure substrate by means of a chemical vapor deposition method.
  • the sacrificial layer is applied to the pore walls and pore bottoms of the support structure substrate by an atomic layer epitaxy method.
  • This alternative has the advantage of perfect edge coverage, and this perfectly compliant deposition can be used on pores of any aspect ratio.
  • the support structure substrate made of silicon material, whereby the support structure is very inexpensive to produce.
  • a silicon dioxide layer can be applied, which is applied in particular by means of thermal oxidation on the pore walls and pore floors of the support structure substrate.
  • a silicon nitride layer can be applied as the sacrificial layer, which is applied, for example by means of a CVD method, to the pore walls and pore bottoms of the support structure substrate.
  • the support structure substrate is made of aluminum material (Al).
  • the sacrificial layer is an alumina layer applied to the pore walls and pore bottoms of the support structure substrate by an ALD process.
  • the partial backside removal of the support structure substrate is performed using a back-etch process.
  • Any etching method can be used depending on the selectivity of the materials to be etched, for example a dry etching method, a wet etching method or also a plasma etching method.
  • the thin film is applied by means of a sputtering process or a vapor deposition process or a plasma CVD process.
  • a diamond thin film can be applied.
  • a thin metal layer may be applied as a thin film.
  • a layer sequence having a plurality of partial thin layers can be applied as a thin layer.
  • the sacrificial layer can be selectively removed by etching.
  • One aspect of the invention may be seen in the use of the thin film windows of [1] (e.g., the oxide or nitride windows described therein) as a substrate, in other words sacrificial layers, for further deposition processes.
  • the thin film windows of [1] e.g., the oxide or nitride windows described therein
  • Figure 1 shows a macroporous semiconductor support structure substrate having a first region with through pores and a second region with non-pervious pores according to the prior art, wherein the pore walls are provided with a thin film;
  • Figures 2a and 2b a macroporous semiconductor support structure substrate with stabilizing layer on the
  • FIGS. 3a to 3e show a process diagram for producing a
  • FIGS. 4a to 4f show a process scheme for producing a thin-film structure on a MicroChannel-Plate support structure substrate according to another exemplary embodiment of the invention.
  • the pores 301 in the substrate are arranged in a regular pattern in a matrix-like manner at a respective spacing d of 1 ⁇ m (calculated from adjacent side walls of two adjacent pores 301).
  • Alternative materials for the support structure substrate 300 are any suitable semiconductor materials as well as compound semiconductor materials (eg, III-V compound semiconductor materials or II-VI compound semiconductor materials) such as gallium arsenide, indium phosphide, etc.
  • compound semiconductor materials eg, III-V compound semiconductor materials or II-VI compound semiconductor materials
  • the pores 301 are made in accordance with this embodiment of the invention by electrochemical etching of the support structure substrate 300 in hydrofluoric acid (HF).
  • HF hydrofluoric acid
  • a homogeneous sacrificial layer 303 SiO 2 layer with thermal oxidation or Si 3 N 4 layer
  • an additional silicon dioxide layer 304 is formed on the back side of the support structure substrate 300.
  • the additional silicon dioxide layer 304 is removed and after removal of the additional silicon dioxide layer 304 on the backside of the support structure substrate 300 (e.g., by RF), the back-up support substrate 300 is etched back
  • Thin film 306 in the desired thickness (e.g., 150 nm thick, e.g., by sputtering, vapor deposition or plasma CVD) is deposited on the back surface of the etched back support substrate 300 and on the surface of the exposed pore bottom region 305.
  • the sacrificial layer 303 e.g., a silicon oxide layer
  • the sacrificial layer 303 is removed (e.g., by etching, for example, in HF), thereby producing a thin film 306 supported only by the etched back support substrate 300 and otherwise free-standing.
  • the porous support structure substrate 300 is made of aluminum material. Subsequently, as an sacrificial layer, an alumina layer is applied to the pore walls and pore bottoms of the support structure substrate using an ALD method.
  • the support structure substrate on the back surface is selectively etched back until the alumina layer on the bottom of the pore is exposed to the backside.
  • the desired thin film in the desired thickness (eg 150 nm, for example by means of Sputtering, sputtering or plasma CVD) on the back of the support structure substrate. Care should be taken to ensure good adhesion between the exposed substrate surface and the thin film material (for example, by a short HF dip just before deposition).
  • a glass substrate 400 of a first type of glass also referred to as a support structure substrate, a glass substrate 400 of a first type of glass, also referred to as
  • MicroChannel plate used as described in [3] and having a plurality of continuous micro-channels 401. As shown in FIG. 4 b, the microchannels 401 are sealed on the rear side of the glass substrate 400 by applying a glass layer 402 of a second type of glass which is selectively etchable against the first type of glass of the glass substrate 400.
  • a thin layer 403 is deposited as a sacrificial layer on the microchannel walls and microchannel bottoms.
  • the glass layer 402 on the rear side of the glass substrate 400 is removed so that the sacrificial layer 403 in the microchannels 401 is exposed toward the rear side of the glass substrate 400.
  • the desired thin film 404 of beryllium, boron nitride or diamond e.g. applied by means of a CVD method.
  • the sacrificial layer 403 in the pores is removed by selective etching to form a self-supporting thin-film structure on the back side of the support structure substrate 400.
  • the diamond layer 404 is only a few 10 microns thick and, like a boron nitride layer or a beryllium layer, which is poisonous, is well suited for use as an X-ray window due to its low atomic number.
  • an interference structure (multi-layer) is applied as a thin film.
  • This layer sequence has several partial layers, which can consist of different materials.
  • the advantage of the process schemes according to the above-described embodiments of the invention is that by using a sacrificial layer in the pores, a substrate is created which serves as the starting basis for any
  • Method for applying thin films on the back of the support structure substrate is used.
  • the method is independent of the penetration depth of the applied
  • thin film materials in cavities and thus also allows the use of thin film materials such as diamond or boron nitride, which are much more suitable for use as X-ray windows than those in the prior art methods, for example because of the lower atomic number of carbon, boron and nitrogen X-ray windows used materials of silicon oxide or silicon nitride.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)
  • Micromachines (AREA)
  • Confectionery (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

Selon la présente invention, une couche sacrificielle est déposée sur un substrat à structure de support macroporeuse. Ce substrat à structure de support est ensuite partiellement éliminé sur sa face arrière, de sorte qu'une zone de la couche sacrificielle est dégagée sur la face arrière dudit substrat à structure de support. Une couche mince est déposée sur la surface arrière du substrat à structure de support et sur la zone dégagée de la couche sacrificielle puis la couche sacrificielle située dans les pores est éliminée de manière sélective par rapport à la couche mince, de sorte que les fonds des pores sont formés par cette couche mince.
EP06705966A 2005-03-03 2006-02-13 Procede de production d'une structure a couche mince Withdrawn EP1854104A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005010080A DE102005010080B4 (de) 2005-03-03 2005-03-03 Verfahren zum Herstellen einer Dünnschicht-Struktur
PCT/DE2006/000248 WO2006092114A1 (fr) 2005-03-03 2006-02-13 Procede de production d'une structure a couche mince

Publications (1)

Publication Number Publication Date
EP1854104A1 true EP1854104A1 (fr) 2007-11-14

Family

ID=36590200

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06705966A Withdrawn EP1854104A1 (fr) 2005-03-03 2006-02-13 Procede de production d'une structure a couche mince

Country Status (7)

Country Link
US (1) US20080160787A1 (fr)
EP (1) EP1854104A1 (fr)
JP (1) JP2008538810A (fr)
KR (1) KR20070102584A (fr)
CN (1) CN101133461A (fr)
DE (1) DE102005010080B4 (fr)
WO (1) WO2006092114A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7443959B2 (en) * 2006-10-10 2008-10-28 Oxford Instruments Analytical Oy Selective irradiation of small target area in X-ray fluorescent spectroscopy
JP2012037440A (ja) * 2010-08-10 2012-02-23 Tokyo Metropolitan Univ X線光学系
US20120110958A1 (en) * 2010-11-05 2012-05-10 Sherri Lee Athay Method for Encasing a Confectionery Product
JP5920796B2 (ja) * 2014-09-03 2016-05-18 公立大学法人首都大学東京 X線反射装置の製造方法
DE102014226138A1 (de) 2014-12-16 2016-06-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Herstellen einer Vorrichtung mit einer dreidimensionalen magnetischen Struktur
DE102016215616B4 (de) * 2016-08-19 2020-02-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Herstellen einer magnetischen Struktur und Vorrichtung
DE102016215617A1 (de) 2016-08-19 2018-02-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Herstellen eines Hohlraums mit poröser Struktur
CN111378934B (zh) * 2020-03-30 2021-03-30 中国科学院上海光学精密机械研究所 提升电子束蒸镀薄膜元件的光谱和应力时效稳定性的镀膜方法
JP2022139731A (ja) * 2021-03-12 2022-09-26 日本電子株式会社 X線検出器及び窓部製造方法
US20230263726A1 (en) * 2022-02-18 2023-08-24 Transport Authority, Inc. Layered edible product for multi-stage dosing of multi-function active pharmaceutical ingredients
KR102546090B1 (ko) * 2023-03-15 2023-06-21 이운경 다층박막 기반의 전자소자 및 3차원 구조체를 이용한 그의 제조방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208601A (ja) * 1989-02-08 1990-08-20 Seiko Instr Inc 光学用窓材及びその製造方法
DE19729596A1 (de) * 1997-07-10 1999-01-14 Siemens Ag Streustrahlenraster
DE19820756C1 (de) * 1998-05-08 1999-11-11 Siemens Ag Perforiertes Werkstück und Verfahren zu dessen Herstellung
DE19852955C2 (de) * 1998-11-17 2000-08-31 Bruker Axs Analytical X Ray Sy Röntgenanalysegerät mit röntgenoptischem Halbleiterbauelement
EP1181239A1 (fr) * 1999-03-31 2002-02-27 Siemens Aktiengesellschaft Procede de fabrication de microstructures non soutenues, d'elements plats minces ou de membranes, et utilisation des microstructures ainsi obtenues comme grilles de resistance dans un dispositif de mesure de faibles debits gazeux
US6717254B2 (en) * 2001-02-22 2004-04-06 Tru-Si Technologies, Inc. Devices having substrates with opening passing through the substrates and conductors in the openings, and methods of manufacture
DE10314504B4 (de) * 2003-03-31 2007-04-26 Advanced Micro Devices, Inc., Sunnyvale Verfahren zur Herstellung einer nitridhaltigen Isolationsschicht durch Kompensieren von Stickstoffungleichförmigkeiten
JP2005003564A (ja) * 2003-06-13 2005-01-06 Ushio Inc 電子ビーム管および電子ビーム取り出し用窓
US7078302B2 (en) * 2004-02-23 2006-07-18 Applied Materials, Inc. Gate electrode dopant activation method for semiconductor manufacturing including a laser anneal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006092114A1 *

Also Published As

Publication number Publication date
JP2008538810A (ja) 2008-11-06
DE102005010080B4 (de) 2008-04-03
KR20070102584A (ko) 2007-10-18
CN101133461A (zh) 2008-02-27
DE102005010080A1 (de) 2006-09-14
WO2006092114A1 (fr) 2006-09-08
US20080160787A1 (en) 2008-07-03

Similar Documents

Publication Publication Date Title
DE102005010080B4 (de) Verfahren zum Herstellen einer Dünnschicht-Struktur
DE10353894B4 (de) Filterelement und Verfahren zu dessen Herstellung
EP2670880B1 (fr) Procédé pour générer une structure tridimensionnelle et structure tridimensionnelle
DE10055421A1 (de) Verfahren zur Erzeugung einer mikromechanischen Struktur und mikromechanische Struktur
EP1167934A1 (fr) Composant micromécanique, en particulier élément capteur, ayant une membrane stabilisée et procédé pour le produire
DE102004030612B3 (de) Halbleitersubstrat und Verfahren zu dessen Herstellung
EP2695181A1 (fr) Procédé de liaison permanente de plaquettes de semi-conducteurs
DE10156465C1 (de) Waferanordnung und Verfahren zur Herstellung einer Bondverbindung
DE10029791C2 (de) Verfahren zur Herstellung einer stabilen Verbindung zwischen zwei Wafern
DE69817452T2 (de) Verfahren zur Herstellung einer micromechanischen Messsonde, insbesondere eines Rasterkraftmikroskops
EP1076826B1 (fr) Procede de production de composants micromecaniques
EP1360143A2 (fr) Procede de realisation de structures superficielles micromecaniques, et capteur
EP1042794A1 (fr) Procede de production d'une couche poreuse par un processus de gravure electrochimique
DE2944576A1 (de) Verfahren zur herstellung einer lochblende, etwa fuer eine elektronenstrahlbelichtungsvorrichtung
WO2007071500A1 (fr) Procede de fabrication d'une membrane sur un substrat semi-conducteur et element de construction micromecanique comprenant une telle membrane
DE102016217123B4 (de) Verfahren zum Herstellen eines mikromechanischen Bauteils und mikromechanisches Bauteil
WO2006053753A1 (fr) Support de nanostructure, procede pour le realiser, et son utilisation
DE10055872B4 (de) Verfahren zur Herstellung einer porösen Struktur für ein Sieb oder einen Filter und poröse Struktur für ein Sieb oder einen Filter
DE102007052661A1 (de) Verfahren zur Herstellung von mikromechanischen Strukturen mit reliefartigem Seitenwandverlauf oder einstellbarem Neigungswinkel
DE10022266B4 (de) Verfahren zum Herstellen und Verschließen eines Hohlraums für Mikrobauelemente oder Mikrosysteme und entsprechendes Mikrobauelement
DE102006013419A1 (de) Verfahren zum Herstellen einer integrierten Schaltung
DE19752218A1 (de) Verfahren zur Adhäsionsvermeidung an einer Halbleiteroberfläche, Halbleiterwafer und mikromechanische Struktur
DE10117363A1 (de) Verfahren zum Herstellen einer porösen Si0¶2¶-Scheibe
EP1501123A2 (fr) Adhérence d'une structure comprenant un matériau mal adhérent
DE102006024287A1 (de) Mikromechanisches Bauelement mit porösen vertikalen Strukturen sowie ein entsprechendes Herstellungsverfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070705

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

19U Interruption of proceedings before grant

Effective date: 20090401

19W Proceedings resumed before grant after interruption of proceedings

Effective date: 20091019

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100320