EP1828481B1 - Papiere mit hohem f]llstoffgehalt und hoher trockenfestigkeit - Google Patents
Papiere mit hohem f]llstoffgehalt und hoher trockenfestigkeit Download PDFInfo
- Publication number
- EP1828481B1 EP1828481B1 EP05819674.2A EP05819674A EP1828481B1 EP 1828481 B1 EP1828481 B1 EP 1828481B1 EP 05819674 A EP05819674 A EP 05819674A EP 1828481 B1 EP1828481 B1 EP 1828481B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- filler
- paper
- copolymers
- process according
- mol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000945 filler Substances 0.000 title claims description 201
- 239000000463 material Substances 0.000 title description 9
- 239000000123 paper Substances 0.000 claims description 129
- 229920000642 polymer Polymers 0.000 claims description 80
- 239000002002 slurry Substances 0.000 claims description 70
- 229920001577 copolymer Polymers 0.000 claims description 51
- 239000000725 suspension Substances 0.000 claims description 50
- UYMKPFRHYYNDTL-UHFFFAOYSA-N ethenamine Chemical group NC=C UYMKPFRHYYNDTL-UHFFFAOYSA-N 0.000 claims description 43
- 125000002091 cationic group Chemical group 0.000 claims description 37
- ZQXSMRAEXCEDJD-UHFFFAOYSA-N n-ethenylformamide Chemical compound C=CNC=O ZQXSMRAEXCEDJD-UHFFFAOYSA-N 0.000 claims description 35
- 239000007787 solid Substances 0.000 claims description 35
- 239000000178 monomer Substances 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 33
- 229920002472 Starch Polymers 0.000 claims description 32
- 235000019698 starch Nutrition 0.000 claims description 31
- 230000008569 process Effects 0.000 claims description 30
- 239000002253 acid Substances 0.000 claims description 18
- 239000000835 fiber Substances 0.000 claims description 18
- 150000007513 acids Chemical class 0.000 claims description 15
- 150000001735 carboxylic acids Chemical class 0.000 claims description 15
- 150000003839 salts Chemical class 0.000 claims description 14
- 150000001409 amidines Chemical group 0.000 claims description 11
- 229920001519 homopolymer Polymers 0.000 claims description 11
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 claims description 9
- 150000002148 esters Chemical class 0.000 claims description 9
- 230000007935 neutral effect Effects 0.000 claims description 9
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims description 8
- 150000001408 amides Chemical class 0.000 claims description 6
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 claims description 5
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 5
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 claims description 5
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 claims description 4
- 150000001414 amino alcohols Chemical class 0.000 claims description 4
- 239000007859 condensation product Substances 0.000 claims description 4
- GFJVXXWOPWLRNU-UHFFFAOYSA-N ethenyl formate Chemical compound C=COC=O GFJVXXWOPWLRNU-UHFFFAOYSA-N 0.000 claims description 4
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 claims description 4
- MLMGJTAJUDSUKA-UHFFFAOYSA-N 2-ethenyl-1h-imidazole Chemical class C=CC1=NC=CN1 MLMGJTAJUDSUKA-UHFFFAOYSA-N 0.000 claims description 3
- 229920002873 Polyethylenimine Polymers 0.000 claims description 3
- 229940045713 antineoplastic alkylating drug ethylene imines Drugs 0.000 claims description 3
- 239000011111 cardboard Substances 0.000 claims description 3
- 125000005265 dialkylamine group Chemical group 0.000 claims description 3
- 229920000962 poly(amidoamine) Polymers 0.000 claims description 3
- 229920000768 polyamine Polymers 0.000 claims description 3
- 239000000047 product Substances 0.000 claims description 3
- 239000000203 mixture Substances 0.000 description 49
- 239000008107 starch Substances 0.000 description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 23
- VTYYLEPIZMXCLO-UHFFFAOYSA-L calcium carbonate Substances [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 22
- 238000004519 manufacturing process Methods 0.000 description 22
- 230000014759 maintenance of location Effects 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 15
- 230000007062 hydrolysis Effects 0.000 description 15
- 238000006460 hydrolysis reaction Methods 0.000 description 15
- 239000003795 chemical substances by application Substances 0.000 description 13
- 229940088417 precipitated calcium carbonate Drugs 0.000 description 13
- 239000002245 particle Substances 0.000 description 12
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 11
- 125000000217 alkyl group Chemical group 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- 239000007864 aqueous solution Substances 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 8
- 229920001131 Pulp (paper) Polymers 0.000 description 8
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 8
- 125000004432 carbon atom Chemical group C* 0.000 description 7
- 229920002401 polyacrylamide Polymers 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 125000000129 anionic group Chemical group 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 238000003490 calendering Methods 0.000 description 6
- 239000002270 dispersing agent Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 5
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical compound [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 5
- 229910021653 sulphate ion Inorganic materials 0.000 description 5
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical compound C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 description 4
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 4
- 239000005995 Aluminium silicate Substances 0.000 description 4
- 235000018185 Betula X alpestris Nutrition 0.000 description 4
- 235000018212 Betula X uliginosa Nutrition 0.000 description 4
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 4
- 235000011613 Pinus brutia Nutrition 0.000 description 4
- 241000018646 Pinus brutia Species 0.000 description 4
- 235000012211 aluminium silicate Nutrition 0.000 description 4
- 125000003277 amino group Chemical group 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000004927 clay Substances 0.000 description 4
- 230000029087 digestion Effects 0.000 description 4
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 4
- 230000000379 polymerizing effect Effects 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- HXVJQEGYAYABRY-UHFFFAOYSA-N 1-ethenyl-4,5-dihydroimidazole Chemical class C=CN1CCN=C1 HXVJQEGYAYABRY-UHFFFAOYSA-N 0.000 description 3
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- 229920006317 cationic polymer Polymers 0.000 description 3
- -1 chalk Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 235000019253 formic acid Nutrition 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 230000003301 hydrolyzing effect Effects 0.000 description 3
- 229920001600 hydrophobic polymer Polymers 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 235000010755 mineral Nutrition 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229920001515 polyalkylene glycol Polymers 0.000 description 3
- 150000003460 sulfonic acids Chemical class 0.000 description 3
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- 229920003043 Cellulose fiber Polymers 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 240000003183 Manihot esculenta Species 0.000 description 2
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- FZNCGRZWXLXZSZ-CIQUZCHMSA-N Voglibose Chemical compound OCC(CO)N[C@H]1C[C@](O)(CO)[C@@H](O)[C@H](O)[C@H]1O FZNCGRZWXLXZSZ-CIQUZCHMSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 229920006318 anionic polymer Polymers 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 239000007900 aqueous suspension Substances 0.000 description 2
- 238000004380 ashing Methods 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- KCXMKQUNVWSEMD-UHFFFAOYSA-N benzyl chloride Chemical compound ClCC1=CC=CC=C1 KCXMKQUNVWSEMD-UHFFFAOYSA-N 0.000 description 2
- 229940073608 benzyl chloride Drugs 0.000 description 2
- 235000010216 calcium carbonate Nutrition 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 2
- DENRZWYUOJLTMF-UHFFFAOYSA-N diethyl sulfate Chemical compound CCOS(=O)(=O)OCC DENRZWYUOJLTMF-UHFFFAOYSA-N 0.000 description 2
- 229940008406 diethyl sulfate Drugs 0.000 description 2
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- 229920000578 graft copolymer Polymers 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 125000002560 nitrile group Chemical group 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 239000011087 paperboard Substances 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- 229920001567 vinyl ester resin Polymers 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920003169 water-soluble polymer Polymers 0.000 description 2
- 125000005913 (C3-C6) cycloalkyl group Chemical group 0.000 description 1
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 1
- PQUXFUBNSYCQAL-UHFFFAOYSA-N 1-(2,3-difluorophenyl)ethanone Chemical compound CC(=O)C1=CC=CC(F)=C1F PQUXFUBNSYCQAL-UHFFFAOYSA-N 0.000 description 1
- FWQVHBXYJCMRDM-UHFFFAOYSA-N 1-ethenyl-2-ethyl-4,5-dihydroimidazole Chemical compound CCC1=NCCN1C=C FWQVHBXYJCMRDM-UHFFFAOYSA-N 0.000 description 1
- HFCLUHMYABQVOG-UHFFFAOYSA-N 1-ethenyl-2-ethylimidazole Chemical compound CCC1=NC=CN1C=C HFCLUHMYABQVOG-UHFFFAOYSA-N 0.000 description 1
- VDSAXHBDVIUOGV-UHFFFAOYSA-N 1-ethenyl-2-methyl-4,5-dihydroimidazole Chemical compound CC1=NCCN1C=C VDSAXHBDVIUOGV-UHFFFAOYSA-N 0.000 description 1
- BDHGFCVQWMDIQX-UHFFFAOYSA-N 1-ethenyl-2-methylimidazole Chemical compound CC1=NC=CN1C=C BDHGFCVQWMDIQX-UHFFFAOYSA-N 0.000 description 1
- MMFCEMSIUPCRLD-UHFFFAOYSA-N 1-ethenyl-4-methylimidazole Chemical compound CC1=CN(C=C)C=N1 MMFCEMSIUPCRLD-UHFFFAOYSA-N 0.000 description 1
- SHVBLBWXKTWTAK-UHFFFAOYSA-N 1-ethenyl-5-methylimidazole Chemical compound CC1=CN=CN1C=C SHVBLBWXKTWTAK-UHFFFAOYSA-N 0.000 description 1
- JWYVGKFDLWWQJX-UHFFFAOYSA-N 1-ethenylazepan-2-one Chemical compound C=CN1CCCCCC1=O JWYVGKFDLWWQJX-UHFFFAOYSA-N 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- SJIXRGNQPBQWMK-UHFFFAOYSA-N 2-(diethylamino)ethyl 2-methylprop-2-enoate Chemical compound CCN(CC)CCOC(=O)C(C)=C SJIXRGNQPBQWMK-UHFFFAOYSA-N 0.000 description 1
- QHVBLSNVXDSMEB-UHFFFAOYSA-N 2-(diethylamino)ethyl prop-2-enoate Chemical compound CCN(CC)CCOC(=O)C=C QHVBLSNVXDSMEB-UHFFFAOYSA-N 0.000 description 1
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 1
- DPBJAVGHACCNRL-UHFFFAOYSA-N 2-(dimethylamino)ethyl prop-2-enoate Chemical compound CN(C)CCOC(=O)C=C DPBJAVGHACCNRL-UHFFFAOYSA-N 0.000 description 1
- IEVADDDOVGMCSI-UHFFFAOYSA-N 2-hydroxybutyl 2-methylprop-2-enoate Chemical compound CCC(O)COC(=O)C(C)=C IEVADDDOVGMCSI-UHFFFAOYSA-N 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- XUYDVDHTTIQNMB-UHFFFAOYSA-N 3-(diethylamino)propyl prop-2-enoate Chemical compound CCN(CC)CCCOC(=O)C=C XUYDVDHTTIQNMB-UHFFFAOYSA-N 0.000 description 1
- WWJCRUKUIQRCGP-UHFFFAOYSA-N 3-(dimethylamino)propyl 2-methylprop-2-enoate Chemical compound CN(C)CCCOC(=O)C(C)=C WWJCRUKUIQRCGP-UHFFFAOYSA-N 0.000 description 1
- UFQHFMGRRVQFNA-UHFFFAOYSA-N 3-(dimethylamino)propyl prop-2-enoate Chemical compound CN(C)CCCOC(=O)C=C UFQHFMGRRVQFNA-UHFFFAOYSA-N 0.000 description 1
- GNSFRPWPOGYVLO-UHFFFAOYSA-N 3-hydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCO GNSFRPWPOGYVLO-UHFFFAOYSA-N 0.000 description 1
- QZPSOSOOLFHYRR-UHFFFAOYSA-N 3-hydroxypropyl prop-2-enoate Chemical compound OCCCOC(=O)C=C QZPSOSOOLFHYRR-UHFFFAOYSA-N 0.000 description 1
- WZISPVCKWGNITO-UHFFFAOYSA-N 4-(diethylamino)-2-methylidenebutanamide Chemical compound CCN(CC)CCC(=C)C(N)=O WZISPVCKWGNITO-UHFFFAOYSA-N 0.000 description 1
- HBTKQKFURUBIHW-UHFFFAOYSA-N 4-(diethylamino)butyl prop-2-enoate Chemical compound CCN(CC)CCCCOC(=O)C=C HBTKQKFURUBIHW-UHFFFAOYSA-N 0.000 description 1
- QGXMPHBQJFXJCI-UHFFFAOYSA-N 4-(dimethylamino)butyl prop-2-enoate Chemical compound CN(C)CCCCOC(=O)C=C QGXMPHBQJFXJCI-UHFFFAOYSA-N 0.000 description 1
- NDWUBGAGUCISDV-UHFFFAOYSA-N 4-hydroxybutyl prop-2-enoate Chemical compound OCCCCOC(=O)C=C NDWUBGAGUCISDV-UHFFFAOYSA-N 0.000 description 1
- HDWNKEWYEDOKIZ-UHFFFAOYSA-N 5-(diethylamino)-2-methylidenepentanamide Chemical compound CCN(CC)CCCC(=C)C(N)=O HDWNKEWYEDOKIZ-UHFFFAOYSA-N 0.000 description 1
- ZWAPMFBHEQZLGK-UHFFFAOYSA-N 5-(dimethylamino)-2-methylidenepentanamide Chemical compound CN(C)CCCC(=C)C(N)=O ZWAPMFBHEQZLGK-UHFFFAOYSA-N 0.000 description 1
- LVGSUQNJVOIUIW-UHFFFAOYSA-N 5-(dimethylamino)-2-methylpent-2-enamide Chemical compound CN(C)CCC=C(C)C(N)=O LVGSUQNJVOIUIW-UHFFFAOYSA-N 0.000 description 1
- NFKIMJJASFDDJG-UHFFFAOYSA-N 5-amino-N,N-diethyl-2-methylpent-2-enamide Chemical compound NCCC=C(C(=O)N(CC)CC)C NFKIMJJASFDDJG-UHFFFAOYSA-N 0.000 description 1
- ALXUOLQRSSGTMU-UHFFFAOYSA-N 6-(diethylamino)-2-methylhex-2-enamide Chemical compound CCN(CC)CCCC=C(C)C(N)=O ALXUOLQRSSGTMU-UHFFFAOYSA-N 0.000 description 1
- FLCAEMBIQVZWIF-UHFFFAOYSA-N 6-(dimethylamino)-2-methylhex-2-enamide Chemical compound CN(C)CCCC=C(C)C(N)=O FLCAEMBIQVZWIF-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- XZMCDFZZKTWFGF-UHFFFAOYSA-N Cyanamide Chemical compound NC#N XZMCDFZZKTWFGF-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical group OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 238000006845 Michael addition reaction Methods 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- 229920002522 Wood fibre Polymers 0.000 description 1
- NJSSICCENMLTKO-HRCBOCMUSA-N [(1r,2s,4r,5r)-3-hydroxy-4-(4-methylphenyl)sulfonyloxy-6,8-dioxabicyclo[3.2.1]octan-2-yl] 4-methylbenzenesulfonate Chemical compound C1=CC(C)=CC=C1S(=O)(=O)O[C@H]1C(O)[C@@H](OS(=O)(=O)C=2C=CC(C)=CC=2)[C@@H]2OC[C@H]1O2 NJSSICCENMLTKO-HRCBOCMUSA-N 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- NEHMKBQYUWJMIP-NJFSPNSNSA-N chloro(114C)methane Chemical compound [14CH3]Cl NEHMKBQYUWJMIP-NJFSPNSNSA-N 0.000 description 1
- HRYZWHHZPQKTII-UHFFFAOYSA-N chloroethane Chemical compound CCCl HRYZWHHZPQKTII-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 229940099112 cornstarch Drugs 0.000 description 1
- 150000001470 diamides Chemical class 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- LDCRTTXIJACKKU-ARJAWSKDSA-N dimethyl maleate Chemical compound COC(=O)\C=C/C(=O)OC LDCRTTXIJACKKU-ARJAWSKDSA-N 0.000 description 1
- GQOKIYDTHHZSCJ-UHFFFAOYSA-M dimethyl-bis(prop-2-enyl)azanium;chloride Chemical compound [Cl-].C=CC[N+](C)(C)CC=C GQOKIYDTHHZSCJ-UHFFFAOYSA-M 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- MEGHWIAOTJPCHQ-UHFFFAOYSA-N ethenyl butanoate Chemical compound CCCC(=O)OC=C MEGHWIAOTJPCHQ-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 229960003750 ethyl chloride Drugs 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000000834 fixative Substances 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000004579 marble Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229940050176 methyl chloride Drugs 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- WFKDPJRCBCBQNT-UHFFFAOYSA-N n,2-dimethylprop-2-enamide Chemical compound CNC(=O)C(C)=C WFKDPJRCBCBQNT-UHFFFAOYSA-N 0.000 description 1
- NYIODHFKZFKMSU-UHFFFAOYSA-N n,n-bis(methylamino)ethanamine Chemical compound CCN(NC)NC NYIODHFKZFKMSU-UHFFFAOYSA-N 0.000 description 1
- 229940088644 n,n-dimethylacrylamide Drugs 0.000 description 1
- GBCKRQRXNXQQPW-UHFFFAOYSA-N n,n-dimethylprop-2-en-1-amine Chemical compound CN(C)CC=C GBCKRQRXNXQQPW-UHFFFAOYSA-N 0.000 description 1
- YLGYACDQVQQZSW-UHFFFAOYSA-N n,n-dimethylprop-2-enamide Chemical compound CN(C)C(=O)C=C YLGYACDQVQQZSW-UHFFFAOYSA-N 0.000 description 1
- GORGQKRVQGXVEB-UHFFFAOYSA-N n-ethenyl-n-ethylacetamide Chemical compound CCN(C=C)C(C)=O GORGQKRVQGXVEB-UHFFFAOYSA-N 0.000 description 1
- PNLUGRYDUHRLOF-UHFFFAOYSA-N n-ethenyl-n-methylacetamide Chemical compound C=CN(C)C(C)=O PNLUGRYDUHRLOF-UHFFFAOYSA-N 0.000 description 1
- OFESGEKAXKKFQT-UHFFFAOYSA-N n-ethenyl-n-methylformamide Chemical compound C=CN(C)C=O OFESGEKAXKKFQT-UHFFFAOYSA-N 0.000 description 1
- RQAKESSLMFZVMC-UHFFFAOYSA-N n-ethenylacetamide Chemical compound CC(=O)NC=C RQAKESSLMFZVMC-UHFFFAOYSA-N 0.000 description 1
- IUWVWLRMZQHYHL-UHFFFAOYSA-N n-ethenylpropanamide Chemical compound CCC(=O)NC=C IUWVWLRMZQHYHL-UHFFFAOYSA-N 0.000 description 1
- RCLLINSDAJVOHP-UHFFFAOYSA-N n-ethyl-n',n'-dimethylprop-2-enehydrazide Chemical compound CCN(N(C)C)C(=O)C=C RCLLINSDAJVOHP-UHFFFAOYSA-N 0.000 description 1
- SWPMNMYLORDLJE-UHFFFAOYSA-N n-ethylprop-2-enamide Chemical compound CCNC(=O)C=C SWPMNMYLORDLJE-UHFFFAOYSA-N 0.000 description 1
- YPHQUSNPXDGUHL-UHFFFAOYSA-N n-methylprop-2-enamide Chemical compound CNC(=O)C=C YPHQUSNPXDGUHL-UHFFFAOYSA-N 0.000 description 1
- WDFKEEALECCKTJ-UHFFFAOYSA-N n-propylprop-2-enamide Chemical compound CCCNC(=O)C=C WDFKEEALECCKTJ-UHFFFAOYSA-N 0.000 description 1
- XFHJDMUEHUHAJW-UHFFFAOYSA-N n-tert-butylprop-2-enamide Chemical compound CC(C)(C)NC(=O)C=C XFHJDMUEHUHAJW-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 239000010893 paper waste Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 150000003009 phosphonic acids Chemical class 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 229940116317 potato starch Drugs 0.000 description 1
- 238000012673 precipitation polymerization Methods 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 238000005956 quaternization reaction Methods 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229940100486 rice starch Drugs 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 229940047670 sodium acrylate Drugs 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical group [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- BWYYYTVSBPRQCN-UHFFFAOYSA-M sodium;ethenesulfonate Chemical group [Na+].[O-]S(=O)(=O)C=C BWYYYTVSBPRQCN-UHFFFAOYSA-M 0.000 description 1
- 238000001370 static light scattering Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 229940100445 wheat starch Drugs 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/33—Synthetic macromolecular compounds
- D21H17/34—Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D21H17/41—Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
- D21H17/44—Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups cationic
- D21H17/45—Nitrogen-containing groups
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/21—Macromolecular organic compounds of natural origin; Derivatives thereof
- D21H17/24—Polysaccharides
- D21H17/28—Starch
- D21H17/29—Starch cationic
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/33—Synthetic macromolecular compounds
- D21H17/46—Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D21H17/54—Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/63—Inorganic compounds
- D21H17/67—Water-insoluble compounds, e.g. fillers, pigments
- D21H17/69—Water-insoluble compounds, e.g. fillers, pigments modified, e.g. by association with other compositions prior to incorporation in the pulp or paper
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/33—Synthetic macromolecular compounds
- D21H17/34—Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D21H17/41—Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
- D21H17/44—Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups cationic
- D21H17/45—Nitrogen-containing groups
- D21H17/455—Nitrogen-containing groups comprising tertiary amine or being at least partially quaternised
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/33—Synthetic macromolecular compounds
- D21H17/46—Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D21H17/54—Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen
- D21H17/55—Polyamides; Polyaminoamides; Polyester-amides
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/33—Synthetic macromolecular compounds
- D21H17/46—Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D21H17/54—Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen
- D21H17/56—Polyamines; Polyimines; Polyester-imides
Definitions
- the present invention relates to a process for producing high filler content and high dry strength papers.
- fillers are added to the fiber suspension, which is particularly advantageous when the filler is cheaper than the pulp.
- the addition or increased addition of filler can lead to a reduction of the fiber content and thus to a reduction in the production costs of the paper.
- Filler-containing papers or papers with a particularly high filler content are easier to dry than non-filler papers or papers with a lower filler content.
- the paper machine can be operated faster and with lower steam consumption, which both increases productivity and lowers costs.
- the filler slurry is added to the fiber suspension prior to passing it to the former of the paper machine.
- a retention aid or retention aid system is typically added to the filler / pulp suspension to retain as much filler as possible in the paper sheet.
- the addition of the filler to the paper gives the papermaker the opportunity to achieve numerous improvements in sheet properties. These include properties such as opacity, whiteness, feel and printability.
- the filler addition to the fiber suspension also entails disadvantages which can only be partially compensated by the addition of further paper auxiliaries. For a given basis weight, there are limits to the amount of filler that can be used.
- the strength properties of the paper are usually the most important parameters that limit the amount of filler in the paper. Other factors, such as filler retention, dewatering of the pulp suspension, and possibly increased need for chemicals in retention and sizing may also play a role here.
- the loss of strength properties of papers can in some cases be compensated in whole or in part by the use of dry and wet strength agents.
- a common procedure is the addition of cationic starch as dry strength in the pulp.
- synthetic dry and wet strength agents are used, for example, based on cationic or anionic polyacrylamides.
- the amount of addition and the strengthening effect are limited in most cases.
- the compensating effect in relation to the loss of strength by increasing the filler and thus also the only realizable Filler increase limited.
- not all strength properties are increased to the same extent and in some cases insufficiently by the use of dry strength agents.
- An important example of this is the on-going work, which is only slightly influenced by the use of starch or synthetic dry strength agents in comparison to other strength parameters.
- the increase in the filler content in paper on the other hand, usually has a very strong negative impact on continuing work.
- the increase in the filler content leads to a decrease in the paper density and the thickness of the paper sheet at the same basis weight.
- the latter leads to a significant decrease in paper stiffness.
- This decrease in paper stiffness can not be compensated in many cases by the use of dry strength agents alone.
- additional measures such as the reduction of mechanical pressure in the press section in the calenders, in calenders or in the dryer section of the paper machine are necessary. The latter compensates the thickness loss by increasing the filler in whole or in part.
- amphoteric water-soluble polymers are added to aqueous suspensions of inorganic particles amphoteric water-soluble polymers, wherein at least a portion of the polymers is adsorbed on the filler surface.
- the amphoteric polymers are preferably prepared by hydrolyzing copolymers of N-vinylformamide, acrylonitrile and acrylic acid in the presence of acids. They contain from 20 to 90 mol% amidine units of the structure in which R 1 and R 2 are each H or a methyl group and X- is an anion.
- the filler slurries treated with such polymers are added to the stock in the preparation of filler-containing papers. The filler treatment improves the drainage of the pulp and also gives an improvement various strength properties of the dried paper and an improvement in the filler retention.
- US 6033524 A discloses a process for producing paper in the presence of an aqueous slurry of finely divided filler-containing components wherein the finely divided fillers are coated with a copolymer and wherein, in addition to the aqueous slurry of finely divided filler-containing components, a cationic polymer is added to the fiber slurry prior to sheet formation ,
- the object was achieved by a process for the production of paper, paperboard and cardboard in the presence of an aqueous slurry of components containing finely divided fillers, wherein the finely divided fillers are at least partially coated with water-soluble amphoteric copolymers, wherein in addition to the aqueous slurry of finely divided fillers Components at least one cationic and / or amphoteric polymer containing as structural element no esters of unsaturated carboxylic acids with quaternized amino alcohols, the fiber suspension added before sheet formation.
- components comprising finely divided fillers are both finely divided fillers alone, i. in pure form or as a so-called fresh filler, as well as finely divided fillers containing raw materials such as the so-called Committee of coated paper, as well as mixtures in any composition thereof understood.
- the dosage of the cationic and / or amphoteric polymers may be at various points in the papermaking process. Conceivable is a dosage in the thick matter range, but also a dosage in the thin material of the fiber suspension. A split addition at different points in the manufacturing process is also possible.
- the at least one cationic and / or amphoteric polymer is added to the fiber suspension immediately after the addition of the aqueous slurry of components containing finely divided fillers. Immediately means that between the dosages of the components no further process step, i. no dosage of other paper auxiliaries or, for example, the action of shear forces on the suspension is.
- the cationic and / or amphoteric polymer contains no structural elements of esters of unsaturated carboxylic acids, for example C 3 - C 8 carboxylic acids, with quaternized amino alcohols, for example N, N, N-trimethylammoniumethanol.
- Typical representatives are, for example Catiofast® ® PR 8153 and PR 8154 ® Catiofast® the BASF Aktiengesellschaft, which are commonly used as fixatives in the paper industry.
- Polyethyleneimines are, for example, in WO 97/25367 and the literature cited therein.
- Graft products of ethyleneimines on amidoamines or polyamines are, for example, those in German Offenlegungsschrift DE 24 34 816 described nitrogenous condensation products.
- Cationic starches are disclosed, for example, in Günther Tegge, Medicare und Medicarederivate, Behr's Verlag, Hamburg, 1984. These are, for example, potato starch, corn starch, wheat starch, rice starch, tapioca starch, sago starch, manioc starch and rye starch. These starches are for example reacted with 2,3- (epoxy) -propyltrimethylammoniumchrlorid.
- Polymers containing vinylamine units are known, cf. US 4,421,602 . US 5,334,287 . EP-A 216 387 . US 5,981,689 . WO 00/63295 . US 6,121,409 and US 6,132,558 , They are prepared by hydrolysis of open-chain N-vinylcarboxylic acid amide units containing polymers. These polymers are obtainable, for example, by polymerizing N-vinylformamide, N-vinyl-N-methylformamide, N-vinylacetamide, N-vinyl-N-methylacetamide, N-vinyl-N-ethylacetamide and N-vinylpropionamide. The monomers mentioned can be polymerized either alone or together with other monomers. Preference is given to N-vinylformamide.
- Suitable monoethylenically unsaturated monomers which are copolymerized with the N-vinylcarboxamides are all compounds which can be copolymerized therewith.
- vinyl esters of saturated carboxylic acids of 1 to 6 carbon atoms such as vinyl formate, vinyl acetate, N-vinylpyrrolidone, vinyl propionate and vinyl butyrate and vinyl ethers such as C 1 - to C 6 -alkyl vinyl ethers, for example methyl or ethyl vinyl ether.
- Suitable comonomers are esters of alcohols having, for example, 1 to 6 carbon atoms, amides and nitriles of ethylenically unsaturated C 3 - to C 6 -carboxylic acids, for example methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate and dimethyl maleate, acrylamide and methacrylamide and also acrylonitrile and methacrylonitrile.
- carboxylic acid esters are derived from glycols or polyalkylene glycols, in each case only one OH group being esterified, for example hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxybutyl acrylate, hydroxypropyl methacrylate, hydroxybutyl methacrylate and acrylic acid monoesters of polyalkylene glycols having a molecular weight of 500 to 10,000.
- esters of ethylenically unsaturated carboxylic acids with amino alcohols such as Dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate, dimethylaminopropyl acrylate, dimethylaminopropyl methacrylate, diethylaminopropyl acrylate, dimethylaminobutyl acrylate and diethylaminobutyl acrylate.
- amino alcohols such as Dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate, dimethylaminopropyl acrylate, dimethylaminopropyl methacrylate, diethylaminopropyl acrylate, dimethylaminobutyl acrylate
- the basic acrylates can be used in the form of the free bases, the salts with mineral acids such as hydrochloric acid, sulfuric acid or nitric acid, the salts with organic acids such as formic acid, acetic acid, propionic acid or sulfonic acids or in quaternized form.
- Suitable quaternizing agents are, for example, dimethyl sulfate, diethyl sulfate, methyl chloride, ethyl chloride or benzyl chloride.
- Suitable comonomers are amides of ethylenically unsaturated carboxylic acids such as acrylamide, methacrylamide and N-alkyl mono- and diamides of monoethylenically unsaturated carboxylic acids having alkyl radicals of 1 to 6 carbon atoms, e.g. N-methylacrylamide, N, N-dimethylacrylamide, N-methylmethacrylamide, N-ethylacrylamide, N-propylacrylamide and tert-butylacrylamide and basic (meth) acrylamides, e.g.
- acrylamide, methacrylamide and N-alkyl mono- and diamides of monoethylenically unsaturated carboxylic acids having alkyl radicals of 1 to 6 carbon atoms e.g. N-methylacrylamide, N, N-dimethylacrylamide, N-methylmethacrylamide, N-ethylacrylamide, N-propylacrylamide and tert-butylacryl
- N-vinylpyrrolidone N-vinylcaprolactam
- acrylonitrile methacrylonitrile
- N-vinylimidazole substituted N-vinylimidazoles
- N-vinyl-2-methylimidazole N-vinyl-4-methylimidazole
- N-vinyl-5-methylimidazole N-vinyl-2-ethylimidazole
- N-vinylimidazolines such as N-vinylimidazoline, N-vinyl-2-methylimidazoline and N- vinyl-2-ethylimidazoline.
- N-vinylimidazoles and N-vinylimidazolines are also used, except in the form of the free bases, in neutralized or quaternized form with mineral acids or organic acids, the quaternization preferably being carried out with dimethyl sulfate, diethyl sulfate, methyl chloride or benzyl chloride. Also suitable are diallyldialkylammonium halides, e.g. Diallyl dimethyl ammonium chloride.
- the polymerization of the monomers is usually carried out in the presence of radical-forming polymerization initiators.
- the homopolymers and copolymers can be obtained by all known processes, for example by solution polymerization in water, alcohols, ethers or dimethylformamide or in mixtures of various solvents, by precipitation polymerization, reverse suspension polymerization (polymerizing an emulsion of a monomer-containing aqueous phase in an oil phase and polymerizing a water-in-water emulsion, for example, in which an aqueous monomer solution is dissolved or emulsified in an aqueous phase and polymerized to form an aqueous dispersion of a water-soluble polymer, such as in US Pat WO 00/27893 described.
- the homo- and co-polymers containing copolymerized N-vinylcarboxamide units are partially or completely hydrolyzed as described below.
- the degree of hydrolysis of the homopolymers and copolymers used is 85 to 95 mol%.
- the degree of hydrolysis of the homopolymers is synonymous with the content of the polymers of vinylamine units.
- hydrolysis of the ester groups to form vinyl alcohol units may occur. This is especially the case when the hydrolysis of the copolymers in the presence of sodium hydroxide solution.
- Polymerized acrylonitrile is also chemically altered upon hydrolysis. This produces, for example, amide groups or carboxyl groups.
- the vinylamine units containing homo- and copolymers may optionally contain up to 20 mol% of amidine units, for example, by reaction of formic acid with two adjacent amino groups or by intramolecular reaction of an amino group with an adjacent amide group, for example, of copolymerized N-vinylformamide.
- the average molecular weights M w of the polymers containing vinylamine units are, for example, 500 to 10 million, preferably 750 to 5 million and particularly preferably 1 000 to 2 million g / mol (determined by light scattering).
- This molar mass range corresponds, for example, to K values of 30 to 150, preferably 60 to 100 (determined according to H. Fikentscher in 5% strength aqueous saline solution at 25 ° C., a pH of 7 and a polymer concentration of 0.5% by weight. ).
- Particular preference is given to using polymers comprising vinylamine units which have K values of from 85 to 95.
- the polymers containing vinylamine units have for example a charge density (determined at pH 7) of 0 to 18 meq / g, preferably of 5 to 18 meq / g and especially of 10 to 16 meq / g.
- the polymers containing vinylamine units are preferably used in salt-free form.
- Salt-free aqueous solutions of polymers containing vinylamine units can be prepared, for example, from the above-described salt-containing polymer solutions by means of ultrafiltration on suitable membranes at separation limits of, for example, 1,000 to 500,000 daltons, preferably 10,000 to 300,000 daltons.
- Derivatives of polymers containing vinylamine units can also be used. It is thus possible, for example, to prepare a large number of suitable derivatives from the vinylamine units by amidation, alkylation, sulfonamide formation, urea formation, thiourea formation, carbamate formation, acylation, carboxymethylation, phosphonomethylation or Michael addition of the amino groups of the polymer.
- the polymers containing vinylamine units also include hydrolyzed graft polymers of, for example, N-vinylformamide on polyalkylene glycols, polyvinyl acetate, Polyvinylalkolhol, polyvinylformamides, polysaccharides such as starch, oligosaccharides or monosaccharides.
- the graft polymers are obtainable by free-radically polymerizing, for example, N-vinylformamide in aqueous medium in the presence of at least one of the stated grafting bases together with copolymerizable other monomers and then hydrolyzing the grafted vinylformamide units in a known manner to give vinylamine units.
- Preferred polymers containing vinylamine units are vinylamine homopolymers of N-vinylformamide having a degree of hydrolysis of from 1 to 100 mol%, preferably from 25 to 100 mol%, and from 1 to 100 mol%, preferably from 25 to 100 mol% Copolymers of N-vinylformamide and vinyl formate, vinyl acetate, vinyl propionate, acrylonitrile, methyl acrylate, ethyl acrylate and / or methyl methacrylate having K values of from 30 to 150, in particular from 60 to 100. Particular preference is given in the process according to the invention to the aforementioned homopolymers of N-vinylformamide used.
- Typical representatives of these homopolymers of N-vinylformamide are known under the trade names Catiofast® ® VFH, Catiofast® ® VSH and Catiofast® ® VMP of BASF Aktiengesellschaft.
- the cationic and / or amphoteric polymers to be used in the process according to the invention are particularly preferred in an amount of from 0.0001 to 1% by weight, based on the solids content of the paper stock suspension, preferably from 0.0005 to 0.5% by weight in an amount of 0.001 to 0.2 wt .-% and in particular in an amount of 0.005 to 0.1 wt .-%, each based on the solids content of the pulp suspension, added to the fiber suspension.
- the addition of the at least one cationic and / or amphoteric polymer to the fiber suspension achieves enormously increased filler retention compared to the prior art, i. It can be prepared by the novel process papers with a high filler content. As a result, the pulp content is reduced in the production, which leads to a reduction in the production cost of the paper.
- papers prepared by the process according to the invention in addition to the increased filler content improved dry strength. This is especially characterized by properties such as dry breaking length, tear propagation, internal strength and bending stiffness.
- the paper gloss can also be significantly increased by the treatment according to the invention of the fillers. This is especially true for woody papers such as e.g. SC-paper.
- the gloss increase means an increase in paper quality, which allows the paper manufacturer to obtain a higher selling price.
- the finely divided fillers to be used in the process according to the invention are known from the literature. These are finely divided fillers which are at least partially coated with water-soluble amphoteric copolymers. Such aqueous slurries are made JP-A 08059740 . WO 04/087818 and the file number DE 103 34 133 A1 known. These references are hereby incorporated by reference.
- the water-soluble amphoteric copolymers disclosed in these references have as a common structural feature that they contain Amidinein whatsoever, both five- and six-membered.
- finely divided fillers alone, i. in pure form or as a so-called fresh filler, as well as finely divided fillers containing raw materials such as the so-called committee of coated paper, as well as mixtures in any composition thereof understood by the term finely divided fillers components.
- aqueous slurries of 100% fresh filler are used in the process according to the invention.
- aqueous slurries can be used in the process according to the invention, the filler content is obtained to 100% from the Committee of coated paper. It does not matter whether it is the Committee of one or two sides coated paper.
- aqueous slurries of mixtures in any desired composition of fresh filler and scrap of coated paper are used.
- aqueous slurries of mixtures in any desired composition of fresh filler and scrap of coated paper are used.
- such a blend may consist of 90% fresh filler and 10% filler from the coated paper broke, each based on the filler content of the aqueous slurry.
- the ratio can also be reversed, namely fresh filler: filler from the coated paper broke of 10%: 90%.
- Possible blends of fresh filler to filler from the broke paper committee are e.g. 15%: 85%, 20%: 80%, 30%: 70%, 40%: 60%, 50%: 50%, 60%: 40%, 70%: 30%, 80%: 20% and 85% : 15%. As described above, however, mixtures in any composition are possible.
- the mixing ratio is in the range of 15% (fresh filler) to 85% (filler of the coated paper broke) to 60% (fresh filler) of 40% (filler of the coated paper broke).
- the percentages in each case relate to the total filler content in the aqueous slurry.
- the filler base e.g. Calcium carbonates, which are present in the form of ground lime (GCC), lime, chalk, marble or in the form of precipitated calcium carbonate (PCC).
- GCC ground lime
- PCC precipitated calcium carbonate
- Talc, kaolin, bentonite, satin white, calcium sulfate, barium sulfate and titanium dioxide can likewise be used as fillers.
- the particle diameter of the fillers is preferably less than 2 ⁇ m, for example between 40 and 90% of the filler particles have a particle diameter of ⁇ 2 ⁇ m.
- the fillers are present as aqueous slurries.
- Precipitated calcium carbonate is usually present as an aqueous slurry in the absence of dispersants.
- an anionic dispersant for example polyacrylic acid having an average molar mass M w of, for example, from 1,000 to 40,000 daltons, is generally used. If the fillers contain a high solids content (eg 60% or more), the fillers are milled in the presence of an anionic dispersant.
- anionic dispersant it is used, for example, from 0.01 to 0.6% by weight, preferably from 0.2 to 0.5% by weight, for the preparation of aqueous filler slurries.
- the slurries dispersed in water in the presence of anionic dispersants contain, for example, 10-60% by weight, usually 15-50% by weight, of at least one filler.
- WO 04/087818 and the DE 103 34 133 A1 described water-soluble amphoteric polymers are added to the aqueous slurries.
- a water-soluble amphoteric polymer for example, from 0.1 to 5% by weight, based on fillers, of a water-soluble amphoteric polymer, of up to from 1 to 60% by weight of at least one fine-particle filler-comprising aqueous slurry JP-A 08059740 .
- WO 04/087818 and the DE 103 34 133 A1 Add or add an aqueous slurry of a finely divided filler in an aqueous solution of an amphoteric polymer and mix the components respectively.
- This treatment of the aqueous slurry of particulate fillers with the amphoteric polymers can be carried out continuously or batchwise.
- the treatment of the fillers with the amphoteric polymer takes place in a continuous mode.
- the amphoteric polymer can be added as a dilute solution between the filler tank and the filler pump. The dilution and the shear forces in the filler pump guarantee a thorough mixing of the filler with the polymer.
- the finely divided fillers are at least partially coated or impregnated with the water-soluble amphoteric polymers.
- the solid content of the dilute polymer solution of the water-soluble amphoteric polymers may be between 20% by weight and 0.01% by weight.
- the treatment with the water-soluble amphoteric copolymers can be carried out, for example, by dissolving the scrap of coated paper in the presence of the water-soluble amphoteric copolymers.
- the treatment with water-soluble amphoteric copolymers is carried out after dissolution of the coated paper committee.
- filler from the committee also finely divided fillers are obtained, which are at least partially coated or impregnated with water-soluble amphoteric copolymers.
- the polymer-treated filler slurry passes directly into the thick or thin paper machine pulp. It is also conceivable that the treated filler be metered in both the thick and in the thin paper machine.
- the process according to the invention is suitable both for the production of wood-free papers and wood-containing papers.
- the process according to the invention leads to a significant increase in the filler content in the paper, without causing any significant losses in the paper properties of dry strength.
- the filler content is increased without loss of strength by the addition of at least one cationic and / or amphoteric polymer.
- the production of paper, paperboard and cardboard by the process according to the invention is usually carried out by dewatering a slurry of cellulose fibers.
- Suitable cellulosic fibers are all conventional types, for example cellulose fibers from wood pulp and fibers obtained from annual plants.
- Wood pulp includes, for example, groundwood, thermomechanical pulp (TMP), chemothermomechanical pulp (CTMP), pressure groundwood, semi-pulp, high yield pulp, and refiner mechanical pulp (RMP) as well as waste paper.
- pulps that can be used in bleached or unbleached form. Examples include sulphate, sulphite and soda pulps. Bleached pulps, also referred to as bleached kraft pulp, are preferably used.
- the fibers mentioned can be used alone or in a mixture.
- papers having a high filler content are understood in particular to be papers having a filler content of from 3 to 45% by weight, based on the solids content of the paper stock suspension, preferably from 10 to 45% by weight, more preferably from 15 to 40 wt .-% and particularly preferably from 20 to 35 wt .-%, each based on the solids content of the paper stock suspension having.
- the invention will be further illustrated by the following non-limiting examples. The percentages in the examples are by weight unless otherwise indicated in the context.
- the electrophoretic mobility and the zeta potential were determined by laser optics.
- the samples were diluted with an aqueous KCl solution (eg 10 mmoles) to a concentration for the measurement of 1% by volume.
- the measuring instrument used was the Zetasizer 3000 HS from Malvern Instruments Ltd ..
- the molecular weights M w of the polymers were determined by means of static light scattering. The measurements were carried out at pH 7.6 in a 10 mmol aqueous saline solution.
- the K values were after H. Fikentscher, Cellulose Chemistry, Vol. 13, 48-64 and 71-74 (1932 ) in 1.0% aqueous brine at 25 ° C, at a pH of 7 and a polymer concentration of 0.1% by weight.
- the fillers used were precipitated chalk, precipitated calcium carbonate (PCC), ground chalk (GCC), kaolin or mixtures of the stated fillers.
- Five different copolymer-pretreated fillers were used in the examples of this invention.
- TMP Thermo-Mechanical Pulp
- groundwood was whisk-free in a ratio of 70/30 at a solids concentration of 4% in the laboratory pulper until a grinding degree of 60-65 was reached.
- the pH of the substance was in the range between 7 and 8.
- the milled substance was then diluted by the addition of water to a solids concentration of 0.35%.
- aqueous filler slurries of the pretreated fillers in combination with polymers containing vinylamine units in the production of filler-containing paper 500 ml of the stock suspension were placed in each case and the slurries of the pretreated fillers and a vinylamine units were metered into this pulp containing polymer (Catiofast® VMP).
- the metered amount of the polymers containing vinylamine units was in each case 0.1% of polymer, based on the solids content of the paper stock suspension.
- a cationic polyacrylamide retention aid (Polymin ® KE 2020) in this mixture.
- the metered amount of the retention agent was in each case 0.01% polymer, based on the solids content of the paper stock suspension.
- the amount of slurry was adjusted by means of several preliminary tests so that the amount of pretreated filler was about 20%.
- the paper sheets were each produced on a Rapid-Köthen sheet former according to ISO 5269/2 with a sheet weight of 80 g / m 2 and then dried for 7 minutes at 90 ° C and then calendered with a line pressure of 200 N / cm.
- Paper sheets were prepared analogously to Examples 1 to 5 with the corresponding pretreated fillers. However, it has been dispensed with the addition of polymers containing vinylamine units.
- a mixture of bleached birch sulphate and bleached pine sulphite was blotted open in a ratio of 70/30 at a solids concentration of 4% in the laboratory pulper until a freeness of 55-60 was reached.
- the opened substance is an optical brightener (Blankophor ® PSG) and a cationic starch (HICAT ® 5163 A) were then added.
- the digestion of the cationic starch was carried out as a 10% starch slurry in a jet cooker at 130 ° C and 1 minute residence time.
- the metered amount of the optical brightener was 0.5% commercial goods, based on the solids content of the paper stock suspension.
- the dosage of cationic starch was 0.5% starch, based on the solids content of the stock suspension.
- the pH of the substance was in the range between 7 and 8.
- the milled substance was then diluted by the addition of water to a solids concentration of 0.35%.
- aqueous filler slurries of the pretreated fillers in combination with polymers containing vinylamine units in the production of filler-containing paper 500 ml of the stock suspension were placed in each case and the slurries of the pretreated fillers and a vinylamine units were metered into this pulp containing polymer (Catiofast® VFH).
- the metered amount of the polymers containing vinylamine units was in each case 0.1% of polymer, based on the solids content of the paper stock suspension.
- a cationic polyacrylamide retention aid (Polymin ® KE 2020) in this mixture.
- the metered amount of the retention agent was in each case 0.01% polymer, based on the solids content of the paper stock suspension.
- the amount of slurry was adjusted by means of several preliminary tests so that the amount of pretreated filler was about 16%.
- the paper sheets were each produced on a Rapid-Köthen sheet former according to ISO 5269/2 with a sheet weight of 80 g / m 2 and then dried for 7 minutes at 90 ° C and then calendered with a line pressure of 200 N / cm.
- Paper sheets were prepared analogously to Examples 15 to 18 with the corresponding pretreated fillers. However, it has been dispensed with the addition of polymers containing vinylamine units.
- a mixture of bleached chemical pulp and groundwood was blotted open in a ratio of 20/80 at a solids concentration of 4% in the laboratory pulper until a freeness of 55-60 was reached.
- the pH of the substance was in the range between 7 and 8.
- the milled substance was then diluted by the addition of water to a solids concentration of 0.35%.
- the amount of dosed filler slurry of the filler 2 and the untreated kaolin clay mixture was adjusted by means of several preliminary experiments so that the amount of filler 2 and untreated kaolin clay was about 20%.
- the total filler content was thus about 40%.
- the paper sheets were produced on a Rapid-Köthen sheet former according to ISO 5269/2 with a sheet weight of 80 g / m 2 and then dried for 7 minutes at 90 ° C and then calendered with a line pressure of 200 N / cm.
- Paper sheets were produced analogously to Example 26. It was the corresponding filler untreated, that is free of amphoteric copolymers used. However, the addition amount of the filler slurry in the sheet formation was increased so much that the equivalent filler content of the respective filler type of Example 26 was achieved.
- the double-coated woodfree paper having a basis weight of 104 g / m 2 used in the examples contained a total of 38.4% of filler by analysis of the ashing data (500 ° C for 2 hours in the ashing furnace). According to the paper manufacturer, the raw paper used for the production of the coated grade was produced with a filler content of about 23% (ground calcium carbonate, GCC). The weight on each side was 12 gsm. The coating pigment used was precipitated calcium carbonate.
- a mixture of bleached birch sulphate and bleached pine sulphite was blotted open in a ratio of 70/30 at a solids concentration of 4% in the laboratory pulper until a freeness of 55-60 was reached.
- the whisker and the coated broke spread in the presence of the amphoteric copolymer were mixed in a 1: 1 ratio.
- the total material, an optical brightener (Blankophor ® PSG) and a cationic starch (HICAT ® 5163 A) were then added.
- the digestion of the cationic starch was carried out as a 10% starch slurry in a jet cooker at 130 ° C and 1 minute residence time.
- the metered amount of the optical brightener was 0.5% commercial goods, based on the solids content of the paper stock suspension.
- the dosage of cationic starch was 0.5% starch, based on the solids content of the stock suspension.
- the pH of the substance was in the range between 7 and 8. The total material was then diluted by the addition of water to a solids concentration of 0.35%.
- the paper sheets were each produced on a Rapid-Köthen sheet former according to ISO 5269/2 with a sheet weight of 80 g / m 2 and then dried for 7 minutes at 90 ° C and then calendered with a line pressure of about 200 N / cm.
- a mixture of bleached birch sulphate and bleached pine sulphite was blotted open in a ratio of 70/30 at a solids concentration of 4% in the laboratory pulper until a freeness of 55-60 was reached.
- the whisker and the coated broke spread in the presence of the amphoteric copolymer were mixed in a 1: 1 ratio.
- the total material, an optical brightener (Blankophor ® PSG) and a cationic starch (HICAT ® 5163 A) were then added.
- the digestion of the cationic starch was carried out as a 10% starch slurry in a jet cooker at 130 ° C and 1 minute residence time.
- the metered amount of the optical brightener was 0.5% commercial goods, based on the solids content of the paper stock suspension.
- the dosage of cationic starch was 0.5% starch, based on the solids content of the stock suspension.
- the pH of the substance was in the range between 7 and 8. The total material was then diluted by the addition of water to a solids concentration of 0.35%.
- the paper sheets were each produced on a Rapid-Köthen sheet former according to ISO 5269/2 with a sheet weight of 80 g / m 2 and then dried for 7 minutes at 90 ° C and then calendered with a line pressure of about 200 N / cm.
- a mixture of bleached birch sulphate and bleached pine sulphite was blotted open in a ratio of 70/30 at a solids concentration of 4% in the laboratory pulper until a freeness of 55-60 was reached.
- the whipped material was then mixed with the coated broke in the ratio 1: 1.
- the total material, an optical brightener (Blankophor ® PSG) and a cationic starch (HICAT ® 5163 A) were then added.
- the digestion of the cationic starch was carried out as a 10% starch slurry in a jet cooker at 130 ° C and 1 minute residence time.
- the metered amount of the optical brightener was 0.5% strength, based on the solids content of the paper stock suspension.
- the dosage of cationic starch was 0.5% starch, based on the solids content of the stock suspension.
- the pH of the substance was in the range between 7 and 8.
- the total material was then diluted by the addition of water to a solid
- the paper sheets were each produced on a Rapid-Köthen sheet former according to ISO 5269/2 with a sheet weight of 80 g / m 2 and then dried for 7 minutes at 90 ° C and then calendered with a line pressure of about 200 N / cm.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Paper (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL05819674T PL1828481T3 (pl) | 2004-12-17 | 2005-12-14 | Papiery o dużej zawartości wypełniaczy i wysokiej wytrzymałości na sucho |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200410061605 DE102004061605A1 (de) | 2004-12-17 | 2004-12-17 | Papiere mit hohem Füllstoffgehalt und hoher Trockenfestigkeit |
DE200510022799 DE102005022799A1 (de) | 2005-05-12 | 2005-05-12 | Papier mit hohem Füllstoffgehalt und hoher Trockenfestigkeit |
PCT/EP2005/013430 WO2006066769A2 (de) | 2004-12-17 | 2005-12-14 | Papiere mit hohem füllstoffgehalt und hoher trockenfestigkeit |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1828481A2 EP1828481A2 (de) | 2007-09-05 |
EP1828481B1 true EP1828481B1 (de) | 2015-09-23 |
Family
ID=36602111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05819674.2A Active EP1828481B1 (de) | 2004-12-17 | 2005-12-14 | Papiere mit hohem f]llstoffgehalt und hoher trockenfestigkeit |
Country Status (8)
Country | Link |
---|---|
US (1) | US8778139B2 (es) |
EP (1) | EP1828481B1 (es) |
JP (1) | JP5130049B2 (es) |
CA (1) | CA2590489C (es) |
ES (1) | ES2554691T3 (es) |
PL (1) | PL1828481T3 (es) |
PT (1) | PT1828481E (es) |
WO (1) | WO2006066769A2 (es) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004052957A1 (de) * | 2004-10-29 | 2006-05-04 | Basf Ag | Verfahren zur Herstellung von gekrepptem Papier |
DE102005025374A1 (de) * | 2005-05-31 | 2006-12-07 | Basf Ag | Polymer-Pigment-Hybride für die Papierherstellung |
CN101397766B (zh) * | 2007-07-05 | 2013-05-22 | 巴斯夫欧洲公司 | 细碎填料水浆的制备及其用于制造高填料含量和高干强度纸的用途 |
US8088250B2 (en) | 2008-11-26 | 2012-01-03 | Nalco Company | Method of increasing filler content in papermaking |
WO2009156274A1 (de) | 2008-06-24 | 2009-12-30 | Basf Se | Herstellung von papier |
WO2010020551A1 (de) * | 2008-08-18 | 2010-02-25 | Basf Se | Verfahren zur erhöhung der trockenfestigkeit von papier, pappe und karton |
FR2992981B1 (fr) | 2012-07-09 | 2014-07-04 | Snf Sas | Procede ameliore de fabrication de papier utilisant un polymere obtenu par degradation d'hofmann |
EP3332063B1 (de) | 2015-08-06 | 2022-10-05 | Solenis Technologies Cayman, L.P. | Verfahren zur herstellung von papier |
FR3048436B1 (fr) | 2016-03-03 | 2018-03-23 | S.P.C.M. Sa | Procede de fabrication de papier et de carton |
CN106868925A (zh) * | 2016-12-30 | 2017-06-20 | 芜湖市哈贝纸业有限公司 | 一种高强高填料纸张及其制备方法 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3534273A1 (de) * | 1985-09-26 | 1987-04-02 | Basf Ag | Verfahren zur herstellung von vinylamin-einheiten enthaltenden wasserloeslichen copolymerisaten und deren verwendung als nass- und trockenverfestigungsmittel fuer papier |
DE3842820A1 (de) * | 1988-12-20 | 1990-06-28 | Basf Ag | Verfahren zur herstellung von stabilen wasser-in-oel-emulsionen von hydrolysierten polymerisaten von n-vinylamiden und ihre verwendung |
DE4001045A1 (de) * | 1990-01-16 | 1991-07-18 | Basf Ag | Verfahren zur herstellung von papier, pappe und karton |
JP2960185B2 (ja) * | 1991-03-06 | 1999-10-06 | 三菱製紙株式会社 | 紙の製造方法 |
JPH05106103A (ja) | 1991-10-16 | 1993-04-27 | Danaa Japan:Kk | 衣服のポケツト |
JP3472352B2 (ja) | 1994-08-16 | 2003-12-02 | ハイモ株式会社 | 製紙用添加剤 |
DE19617983A1 (de) * | 1996-05-06 | 1997-11-13 | Basf Ag | ß-Hydroxyalkylvinylamin-Einheiten enthaltende Polymerisate, Verfahren zu ihrer Herstellung und ihre Verwendung |
DE19627553A1 (de) * | 1996-07-09 | 1998-01-15 | Basf Ag | Verfahren zur Herstellung von Papier und Karton |
DE19654390A1 (de) * | 1996-12-27 | 1998-07-02 | Basf Ag | Verfahren zur Herstellung von Papier |
US6033524A (en) * | 1997-11-24 | 2000-03-07 | Nalco Chemical Company | Selective retention of filling components and improved control of sheet properties by enhancing additive pretreatment |
DE19851024A1 (de) * | 1998-11-05 | 2000-05-11 | Basf Ag | Wäßrige Dispersionen von wasserlöslichen Polymerisaten von N-Vinylcarbonsäureamiden, Verfahren zu ihrer Herstellung und ihre Verwendung |
SE521591C2 (sv) * | 1998-11-30 | 2003-11-18 | Sca Res Ab | Metod att framställa en partikel uppvisande beläggning av med varandra växelverkande polymerer och pappers -eller nonwovenprodukt innehållande partiklarna |
FI117716B (fi) | 2000-04-18 | 2007-01-31 | Ciba Sc Holding Ag | Menetelmä täyteaineen esikäsittelemiseksi, modifioitu täyteaine ja sen käyttö |
DE10162052A1 (de) * | 2001-12-17 | 2003-06-26 | Basf Ag | Verfahren zur Herstellung von Papier, Pappe und Karton |
JP2004018323A (ja) * | 2002-06-18 | 2004-01-22 | Nippon Paper Industries Co Ltd | 複合粒子の製造方法並びに高填料内添紙の製造方法 |
JP2004018336A (ja) * | 2002-06-19 | 2004-01-22 | Nippon Paper Industries Co Ltd | 酸化チタン複合粒子の製造方法並びに填料内添紙の製造方法 |
DE10315363A1 (de) * | 2003-04-03 | 2004-10-14 | Basf Ag | Wässrige Anschlämmungen von feinteiligen Füllstoffen, Verfahren zu ihrer Herstellung und ihre Verwendung zur Herstellung füllstoffhaltiger Papiere |
DE10334133A1 (de) * | 2003-07-25 | 2005-02-24 | Basf Ag | Wässrige Zusammensetzung und deren Verwendung zur Papierherstellung |
-
2005
- 2005-12-14 US US11/721,929 patent/US8778139B2/en active Active
- 2005-12-14 EP EP05819674.2A patent/EP1828481B1/de active Active
- 2005-12-14 JP JP2007545938A patent/JP5130049B2/ja not_active Expired - Fee Related
- 2005-12-14 CA CA2590489A patent/CA2590489C/en active Active
- 2005-12-14 PT PT58196742T patent/PT1828481E/pt unknown
- 2005-12-14 ES ES05819674.2T patent/ES2554691T3/es active Active
- 2005-12-14 PL PL05819674T patent/PL1828481T3/pl unknown
- 2005-12-14 WO PCT/EP2005/013430 patent/WO2006066769A2/de active Application Filing
Also Published As
Publication number | Publication date |
---|---|
PT1828481E (pt) | 2016-01-26 |
JP2008524452A (ja) | 2008-07-10 |
CA2590489A1 (en) | 2006-06-29 |
US8778139B2 (en) | 2014-07-15 |
PL1828481T3 (pl) | 2016-03-31 |
WO2006066769A3 (de) | 2006-11-16 |
WO2006066769A2 (de) | 2006-06-29 |
JP5130049B2 (ja) | 2013-01-30 |
EP1828481A2 (de) | 2007-09-05 |
US20090272506A1 (en) | 2009-11-05 |
ES2554691T3 (es) | 2015-12-22 |
CA2590489C (en) | 2015-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1828481B1 (de) | Papiere mit hohem f]llstoffgehalt und hoher trockenfestigkeit | |
EP2443284B1 (de) | Verfahren zur erhöhung der trockenfestigkeit von papier, pappe und karton | |
DE68917069T2 (de) | Trockenfestigkeitszusatz für Papier. | |
DE68905208T2 (de) | Herstellung von Papier und Pappe. | |
EP2315875B1 (de) | Verfahren zur erhöhung der trockenfestigkeit von papier, pappe und karton | |
EP1819877B1 (de) | Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit | |
DE69908938T2 (de) | Verfahren zur herstellung von papier | |
EP1792010B1 (de) | Verfahren zur herstellung von papier, pappe und karton | |
DE69224063T2 (de) | Verfahren zur herstellung von papier | |
EP2288750B1 (de) | Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit | |
DE69408485T2 (de) | Verfahren zur Herstellung von Papier mit erhöhter Festigkeit im nassen und trockenen Zustand | |
EP2920364B1 (en) | Emulsification of alkenyl succinic anhydride with an amine-containing homopolymer or copolymer | |
DE3644072A1 (de) | Beschwertes papier | |
DE3730887A1 (de) | Verfahren zur verbesserung der bedruckbarkeit von papier | |
EP0282761A1 (de) | Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit | |
EP0406461B1 (de) | Neue kationische Dispergiermittel enthaltende Papierleimungsmittel | |
EP1727938B1 (de) | Verfahren zur herstellung von papier, pappe und karton | |
WO2010026101A1 (de) | Verfahren zur herstellung von papier, pappe und karton unter verwendung von endo-beta-1,4-glucanasen als entwässerungsmittel | |
EP1452552A2 (de) | Kationische Stärke-Pfropfcopolymere | |
DE69915070T2 (de) | Füllmittel mit modifizierter oberfläche zum leimen von papier | |
EP3332063B1 (de) | Verfahren zur herstellung von papier | |
EP2723943B1 (de) | Verfahren zur herstellung von papier, pappe und karton | |
DE102004061605A1 (de) | Papiere mit hohem Füllstoffgehalt und hoher Trockenfestigkeit | |
DE102005022799A1 (de) | Papier mit hohem Füllstoffgehalt und hoher Trockenfestigkeit | |
DE2115409A1 (de) | Füllstoffe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070717 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20071002 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BASF SE |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150428 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAX | Requested extension states of the european patent have changed |
Extension state: AL Payment date: 20070717 Extension state: MK Payment date: 20070717 Extension state: BA Payment date: 20070717 Extension state: YU Payment date: 20070717 Extension state: HR Payment date: 20070717 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 751320 Country of ref document: AT Kind code of ref document: T Effective date: 20151015 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502005014943 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2554691 Country of ref document: ES Kind code of ref document: T3 Effective date: 20151222 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20151223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151224 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160123 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502005014943 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151214 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20160624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20051214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150923 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20190503 AND 20190508 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502005014943 Country of ref document: DE Owner name: SOLENIS TECHNOLOGIES CAYMAN, L.P., GEORGE TOWN, KY Free format text: FORMER OWNER: BASF SE, 67063 LUDWIGSHAFEN, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20191227 Year of fee payment: 15 Ref country code: PT Payment date: 20191205 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20191227 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20191204 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20191231 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20191210 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210614 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 751320 Country of ref document: AT Kind code of ref document: T Effective date: 20201214 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20201231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201231 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201231 Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201214 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20221226 Year of fee payment: 18 Ref country code: GB Payment date: 20221227 Year of fee payment: 18 Ref country code: FR Payment date: 20221227 Year of fee payment: 18 Ref country code: FI Payment date: 20221227 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20230102 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20221221 Year of fee payment: 18 Ref country code: DE Payment date: 20221228 Year of fee payment: 18 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230510 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502005014943 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231214 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20240101 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20231214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240702 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231231 |