WO2010020551A1 - Verfahren zur erhöhung der trockenfestigkeit von papier, pappe und karton - Google Patents

Verfahren zur erhöhung der trockenfestigkeit von papier, pappe und karton Download PDF

Info

Publication number
WO2010020551A1
WO2010020551A1 PCT/EP2009/060331 EP2009060331W WO2010020551A1 WO 2010020551 A1 WO2010020551 A1 WO 2010020551A1 EP 2009060331 W EP2009060331 W EP 2009060331W WO 2010020551 A1 WO2010020551 A1 WO 2010020551A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
units
polymer
polymers
groups
Prior art date
Application number
PCT/EP2009/060331
Other languages
English (en)
French (fr)
Inventor
Hans-Joachim HÄHNLE
Christian Jehn-Rendu
Rainer Blum
Ellen KRÜGER
Norbert Schall
Martin Rübenacker
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to CA2733503A priority Critical patent/CA2733503C/en
Priority to US13/058,217 priority patent/US8404083B2/en
Priority to CN200980131892.6A priority patent/CN102124161B/zh
Priority to EP09781661.5A priority patent/EP2315875B1/de
Publication of WO2010020551A1 publication Critical patent/WO2010020551A1/de

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/18Reinforcing agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/37Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylates
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/37Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylates
    • D21H17/375Poly(meth)acrylamide
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/44Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups cationic
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/47Condensation polymers of aldehydes or ketones
    • D21H17/48Condensation polymers of aldehydes or ketones with phenols
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/54Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen
    • D21H17/55Polyamides; Polyaminoamides; Polyester-amides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/54Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen
    • D21H17/56Polyamines; Polyimines; Polyester-imides

Definitions

  • the invention relates to a process for the production of paper, paperboard and cardboard with high dry strength by adding at least one cationic polymer and a polymeric anionic compound to a pulp, dewatering of the pulp under sheet formation and drying of the paper products.
  • a process for the production of paper with high dry strength in which one adds to the paper material first a water-soluble cationic polymer, then dosed a water-soluble anionic polymer, then dewatered the paper stock on the paper machine with sheet formation and the paper products dry.
  • Suitable anionic polymers are, for example, hydrolyzed polyacrylamides which may have up to 30 mol% of acrylic acid units.
  • cationic polymers for example, water-soluble homopolymers and copolymers of cationic monomers such as vinylpyridine, vinylimidazolidine, diallylamines, ethyleneimine and basic acrylates and basic methacrylates are used.
  • the basic (meth) acrylates can each be copolymerized with acrylamide or methacrylamide.
  • These cationic polymers and also polyacrylamides can be modified to form other cationic polymers which are suitable for the process described, for example they can be subjected to a Mannich reaction or Hofmann degradation.
  • a process for the production of paper with high dry strength in which one adds to the pulp first a water-soluble cationic polymer and then a water-soluble anionic polymer.
  • Suitable anionic polymers are, for example, homopolymers or copolymers of ethylenically unsaturated C 3 -C 8 -carboxylic acids.
  • the copolymers contain at least 35% by weight of an ethylenically unsaturated C 3 -C 5 -carboxylic acid (for example acrylic acid) in copolymerized form.
  • the cationic polymers described in the examples are polyethyleneimine, polyvinylamine, polydiallyldimethylammonium chloride and epichlorohydrin-crosslinked condensation products of adipic acid and diethylenetriamine.
  • the use of partially hydrolyzed homo- and copolymers of N-vinylformamide has also been considered.
  • JP-A 1999-140787 relates to a process for the production of corrugated board, wherein to improve the strength properties of a paper product to the pulp 0.05 to 0.5 wt .-%, based on dry pulp, of a polyvinylamine obtained by hydrolysis of polyvinylformamide with a degree of hydrolysis of 25 to
  • WO 2004/061235 a process for the production of paper, in particular tissue, with particularly high wet and / or dry strengths is known, in which one first admits to the paper a water-soluble cationic polymer that at least 1, 5 meq / g of polymer contains primary amino functionalities and has a molecular weight of at least 10,000 daltons. Particular emphasis is placed here partially and fully hydrolyzed homopolymers of N-vinylformamide. Subsequently, a water-soluble anionic polymer is added which contains anionic and / or aldehydic groups.
  • R 1 , R 2 H or C 1 to C 6 alkyl
  • WO 2006/075115 describes the use of Hofmann degradation products of copolymers of acrylamide or methacrylamide in combination with anionic polymers having an anionic charge density of> 0.1 meq / g for producing paper and board having a high dry strength known.
  • WO 2006/120235 describes a process for producing papers having a filler content of at least 15% by weight, in which filler and fibers are treated together with cationic and anionic polymers, the treatment taking place alternately with cationic and anionic polymers and at least Includes 3 steps.
  • WO 2006/090076 also relates to a process for producing paper and paperboard having high dry strength, wherein 3 components are added to the paper stock:
  • the invention has for its object to provide a further process for the production of paper, paperboard and cardboard with high dry strength available, the dry strength properties of the paper products compared to those of known products are further improved as possible. Another object of the invention is to achieve faster dewatering of the stock compared to known methods.
  • the objects are achieved according to the invention with a process for the production of paper, paperboard and cardboard with high dry strength by adding at least one water-soluble cationic polymer and at least one water-soluble polymeric anionic compound to a pulp, dewatering the pulp under sheet formation and drying the paper products, if water-soluble cationic polymers
  • the invention also relates to papers which are obtainable by the method described above.
  • polymers containing vinylamine units are known, cf. the DE-A 35 06 832 and DE-A 10 2004 056551 mentioned in the state of the art.
  • polymers containing (for example) vinylamine units include the reaction products which are obtainable
  • R 1 , R 2 H or C 1 - to C 6 -alkyl
  • R 1 , R 2 H or C 1 - to C 6 -alkyl
  • the polymers containing vinylamine units may also be amphoteric if they have a total cationic charge.
  • the content of cationic groups in the polymer should be at least 5 mol%, preferably at least 10 mol% the content of anionic groups.
  • Such polymers are obtainable, for example, by polymerizing
  • R 1 , R 2 H or C 1 - to C 6 -alkyl
  • N at least one monoethylenically unsaturated sulfonic acid, one monoethylenically unsaturated phosphonic acid, one monoethylenically unsaturated carboxylic acid having 3 to 8 C atoms in the molecule and / or their alkali metal, alkaline earth metal or ammonium salts and optionally
  • reaction products obtainable by polymerizing N-vinylformamide and subsequent cleavage of formyl groups from the vinylformamide units polymerized into the polymer to form amino groups or the reaction products obtained by copolymerizing from
  • Examples of monomers of the formula I are N-vinylformamide, N-vinyl-N-methylformamide, N-vinylacetamide, N-vinyl-N-methylacetamide, N-vinyl-N-ethylacetamide, N-vinylpropionamide and N-vinyl-N-methylpropionamide and N-vinylbutyramide.
  • the monomers of group (i) can be used alone or mixed in the copolymerization with the monomers of the other groups.
  • Preferably used monomer of this group is N-vinylformamide.
  • polymers may optionally be modified by copolymerizing the N-vinylcarboxylic acid amides (i) together with (ii) at least one other monoethylenically unsaturated monomer and then hydrolyzing the copolymers to form amino groups. If anionic monomers are used in the copolymerization, the hydrolysis of the copolymerized vinylcarboxylic acid amide units is carried out so far that the molar excess of amine units relative to the anionic units in the polymer is at least 5 mol%.
  • Examples of monomers of group (ii) are esters of ⁇ , ß-ethylenically unsaturated mono- and dicarboxylic acids with Ci-C3o-alkanols, C2-C3o-alkanediols and C2-C30-amino alcohols, amides of ⁇ , ß-ethylenisch insatiated monocarboxylic acids and their N-alkyl and N, N-dialkyl derivatives, nitriles of ⁇ , ß-ethylenically unsaturated mono- and dicarboxylic acids, esters of vinyl alcohol and allyl alcohol with C1-C30 monocarboxylic acids, N-vinyl lactams, nitrogen-containing heterocycles with ⁇ , ß-ethylenically unsaturated Double bonds, vinyl aromatics, vinyl halides, vinylidene halides, C 2 -C 8 monoolefins, and mixtures thereof.
  • Suitable representatives are, for example, methyl (meth) acrylate (this notation symbolizes both "acrylates” and “methacrylates” as well as in the following text), methyl ethylacrylate, ethyl (meth) acrylate, ethylethacrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, tert-butylethacrylate, n-ocytl (meth) acrylate, 1, 1,3,3-tetramethylbutyl (meth) acrylate, ethylhexyl (meth) acrylate and mixtures thereof.
  • Suitable additional monomers of group (ii) are furthermore the esters of ⁇ , ⁇ -ethylenically unsaturated mono- and dicarboxylic acids with aminoalcohols, preferably C 2 -C 12 -aminoalcohols. These may be d-Cs-monoalkylated or dialkylated on the amine nitrogen.
  • the acid component of these esters are z.
  • Preference is given to using acrylic acid, methacrylic acid and mixtures thereof.
  • N-methylaminomethyl (meth) acrylate N-methylaminoethyl (meth) acrylate, N, N-dimethylaminomethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N , N-dimethylaminopropyl (meth) acrylate, N, N-diethylaminopropyl (meth) acrylate and N, N-dimethylaminocyclohexyl (meth) acrylate.
  • Suitable monomers of group (ii) are 2-hydroxyethyl (meth) acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl ( meth) acrylate, 6-hydroxyhexyl (meth) acrylate and mixtures thereof.
  • Suitable monomers of group (ii) are acrylamide, methacrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, n-propyl (meth) acrylamide, N- (n-butyl) (meth) acrylamide, tert-butyl (meth) acrylamide, n-octyl (meth) acrylamide, 1,1,3,3-tetramethylbutyl (meth) acrylamide, ethylhexyl (meth) acrylamide and mixtures thereof.
  • monomers of group (ii) are nitriles of ⁇ , ß-ethylenically unsaturated mono- and dicarboxylic acids such as acrylonitrile and methacrylonitrile.
  • the presence of units of these monomers in the copolymer leads during or after the hydrolysis to products which have amidine units, cf.
  • amidine units are formed in a secondary reaction by vinylamino units having an adjacent vinylformamide unit or, if a nitrile group, as an adjacent group present in the polymer - react with it.
  • the indication of vinylamine units in the amphoteric Copolymers or in unmodified homo- or copolymers always the sum of vinylamine and amidine units.
  • Suitable monomers of group (ii) are furthermore N-vinyllactams and derivatives thereof, which, for. B. one or more d-C ⁇ -alkyl substituents (as defined above) may have.
  • N-vinylpyrrolidone N-vinylpiperidone, N-vinylcaprolactam, N-vinyl-5-methyl-2-pyrrolidone, N-vinyl-5-ethyl-2-pyrrolidone, N-vinyl-6-methyl-2-piperidone, N-vinyl-6-ethyl-2-piperidone, N-vinyl-7-methyl-2-caprolactam, N-vinyl-7-ethyl-2-caprolactam and mixtures thereof.
  • suitable monomers of group (ii) are N-vinylimidazoles and alkylvinylimidazoles, in particular methylvinylimidazoles such as 1-vinyl-2-methylimidazole, 3-vinylimidazoleN-oxide, 2- and 4-vinylpyridine N-oxides and betaine derivatives and quaternization products of these monomers and ethylene, propylene, isobutylene, butadiene, styrene, ⁇ -methylstyrene, vinyl acetate, vinyl propionate, vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride and mixtures thereof.
  • methylvinylimidazoles such as 1-vinyl-2-methylimidazole, 3-vinylimidazoleN-oxide, 2- and 4-vinylpyridine N-oxides and betaine derivatives and quaternization products of these monomers and ethylene, propylene, isobutylene, butad
  • the aforementioned monomers can be used individually or in the form of any mixtures. Typically, they are used in amounts of 1 to 90 mol%, preferably 10 to 80 mol% and particularly preferably 10 to 60 mol%.
  • amphoteric Copoylmerisaten as other monoethylenically unsaturated monomers of group (ii) are also anionic monomers into consideration, which are referred to above as monomers (ii, a). They may optionally be copolymerized with the neutral and / or cationic monomers (ii, b) described above. However, the amounts of anionic monomers (ii, a) is at most 45 MoI%, so that the resulting amphoteric copolymer has a total of a cationic charge.
  • anionic monomers of group (ii, a) are ethylenically unsaturated C3- to Cs-carboxylic acids such as acrylic acid, methacrylic acid, dimethacrylic acid, ethacrylic acid, maleic acid, fumaric acid, itoconic acid, mesaconic acid, citraconic acid, methylenemalonic acid, allylacetic acid, vinylacetic acid and crotonic.
  • monomers containing sulfo groups such as vinylsulfonic acid, acrylamido-2-methylpropanesulfonic acid and styrenesulfonic acid, and also monomers containing phosphonic groups, such as vinylphosphonic acid.
  • the monomers of this group can be used alone or in admixture with each other, in partially or completely neutralized form in the copolymerization.
  • neutralization for example, alkali metal or alkaline earth metal bases, ammonia, amines and / or alkanolamines are used.
  • alkali metal or alkaline earth metal bases ammonia, amines and / or alkanolamines are used.
  • Examples include sodium hydroxide solution, potassium hydroxide solution, soda, potash, sodium bicarbonate, magnesium oxide, calcium hydroxide, calcium oxide, triethanolamine, ethanolamine, morpholine, diethylenetriamine or tetraethylene pentamine.
  • a further modification of the copolymers is possible by using in the copolymerization monomers of group (iii) which contain at least two double bonds in the molecule, for. B. triallylamine, methylenebisacrylamide, glycol diacrylate, glycol dimethacrylate, glycerol triacrylate, pentaerythritol triallyl ether, at least two times with acrylic acid and / or methacrylic acid esterified polyalkylene glycols or polyols such as pentaerythritol, Sobit or glucose. If at least one monomer of the above group is used in the polymerization, the amounts used are up to 2 mol%, e.g. B. 0.001 to 1 mol%.
  • regulators typically, 0.001 to 5 mol%.
  • All regulators known in the literature can be used, eg. As sulfur compounds such as mercaptoethanol, 2-Ethylhexylthioglycolat, thioglycolic acid and dodecyl mercaptan and sodium hypophosphite, formic acid or Tribromchlormethan.
  • the polymers containing vinylamine units also include hydrolyzed
  • the graft polymers can be obtained by free-radically polymerizing, for example, N-vinylformamide in an aqueous medium in the presence of at least one of the grafting bases mentioned together with copolymerizable other monomers and then hydrolyzing the grafted vinylformamide units in a known manner to give vinylamine units.
  • the hydrolysis of the copolymers can be carried out in the presence of acids or bases or else enzymatically.
  • the vinylamine groups formed from the vinylcarboxamide units are present in salt form.
  • the hydrolysis of vinylcarboxamide copolymers is described in detail in EP-A 0 438 744, page 8, line 20 to page 10, line 3.
  • the explanations made there apply correspondingly to the preparation of the cationic and / or amphoteric polymers containing vinylamine units to be used according to the invention and having a total cationic charge.
  • the polymers containing vinylamine units can also be used in the form of the free bases in the process according to the invention.
  • Such polymers are useful, for example, in the hydrolysis of polymers containing vinylcarboxylic acid units with bases.
  • the polymers containing vinylamine units have, for example, K values (determined according to H. Fikentscher in 5% strength aqueous sodium chloride solution at pH 7, a polymer concentration of 0.5% by weight and a temperature of 25 ° C.) in the range from 20 to 250 , preferably 50 to 150.
  • the preparation of the homopolymers and copolymers containing vinylamine units described above can be carried out by solution, precipitation, suspension or emulsion polymerization. Preference is given to solution polymerization in aqueous media. Suitable aqueous media are water and mixtures of water and at least one water-miscible solvent, e.g. As an alcohol such as methanol, ethanol, n-propanol or isopropanol.
  • the cationic polymers are water-soluble.
  • the solubility in water at a temperature of 20 0 C, 1013 mbar and at a pH of 7.0 is for example at least 5 wt .-%, preferably at least 10% by weight.
  • the charge density of the cationic polymers (without counterions) is for example at least 1.0 meq / g and is preferably in the range from 4 to 10 meq / g.
  • polymers containing vinylamine units the reaction products which are obtainable by Hofmann degradation of homopolymers or copolymers of acrylamide or methacrylamide in an aqueous medium in the presence of sodium hydroxide solution and sodium hypochlorite and subsequent decarboxylation of the carbamate groups of the reaction products in the presence of an acid are also suitable .
  • Such polymers are known, for example, from EP-A 0 377 313 and WO 2006/0751 15.
  • the preparation of polymers containing vinylamine groups is discussed in detail, for example, in WO 2006/0751 15, page 4, line 25 to page 10, line 22 and in the examples on pages 13 and 14.
  • acrylamide and / or methacrylamide units are homopolymers or copolymers of acrylamide and methacrylamide.
  • Suitable comonomers are, for example, dialkylaminoalkyl (meth) acrylamides, diallylamine, methyldiallylamine and also the salts of the amines and the quaternized amines.
  • comonomers are dimethyldiallylammonium salts, acrylamidopropyltrimethylammonium chloride and / or methacrylamidopropyltrimethylammonium chloride, N-vinylformamide, N-vinylacetamide, N-vinylpyrrolidone, vinyl acetate and acrylic and methacrylic acid esters.
  • comonomers are optionally also anionic monomers such as acrylic acid, methacrylic acid, maleic anhydride, maleic acid, itaconic acid, acrylamidomethylpropanesulfonic acid, methallylsulfonic acid and vinylsulfonic acid and the alkali metal, Erdalkylimetall- and Ammonium salts of said acidic monomers into consideration, wherein not more than 5 mol% of these monomers are used in the polymerization.
  • the amount of water-insoluble monomers is chosen in the polymerization so that the resulting polymers are soluble in water.
  • comonomers may also be used crosslinkers, for. B. ethylenically unsaturated monomers containing at least two double bonds in the molecule such as triallylamine, methylenebisacrylamide, ethylene glycol diacrylate, ethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, triallylamine and Trimethyloltrimethacry- lat. If a crosslinking agent is used, the amounts used, for example, 5 to 5000 ppm , The polymerization of the monomers can be carried out by any known method, for. B. by free-radical initiated solution, precipitation or suspension polymerization. If appropriate, it is possible to work in the presence of customary polymerization regulators.
  • crosslinkers for. B. ethylenically unsaturated monomers containing at least two double bonds in the molecule such as triallylamine, methylenebisacrylamide, ethylene glycol diacrylate, ethylene glycol dimethacrylate, polyethylene glycol dimeth
  • Hofmann degradation is for example from 20 to 40 wt .-% aqueous solutions of at least one acrylamide and / or methacrylamide units containing polymers.
  • the ratio of alkali metal hypochlorite to (meth) acrylamide units in the polymer is decisive for the resulting content of amine groups in the polymer.
  • the molar ratio of alkyl metal hydroxide to alkyl metal hypochlorite is, for example, 2 to 6, preferably 2 to 5.
  • the amount of alkali metal hydroxide required for the degradation of the polymer is calculated.
  • the Hofmann degradation of the polymer takes place z. B. in the temperature range of 0 to 45 0 C, preferably 10 to 20 0 C in the presence of quaternary ammonium salts as a stabilizer to prevent a side reaction of the resulting amino groups with the A- mid phenomenon of the starting polymer.
  • the aqueous reaction solution is passed into a reactor in which an acid is introduced for the decarboxylation of the reaction product.
  • the pH of the reaction product containing vinylamine units is adjusted to a value of 2 to 7.
  • the concentration of the decomposition products containing vinylamine units is, for example, more than 3.5% by weight, in most cases above 4.5% by weight.
  • the aqueous polymer solutions can be concentrated, for example, by means of ultrafiltration.
  • the polymers containing ethyleneimine units include all polymers obtainable by polymerization of ethyleneimine in the presence of acids, Lewis acids or haloalkanes, such as homopolymers of ethyleneimine or graft copolymers of ethyleneimine, cf. US 2,182,306 or in US 3,203,910. If desired, these polymers can subsequently be subjected to crosslinking. As crosslinkers z. B.
  • the opposite Reactive groups containing primary amino groups include, for example, multifunctional epoxides such as bisglycol ethers of oligo- or polyethyleneoxides or other multifunctional alcohols such as glycerol or sugars, multifunctional carboxylic acid esters, mulifunctional isocyanates, polyfunctional acrylic or methacrylic acid esters, multifunctional acrylic acid or methacrylic acid amides, epichlorohydrin, multifunctional acid halides , multifunctional nitriles, ⁇ , ⁇ -chlorohydrin ethers of oligo- or polyethylene oxides or other multifunctional alcohols such as glycerol or sugars, divinyl sulfone, maleic anhydride or ⁇ -halocarboxylic acid chlorides, multifunctional haloalkanes, in particular ⁇ , ⁇ -dichloroalkanes.
  • multifunctional epoxides such as bisglycol ethers of oligo- or polyethyleneoxides or
  • Polymers containing ethyleneimine units are known, for example, from EP-A-0411400, DE 2434816 and US Pat. No. 4,066,494.
  • Carboxylic acids, phosphonomethylated polyethyleneimines, carboxylated polyethyleneimines and - alkoxylated polyethyleneimines are particularly useful as carboxylic acids, phosphonomethylated polyethyleneimines, carboxylated polyethyleneimines and - alkoxylated polyethyleneimines.
  • Thyleniminiseren containing compounds A process for preparing such compounds is described, for example, in DE-A-2434816, where ⁇ , ⁇ -chlorohydrin ethers of oligo- or polyethylene oxides are used as crosslinkers.
  • Reaction products of polyethyleneimines with monobasic carboxylic acids to amidated polyethyleneimines are known from WO 94/12560.
  • Michael addition products of polyethyleneimines to ethylenically unsaturated acids, salts, esters, amides or nitriles of monoethylenically unsaturated carboxylic acids are the subject of WO 94/14873.
  • Phosphonomethylated polyethyleneimines are described in detail in WO 97/25367.
  • Carboxylated polyethyleneimines are obtainable, for example, by means of a plug synthesis by reacting polyethyleneimines with formaldehyde and ammonia / hydrogen cyanide and hydrolysing the reaction products.
  • Alkoxylated polyethyleneimines can be prepared by reacting polyethyl imines with alkylene oxides such as ethylene oxide and / or propylene oxide.
  • the polymers containing ethyleneimine units have, for example, molecular weights of from 10,000 to 3,000,000.
  • the cationic charge of the polymers containing ethyleneimine units is e.g. at least 4 meq / g. It is usually in the range of 8 to 20 meq / g.
  • the weight ratio of polymers containing (a) vinylamine units to polymers containing (b) ethyleneimine units in the process of the present invention is, for example, 10: 1 to 1:10, preferably 5: 1 to 1: 5.
  • the combination of polymers containing ethyleneimine units and polymers containing vinylamine units used in the inventive method for producing paper for example in an amount of 0.01 to 2.0 wt .-%, preferably 0.1 to 1, 0 wt .-%, based on dry pulp.
  • the water-soluble polymeric anionic compounds include all polymers which carry acid groups or their salts and have a charge density of> 0.5 meq / g.
  • the acid groups may be carboxyl groups, sulfonic acid groups and phosphonic acid groups. Also esters of phosphoric acid belong to this, wherein at least one acid function of the phosphoric acid is not esterified.
  • polymers which have been modified by polymer-analogous reactions such as Strecker reaction or by phosphonomethylation with acidic groups. However, preference is given to polymers of the following composition:
  • the monomer mixture contains at least one monomer (1) with at least one free acid group and / or one acid group in salt form.
  • Suitable monomers of group (1.1) are compounds which have an organic radical having a polymerizable, ⁇ , ⁇ -ethylenically unsaturated double bond and at least one sulfonic acid or phosphonic acid group per molecule. Also suitable are the salts and esters of the aforementioned compounds. The esters of phosphonic acids may be mono- or diesters. Suitable monomers (1.1) are also esters of phosphoric acid with alcohols having a polymerizable, ⁇ , ß-ethylenically unsaturated double bond. In this case, a proton of the phosphoric acid group or the other two protons of the phosphoric acid group can be neutralized by suitable bases or esterified with alcohols which have no polymerizable double bonds.
  • Suitable bases for the partial or complete neutralization of the acid groups of the monomers (1.1) are, for example, alkali metal or alkaline earth metal bases, ammonia, amines and / or alkanolamines. Examples of these are sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, magnesium hydroxide, magnesium oxide, calcium hydroxide, calcium oxide, triethanolamine, ethanolamine, morpholine, diethylenetriamine or tetraethylenepentamine.
  • suitable alcohols for esterifying the phosphoric acid are C 1 -C 6 -alkanols, such as, for example, methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, tert-butanol, n-pentanol, n-hexanol and isomers thereof ,
  • component (1.1) exclusively monomers in which all protons of the acid groups are esterified, such as.
  • component (1.2) at least one monoethylenically unsaturated mono- and / or dicarboxylic acid or a salt thereof is used for the polymerization, as described below as component (1.2). This ensures that the copolymers used according to the invention have anionic groups.
  • the abovementioned monomers (1.1) can be used individually or in the form of any mixtures in the preparation of the anionic polymers.
  • Suitable monomers of group (1.2) are monoethylenically unsaturated carboxylic acids having 3 to 8 carbon atoms and the water-soluble salts such as alkali metal, alkaline earth metal or ammonium salts of these carboxylic acids and the monoethylenically unsaturated carboxylic anhydrides.
  • Examples of this group of monomers include acrylic acid, methacrylic acid, dimethacrylic acid, ethacrylic acid, .alpha.-chloroacrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, mesaconic acid, citraconic acid, glutaconic acid, aconitic acid, methylenemalonic acid, allylacetic acid, vinylacetic acid and crotonic acid.
  • the monomers of group (1.2) can be used alone or mixed with each other, in partially or completely neutralized form in the homo- or copolymerization. Suitable bases for neutralization are the compounds mentioned above in component (1.1).
  • the water-soluble anionic polymer contains at least one monomer from the group (1) which is selected from the subgroups (1.1) and / or (1.2).
  • the water-soluble copolymer may also contain mixtures of monomers from subgroups (1.1) and (1.2) in copolymerized form.
  • the copolymers may contain at least one further monomer of group (2) in copolymerized form for modification.
  • These monomers are preferably selected from esters of ⁇ , ⁇ -ethylenically unsaturated mono- and dicarboxylic acids with C 1 -C 30 -alkanols, C 2 -C 30 -alkanediols and C 2 -C 30 -aminoalcohols, amides of ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acids and their derivatives N-alkyl and N, N-dialkyl derivatives, esters of vinyl alcohol and allyl alcohol with C1-C30 monocarboxylic acids, N-vinyllactams, nitrogen-containing heterocycles with ⁇ , ⁇ -ethylenically unsaturated double bonds, vinylaromatics, vinyl halides, vinylidene halides, C2-C8- Monoolefins and mixtures thereof.
  • Suitable representatives of group (2) are z.
  • Suitable additional monomers (2) are furthermore acrylamide, methacrylic acid amide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, n-propyl (meth) acrylamide, N- (n-butyl) (meth) acrylamide, tert-butyl (meth) acrylamide, n-octyl (meth) acrylamide, 1,1,3,3-tetramethylbutyl (meth) acrylamide, ethylhexyl (meth) acrylamide and mixtures thereof.
  • 2-hydroxyethyl (meth) acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) are suitable.
  • Suitable monomers of group (2) are nitriles of ⁇ , ß-ethylenically unsaturated mono- and dicarboxylic acids, such as acrylonitrile and methacrylonitrile.
  • Suitable monomers of group (2) are also N-vinyl lactams and derivatives thereof, the z. B. one or more d-C ⁇ -alkyl substituents (as defined above) may have. These include N-vinylpyrrolidone, N-vinylpiperidone, N-vinylcaprolactam, N-vinyl-5-methyl-2-pyrrolidone, N-vinyl-5-ethyl-2-pyrrolidone, N-vinyl-6-methyl-2-piperidone, N-vinyl-6-ethyl-2-piperidone, N-vinyl-7-methyl-2-caprolactam, N-vinyl-7-ethyl-2-caprolactam and mixtures thereof.
  • Suitable monomers of group (2) are ethylene, propylene, isobutylene, butadiene, styrene, ⁇ -methylstyrene, vinyl acetate, vinyl propionate, vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride and mixtures thereof.
  • the aforementioned monomers of group (2) can be used in the copolymerization with at least one anionic monomer, individually or in the form of any mixtures.
  • a further modification of the copolymers is possible by using in the copolymerization monomers of group (3) which contain at least two double bonds in the molecule, for.
  • group (3) which contain at least two double bonds in the molecule
  • the amounts used are up to 2 mol%, z. B. 0.001 to 1 mol%.
  • regulators in the polymerization.
  • anionic polymeric compound Preferably used as the anionic polymeric compound homopolymers of ethylenically unsaturated C3 to Cs carboxylic acids, in particular polyacrylic acid and polymethacrylic acid and hydrolyzed homopolymers of maleic anhydride and itaconic anhydride.
  • Preferred anionic copolymers include, for example, (1) 10 to 99% by weight of at least one ethylenically unsaturated C3 to C8 carboxylic acid and (2) 90 to 1% by weight of at least one amide, nitrile and / or one Esters of an ethylenically unsaturated C3 to Cs carboxylic acid in polymerized form. The sum of the percentages by weight of components (1) and (2) is always 100.
  • copolymers of acrylic acid and acrylamide copolymers of acrylic acid and acrylonitrile, copolymers of acrylic acid and N-vinylformamide, copolymers of methacrylic acid and Methacrylamide, copolymers of methacrylic acid and N-vinylformamide, copolymers of acrylic acid and methacrylamide, copolymers of acrylic acid and methacrylonitrile, copolymers of methacrylic acid and methacrylonitrile and copolymers of acrylic acid, acrylamide and acrylonitrile.
  • the anionic polymers are water-soluble. They can be used in the form of the free acids and / or as alkali metal, alkaline earth metal or ammonium salt in the process according to the invention. They have for example a K value of 50 to 250 (determined according to H. Fikentscher in 5 wt .-% aqueous saline at 25 0 C and pH 7).
  • the water-soluble anionic polymer is used in the process according to the invention in an amount of, for example, from 0.01 to 2.0% by weight, preferably from 0.05 to 1.0% by weight, in particular from 0.1 to 0.5% by weight. %, based on dry pulp, used.
  • the weight ratio of cationic polymers (a) polymers containing vinylamine units and (b) polymers containing ethyleneimine units to the water-soluble polymeric anionic compounds is for example 3: 1 to 1: 3 and is preferably 1: 1.
  • the pulps used for producing the pulps are all grades which are customary for this purpose, for example wood pulp, bleached and unbleached pulp and paper pulp from all annual plants.
  • Wood pulp includes, for example, groundwood, thermo-mechanical pulp (TMP), chemo-thermo-mechanical pulp (CTMP), pressure groundwood, semi-pulp, high yield pulp and refiner mechanical pulp (RMP).
  • TMP thermo-mechanical pulp
  • CMP chemo-thermo-mechanical pulp
  • RMP refiner mechanical pulp
  • pulp for example, sulphate, sulfite and soda pulps come into consideration.
  • unbleached pulp also referred to as unbleached kraft pulp
  • Suitable annual Examples of crops for producing paper materials are rice, wheat, sugar cane and kenaf.
  • the inventive method is particularly suitable for the production of dry-proof papers from waste paper (comprising deinked waste paper), which is used either alone or in admixture with other fibers. It is also possible to start with fiber blends of a primary material and recycled coated broke, e.g. B. bleached pine sulfate in admixture with recycled coated broke.
  • the inventive method is for the production of paper, cardboard and cardboard from waste paper and in special cases from deinked waste paper of technical interest, because it significantly increases the strength properties of the recycled fibers. It is of particular importance for improving the strength properties of graphic papers and packaging papers.
  • the pH of the stock suspension is, for example, in the range of 4.5 to 8, most 6 to 7.5.
  • an acid such as sulfuric acid or aluminum sulphate.
  • the cationic polymers namely (a) polymers comprising vinylamine units and polymers containing (b) ethyleneimine units, are preferably first metered into the paper stock.
  • the cationic polymers can be added to the thick material (fiber concentration> 15 g / l, for example in the range from 25 to 40 g / l up to 60 g / l) or preferably to a thin material (fiber concentration ⁇ 15 g / l, eg in in the range of 5 to 12 g / l).
  • the point of addition is preferably in front of the screens, but it can also be between a shearing stage and a screen or afterwards.
  • the dosage of the cationic polymers (a) and (b) to the paper stock can be carried out, for example, successively, simultaneously or else as a mixture of (a) and (b).
  • the anionic component is usually added only after the addition of the cationic polymers (a) and (b) to the paper stock, but can also be metered simultaneously to the stock, but separately from the cationic polymers. Furthermore, it is also possible first to add the anionic and subsequently the cationic component or first to meter one of the cationic components (a) or (b) to the paper stock, then to add the anionic polymer and then to add the other cationic component.
  • the process chemicals commonly used in the Pandaher- position can be used in the usual amounts, eg. Retention aids, dehydrating agents, other dry strength agents such as starch, pigments, fillers, optical brighteners, defoamers, biocides and paper dyes.
  • the process according to the invention gives dry-proof papers whose dry strength relative to papers produced by known processes has an increased dry strength.
  • the dewatering rate is improved in comparison with known methods.
  • the percentages in the examples are by weight unless otherwise specified.
  • the K value of the polymers was determined according to Fikentscher, Cellulose-Chemie, Volume 13, 58-64 and 71-74 (1932) at a temperature of 25 0 C in 5 wt .-% aqueous saline solutions at a pH value of 7 and a polymer concentration of 0.5%.
  • Polymin P ® Polymin P ®, BASF SE, D-67056 Ludwigshafen
  • a polyamidoamine grafted with ethyleneimine and cross-linked with a dichlorohydrin ether of polyethylene glycol was used, as described in DE-A 2434816, Example 13.
  • Polymer KC A polyamidoamine grafted with ethyleneimine and cross-linked, which was additionally subjected to ultrafiltration, was used, cf. WO 00/67884, page 23, example B1 b.
  • a polymer prepared by acid hydrolysis of a copolymer of 30 mole percent N-vinylformamide and 70 mole percent acrylonitrile was used as described in Example P on pages 8 and 9 in DE 4328975.
  • a commercially available Hofmann degradation product of the Firrma SNF with the designation RSL HF 70D was used.
  • the product had a solids content of 24.2%, a viscosity of 19 mPas (Brookfield, LVT, spindle 1, 60 rpm, 20 0 C) and a charge density of 57.2 meq / 100 g of product (polyelectrolyte).
  • the polymer used was identical to the Hofmann degradation product designated in WO 2006/0751 15 on page 13 in the table as C8 beta 2. It was prepared by reacting polyacrylamide with sodium hypochlorite in a molar ratio of 1: 1, and sodium hydroxide solution, the molar ratio of sodium hydroxide to sodium hypochlorite being 2: 1.
  • the polymer used was identical to that described in WO 2006/090076 on page 15, line 23 as C2 glyoxylated copolymer of 95 mol% acrylamide and 5 mol% diallyldimethylammonium chloride (DADMAC).
  • DADMAC diallyldimethylammonium chloride
  • the polymer used was identical to that described in WO 2006/075115 on page 14 in the table as A1 copolymer of 70% acrylamide and 30% acrylic acid in the form of the Na salt.
  • the polymer used was identical to that described in WO 2006/075115 on page 14 in the table as A2 copolymer of 70 mol% of acrylamide and 30 mol% of acrylic acid crosslinked with methylene bis-acrylamide (MBA) in the form of the Na salt.
  • the copolymer had an anionic charge of 3.85 meq / g.
  • Polymer AD
  • the polymer used was identical to that described in WO 2006/090076 on page 16 in the table as A2 copolymer of 70 mol% of acrylamide and 30 mol% of acrylic acid, crosslinked with methylene bis-acrylamide (MBA) in the form of Na salt.
  • the copolymer had an anionic charge of 3.85 meq / g.
  • a paper made of 100% waste paper (mixture of grades: 1.02, 1.04, 4.01) was pitched with drinking water at a consistency of 4% in a laboratory pulper speckok and ground in a laboratory refiner to a freeness of 40 0 SR. This substance was then diluted with drinking water to a consistency of 0.7%.

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Paper (AREA)

Abstract

Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit durch Zugabe mindestens eines wasserlöslichen (a) Vinylamineinheiten enthaltenden Polymers und mindestens eines (b) Ethylenimineinheiten enthaltenden Polymers sowie mindestens einer wasserlöslichen polymeren anionischen Verbindung zu einem Papierstoff, Entwässern des Papierstoffs unter Blattbildung und Trocknen der Papierprodukte, wobei man die wasserlöslichen kationischen Polymeren (a) und (b) In beliebiger Reihenfolge oder als Mischung zu einem Papierstoff dosiert sowie Papiere, die nach diesem Verfahren erhältlich sind.

Description

Verfahren zur Erhöhung der Trockenfestigkeit von Papier, Pappe und Karton
Beschreibung
Die Erfindung betrifft ein Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit durch Zugabe mindestens eines kationischen Polymeren und einer polymeren anionischen Verbindung zu einem Papierstoff, Entwässern des Papierstoffs unter Blattbildung und Trocknen der Papierprodukte.
Aus dem CA-Patent 1 1 10 019 ist ein Verfahren zur Herstellung von Papier mit hoher Trockenfestigkeit bekannt, bei dem man zum Papierstoff zunächst ein wasserlösliches kationisches Polymerisat zugibt, danach ein wasserlösliches anionisches Polymerisat dosiert, anschließend den Papierstoff auf der Papiermaschine unter Blattbildung entwässert und die Papierprodukte trocknet. Als anionische Polymerisate kommen bei- spielsweise hydrolysierte Polyacrylamide in Betracht, die bis zu 30 Mol-% Acrylsäure- Einheiten aufweisen können. Als kationische Polymere werden beispielsweise wasserlösliche Homo- und Copolymerisate von kationischen Monomeren wie Vinylpyridin, Vinylimidazolidin, Diallylamine, Ethylenimin sowie basische Acrylate und basische Me- thacrylate eingesetzt. Die basischen (Meth)acrylate können jeweils mit Acrylamid oder Methacrylamid copolymerisiert werden. Diese kationischen Polymeren sowie Polyacrylamide können zu weiteren, für das beschriebene Verfahren geeigneten kationischen Polymeren modifiziert werden, beispielsweise kann man sie einer Mannich-Reaktion oder einem Hofmann-Abbau unterwerfen.
Aus der DE-A 35 06 832 ist ein Verfahren zur Herstellung von Papier mit hoher Trockenfestigkeit bekannt, bei dem man zum Papierstoff zunächst ein wasserlösliches kationisches Polymerisat und anschließend ein wasserlösliches anionisches Polymerisat zugibt. Als anionische Polymerisate kommen beispielsweise Homo- oder Copolymerisate von ethylenisch ungesättigten C3 - Cs-Carbonsäuren in Betracht. Die Copo- lymerisate enthalten mindestens 35 Gew.-% einer ethylenisch ungesättigten C3 - C5- Carbonsäure (z.B. Acrylsäure) einpolymerisiert. Als kationische Polymerisate werden in den Beispielen Polyethylenimin, Polyvinylamin, Polydiallyldimethylammoniumchlorid und mit Epichlorhydrin vernetzte Kondensationsprodukte aus Adipinsäure und Diethy- lentriamin beschrieben. Auch die Verwendung von partiell hydrolysierten Homo- und Copolymerisaten des N-Vinylformamids ist in Betracht gezogen worden.
Die JP-A 1999-140787 betrifft ein Verfahren zur Herstellung von Wellpappe, wobei man zur Verbesserung der Festigkeitseigenschaften eines Papierprodukts zum Papierstoff 0,05 bis 0,5 Gew.-%, bezogen auf trockenen Papierstoff, eines Polyvinylamins, das durch Hydrolyse von Polyvinylformamid mit einem Hydrolysegrad von 25 bis
100 % zugänglich ist, in Kombination mit einem anionischen Polyacrylamid zugibt, den Papierstoff dann unter Blattbildung entwässert und das Papier trocknet. Aus der WO 03/052206 ist ein Papierprodukt mit verbesserten Festigkeitseigenschaften bekannt, dass dadurch erhältlich ist, dass man auf die Oberfläche eines Papierprodukts ein Polyvinylamin und eine polymere anionische Verbindung, die mit Po- lyvinylamin einen Polyelektrolytkomplex bilden kann, oder eine polymere Verbindung mit Aldehydfunktionen wie Aldehydgruppen enthaltende Polysaccharide aufbringt. Man erhält nicht nur eine Verbesserung der Trocken- und Nassfestigkeit des Papiers, sondern beobachtet auch eine Leimungswirkung der Behandlungsmittel.
Aus der WO 2004/061235 ist ein Verfahren zur Herstellung von Papier, insbesondere Tissue, mit besonders hohen Naß- und/oder Trockenfestigkeiten bekannt, bei dem man zum Papierstoff zunächst ein wasserlösliches kationisches Polymerisat zugibt, dass mindestens 1 ,5 meq/g Polymer an primären Aminofunktionalitäten enthält und ein Molekulargewicht von wenigstens 10.000 Dalton aufweist. Besonders hervorgehoben werden hierbei partiell- und vollhydrolysierte Homopolymerisate des N-Vinylformamids. Anschließend wird ein wasserlösliches anionisches Polymerisat zugegeben, dass anionische und/oder aldehydische Gruppen enthält.
In der DE-A 10 2004 056 551 wird ein weiteres Verfahren zur Verbesserung der Trockenfestigkeit von Papier beschrieben. Bei diesem Verfahren erfolgt eine getrennte Zugabe eines Vinylamineinheiten enthaltenden Polymeren und einer polymeren anionischen Verbindung zu einem Papierstoff, Entwässern des Papierstoffs und Trocknen der Papierprodukte, wobei man als polymere anionische Verbindung mindestens ein Copolymerisat einsetzt, das erhältlich ist durch Copolymerisieren von
(a) mindestens eines N-Vinylcarbonsäureamids der Formel
Figure imgf000003_0001
in der R1, R2 = H oder d- bis Cβ-Alkyl bedeuten,
(b) mindestens eines Säuregruppen enthaltenden monoethylenisch ungesättigten Monomeren und/oder deren Alkalimetall-, Erdalkalimetall- oder Ammoniumsalzen und gegebenenfalls
(c) anderen monoethylenisch ungesättigten Monomeren, und gegebenenfalls (d) Verbindungen, die mindestens zwei ethylenisch ungesättigte Doppelbindungen im Molekül aufweisen.
Aus der WO 2006/075115 ist die Verwendung von Hofmann-Abbauprodukten von Co- polymeren des Acrylamids oder Methacrylamids in Kombination mit anionischen PoIy- meren mit einer anionischen Ladungsdichte von > 0,1 meq/g zur Herstellung von Papier und Karton mit einer hohen Trockenfestigkeit bekannt. In WO 2006/120235 wird ein Verfahren zur Herstellung von Papieren mit einem Füllergehalt von mindestens 15 Gew.-% beschrieben, bei dem Füller und Fasern gemeinsam mit kationischen und anionischen Polymeren behandelt werden, wobei die Behandlung abwechselnd mit kationischen und anionischen Polymeren erfolgt und mindestens 3 Schritte umfasst.
Die WO 2006/090076 betrifft ebenfalls ein Verfahren zur Herstellung von Papier und Pappe mit hoher Trockenfestigkeit, wobei dem Papierstoff 3 Komponenten zugesetzt werden:
a) ein Polymer mit primären Aminogruppen und einer Ladungsdichte von > 1 ,0 meq/g b) ein zweites, anderes kationisches Polymer mit einer Ladungsdichte von > 0,1 meq/g, das durch radikalische Polymerisation von kationischen Monomeren er- hältlich ist, und c) ein anionisches Polymer mit einer Ladungsdichte von > 0,1 meq/g.
Der Erfindung liegt die Aufgabe zugrunde, ein weiteres Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit zur Verfügung zu stellen, wobei die Trockenfestigkeitseigenschaften der Papierprodukte gegenüber denjenigen bekannter Produkte möglichst weiter verbessert sind. Eine weitere Aufgabe der Erfindung besteht darin, gegenüber bekannten Verfahren eine schnellere Entwässerung des Papierstoffs zu erreichen.
Die Aufgaben werden erfindungsgemäß gelöst mit einem Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit durch Zugabe mindestens eines wasserlöslichen kationischen Polymeren und mindestens einer wasserlöslichen polymeren anionischen Verbindung zu einem Papierstoff, Entwässern des Papierstoffs unter Blattbildung und Trocknen der Papierprodukte, wenn man als wasserlösliche kationische Polymere
(a) Vinylamineinheiten enthaltende Polymere und
(b) Ethylenimineinheiten enthaltende Polymere
in beliebiger Reihenfolge oder als Mischung zu einem Papierstoff dosiert.
Gegenstand der Erfindung sind außerdem Papiere, die nach dem oben beschriebenen Verfahren erhältlich sind.
Polymerisate, die Vinylamineinheiten enthalten, sind bekannt, vgl. die zum Stand der Technik genannten DE-A 35 06 832 und DE-A 10 2004 056551. Bei dem erfindungs- gemäßen Verfahren setzt man als (a) Vinylamineinheiten enthaltende Polymere beispielsweise die Reaktionsprodukte ein, die erhältlich sind
durch Polymerisieren mindestens eines Monomeren der Formel
Figure imgf000005_0001
in der R1, R2 = H oder d- bis C6-Alkyl bedeuten,
und anschließende teilweise oder vollständige Abspaltung der Gruppen -CO-R1 aus den in das Polymerisat einpolymerisierten Einheiten der Monomeren (I) unter Bildung von Aminogruppen
und/oder
durch Hofmann-Abbau von Polymeren, die Acrylamid- und/oder Methacrylamid- einheiten aufweisen.
Als (a) Vinylamineinheiten enthaltende Polymere setzt man beispielsweise die Reakti- onsprodukte ein, die erhältlich sind durch Polymerisieren von
(i) mindestens eines Monomeren der Formel
CH2
Figure imgf000005_0002
in der R1, R2 = H oder d- bis C6-Alkyl bedeuten,
(ii) mindestens eines anderen monoethylenisch ungesättigten Monomeren und gegebenenfalls (iii) mindestens eines vernetzend wirkenden Monomeren mit mindestens zwei Doppelbindungen im Molekül
und anschließende teilweise oder vollständige Abspaltung der Gruppen -CO-R1 aus den in das Polymerisat einpolymerisierten Einheiten der Monomeren (I) unter Bildung von Aminogruppen.
Die Vinylamineinheiten enthaltenden Polymerisate können auch amphoter sein, wenn sie eine kationische Gesamtladung aufweisen. Der Gehalt an kationischen Gruppen im Polymeren soll dabei mindestens 5 Mol-%, vorzugsweise mindestens 10 Mol-% über dem Gehalt an anionischen Gruppen liegen. Solche Polymere sind beispielsweise erhältlich durch Polymerisieren von
(i) mindestens eines Monomeren der Formel
Figure imgf000006_0001
in der R1, R2 = H oder d- bis C6-Alkyl bedeuten,
(N, a) mindestens jeweils einer monoethylenisch ungesättigten Sulfonsäure, einer mo- noethylenisch ungesättigten Phosphonsäure, einer monoethylenisch ungesättigten Carbonsäure mit 3 bis 8 C-Atomen im Molekül und/oder deren Alkalimetall-, Erdalkalimetall- oder Ammoniumsalzen und gegebenenfalls
(N, b) mindestens eines anderen neutralen und/oder eines kationischen Monomeren und gegebenenfalls
(iii) mindestens eines vernetzend wirkenden Monomeren mit mindestens zwei Doppelbindungen im Molekül
und anschließende teilweise oder vollständige Abspaltung von Gruppen -CO-R1 aus den in das Polymerisat einpolymerisierten Monomeren der Formel I unter Bildung von Aminogruppen, wobei der Gehalt an Aminogruppen im Copolymerisat mindestens 5 Mol-% über dem Gehalt an einpolymerisierten Säuregruppen der Monomere (ii,a) be- trägt.
Vorzugsweise setzt man als (a) Vinylamineinheiten enthaltende Polymere die Reaktionsprodukte ein, die durch Polymerisieren von N-Vinylformamid und anschließende Abspaltung von Formylgruppen aus den in das Polymerisat einpolymerisierten Vinyl- formamideinheiten unter Bildung von Aminogruppen erhältlich sind oder man verwendet die Reaktionsprodukte, die durch Copolymerisieren von
(i) N-Vinylformamid und (ii) Acrylnitril
und anschließende Abspaltung von Formylgruppen aus den in das Copolymerisat einpolymerisierten Vinylformamideinheiten unter Bildung von Aminogruppen erhältlich sind. Von Interesse sind außerdem amphotere Vinylamineinheiten enthaltende Poly-mere, die eine kationische Gesamtladung tragen und die beispielsweise durch Copo- lymerisieren von
(i) N-Vinylformamid,
(N, a) Acrylsäure, Methacrylsäure und/oder deren Alkalimetall-, Erdalkalimetall- oder
Ammoniumsalzen und gegebenenfalls (N, b) Acrylnitril und/oder Methacrylnitril
und anschließende teilweise oder vollständige Abspaltung von Formylgruppen aus dem in das Polymerisat einpolymerisierten N-Vinylformamid unter Bildung von Ami- nogruppen erhältlich sind, wobei der Gehalt an Aminogruppen im Copolymerisat mindestens 5 Mol-% über dem Gehalt an einpolymerisierten Säuregruppen der Monomere (N, a) beträgt.
Beispiele für Monomere der Formel I sind N-Vinylformamid, N-Vinyl-N-methylformamid, N-Vinylacetamid, N-Vinyl-N-methylacetamid, N-Vinyl-N-ethylacetamid, N- Vinylpropionamid und N-Vinyl-N-methylpropionamid und N-Vinylbutyramid. Die Monomeren der Gruppe (i) können allein oder in Mischung bei der Copolymerisation mit den Monomeren der anderen Gruppen eingesetzt werden. Bevorzugt eingesetztes Monomer dieser Gruppe ist N-Vinylformamid.
Diese Polymere können gegebenenfalls modifiziert sein, indem die N-Vinylcarbon- säureamide (i) zusammen mit (ii) mindestens einem anderen monoethylenisch unge- sättigten Monomeren copolymerisiert und die Copolymerisate anschließend unter Bildung von Aminogruppen hydrolysiert werden. Falls bei der Copolymerisation anionische Monomere eingesetzt werden, so wird die Hydrolyse der einpolymerisierten Vi- nylcarbonsäureamideinheiten so weit geführt, dass der molare Überschuß an Amin- einheiten gegenüber den anionischen Einheiten im Polymerisat mindestens 5 Mol-% beträgt.
Beispiele für Monomere der Gruppe (ii) sind Ester von α,ß-ethylenisch ungesättigten Mono- und Dicarbonsäuren mit Ci-C3o-Alkanolen, C2-C3o-Alkandiolen und C2-C30- Aminoalkoholen, Amide von α,ß-ethylenisch ungesättigten Monocarbonsäuren und deren N-Alkyl- und N,N-Dialkylderivate, Nitrile von α,ß-ethylenisch ungesättigten Mono- und Dicarbonsäuren, Ester von Vinylalkohol und Allylalkohol mit C1-C30- Monocarbonsäuren, N-Vinyllactame, stickstoffhaltige Heterocyclen mit α,ß-ethylenisch ungesättigten Doppelbindungen, Vinylaromaten, Vinylhalogenide, Vinylidenhalogenide, C2-C8-Monoolefine und Mischungen davon.
Geeignete Vertreter sind z.B. Methyl(meth)acrylat (diese Schreibweise symbolisiert hier wie auch im folgenden Text sowohl „Acrylate" als auch „Methacrylate"), Methy- lethacrylat, Ethyl(meth)acrylat, Ethylethacrylat, n-Butyl(meth)acrylat, Isobu- tyl(meth)acrylat, tert.-Butyl(meth)acrylat, tert.-Butylethacrylat, n-Ocytl(meth)acrylat, 1 ,1 ,3,3-Tetramethylbutyl(meth)acrylat, Ethylhexyl(meth)acrylat und Mischungen davon. Geeignete zusätzliche Monomere der Guppe (ii) sind weiterhin die Ester von α,ß- ethylenisch ungesättigten Mono- und Dicarbonsäuren mit Aminoalkoholen, vorzugsweise C2-Ci2-Aminoalkoholen. Diese können am Aminstickstoff d-Cs-monoalkyliert oder — dialkyliert sein. Als Säurekomponente dieser Ester eignen sich z. B. Acrylsäure, Methacrylsäure, Fumarsäure, Maleinsäure, Itaconsäure, Crotonsäure, Maleinsäureanhydrid, Monobutylmaleat und Gemische davon. Bevorzugt werden Acrylsäure, Methac- rylsäure und deren Gemische eingesetzt. Dazu zählen beispielsweise N- Methylaminomethyl(meth)acrylat, N-Methylaminoethyl(meth)acrylat, N, N- Dimethylaminomethyl(meth)acrylat, N,N-Dimethylaminoethyl(meth)acrylat, N, N- Diethylaminoethyl(meth)acrylat, N,N-Dimethylaminopropyl(meth)acrylat, N, N- Diethylaminopropyl(meth)acrylat und N,N-Dimethylaminocyclohexyl(meth)acrylat.
Weiterhin sind als Monomere der Gruppe (ii) geeignet 2-Hydroxyethyl(meth)acrylat, 2- Hydroxyethylethacrylat, 2-Hydroxypropyl(meth)acrylat, 3-Hydroxypropyl(meth)acrylat, 3-Hydroxybutyl(meth)acrylat, 4-Hydroxybutyl(meth)acrylat, 6- Hydroxyhexyl(meth)acrylat und Mischungen davon.
Geeignete zusätzliche Monomere der Gruppe (ii) sind weiterhin Acrylsäureamid, Me- thacrylsäureamid, N-Methyl(meth)acrylamid, N-Ethyl(meth)acrylamid, n- Propyl(meth)acrylamid, N-(n-Butyl)(meth)acrylamid, tert.-Butyl(meth)acrylamid, n- Octyl(meth)acrylamid, 1 ,1 ,3,3-Tetramethylbutyl(meth)acrylamid, Ethylhe- xyl(meth)acrylamid und Mischungen davon.
Darüber hinaus sind als weitere Monomere der Gruppe (ii) N-[2- (Dimethylamino)ethyl]acrylamid, N-[2-(Dimethylamino)ethyl]methacrylamid, N-[3- (Dimethylamino)propyl]acrylamid, N-[3-(Dimethylamino)propyl]methacrylamid, N-[4- (Dimethylamino)butyl]acrylamid, N-[4-(Dimethylamino)butyl]methacrylamid, N-[2-
(Diethylamino)ethyl]acrylamid, N-[2-(Diethylamino)ethyl]methacrylamid und Mischungen davon geeignet.
Weitere Beispiele für Monomere der Gruppe (ii) sind Nitrile von α,ß-ethylenisch unge- sättigten Mono- und Dicarbonsäuren wie beispielsweise Acrylnitril und Methacrylnitril. Die Anwesenheit von Einheiten dieser Monomeren im Copolymerisat führt während bzw. nach der Hydrolyse zu Produkten, die Amidineinheiten aufweisen, vgl. z.B. EP-A 0 528 409 oder DE-A 43 28 975. Bei der Hydrolyse von N-Vinylcarbonsäure- amidpolymer-en entstehen nämlich in einer sekundären Reaktion Amidineinheiten, indem Vinylami-neinheiten mit einer benachbarten Vinylformamideinheit oder - sofern eine Nitrilgruppe als benachbarte Gruppe im Polymerisat vorhanden ist - damit reagieren. Im Folgenden bedeutet die Angabe von Vinylamineinheiten in den amphoteren Copolymerisaten oder in nicht modifizierten Homo- bzw. Copolymerisaten immer die Summe aus Vinylamin- und Amidineinheiten.
Geeignete Monomere der Gruppe (ii) sind weiterhin N-Vinyllactame und deren Deriva- te, die z. B. einen oder mehrere d-Cβ-Alkylsubstituenten (wie oben definiert) aufweisen können. Dazu zählen N-Vinylpyrrolidon, N-Vinylpiperidon, N-Vinylcaprolactam, N- Vinyl-5-methyl-2-pyrrolidon, N-Vinyl-5-ethyl-2-pyrrolidon, N-Vinyl-6-methyl-2-piperidon, N-Vinyl-6-ethyl-2-piperidon, N-Vinyl-7-methyl-2-caprolactam, N-Vinyl-7-ethyl-2- caprolactam und deren Mischungen.
Weiterhin sind als Monomere der Gruppe (ii) N-Vinylimidazole und Alkylvinylimidazole geeignet, insbesondere Methylvinylimidazole wie beispielsweise 1-Vinyl-2- methylimidazol, 3-VinylimidazolN-oxid, 2- und4-Vinylpyridin-N-oxide sowie betainische Derivate und Quaternisierungsprodukte dieser Monomere sowie Ethylen, Propylen, Isobutylen, Butadien, Styrol, α-Methylstyrol, Vinylacetat, Vinylpropionat, Vinylchlorid, Vinylidenchlorid, Vinylfluorid, Vinylidenfluorid und Mischungen davon.
Die zuvor genannten Monomeren können einzeln oder in Form von beliebigen Mischungen eingesetzt werden. Typischerweise werden sie in Mengen von 1 bis 90 Mol-%, bevorzugt 10 bis 80 Mol-% und besonders bevorzugt 10 bis 60 Mol-% eingesetzt.
Zur Herstellung von amphoteren Copoylmerisaten kommen als andere monoethyle- nisch ungesättigte Monomere der Gruppe (ii) auch anionische Monomere in Betracht, die oben als Monomere (ii,a) bezeichnet sind. Sie können gegebenenfalls mit den oben beschriebenen neutralen und/oder kationischen Monomeren (ii,b) copolymerisiert werden. Die Mengen an anionischen Monomeren (ii,a) beträgt jedoch höchstens 45 MoI- %, damit das entstehende amphotere Copolymerisat insgesamt eine kationische Ladung aufweist.
Beispiele für anionische Monomere der Gruppe (ii,a) sind ethylenisch ungesättigte C3- bis Cs-Carbonsäuren wie beispielsweise Acrylsäure, Methacrylsäure, Dimethacrylsäu- re, Ethacrylsäure, Maleinsäure, Fumarsäure, Itoconsäure, Mesaconsäure, Citraconsäu- re, Methylenmalonsäure, Allylessigsäure, Vinylessigsäure und Crotonsäure. Als Mo- nomere dieser Gruppe eignen sich außerdem Sulfogruppen enthaltende Monomere wie Vinylsulfonsäure, Acrylamido-2-methyl-propansulfonsäure und Styrolsulfonsäure sowie Phosphongruppen enthaltende Monomere wie Vinylphosphonsäure. Die Monomeren dieser Gruppe können allein oder in Mischung miteinander, in teilweise oder in vollständig neutralisierter Form bei der Copolymerisation eingesetzt werden. Zur Neut- ralisation verwendet man beispielsweise Alkalimetall- oder Erdalkalimetallbasen, Ammoniak, Amine und/oder Alkanolamine. Beispiele hierfür sind Natronlauge, Kalilauge, Soda, Pottasche, Natriumhydrogencarbonat, Magnesiumoxid, Calciumhydroxid, Calci- umoxid, Triethanolamin, Ethanolamin, Morpholin, Diethylentriamin oder Tetraethylen- pentamin.
Eine weitere Modifizierung der Copolymerisate ist dadurch möglich, dass man bei der Copolymerisation Monomere der Gruppe (iii) einsetzt, die mindestens zwei Doppelbindungen im Molekül enthalten, z. B. Triallylamin, Methylenbisacrylamid, Glykoldiacrylat, Glykoldimethacrylat, Glycerintriacrylat, Pentaerythrittriallylether, mindestens zweifach mit Acrylsäure und/oder Methacrylsäure veresterte Polyalkylenglykole oder Polyole wie Pentaerythrit, Sobit oder Glukose. Falls mindestens ein Monomer der vorstehenden Gruppe bei der Polymerisation eingesetzt wird, so betragen die angewendeten Mengen bis zu 2 Mol-%, z. B. 0,001 bis 1 Mol-%.
Weiterhin kann es zur Modifizierung der Polymeren sinnvoll sein, den Einsatz vorstehender Vernetzter mit dem Zusatz von Reglern zu kombinieren Eingesetzt werden ty- pischerweise 0,001 bis 5 Mol-%. Anwendung finden können alle literturbekannten Regler, z. B. Schwefelverbindungen wie Mercaptoethanol, 2-Ethylhexylthioglycolat, Thi- oglycolsäure und Dodecylmercaptan sowie Natriumhypophosphit, Ameisensäure oder Tribromchlormethan.
Zu den Vinylamineinheiten enthaltenden Polymeren gehören auch hydrolysierte
Pfropfpolymerisate von beispielsweise N-Vinylformamid auf Polyalkylenglykolen, PoIy- vinylacetat, Polyvinylalkolhol, Polyvinylformamiden, Polysacchariden wie Stärke, Oligosacchariden oder Monosacchariden. Die Pfropfpolymerisate sind dadurch erhältlich, dass man beispielsweise N-Vinylformamid in wässrigem Medium in Gegenwart min- destens einer der genannten Pfropfgrundlagen gegebenenfalls zusammen mit copoly- merisierbaren anderen Monomeren radikalisch polymerisiert und die aufgepfropften Vinylformamideinheiten anschließend in bekannten Weise zu Vinylamineinheiten hydrolysiert.
Die Hydrolyse der Copolymerisate kann in Gegenwart von Säuren oder Basen oder auch enzymatisch durchgeführt werden. Bei der Hydrolyse mit Säuren liegen die aus den Vinylcarbonsäureamideinheiten entstehenden Vinylamingruppen in Salzform vor. Die Hydrolyse von Vinylcarbonsäureamidcopolymerisaten ist in der EP-A 0 438 744, Seite 8, Zeile 20 bis Seite 10, Zeile 3, ausführlich beschrieben. Die dort gemachten Ausführungen gelten entsprechend für die Herstellung der erfindungsgemäß einzusetzenden Vinylamineinheiten enthaltenden rein kationischen und/oder amphoteren Polymeren mit einer kationischen Gesamtladung. Die Vinylamineinheiten enthaltenden Polymeren können auch in Form der freien Basen bei dem erfindungsgemäßen Verfahren eingesetzt werden. Solche Polymere fallen beispielsweise bei der Hydrolyse von Vinylcarbonsäureeinheiten enthaltenden Polymeren mit Basen an. Die Vinylamineinheiten enthaltenden Polymeren haben beispielsweise K-Werte (bestimmt nach H. Fikentscher in 5 %iger wässriger Kochsalzlösung bei pH 7, einer Polymerkonzentration von 0,5 Gew.-% und einer Temperatur von 25°C) in dem Bereich von 20 bis 250, vorzugsweise 50 bis 150.
Die Herstellung der oben beschriebenen Vinylamineinheiten enthaltenden Homo- und Copolymerisate kann durch Lösungs-, Fällungs-, Suspensions- oder Emulsionspolymerisation erfolgen. Bevorzugt ist die Lösungspolymerisation in wässrigen Medien. Geeignete wässrige Medien sind Wasser und Gemische aus Wasser und mindestens einem wassermischbaren Lösungsmittel, z. B. einem Alkohol, wie Methanol, Ethanol, n-Propanol oder Isopropanol. Die kationischen Polymerisate sind wasserlöslich. Die Löslichkeit in Wasser bei einer Temperatur von 20 0C, 1013 mbar und einem pH von 7,0 beträgt beispielsweise mindestens 5 Gew.-%, vorzugsweise mindestens 10 Gew.- %.
Die Ladungsdichte der kationischen Polymeren (ohne Gegenionen) beträgt beispielsweise mindestens 1 ,0 meq/g und liegt vorzugsweise in dem Bereich von 4 bis 10 meq/g.
Als (a) Vinylamineinheiten enthaltende Polymere kommen außerdem die Reaktionsprodukte in Betracht, die durch Hofmann-Abbau von Homo- oder Copolymerisaten des Acrylamids oder Methacrylamids in wäßrigem Medium in Gegenwart von Natronlauge und Natriumhypochlorit und anschließende Decarboxylierung der Carbamatgruppen der Umsetzungsprodukte in Gegenwart einer Säure erhältlich sind. Solche Polymere sind beispielsweise aus EP-A 0 377 313 und WO 2006/0751 15 bekannt. Die Herstellung von Vinylamingruppen enthaltenden Polymeren wird beispielsweise in WO 2006/0751 15, Seite 4, Zeile 25 bis Seite 10, Zeile 22 sowie in den Beispielen auf den Seiten 13 und 14 ausführlich behandelt. Die dort gemachten Angaben gelten für die Charakterisierung der durch Hofmann-Abbau hergestellten Vinylamineinheiten ent- haltenden Polymeren.
Man geht dabei von Polymeren aus, die Acrylamid- und/oder Methacrylamideinheiten enthalten. Es handelt sich dabei um Homo- bzw. Copolymerisate von Acrylamid und Methacrylamid. Als Comonomere kommen beispielsweise Dialkylaminoal- kyl(meth)acrylamide, Diallylamin, Methyldiallylamin und sowie die Salze der Amine und die quaternierten Amine in Betracht. Außerdem eignen sich als Comonomere Di- methyldiallylammonium salze, Acrylamidopropyltrimethylammoniumchlorid und/oder Methacrylamidopropyltrimethylammoniumchlorid, N-Vinylformamid, N-Vinylacetamid, N-Vinylpyrrolidon, Vinylacetat und Acrylsäure- und Methacrylsäureester. Als Comonere kommen gegebenenfalls auch anionische Monomere wie Acrylsäure, Methacrylsäure, Maleinsäureanhydrid, Maleinsäure, Itaconsäure, Acrylamidomethylpropansulfonsäure, Methallylsulfonsäure und Vinylsulfonsäure sowie die Alkalimetall-, Erdalkylimetall- und Ammoniumsalze der genannten sauren Monomeren in Betracht, wobei nicht mehr als 5 Mol-% dieser Monomeren bei der Polymerisation eingesetzt werden. Die Menge an wassserunlöslichen Monomeren wird bei der Polymerisation so gewählt, dass die entstehenden Polymeren in Wasser löslich sind.
Als Comonomere können gegebenenfalls auch Vernetzer eingesetzt werden, z. B. e- thylenisch ungesättigte Monomere, die mindestens zwei Doppelbindungen im Molekül enthalten wie Triallylamin, Methylenbisacrylamid, Ethylenglykoldiacrylat, Ethylenglykol- dimethacrylat, Polyethylenglykoldimethacrylat, Triallylamin und Trimethyloltrimethacry- lat. Falls ein Vernetzer angewendet wird, so betragen die eingesetzten Mengen beispielsweise 5 bis 5000 ppm. Die Polymerisation der Monomeren kann nach allen bekannten Verfahren erfolgen, z. B. durch radikalisch initiierte Lösungs-, Fällungs- oder Suspensionspolymerisation. Man kann dabei gegebenenfalls in Gegenwart üblicher Polymerisationsregler arbeiten.
Beim Hofmann-Abbau geht man beispielsweise von 20 bis 40 gew.-%igen wässrigen Lösungen mindestens eines Acrylamid- und/oder Methacrylamideinheiten enthaltenden Polymeren aus. Das Verhältnis von Alkalimetallhypochlorit zu (Meth)acrylamideinheiten im Polymer ist maßgebend für den entstehenden Gehalt an Amingruppen im Polymer. Das molare Verhältnis von Alkylimetallhydroxid zu Alkylimetallhypochlorit beträgt beispielsweise 2 bis 6, vorzugsweise 2 bis 5. Für einen bestimmten Amingruppengehalt im abgebauten Polymer berechnet man die für den Abbau des Polymeren erforderliche Menge an Alkalimetallhydroxid.
Der Hofmann-Abbau des Polymeren erfolgt z. B. in dem Temperaturbereich von 0 bis 45 0C, vorzugsweise 10 bis 20 0C in Gegenwart von quaternären Ammoniumsalzen als Stabilisator, um eine Nebenreaktion der entstehenden Aminogruppen mit den A- midgruppen des Ausgangspolymeren zu verhindern. Nach Beendigung der Umsetzung mit Alkylilauge/Alkalimetallhypochlorit wird die wässrige Reaktionslösung in einen Reaktor geleitet, in dem eine Säure für die Decarboxylierung des Umsetzungsprodukts vorgelegt ist. Der pH-Wert des Vinylamineinheiten enthaltenden Reaktionsprodukts wird auf einen Wert von 2 bis 7 eingestellt. Die Konzentration des Vinylamineinheiten enthaltenden Abbauprodukts beträgt beispielsweise mehr als 3,5 Gew.-%, meistens liegt sie oberhalb von 4,5 Gew.-%. Die wässrigen Polymerlösungen können beispiels- weise mit Hilfe einer Ultrafiltration aufkonzentriert werden.
Zu den Ethylenimineinheiten enthaltenden Polymeren gehören alle Polymere, die durch Polymerisation von Ethylenimin in Gegenwart von Säuren, Lewissäuren oder Halogenalkanen erhältlich sind wie Homopolymerisate des Ethylenimins oder Pfropfpo- lymerisate von Ethylenimin, vgl. US 2,182,306 oder in US 3,203,910. Diese Polymeren können gegebenenfalls nachträglich einer Vernetzung unterworfen werden. Als Vernetzer kommen z. B. alle multifunktionellen Verbindungen in Betracht, die gegenüber primären Aminogruppen reaktive Gruppen enthalten z.B. multifunktionelle Epoxide wie Bisglyciyglether von Oligo- oder Polyethylenoxiden oder anderen multifunktionellen Alkoholen wie Gylcerin oder Zuckern, mulitunktionelle Carbonsäureester, mulifunktio- nelle Isocyante, multifunktionelle Acrylsäure- oder Methacrylsäureester, multifunktionel- Ie Acrylsäure - oder Methacrylsäureamide, Epichlorhydrin, multifunktionelle Säurehalogenide, multifunktionelle Nitrile, α,ω-Chlorhydrinether von Oligo- oder Polyethylenoxiden oder von anderen multifunktio-nellen Alkoholen wie Gylcerin oder Zuckern, Divi- nylsulfon, Maleinsäureanhydrid oder ω-Halogencarbonsäurechloride, multifunktionelle Halogenalkane insbesondere α,ω-Dichloralkane. Weitere Vernetzer sind in WO 97/25367, Seiten 8 bis16 beschrieben.
Ethylenimineinheiten enthaltende Polymere sind beispielsweise aus EP-A- 0411400, DE 2434816 und US 4,066,494 bekannt.
Als (b) Ethylenimineinheiten enthaltende Polymere verwendet man z. B. bei dem erfindungsgemäßen Verfahren mindestens ein wasserlösliches kationisches Polymer aus der Gruppe der
Homopolymerisate des Ethylenimins, - mit mindestens bifunktionellen Vernetzern umgesetzten Polyethylenimine, mit Ethylenimin gepfropften Polyamidoamine, die mit mindestens bifunktionel- lenVernetzern umgesetzt sind,
Umsetzungsprodukte von Polyethyleniminen mit einbasischen Carbonsäuren zu amidierten Polyethyleniminen, - Michaeladditionsprodukte von Polyethyleniminenen an ethylenisch ungesättigte
Säuren, Salze, Ester, Amide oder Nitrile von monoethylenisch ungesätitgten
Carbonsäuren, phosphonomethylierten Polyethylenimine, carboxylierten Polyethylenimine und - alkoxylierten Polyethylenimine.
Polymere, die dadurch erhalten werden, dass man zunächst mindestens eine Polycar- bonsäure mit mindestens einem Polyamin zu Polyamidoamine kondensiert, dann mit Ethylenimin pfropft und die Umsetzungsprodukte anschließend mit einer der oben ge- nanten Verbindungen vernetzt, gehören zu den bevorzugt in Betracht kommenden E- thylenimineinheiten enthaltenden Verbindungen. Ein Verfahren zur Herstellung sol-cher Verbindungen ist beispielsweise in DE-A-2434816 beschrieben, wobei α,ω- Chlorhydrinether von Oligo- oder Polyethylenoxiden als Vernetzer Anwendung finden.
Besonders bevorzugt sind Produkte der beiden vorstehenden Typen, die einer Ultrafiltration unterzogen und so in ihrem Molekulargewichtsverteilung optimiert wurden. SoI- che ultrafiltrierten Produkte werden ausführlich in WO 00/67884 und WO 97/ 25367 beschrieben.
Umsetzungsprodukte von Polyethyleniminen mit einbasischen Carbonsäuren zu ami- dierten Polyethyleniminen sind aus der WO 94/12560 bekannt. Michaeladditionspro- dukte von Polyethyleniminen an ethylenisch ungesättigte Säuren, Salze, Ester, Amide oder Nitrile von monoethylenisch ungesätitgten Carbonsäuren sind Gegenstand der WO 94/14873. Phosphonomethylierte Polyethylenimine werden ausführlich in der WO 97/25367 beschrieben. Carboxylierten Polyethylenimine sind beispielsweise mit Hilfe einer Steckersynthese durch Umsetzung von Polyethyleniminen mit Formaldehyd und Ammoniak/Cyanwasserstoff und Hydrolyse der Umsetzungsprodukte erhältlich. Alkoxylierte Polyethylenimine sind durch Umsetzung von Polyethyleiminen mit Alkyle- noxiden wie Ethylenoxid und/oder Propylenoxid herstellbar.
Die Ethylenimineinheiten enthaltenden Polymeren haben beispielsweise Molmassen von 10 000 bis 3 000 000. Die kationische Ladung der Ethylenimineinheiten enthaltenden Polymeren beträgt z.B. mindestens 4 meq/g. Sie liegt meistens in dem Bereich von 8 bis 20 meq/g.
Das Gewichtsverhältnis von (a) Vinylamineinheiten enthaltenden Polymeren zu (b) Ethylenimineinheiten enthaltenden Polymeren beträgt bei dem erfindungsgemäßen Verfahren beispielsweise 10 : 1 bis 1 : 10, vorzugsweise 5 : 1 bis 1 : 5. Die Kombination aus Ethylenimineinheiten enthaltenden Polymeren und Vinylamineinheiten enthaltenden Polymeren werden bei dem erfindungsgemäßen Verfahren zur Herstellung von Papier beispielsweise in einer Menge von 0,01 bis 2,0 Gew.-%, vorzugsweise 0,1 bis 1 ,0 Gew.-%, bezogen auf trockenen Papierstoff eingesetzt.
Zu den wasserlöslichen polymeren anionischen Verbindungen gehören alle Polymere, die Säuregruppen oder deren Salze tragen und eine Ladungdichte von > 0,5 meq/g besitzen. Bei den Säuregruppen kann es sich um Carboxylgruppen, Sulfonsäuregrup- pen und Phosphonsäuregruppen handeln. Auch Ester der Phosphorsäure gehören hierzu, wobei mindestens eine Säurefunktion der Phosphorsäure nicht verestert ist. Grundsätzlich Verwendung finden können Polymerisate, Polykondensate z.B. PoIy- asparaginsäure , Polyadditionsverbindungen und auch durch ringöffnende Polymerisation hergestellte Verbindungen mit einer Ladungsdichte von jeweils > 0,5 meq/g. Eben- falls anwendbar sind Polymere, die durch polymeranaloge Reaktionen wie Strecker- Reaktion oder durch Phosphonomethylierung mit sauren Gruppen modifiziert wurden. Bevorzugt sind jedoch Polymerisate folgender Zusammensetzung:
(1 ) wenigstens einem Monomer, das ausgewählt ist aus der Gruppe bestehend aus (1.1 ) monoethylenisch ungesättigten Sulfonsäuren, Phosphonsäuren, Phosphorsäureestern und Derivaten davon, und (1.2) monoethylenisch ungesättigten Mono- und Dicarbonsäuren, deren Salzen und Dicarbonsäureanhydriden,
(2) gegebenenfalls wenigstens einem von den Komponenten (1.1) und (1.2) ver- schiedenen monoethylenisch ungesättigten Monomer, und
(3) gegebenenfalls wenigstens eine Verbindung, die mindestens zwei ethylenisch ungesättigte Doppelbindungen im Molekül aufweist,
mit der Maßgabe, dass das Monomerengemisch mindestens ein Monomer (1) mit mindestens einer freien Säuregruppe und/oder einer Säuregruppe in Salzform enthält.
Als Monomere der Gruppe (1.1) sind Verbindungen geeignet, die einen organischen Rest mit einer polymerisierbaren, α,ß-ethylenisch ungesättigten Doppelbindung und mindestens einer Sulfonsäure- oder Phosphonsäuregruppe pro Molekül aufweisen. Geeignet sind weiterhin die Salze und Ester der zuvor genannten Verbindungen. Bei den Estern der Phosphonsäuren kann es sich dabei um die Mono- oder die Diester handeln. Geeignete Monomere (1.1 ) sind weiterhin Ester der Phosphorsäure mit Alkoholen mit einer polymersierbaren, α,ß-ethylenisch ungesättigten Doppelbindung. Dabei kann ein Proton der Phosphorsäuregruppe oder es können die beiden übrigen Protonen der Phosphorsäuregruppe durch geeignete Basen neutralisiert oder mit Alkoholen, die keine polymerisierbaren Doppelbindungen aufweisen, verestert sein.
Geeignete Basen zur teilweisen oder vollständigen Neutralisation der Säuregruppen der Monomere (1.1) sind beispielsweise Alkalimetall- oder Erdalkalimetallbasen, Ammoniak, Amine und/oder Alkanolamine. Beispiele hierfür sind Natriumhydroxid, Kaliumhydroxid, Natriumcarbonat, Kaliumcarbonat, Natriumhydrogencarbonat, Kalium- hydrogencarbonat, Magnesiumhydroxid, Magnesiumoxid, Calciumhydroxid, Calcium- oxid, Triethanolamin, Ethanolamin, Morpholin, Diethylentriamin oder Tetraethylenpen- tamin. Geeignete Alkohole zur Veresterung der Phosphorsäure sind beispielsweise d- Cε-Alkanole, wie beispielsweise Methanol, Ethanol, n-Propanol, Isopropanol, n- Butanol, sec.-Butanol, tert.-Butanol, n-Pentanol, n-Hexanol sowie deren Isomere.
Zu den Monomeren (1.1) zählen beispielsweise Vinylsulfonsäure, Allylsulfonsäure, Methallylsulfonsäure, Sulfoethylacrylat, Sulfoethylmethacrylat, Sulfopropylacrylat, SuI- fopropylmethacrylat, 2-Hydroxy-3-acryloxypropylsulfonsäure, 2-Hydroxy-3- methacryloxypropylsulfonsäure, Styrolsulfonsäure, Acrylamidomethylenphosphonsäu- re, 2-Acrylamido-2-methylpropansulfonsäure, Vinylphosphonsäure, CH2=CH-NH-CH2- PO3H, Vinylphosphonsäuremonomethylester, Vinylphosphonsäuredimethylester, Al- lylphosphonsäure, Allylphosphonsäuremonomethylester, Allylphosphonsäuredimethy- lester, Acrylamidomethylpropylphosphonsäure, (Meth)acrylethylenglykolphosphat und Phosphorsäuremonoallylester. Werden als Komponente (1.1 ) ausschließlich Monomere eingesetzt, bei denen alle Protonen der Säuregruppen verestert sind, wie z. B. Vinylphosphonsäuredimethylester oder Allylphosphonsäuredimethylester, so wird zur Polymerisation wenigstens eine monoethylenisch ungesättigte Mono- und/oder Dicarbonsäure oder ein Salz davon eingesetzt, wie sie im Folgenden als Komponente (1.2) beschrieben werden. Somit ist sichergestellt, dass die erfindungsgemäß eingesetzten Copolymerisate anionische Gruppen aufweisen.
Die zuvor genannten Monomere (1.1 ) können einzeln oder in Form von beliebigen Mi- schungen bei der Herstellung der anionischen Polymeren eingesetzt werden.
Als Monomere der Gruppe (1.2) kommen monoethylenisch ungesättigte Carbonsäuren mit 3 bis 8 C-Atomen sowie die wasserlöslichen Salze wie Akalimetall-, Erdalkalimetalloder Ammoniumsalze dieser Carbonsäuren und die monoethylenisch ungesättigten Carbonsäureanhydride in Betracht. Zu dieser Gruppe von Monomeren gehören beispielsweise Acrylsäure, Methacrylsäure, Dimethacrylsäure, Ethacrylsäure, α- Chloracrylsäure, Maleinsäure, Maleinsäureanhydrid, Fumarsäure, Itaconsäure, Mesa- consäure, Citraconsäure, Glutaconsäure, Aconitsäure, Methylenmalonsäure, Allyles- sigsäure, Vinylessigsäure und Crotonsäure. Die Monomeren der Gruppe (1.2) können allein oder in Mischung miteinander, in teilweise oder in vollständig neutralisierter Form bei der Homo- bzw. Copolymerisation eingesetzt werden. Zur Neutralisation geeignete Basen sind die oben bei der Komponente (1.1) genannten Verbindungen.
Das wasserlösliche anionische Polymerisat enthält wenigstens ein Monomer aus der Gruppe (1), das ausgewählt ist aus den Untergruppen (1.1 ) und/oder (1.2). Selbstverständlich kann das wasserlösliche Copolymerisat auch Mischungen von Monomeren aus den Untergruppen (1.1) und (1.2) einpolymerisiert enthalten.
Die Copolymerisate können zur Modifizierung gegebenenfalls wenigstens ein weiteres Monomer der Gruppe (2) in einpolymerisierter Form enthalten. Vorzugsweise sind diese Monomere ausgewählt unter Estern α,ß-ethylenisch ungesättigter Mono- und Dicar- bonsäuren mit Ci-C3o-Alkanolen, C2-C3o-Alkandiolen und C2-C3o-Aminoalkoholen, Ami- den α,ß-ethylenisch ungesättigter Monocarbonsäuren und deren N-Alkyl- und N, N- Dialkylderivaten, Estern von Vinylalkohol und Allylalkohol mit C1-C30- Monocarbonsäuren, N-Vinyllactamen, stickstoffhaltigen Heterocyclen mit α,ß- ethylenisch ungesättigten Doppelbindungen, Vinylaromaten, Vinylhalogeniden, Vinyl- idenhalogeniden, C2-C8-Monoolefinen und Mischungen davon.
Geeignete Vertreter der Gruppe (2) sind z. B. Methyl(meth)acrylat, Methylethacrylat, Ethyl(meth)acrylat, Ethylethacrylat, n-Butyl(meth)acrylat, lsobutyl(meth)acrylat, tert- Butyl(meth)acrylat, tert.-Butylethacrylat, n-Ocytl(meth)acrylat, 1 ,1 ,3,3- Tetramethylbutyl(meth)acrylat, Ethylhexyl(meth)acrylat und Mischungen davon. Geeignete zusätzliche Monomere (2) sind weiterhin Acrylsäureamid, Methacrylsäu- reamid, N-Methyl(meth)acrylamid, N-Ethyl(meth)acrylamid, n-Propyl(meth)acrylamid, N-(n-Butyl)(meth)acrylamid, tert.-Butyl(meth)acrylamid, n-Octyl(meth)acrylamid, 1 ,1 ,3,3-Tetramethylbutyl(meth)acrylamid, Ethylhexyl(meth)acrylamid und Mischungen davon.
Weiterhin sind als Monomere (2) geeignet 2-Hydroxyethyl(meth)acrylat, 2- Hydroxyethylethacrylat, 2-Hydroxypropyl(meth)acrylat, 3-Hydroxypropyl(meth)acrylat, 3-Hydroxybutyl(meth)acrylat, 4-Hydroxybutyl(meth)acrylat, 6- Hydroxyhexyl(meth)acrylat und Mischungen davon.
Weiterhin geeignete Monomere der Gruppe (2) sind Nitrile von α,ß-ethylenisch ungesättigten Mono- und Dicarbonsäuren, wie beispielsweise Acrylnitril und Methacrylnitril.
Geeignete Monomere der Gruppe (2) sind weiterhin N-Vinyllactame und deren Derivate, die z. B. einen oder mehrere d-Cε-Alkylsubstituenten (wie oben definiert) aufweisen können. Dazu zählen N-Vinylpyrrolidon, N-Vinylpiperidon, N-Vinylcaprolactam, N- Vinyl-5-methyl-2-pyrrolidon, N-Vinyl-5-ethyl-2-pyrrolidon, N-Vinyl-6-methyl-2-piperidon, N-Vinyl-6-ethyl-2-piperidon, N-Vinyl-7-methyl-2-caprolactam, N-Vinyl-7-ethyl-2- caprolactam und deren Mischungen.
Geeignete zusätzliche Monomere der Gruppe (2) sind weiterhin Ethylen, Propylen, Isobutylen, Butadien, Styrol, α-Methylstyrol, Vinylacetat, Vinylpropionat, Vinylchlorid, Vinylidenchlorid, Vinylfluorid, Vinylidenfluorid und Mischungen davon.
Die zuvor genannten Monomere der Gruppe (2) können bei der Copolymerisation mit mindestens einem anionischen Monomer einzeln oder in Form von beliebigen Mischungen eingesetzt werden.
Eine weitere Modifizierung der Copolymerisate ist dadurch möglich, dass man bei der Copolymerisation Monomere der Gruppe (3) einsetzt, die mindestens zwei Doppelbindungen im Molekül enthalten, z. B. Methylenbisacrylamid, Glykoldiacrylat, Glykoldi- methacrylat, Glycerintriacrylat, Pentaerythrittriallylether, mindestens zweifach mit Ac- rylsäure und/oder Methacrylsäure veresterte Polyalkylenglykole oder Polyole wie Pen- taerythrit, Sobit oder Glukose. Falls mindestens ein Monomer der Gruppe (3) bei der Copolymerisation eingesetzt wird, so betragen die angewendeten Mengen bis zu 2 Mol-%, z. B. 0,001 bis 1 Mol-%.
Weiterhin kann es sinnvoll sein, bei der Polymerisation den Einsatz vorstehender Ver- netzter mit dem Zusatz von Reglern zu kombinieren. Eingesetzt werden typischerweise 0,001 bis 5 Mol-% mindestens eines Reglers. Anwendung finden können alle literatur- bekannten Regler wie Mercaptoethanol, 2-Ethylhexylthioglycolat, Thioglycolsäure, Do- decylmercaptan, Natriumhypophosphit, Ameisensäure und/oder Tribromchlormethan.
Vorzugsweise verwendet man als anionische polymere Verbindung Homopolymerisate von ethylenisch ungesättigten C3- bis Cs-Carbonsäuren, insbesondere Polyacrylsäure und Polymethacrylsäure sowie hydrolysierte Homopolymerisate von Maleinsäureanhydrid und von Itaconsäureanhydrid. Bevorzugt in Betracht kommende anionische Co- polymerisate enthalten beispielsweise (1 ) 10 bis 99 Gew.-% mindestens einer ethylenisch ungesättigten C3- bis Cs-Carbonsäure und (2) 90 bis 1 Gew.-% mindestens eines Amids, Nitrils und/oder eines Esters einer ethylenisch ungesättigten C3- bis Cs- Carbonsäure in einpolymerisierter Form. Die Summe der Gewichtsprozente aus den Komponenten (1) und (2) beträgt dabei immer 100. Besonders bevorzugt sind Copoly- merisate aus Acrylsäure und Acrylamid, Copoylmerisate aus Acrylsäure und Acrylnitril, Copolymerisate aus Acrylsäure und N-Vinylformamid, Copolymerisate aus Methacryl- säure und Methacrylamid, Copolymerisate aus Methacrylsäure und N-Vinylformamid, Copolymerisate aus Acrylsäure und Methacrylamid, Copolymerisate aus Acrylsäure und Methacrylnitril, Copolymerisate aus Methacrylsäure und Methacrylnitril sowie Copolymerisate aus Acrylsäure, Acrylamid und Acrylnitril.
Die anionischen Polymerisate sind wasserlöslich. Sie können in Form der freien Säuren und/oder als Alkalimetall-, Erdalkalimetall- oder als Ammoniumsalz bei dem erfindungsgemäßen Verfahren eingesetzt werden. Sie haben beispielsweise einen K-Wert von 50 bis 250 (bestimmt nach H. Fikentscher in 5 gew.-%iger wässriger Kochsalzlösung bei 25 0C und pH 7).
Das wasserlösliche anionische Polymer wird bei dem erfindungsgemäßen Verfahren in einer Menge von beispielsweise 0,01 bis 2,0 Gew.-%, vorzugsweise 0,05 bis 1 ,0 Gew.- %, insbesondere 0,1 bis 0,5 Gew.-%, bezogen auf trockenen Papierstoff, eingesetzt. Das Gew.-Verhältnis von kationischen Polymeren (a) Vinylamineinheiten enthaltenden Polymeren und (b) Ethylenimineinheiten enthaltenden Polymeren zu den wasserlöslichen polymeren anionischen Verbindungen beträgt beispielsweise 3 : 1 bis 1 : 3 und liegt vorzugsweise bei 1 : 1.
Für die Papierherstellung kommen als Faserstoffe zur Herstellung der Pulpen kommen sämtliche dafür gebräuchlichen Qualitäten in Betracht, z.B. Holzstoff, gebleichter und ungebleichter Zellstoff sowie Pa-pierstoffe aus allen Einjahrespflanzen. Zu Holzstoff gehören beispielsweise Holzschliff, thermomechanischer Stoff (TMP), chemo- thermomechanischer Stoff (CTMP), Druck-schliff, Halbzellstoff, Hochausbeute-Zellstoff und Refiner Mechanical PuIp (RMP). Als Zellstoff kommen beispielsweise Sulfat-, SuI- fit- und Natronzellstoffe in Betracht. Bei-spielsweise verwendet man ungebleichten Zellstoff, der auch als ungebleichter Kraft-zel Istoff bezeichnet wird. Geeignete Einjah- respflanzen zur Herstellung von Papierstoffen sind beispielsweise Reis, Weizen, Zuckerrohr und Kenaf.
Das erfindungsgemäße Verfahren eignet sich insbesondere für die Herstellung von trockenfest ausgerüsteten Papieren aus Altpapier (umfassend deinked Altpapier), das entweder allein oder in Mischung mit anderen Faserstoffen eingesetzt wird. Man kann auch von Fasermischungen aus einem Primärstoff und zurückgeführtem gestrichenem Ausschuss ausgehen, z. B. gebleichtes Kiefernsulfat in Mischung mit zurückgeführtem gestrichenem Ausschuss. Das erfindungsgemäße Verfahren ist für die Herstellung von Papier, Pappe und Karton aus Altpapier und in speziellen Fällen auch aus deinked Altpapier von technischem Interesse, weil es die Festigkeitseigenschaften der zurückgeführten Fasern deutlich erhöht. Es hat besondere Bedeutung für die Verbesserung von Festigkeitseigenschaften von graphischen Papieren und von Verpackungspapieren.
Der pH-Wert der Stoffsuspension liegt beispielsweise in dem Bereich von 4,5 bis 8, meisten bei 6 bis 7,5. Zur Einstellung des pH-Wertes kann man beispielsweise eine Säure wie Schwefelsäure oder Aluminiumsulfat verwenden.
Bei dem erfindungsgemäßen Verfahren werden vorzugsweise zunächst die kationischen Polymerisate, nämlich (a) Vinylamineinheiten enthaltende Polymere und (b) E- thylenimineinheiten enthaltende Polymere, zum Papierstoff dosiert. Die Zugabe der kationischen Polymeren kann dabei zum Dickstoff (Faserkonzentration >15 g/l, z.B. in dem Bereich von 25 bis 40 g/l bis zu 60 g/l) oder vorzugsweise zu einem Dünnstoff (Faserkonzentration <15 g/l, z.B. in dem Bereich von 5 bis 12 g/l) erfolgen. Die Zugabestelle liegt vorzugsweise vor den Sieben, sie kann jedoch auch zwischen einer Scherstufe und einem Screen oder danach liegen. Die Dosierung der kationischen Polymeren (a) und (b) zum Papierstoff kann beispielsweise nacheinander, gleichzeitig oder auch als Mischung von (a) und (b) erfolgen.
Die anionische Komponente wird meistens erst nach der Zugabe der kationischen Polymeren (a) und (b) zum Papierstoff zugegeben, kann aber auch gleichzeitig, jedoch getrennt von den kationischen Polymeren zum Papierstoff dosiert werden. Weiterhin ist es auch möglich zuerst die anionische und nachfolgend die kationische Komponente zuzugeben oder zunächst eine der kationischen Komponenten (a) oder (b) zum Papierstoff zu dosieren, dann das anionische Polymer zuzugeben und anschließend die andere kationische Komponente zuzusetzen.
Bei dem erfindungsgemäßen Verfahren können die üblicherweise bei der Papierher- Stellung verwendeten Prozeßchemikalien in den üblichen Mengen eingesetzt werden, z. B. Retentionsmittel, Entwässerungsmittel, andere Trockenverfestiger wie beispiels- weise Stärke, Pigmente, Füllstoffe, optische Aufheller, Entschäumer, Biozide und Papierfarbstoffe.
Nach dem erfindungsgemäßen Verfahren erhält man trockenfest ausgerüstete Papiere, deren Trockenfestigkeit gegenüber Papieren, die nach bekannten Verfahren hergestellt werden, eine erhöhte Trockenfestigkeit aufweisen. Außerdem ist bei dem erfindungsgemäßen Verfahren die Entwässerungsgeschwindigkeit im Vergleich mit bekannten Verfahren verbessert.
Die Prozentangaben in den Beispielen bedeuten, falls nichts anderes angegeben ist, Gewichtsprozent. Der K-Wert der Polymerisate wurde nach Fikentscher, Cellulose- Chemie, Band 13, 58 - 64 und 71 - 74 (1932) bei einer Temperatur von 25 0C in 5 gew.-%igen wässrigen Kochsalzlösungen bei einem pH-Wert von 7 und einer Polymerkonzentration von 0,5% bestimmt.
Für die einzelnen Tests wurden in Laborversuchen Blätter in einem Rapid-Köthen- Laborblattbildner hergestellt. Die Blätter wurden für 24 Stunden bei 23 0C und einer Luftfeutchtigkeit von 50 % gelagert. Danach wurden folgende Festigkeitsprüfungen durchgeführt:
Berstdruck nach DIN ISO 2758 (bis 600 kPa), DIN ISO 2759 (ab 600 kPa) SCT nach DIN 54518 (Bestimmung des Streifenstauchwiderstandes) CMT nach DIN EN 23035 (Bestimmung des Flachstauchwiderstandes) DIN EN ISO 7263 (Bestimmung des Flachstauchwiderstandes an labormäßig gewellter Wellpappe)
Beispiele
In den Beispielen und in den Vergleichsbeispielen wurden folgende Polymere verwen- det:
Polymer KA
Polyethylenimin (Polymin® P, BASF SE, D-67056 Ludwigshafen)
Polymer KB
Verwendet wurde ein mit Ethylenimin gepropftes und mit einem Dichlorhydrinether von Polyethylenglykol vernetztes Polyamidoamin, wie in DE-A 2434816, Beispiel 13 beschrieben.
Polymer KC Verwendet wurde ein mit Ethylenimin gepropftes und vernetztes Polyamidoamin, das zusätzlich noch einer Ultrafiltration unterworfen wurde, vgl. WO 00/67884, Seite 23, Beispiel B1 b.
Polymer KD
Verwendet wurde ein zu 30 % teilhydrolysiertes Polyvinylformamid mit einem K-Wert von 90, wie in DE-A 10 2004 056551 , Seite 9, letzter Abschnitt als PVAm 4 beschrieben.
Polymer KE
Verwendet wurde ein Polymer, das durch saure Hydrolyse eines Copolymers aus 30 Mol-% N-Vinylformamid und 70 Mol-% Acrylnitril hergestellt wurde, wie in DE 4328975 als Beispiel P auf den Seiten 8 und 9 beschrieben.
Polymer KF
Verwendet wurde ein handelsübliches Hofmann-Abbau Produkt der Firrma SNF mit der Bezeichnung RSL HF 70D. Das Produkt hatte einen Festgehalt von 24,2 %, eine Viskosität von 19 mPas (Brookfield, LVT, Spindel 1 , 60 Upm, 200C) und eine Ladungsdichte von 57,2 meq/100 g Produkt (Polyelektrolyttitration).
Polymer KG
Das verwendete Polymer war identisch mit dem in WO 2006/0751 15 auf Seite 13 in der Tabelle als C8 beta 2 bezeichnete Hofmann-Abbauprodukt. Es wurde hergestellt durch Umsetzung von Polyacrylamid mit Natriumhypochlorit im Molverhältnis 1 : 1 , und Natronlauge, wobei das Molverhältnis von Natriumhydroxid zu Natriumhypochlorit 2 : 1 betrug.
Polymer KH
Das verwendete Polymer war identisch mit dem in WO 2006/090076 auf Seite 15, Zeile 23 als C2 bezeichneten glyoxylierten Copolymer aus 95 Mol-% Acrylamid und 5 Mol-% Diallyldimethylammoniumchlorid (DADMAC).
Polymer AA
Copolymer aus 70 % N-Vinylformamid und 30 % Acrylsäure in Form des Na-Salzes mit einem K-Wert von 85, wie in DE 10 2004 056551 auf Seite 9, letzter Abschnitt als Co- polymerisat 4 beschrieben.
Polymer AB
Das verwendete Polymer war identisch mit dem in WO 2006/075115 auf Seite 14 in der Tabelle als A1 bezeichneten Copolymer aus 70 % Acrylamid und 30 % Acrylsäure in Form des Na-Salzes. Polymer AC
Das verwendete Polymer war identisch mit dem in WO 2006/075115 auf Seite 14 in der Tabelle als A2 bezeichneten Copolymer aus 70 Mol-% Acrylamid und 30 Mol-% Acrylsäure, vernetzt mit Methylenbisacrylamid (MBA) in Form des Na-Salzes. Das Co- polymer hatte eine anionische Ladung von 3,85 meq/g. Polymer AD
Das verwendete Polymer war identisch mit dem in WO 2006/090076 auf Seite 16 in der Tabelle als A2 bezeichneten Copolymer aus 70 Mol-% Acrylamid und 30 Mol-% Acrylsäure, vernetzt mit Methylenbisacrylamid (MBA) in Form des Na-Salzes. Das Co- polymer hatte eine anionische Ladung von 3,85 meq/g.
Herstellung des Papierstoffs für die Beispiele und Vergleichsbeispiele
Ein Papier aus 100 % Altpapier (Mischung der Sorten: 1.02, 1.04, 4.01) wurde mit Trinkwasser bei einer Stoffdichte von 4 % in einem Laborpulper stippenfrei aufgeschlagen und in einem Laborrefiner auf einen Mahlgrad von 40 0SR gemahlen. Dieser Stoff wurde anschließend mit Trinkwasser auf eine Stoffdichte von 0,7 % verdünnt.
Entwässerungsprüfung
In den Beispielen und Vergleichsbeispielen wurde jeweils 1 Liter des oben beschriebenen Papierstoffs verwendet und jeweils nacheinander mit den in der Tabelle jeweils angegebenen wasserlöslichen Polymeren unter Rühren versetzt und danach mit Hilfe eines Schopper-Riegler-Entwässerungsprüfers entwässert, wobei man die Zeit in Se- künden für eine Durchflussmenge (Filtrat) von 600 ml bestimmte. Die Konzentration der wasserlöslichen kationischen und anionischen Polymeren, die jeweils als Trocken- verfestigungsmittel für Papier getestet wurden, betrug jeweils 1 %. Die Messergebnisse sind in der Tabelle angegeben.
Blattbildung
In den Beispielen und Vergleichsbeispielen wurden dem oben beschriebenen Papierstoff unter Rühren die in der Tabelle angegebenen Polymeren nacheinander zugesetzt. Die Polymerkonzentration der wässrigen Lösungen der kationschen und der anioni- sehen Polymeren betrug jeweils 1 %. In der Tabelle sind die jeweils eingesetzten Mengen der Polymeren in Gewichtsprozent, bezogen auf den Festgehalt des Papierstoffs angegeben. Nach der letzten Zugabe eines wasserlöslichen Polymers zum Papierstoff wurde soviel Stoff abgenommen (ca. 500 ml), um auf einem Rapid-Köthen-Blattbildner ein Blatt mit einem Flächengewicht von 120 g/m2 (3,2 g otro = ofentrocken) herzustel- len. Die Blätter wurden, wie im Rapid-Köthen-Verfahren üblich, abgegautscht und 8 Minuten bei 110 0C in einem Trockenzylinder getrocknet. Die Ergebnisse sind in der Tabelle angegeben. Tabelle 1 κ> κ>
Figure imgf000023_0001
κ>
Figure imgf000024_0001
Figure imgf000025_0001
κ>
Vergleich 2 nach Beispiel 6 der DE-A-10 2004 056551 Vergleich 3 nach Beispiel 17 der WO-A-2006/0751 15 Vergleich 4 nach Beispiel 1 der WO-A-2006/0751 15 Vergleich 5 nach Beispiel 5 der WO-A-2006/090076

Claims

Patentansprüche
1. Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit durch Zugabe mindestens eines wasserlöslichen kationischen Polymeren und mindestens einer wasserlöslichen polymeren anionischen Verbindung zu einem Papierstoff, Entwässern des Papierstoffs unter Blattbildung und Trocknen der Papierprodukte, dadurch gekennzeichnet, dass man als wasserlösliche kationische Polymere
(a) Vinylamineinheiten enthaltende Polymere und
(b) Ethylenimineinheiten enthaltende Polymere
in beliebiger Reihenfolge oder als Mischung zu einem Papierstoff dosiert.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass man als (a) Vinylamineinheiten enthaltende Polymere die Reaktionsprodukte einsetzt, die erhältlich sind
durch Polymerisieren mindestens eines Monomeren der Formel
Figure imgf000026_0001
in der R1, R2 = H oder d- bis C6-Alkyl bedeuten,
und anschließende teilweise oder vollständige Abspaltung der Gruppen
-CO-R1 aus den in das Polymerisat einpolymerisierten Einheiten der Monomeren (I) unter Bildung von Aminogruppen
und/oder
durch Hofmann-Abbau von Polymeren, die Acrylamid- und/oder Methacry- lamideinheiten aufweisen.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass man als (a) Vinylamineinheiten enthaltende Polymere die Reaktionsprodukte einsetzt, die erhältlich sind durch Polymerisieren von (i) mindestens eines Monomeren der Formel
Figure imgf000027_0001
in der R1, R2 = H oder d- bis C6-Alkyl bedeuten,
(ii) mindestens eines anderen monoethylenisch ungesättigten Monomeren und gegebenenfalls
(iii) mindestens eines vernetzend wirkenden Monomeren mit mindestens zwei Doppelbindungen im Molekül
und anschließende teilweise oder vollständige Abspaltung der Gruppen -CO-R1 aus den in das Polymerisat einpolymerisierten Einheiten der Monomeren (I) unter Bildung von Aminogruppen.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass man als (a) Vinylamineinheiten enthaltende Polymere die Reaktionsprodukte einsetzt, die erhältlich sind durch Polymerisieren von
(i) mindestens eines Monomeren der Formel
CH2
Figure imgf000027_0002
in der R1, R2 = H oder d- bis C6-Alkyl bedeuten,
(ii,a) mindestens jeweils einer monoethylenisch ungesättigten Sulfonsäure, einer monoethylenisch ungesättigten Phosphonsäure, einer monoethylenisch ungesättigten Carbonsäure mit 3 bis 8 C-Atomen im Molekül und/oder deren Alkalimetall-, Erdalkalimetall- oder Ammoniumsalzen und gegebenenfalls
(ii,b) mindestens eines anderen neutralen und/oder eines kationischen Monomeren und gegebenenfalls (iii) mindestens eines vernetzend wirkenden Monomeren mit mindestens zwei
Doppelbindungen im Molekül
und anschließende teilweise oder vollständige Abspaltung von Gruppen -CO-R1 aus den in das Polymerisat einpolymerisierten Monomeren der Formel I unter Bildung von Aminogruppen, wobei der Gehalt an Aminogruppen im Copolymeri- sat mindestens 5 Mol-% über dem Gehalt an einpolymerisierten Säuregruppen der Monomere (ii,a) beträgt.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass man als (a) Vinylamineinheiten enthaltende Polymere die Reaktionsprodukte einsetzt, die durch Polymerisieren von N-Vinylformamid und anschließende Abspal- tung von Formylgruppen aus den in das Polymerisat einpolymerisierten Vinyl- formamideinheiten unter Bildung von Aminogruppen erhältlich sind.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass man als (a) Vinylamineinheiten enthaltende Polymere die Reaktionsprodukte einsetzt, die durch Copolymerisieren von
(i) Vinylformamid und (ii) Acrylnitril
und anschließende Abspaltung von Formylgruppen aus den in das Copolymeri- sat einpolymerisierten Vinylformamideinheiten unter Bildung von Aminogruppen erhältlich sind.
7. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass man als (a) Vinyla- mineinheiten enthaltende Reaktionsprodukte die Reaktionsprodukte einsetzt, die durch Copolymerisieren von
(i) N-Vinylformamid,
(ii,a) Acrylsäure, Methacrylsäure und/oder deren Alkalimetall-, Erdalkalimetall- oder Ammoniumsalzen und gegebenenfalls
(ii,b) Acrylnitril und/oder Methacrylnitril
und anschließende teilweise oder vollständige Abspaltung von Formylgruppen aus dem in das Polymerisat einpolymerisierten N-Vinylformamid unter Bildung von Aminogruppen, wobei der Gehalt an Aminogruppen im Copolymerisat mindestens 5 Mol-% über dem Gehalt an einpolymerisierten Säuregruppen der Monomere (ii,a) beträgt.
8. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass man als (a) Vinyla- mineinheiten enthaltende Polymere die Reaktionsprodukte einsetzt, die durch
Hofmann-Abbau von Homo- oder Copolymerisaten des Acrylamids oder Methac- rylamids in wäßrigem Medium in Gegenwart von Natronlauge und Natriumhypochlorit und anschließende Decarboxylierung der Carbamatgruppen des Umsetzungsprodukts in Gegenwart einer Säure erhältlich sind.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass man als (b) Ethylenimineinheiten enthaltende Polymere mindestens ein wasserlösliches kationisches Polymer aus der Gruppe der
- Homopolymerisate des Ethylenimins, mit mindestens bifunktionellen Vernetzern umgesetzten Polyethylenimine, mit Ethylenimin gepfropften Polyamidoamine, die mit mindestens bifunktionellen Vernetzern umgesetzt sind, Umsetzungsprodukte von Polyethyleniminen mit einbasischen Carbonsäu- ren zu amidierten Polyethyleniminen,
Michaeladditionsprodukte von Polyethyleniminenen an ethylenisch ungesättigte Säuren, Salze, Ester, Amide oder Nitrile von monoethylenisch un- gesätitgten Carbonsäuren, phosphonomethylierten Polyethylenimine, - carboxylierten Polyethylenimine und alkoxylierten Polyethylenimine
einsetzt.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass man als (b) Ethylenimineinheiten enthaltende Polymere Homopolymerisate des Ethylenimins und/oder mit Ethylenimin gepfropfte und anschließend mit mindestens bifunktionellen Vernetzern umgesetzte Polyamidoamine einsetzt.
1 1. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass man als polymere anionische Verbindung ein wasserlösliches, Säuregruppen aufweisendes Polymer mit einer Ladungsdichte von >0,5 meq/g oder deren Salze einsetzt.
12. Verfahren nach Anspruch 11 , dadurch gekennzeichnet, dass man als polymere anionische Verbindung mindestens eine wasserlösliche Verbindung aus der Gruppe bestehend aus Polyacrylsäure, Polymethacrylsäure, Copolymerisaten aus Acrylamid und Acrylsäure, Copolymerisaten aus N-Vinylformamid und Acryl- säure, hydroylsierten Copolymerisaten aus N-Vinylformamid und Acrylsäure und jeweils deren Salzen einsetzt.
13. Papiere, die nach den Verfahren der Patentansprüche 1 bis 12 erhältlich sind.
PCT/EP2009/060331 2008-08-18 2009-08-10 Verfahren zur erhöhung der trockenfestigkeit von papier, pappe und karton WO2010020551A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2733503A CA2733503C (en) 2008-08-18 2009-08-10 Process for increasing the dry strength of paper, board and cardboard
US13/058,217 US8404083B2 (en) 2008-08-18 2009-08-10 Process for increasing the dry strength of paper, board and cardboard
CN200980131892.6A CN102124161B (zh) 2008-08-18 2009-08-10 增加纸,纸板和卡纸的干强度的方法
EP09781661.5A EP2315875B1 (de) 2008-08-18 2009-08-10 Verfahren zur erhöhung der trockenfestigkeit von papier, pappe und karton

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08162545 2008-08-18
EP08162545.1 2008-08-18

Publications (1)

Publication Number Publication Date
WO2010020551A1 true WO2010020551A1 (de) 2010-02-25

Family

ID=41213238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/060331 WO2010020551A1 (de) 2008-08-18 2009-08-10 Verfahren zur erhöhung der trockenfestigkeit von papier, pappe und karton

Country Status (5)

Country Link
US (1) US8404083B2 (de)
EP (1) EP2315875B1 (de)
CN (1) CN102124161B (de)
CA (1) CA2733503C (de)
WO (1) WO2010020551A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120073773A1 (en) * 2009-06-16 2012-03-29 Basf Se Method for increasing the dry strength of paper, paperboard, and cardboard
US8454799B2 (en) 2010-05-05 2013-06-04 Basf Se Pulp composition for paper and solid board production
WO2015144428A1 (de) * 2014-03-28 2015-10-01 Basf Se Verfahren zur herstellung von wellpappenkarton
US9873986B2 (en) 2013-09-12 2018-01-23 Ecolab Usa Inc. Paper-making aid composition and process for increasing ash retention of finished paper
US9873983B2 (en) 2013-09-12 2018-01-23 Ecolab Usa Inc. Process and compositions for paper-making

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8088250B2 (en) 2008-11-26 2012-01-03 Nalco Company Method of increasing filler content in papermaking
ES2624249T3 (es) * 2011-06-20 2017-07-13 Basf Se Fabricación de papel y cartón.
CA2862095C (en) * 2012-02-01 2017-04-11 Basf Se Process for the manufacture of paper and paperboard
US9908680B2 (en) 2012-09-28 2018-03-06 Kimberly-Clark Worldwide, Inc. Tree-free fiber compositions and uses in containerboard packaging
US9816233B2 (en) 2012-09-28 2017-11-14 Kimberly-Clark Worldwide, Inc. Hybrid fiber compositions and uses in containerboard packaging
FR3016363B1 (fr) * 2014-01-15 2017-05-26 Snf Sas Solution aqueuse de copolymeres cationiques derives d'acrylamide, procede de preparation et utilisation
US9567708B2 (en) * 2014-01-16 2017-02-14 Ecolab Usa Inc. Wet end chemicals for dry end strength in paper
US8894817B1 (en) * 2014-01-16 2014-11-25 Ecolab Usa Inc. Wet end chemicals for dry end strength
CN103866633B (zh) * 2014-02-25 2016-08-17 苏州恒康新材料有限公司 一种纸张湿强剂及其制备方法
US9702086B2 (en) 2014-10-06 2017-07-11 Ecolab Usa Inc. Method of increasing paper strength using an amine containing polymer composition
US9920482B2 (en) 2014-10-06 2018-03-20 Ecolab Usa Inc. Method of increasing paper strength
CA2964420A1 (en) * 2014-10-13 2016-04-21 Basf Se Solidifying composition for paper and cardboard
CN107223171A (zh) * 2014-12-16 2017-09-29 巴斯夫欧洲公司 制造纸和纸板的方法
WO2017197380A1 (en) 2016-05-13 2017-11-16 Ecolab Usa Inc. Tissue dust reduction
BR112020007124B1 (pt) * 2017-10-11 2024-01-09 Solenis Technologies Cayman, L.P Método para a produção de papel ou papelão e polímero p solúvel em água
FI3697964T3 (en) * 2017-10-18 2024-09-03 Solenis Technologies Cayman Lp METHOD FOR MANUFACTURE OF SINGLE OR MULTI-LAYER PAPER
CN115477729B (zh) * 2022-09-21 2023-12-26 济宁明升新材料有限公司 一种窄分子量阳离子聚丙烯酰胺干强剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0193111A2 (de) * 1985-02-27 1986-09-03 BASF Aktiengesellschaft Verfahren zur Herstellung von Papier mit hoher Trockenfestigkeit
EP0223223A1 (de) * 1985-11-21 1987-05-27 BASF Aktiengesellschaft Verfahren zur Herstellung von Papier und Karton
DE4105919A1 (de) * 1991-02-26 1992-08-27 Basf Ag Waessrige anschlaemmungen von feinteiligen fuellstoffen und ihre verwendung zur herstellung von fuellstoffhaltigem papier
DE19713755A1 (de) * 1997-04-04 1998-10-08 Basf Ag Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit
DE102004056551A1 (de) * 2004-11-23 2006-05-24 Basf Ag Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit
DE102005022799A1 (de) * 2005-05-12 2006-11-16 Basf Ag Papier mit hohem Füllstoffgehalt und hoher Trockenfestigkeit

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2182306A (en) * 1935-05-10 1939-12-05 Ig Farbenindustrie Ag Polymerization of ethylene imines
US3203910A (en) * 1962-04-13 1965-08-31 Dow Chemical Co Polymerization of alkylenimines
DE2434816C3 (de) 1974-07-19 1981-01-22 Basf Ag, 6700 Ludwigshafen Verfahren zur Herstellung von stickstoffhaltigen Kondensationsprodukten und deren Verwendung als Retentionsmittel, Flockungsmittel und Entwässerungsbeschleuniger bei der Papierherstellung
DE2436386C2 (de) * 1974-07-29 1982-09-23 Basf Ag, 6700 Ludwigshafen Verwendung stickstoffhaltiger Kondensationsprodukte
SE443818B (sv) 1978-04-24 1986-03-10 Mitsubishi Chem Ind Forfarande for framstellning av papper med forbettrad torrstyrka
US5039757A (en) 1988-12-28 1991-08-13 Mitsui Toatsu Chemicals, Inc. Method of manufacturing cationic acrylamide polymers, cationic acrylamide polymers, and the applications of these polymers
DE3925439A1 (de) 1989-08-01 1991-02-07 Bayer Ag Basische kondensate
DE4001808A1 (de) 1990-01-23 1991-07-25 Basf Ag Verwendung von wasserloeslichen copolymerisaten aus monoethylenisch ungesaettigten carbonsaeuren und n-vinylamiden als wasserbehandlungsmittel
EP0528409B1 (de) 1991-08-20 1996-05-22 Mitsubishi Chemical Corporation Kationisches polymeres Flockungsmittel
JP3237228B2 (ja) 1992-09-03 2001-12-10 三菱化学株式会社 カチオン性高分子から成る製紙用添加剤
DE4240110A1 (de) 1992-11-28 1994-06-01 Basf Ag Kondensationsprodukte von Polyalkylenpolyaminen, Verfahren zu ihrer Herstellung und ihre Verwendung bei der Herstellung von Papier
DE4244194A1 (de) 1992-12-24 1994-06-30 Basf Ag Wasserlösliche Kondensationsprodukte aus Aminogruppen enthaltenden Verbindungen und Vernetzern, Verfahren zu ihrer Herstellung und ihre Verwendung
ES2140954T3 (es) 1996-01-08 2000-03-01 Basf Ag Procedimiento para la obtencion de condensados y productos de adicion hidrosolubles, que contienen grupos amino, y su empleo.
DE19921507A1 (de) 1999-05-10 2000-11-16 Basf Ag Verfahren zur Fraktionierung von in Wasser löslichen oder dispergierbaren aminogruppenhaltigen Polymeren mit breiter Molmassenverteilung
JP3703067B2 (ja) 1999-05-20 2005-10-05 シャープ株式会社 フレックスリジット多層配線板の製造方法
US6695950B1 (en) * 1999-08-17 2004-02-24 National Starch And Chemical Investment Holding Corporation Aldehyde modified cellulose pulp for the preparation of high strength paper products
US6824650B2 (en) 2001-12-18 2004-11-30 Kimberly-Clark Worldwide, Inc. Fibrous materials treated with a polyvinylamine polymer
US20040118540A1 (en) 2002-12-20 2004-06-24 Kimberly-Clark Worlwide, Inc. Bicomponent strengtheninig system for paper
MXPA04003942A (es) * 2003-05-05 2007-06-29 German Vergara Lopez Un sistema de retencion y drenaje recomendado para la fabricacion de papel, cartulina, carton y otros productos similares.
US8778139B2 (en) * 2004-12-17 2014-07-15 Basf Aktiengesellschaft Papers with a high filler material content and high dry strength
FR2880901B1 (fr) 2005-01-17 2008-06-20 Snf Sas Soc Par Actions Simpli Procede de fabrication de papier et carton de grande resistance a sec et papiers et cartons ainsi obtenus
FR2882373B1 (fr) * 2005-02-24 2007-04-27 Snf Sas Soc Par Actions Simpli Procede de fabrication de papier et carton de grande resistance a sec et papiers et cartons ainsi obtenus
WO2006120235A1 (en) 2005-05-11 2006-11-16 Stora Enso Ab Process for the production of a paper and a paper produced according to the process
US8192580B2 (en) 2007-07-05 2012-06-05 Basf Se Preparation of aqueous slurries of finely divided fillers and their use for the production of papers having a high filler content and high dry strength
ATE539126T1 (de) 2007-07-05 2012-01-15 Basf Se Wässrige anschlämmungen von feinteiligen füllstoffen, verfahren zu ihrer herstellung und ihre verwendung zur herstellung von papieren mit hohem füllstoffgehalt und hoher trockenfestigkeit
EP2164908A1 (de) 2007-07-05 2010-03-24 Basf Se Verfahren zur herstellung von wässrigen anschlämmungen von feinteiligen füllstoffen und ihre verwendung zur herstellung von papieren mit hohem füllstoffgehalt und hoher trockenfestigkeit
EP2164907B1 (de) * 2007-07-05 2017-02-22 Basf Se Wässrige anschlämmungen von feinteiligen füllstoffen, verfahren zu ihrer herstellung und ihre verwendung zur herstellung von papieren mit hohem füllstoffgehalt und hoher trockenfestigkeit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0193111A2 (de) * 1985-02-27 1986-09-03 BASF Aktiengesellschaft Verfahren zur Herstellung von Papier mit hoher Trockenfestigkeit
EP0223223A1 (de) * 1985-11-21 1987-05-27 BASF Aktiengesellschaft Verfahren zur Herstellung von Papier und Karton
DE4105919A1 (de) * 1991-02-26 1992-08-27 Basf Ag Waessrige anschlaemmungen von feinteiligen fuellstoffen und ihre verwendung zur herstellung von fuellstoffhaltigem papier
DE19713755A1 (de) * 1997-04-04 1998-10-08 Basf Ag Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit
DE102004056551A1 (de) * 2004-11-23 2006-05-24 Basf Ag Verfahren zur Herstellung von Papier, Pappe und Karton mit hoher Trockenfestigkeit
DE102005022799A1 (de) * 2005-05-12 2006-11-16 Basf Ag Papier mit hohem Füllstoffgehalt und hoher Trockenfestigkeit

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120073773A1 (en) * 2009-06-16 2012-03-29 Basf Se Method for increasing the dry strength of paper, paperboard, and cardboard
US8926797B2 (en) * 2009-06-16 2015-01-06 Basf Se Method for increasing the dry strength of paper, paperboard, and cardboard
US8454799B2 (en) 2010-05-05 2013-06-04 Basf Se Pulp composition for paper and solid board production
US9873986B2 (en) 2013-09-12 2018-01-23 Ecolab Usa Inc. Paper-making aid composition and process for increasing ash retention of finished paper
US9873983B2 (en) 2013-09-12 2018-01-23 Ecolab Usa Inc. Process and compositions for paper-making
WO2015144428A1 (de) * 2014-03-28 2015-10-01 Basf Se Verfahren zur herstellung von wellpappenkarton
KR20160141782A (ko) * 2014-03-28 2016-12-09 바스프 에스이 골판지의 제조 방법
US10047480B2 (en) 2014-03-28 2018-08-14 Basf Se Method for producing corrugated cardboard
KR102485733B1 (ko) 2014-03-28 2023-01-05 바스프 에스이 골판지의 제조 방법

Also Published As

Publication number Publication date
US8404083B2 (en) 2013-03-26
EP2315875A1 (de) 2011-05-04
CA2733503A1 (en) 2010-02-25
EP2315875B1 (de) 2014-03-05
CN102124161A (zh) 2011-07-13
US20110132559A1 (en) 2011-06-09
CN102124161B (zh) 2014-09-10
CA2733503C (en) 2018-07-03

Similar Documents

Publication Publication Date Title
EP2315875B1 (de) Verfahren zur erhöhung der trockenfestigkeit von papier, pappe und karton
EP2443284B1 (de) Verfahren zur erhöhung der trockenfestigkeit von papier, pappe und karton
EP2288750B1 (de) Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit
EP2491177B1 (de) Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit
EP1819877B1 (de) Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit
EP2393982B1 (de) Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit
EP2304106B1 (de) Herstellung von papier
WO2007104716A1 (de) Verfahren zur herstellung von papier, pappe und karton mit hoher trockenfestigkeit
WO2010145990A1 (de) Verfahren zur reduktion von ablagerungen in der trockenpartie bei der herstellung von papier, pappe und karton
EP1727938B1 (de) Verfahren zur herstellung von papier, pappe und karton
WO2016096477A1 (de) Verfahren zur herstellung von papier und karton
EP2723943B1 (de) Verfahren zur herstellung von papier, pappe und karton
EP3207178A1 (de) Verfestigungszusammensetzung für papier und karton
WO2006136556A2 (de) Verfahren zur herstellung von papier, pappe und karton

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980131892.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09781661

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2733503

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13058217

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009781661

Country of ref document: EP